# **DESIGN OF FLOOR SLAB**

#### Design Data

Dimensions of the slab (c/c distance b/w supports),

Length of short span,  $L_x = 4.00 \text{ m}$ 

Length of long span, = 5.30 m

Assume dia. of reinforcement steel

Width of the supporting beam, = 230mm Clear cover to main reinforcement = 20 mm

### **Calculations**

150 Assume the thickness of slab as mm; Effective depth, d = 125

Effective span,  $l_x = 4 \text{ m (or) } 3.895 \text{ m whichever is less;}$ d = 3.895

= 10

 $l_v = 5.3 \text{ m}$  (or) 5.195 m whichever is less; d = 5.195m

mm

 $(I_y/I_x) = 1.33 < 2$ ; Here,  $(I_y/I_x)$  is less than 2, Hence design the slab as two way slab

## **Load Calculations**

Dead Load of slab =  $0.15 \times 25$  $= 3.75 \text{ KN/m}^2$ 

Finishes load on slab  $= 2.00 \text{ KN/m}^2$ = 1.5 Live Load on slab KN/m<sup>2</sup>

Total Dead load acting on the Structure =  $5.75 \text{ KN/m}^2$ 

Total live load acting on the Structure = 1.5 KN/m<sup>2</sup> Factored Design Load w = 10.88KN/m<sup>2</sup>

**Support Condition** (Type of panel according to support condition)

One Short Edge Discontinuous

Short span coefficient for  $(I_v / I_x) =$ 1.33,

For negative moment, 0.0522

For positive moment,  $a_x =$ 0.0396 For this support condition,

N/mm<sup>2</sup>

N/mm<sup>2</sup>

Long span coefficient,

For negative moment, 0.037  $a_v =$ 0.028

For positive moment,

## **Moment Calculation**

Max. BM per unit width,  $M_x = a_x w I_x^2$ 

|                 | $M_u$ | $M_u / bd^2$      | p <sub>t</sub> | $A_{st, req}$ |
|-----------------|-------|-------------------|----------------|---------------|
|                 | KNm   | N/mm <sup>2</sup> | %              | $mm^2$        |
| For Short Span, |       |                   |                |               |
| At mid span,    | 6.54  | 0.42              | 0.1187         | 148           |
| At supports,    | 8.62  | 0.55              | 0.1565         | 196           |
| For Long span,  |       |                   |                |               |
| At mid span,    | 4.62  | 0.35              | 0.0986         | 123           |
| At supports,    | 6.11  | 0.46              | 0.1303         | 163           |

 $M_v = a_v w I_x^2$ 

 $A_{st, min} = (0.12/100) bD$  $mm^2$ 

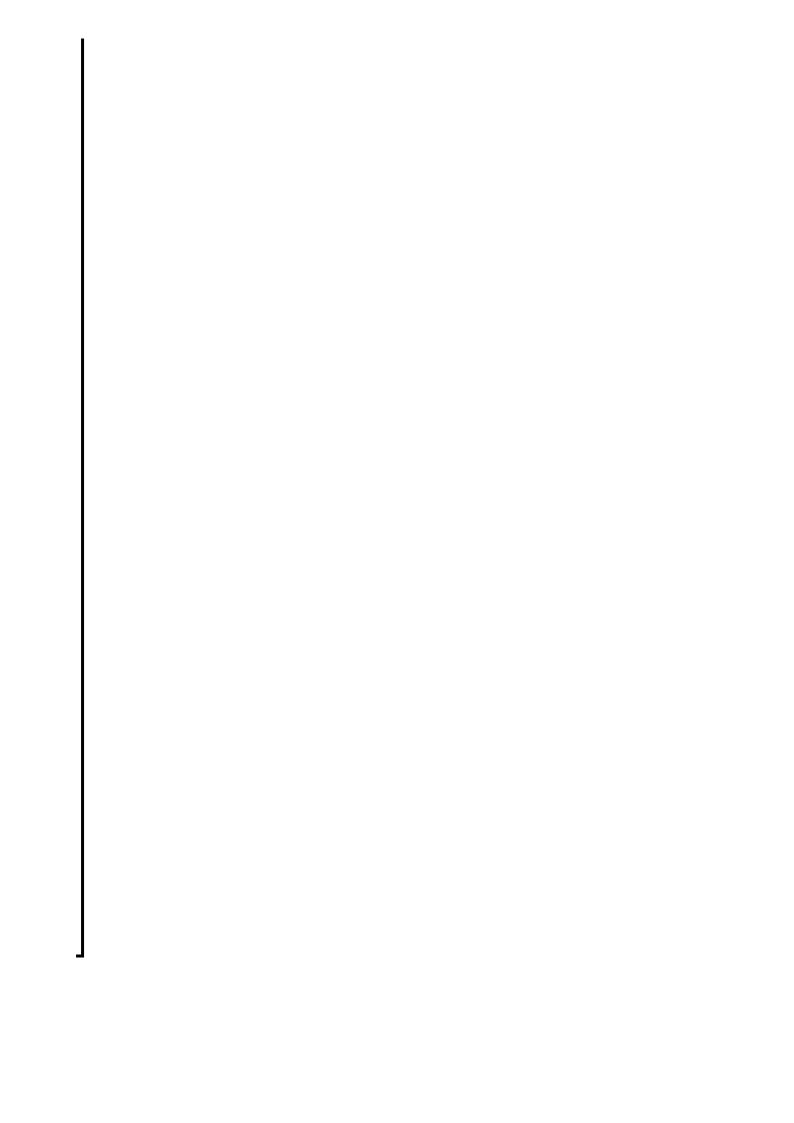
#### Reinforcement details

Provide Y 8 @ 150 mm c/c at midspan & supports for short span  $(A_{st} pro. = 335 mm^2)$ Provide Y 8 150 mm c/c at midspan &  $(A_{st} pro. = 335 mm^2)$ supports for long span

#### Check for Deflection

Percentage of tension reinforcement = 0.27

 $f_s = 0.58 f_v (A_{st reg} / A_{st pro})$ = 128


Refer Fig. 4 of IS 456,

Modification factor = 1.41 Allowable (Span / d<sub>eff</sub> ) ratio = 36.7

Effective depth required = 106 mm

< d prov.

**Hence OK** 

