DESIGN OF FLOOR SLAB

Design Data

Dimensions of the slab (c/c distance b/w supports),

 $L_x = 5.3$ Length of short span,

Length of long span,

m

Width of the supporting beam, = 230 mm

Clear cover to main reinforcement = 20

mm Assume dia. of reinforcement steel = 10 mm

Calculations

Assume the thickness of slab as 150 mm; Effective depth, d = 125

Effective span, $l_x = 5.3 \text{ m}$ (or) 5.195 m whichever is less; d = 5.195m

 $l_v = 5.3 \text{ m}$ (or) 5.195 m whichever is less; d = 5.195m

 $(I_y/I_x) = 1.00 < 2$; Here, (I_y/I_x) is less than 2, Hence design the slab as two way slab

Load Calculations

Dead Load of slab = 0.15×25 $= 3.75 \text{ KN/m}^2$

Finishes load on slab $= 2.00 \text{ KN/m}^2$

= 1.5 Live Load on slab KN/m²

Total Dead load acting on the Structure = 5.75 KN/m^2

Total live load acting on the Structure = 1.5KN/m²

Factored Design Load w = 10.88KN/m²

Support Condition (Type of panel according to support condition)

Two Adjacent Edges Discontinuous

Short span coefficient for $(I_v / I_x) =$

For negative moment, $a_x = 0.0470$

For positive moment, $a_x = 0.0350$ For this support condition,

N/mm²

N/mm²

Long span coefficient,

For negative moment, 0.047

0.035

For positive moment, $a_v =$

Moment Calculation

Max. BM per unit width, $M_x = a_x w I_x^2$

		M_u	M_u/bd^2	p_t	$A_{st, req}$
		KNm	N/mm ²	%	mm^2
For SI	nort Span,				
At mic	d span,	10.28	0.66	0.1888	236
At sup	ports,	13.80	0.88	0.2546	318
For Lo	ong span,				
At mic	d span,	10.28	0.78	0.2245	281

$M_y = a_v w I_x^2$

 $A_{st, min} = (0.12/100) bD$ 180 mm^2

Reinforcement details

Provide Y 10 @ 150 mm c/c at midspan & supports for short span $(A_{st} pro. = 524 mm^2)$ Provide Y 10 150 mm c/c at midspan & $(A_{st} pro. = 524 mm^2)$ supports for long span

Check for Deflection

At supports,

% Percentage of tension reinforcement = 0.42

1.04

0.3035

13.80

 $f_s = 0.58 f_v (A_{st req} / A_{st pro})$ = 131

Refer Fig. 4 of IS 456,

Modification factor = 1.9

Allowable (Span / d_{eff}) ratio = 49.4

Effective depth required $= 105 \, \text{mm}$

< d prov.

Hence OK