VIBRATION STANDARDS FOR DIFFERENT COUNTRIES/RESEARCHERS

1. DGMS prescribed permissible limit of ground vibration (INDIA)

Type of structures	Dominant excitation frequency, Hz		
	< 8Hz	8-25Hz	>25Hz
(A) Buildings/structures not belong to the owner			
1. Domestic houses/structures	5	10	15
(Kuchcha, bricks & Cement)			
2. Industrial building	10	20	25
	2	5	10
3. Objects of historical importance & sensitive			
Structures			
(B) Buildings belonging to the owner with limite	d span of life		
1. Domestic houses/structures	10	15	20
2. Industrial buildings	15	25	50

2. After Indian Standard Institution (1973)

Soil, weathered or soft conditions	70 mm/s
Hard rock conditions	100 mm/s

3. After CMRI Standard (Dhar et al, 1993)

Type of structures	PPV(mm/s)	
	<24 Hz	>24 Hz
Domestic houses, dry well interior, construction	5.0	10.0
Structures with plasters, bridge		
Industrial buildings, steel or reinforced concrete	12.5	25.5
structures		
Object of historical importance, very sensitive	2.0	5.0
Structures, more than 50 years old construction and		
Structures in poor state condition		

4. After Australian Standard (As A-2183) (Just and Chitombo,1987)

Type of structures	Ground ppv (mm/s
Historical building and monuments and buildings of special value	2
Houses and low rise residential buildings, commercial buildings not	10
Included below	
Commercial buildings and industrial buildings or structures of reinforced	25
Concrete or steel construction	

5. After Australian Standard (Ca-23-2183) (Just and Chitombo,1987)

Types of structures	Ground ppv (mm/s)
Historical buildings and monuments and buildings of	0.2 mm displacement for
Special value	frequencies less than 15 Hz
Houses and low rise residential buildings, commercial	19 mm/s resultant PPV for
Buildings not included below	frequencies greater than 15 Hz
Commercial buildings and industrial buildings or	0.2 mm maximum displacement
Structures of reinforced concrete or steel construction	correspond to 12.5 mm/s PPV at 10
	Hz and 6.25 mm/s at 5 Hz

6. After Hungarian Standard

Type of structures	Permissible limit (mm/s)
Construction demanding special protection, military, telephones,	Extra opinion from expert
Airport, dams, bridges which have length of more then 20 m	
Statistically not solid damaged construction, temples, monuments,	2
Oil and gas wells and upto 0.17 Mpa and below 0.7 Mpa pressure	
In pipes (oil and gas)	
Panel houses and statistically not fully determined structures	5
Statistically good condition structures, towers, electrical	10
apparatus, water plant	
RCC and structures concrete, tunnels, canals and other pipe lines	20
Beneath the soil surface greater than 0.7m, opening the sublevel	
Public road, railway and electrical lines, telephone lines ropeway	50

7. After USSR Standard

Type of structures	Allowable PPV	(mm/s)
	Repeated	One fold
Hospitals	8	30
Large panel residential buildings and children, s institution	15	30
Residential and public buildings of all type except large panels,	30	60
Office and industrial buildings having deformations, boiler rooms		
And high brick chimneys		
Office and industrial buildings, high reinforced concrete pipes,	60	120
Railway and water tunnels, traffic flyovers, saturated sandy slopes		
Single storage skeleton type industrial buildings, metal and block	120	240
Reinforced concrete structures, soil slopes which are part primary		
Structures, primary mine openings(service life upto 10 years) pit		
bottom, main entries, drifts		
Secondary mine openings (service life upto 3 years) haulages and	240	480
drifts		

8. After Swiss Standard

Type of structures	Frequency	Blast induced	Traffic/machine
	Band width	PPV [mm/s]	induced PPV
	[Hz]		[mm/s]
Steel or reinforced structures such as	10-60	30	-
factories, retaining walls, bridges, steel	60-90	30-40	-
towers, open channels, underground tunnels	10-30	-	12
and chambers	30-60	-	12-18
Buildings with foundation walls and floor in	10-60	18	-
concrete, well in concrete or masonry,	60-90	18-25	-
underground chambers and tunnels with	10-30	-	8
masonry linings	30-60	-	8-12
Building with masonry walls and wooden	10-60	12	-
ceilings	60-90	12-18	-
	10-30	-	5
	30-60	-	5-8
Objects of historic interest or other sensitive	10-60	8	-
structures	60-90	8-12	-
	10-30	-	3

9. After Siskind et al., 1980

Type of structures	PPV (mm/s)		
	Frequency (< 40 Hz)Frequency (> 40 Hz)		
Modern homes, dry wall interior	18.75	50	
Older homes, plaster on wood lath	12.5	50	
construction			

10. After Sweden Standard (after Pesson et al., 1980)

Type of Structures	Limiting vibration parameters		
	Amplitude	Velocity	Acceleration
	(mm)	(mm/s)	(mm/s²)
Concrete bunker steel-reinforced	-	200	-
High rise apartment block-modern concrete of	0.4	100	-
steel frame design			
Underground rock cavern roof hard rock, span	-	70-100	-
15-18 m			
Normal block of flat-brick or equivalent walls	-	70	-
Light concrete buildings	-	35	-
Swedish National Museums-Building	-	25	-
structures			
Swedish National Museums-Sensitive exhibits	-	-	5
Computer centre	0.1	-	2.5
Circuit breaker control room	-	-	0.5-2.0

11.Blast damage criteria for mass concrete (Tennessee Valley Authority and Distance factor given by Oriard,2002)

Concrete age from	Allowable	Definition of Distance Factor		
	Particle velocity	Distance	Distance Fro	om Blast
Batching	In/s (mm/s)	Factor		
			(ft)	(m)
0-4 hrs.	4 (100) x D.F.	-		
4 hrs. – 1 day	6 (150) x D.F.	1.0	0-50	0-15
1 to 3 days	9 (225) x D.F.	0.8	50-150	15-46
3 to 7 days	12 (300) x D.F.	0.7	150-250	46-76
7 to 10 days	5 (375) x D.F.	0.6	250 +	76 +
10 days or more	20 (500) x D.F.	-		

12. After German DIN Standard 4150 (1986)

Type of Structures	Peak part	Peak particle velocity (mm/s) at foundation			
	< 10 Hz	< 10 Hz 10-50 Hz 50-100 Hz			
Offices and industrial premises	20	20-40	40-50		
Domestic houses and similar constructions	5	5-15	15-20		
Buildings that do not come under the above	3	3-8	8-10		
because of their sensitivity					

13. Summary of residential criteria (After Oriard, 2002)

RANGE OF COMMON RESIDENTAL CRITERIA AND EFFECTS		
0.5 in/s	Bureau of mines recommended guideline for plaster-on-lath construction near	
(12.7 mm/s)	surface (long-term, large-scale blasting operations, low frequency vibrations)	
	RI-8507	
0.75 in/s	Bureau of mines recommended guideline for sheet rock construction near surface	
(19.1mm/s)	mines. (RI-8507)	
1.0 in/s	OMS regulatory limits fir residences near surface mine operations at distances of	
(25.4mm/s)	301-5000ft. (long-term, large-scale blasting)	
2.0 in/s	Widely accepted limit for residences near construction blasting and quarry	
(50.8 mm/s)	blasting.(Bu Min Bulletin 656, RI 8507, various codes, specifications and	
	regulations). Also allowed by OSM for frequencies above 30Hz.	
5.4 in/s	Minor damage to the average house subjected to quarry blasting vibrations. (Bu	
(137.0 mm/s)	Min Bulletin 656).	
5.4 in/s	About 90% probability of minor damage from construction or quarrying blasting.	
(229.0 mm/s)	Structural damages to some houses. Depends on vibration sources, character of the	
	vibrations and the house.	
20 in/s	For closed-in construction blasting, minor damage to nearly all houses, structural	
(500.8 mm/s)	damage to some. A few may escape damage entirely. For low-frequency	
	vibrations, major damage to most houses.	
Note: The crite	eria shown in this table apply only to residences, not to any other structures, facilities	
or materials.		

14. After Langefors et al. (1958)

No damage	<50 mm/s
Fine cracking	100 mm/s
Cracks	150 mm/s
Serious crack	225 mm/s

15. After Edwards and Northwood (1960)

Safe zone	<50 mm/s
Damage zone	100-150mm/s

16. After Duval and Fogelson (1962)

Major damage (95%)	50 mm/s
, C , ,	

17. After Nichols et al. (1971)

Safe zone (95%)	<50 mm/s
Danger zone	> 50 mm/s

18. Ground Vibration Effects Summary (David Siskind, 2000: Vibration from Blasting International Society of Explosives Engineers)

PPV (in/s)	PPV	Vibration Effects
	(mm/s)	
0.001	0.0254	Quiet background
0.01	0.254	Threshold of human perception for steady-state Vibration (physical)
0.03	0.762	Traffic at 50 ft (16 m)
0.03	0.762	Noticeable houses rattling and response from vibration
0.06	1.524	Threshold of human perception for transient vibration (physical)
0.10	2.54	Truck traffic on bumpy road at 50 feet (16 m)
0.18-0.32	4.572-8.128	Train at 20 feet
0.30	7.62	Pavement breaker at 30 feet
0.50	12.70	Lowest threshold for plaster creak extension in house
0.50	12.70	Lowest USBM safe vibration criteria (USBM RI-8507, for low frequencies)
0.50	12.70	Typical household environment from inside activities and natural
0.70	17 79	ANSL limit for human comfort, stordy state vibration (S. 2.18, 1070)
0.70	17.78	ANSI limit for human comfort: steady state vibration (S-5.18-1979)
0.75	19.05	surface and mine block (OSM, for distances > 5,000ft)
0.70	20.066	Surface coal finite blasts (OSM, for distances >5,000ft)
0.79	20.000	Lowest level for all observed crack extension in wallboard (R1830/)
1.00	25.40	coal mine blasts (OMS, for distances of 301 to 5,000ft)
1.20	30.48	
		Response of house superstructure from 62-mph wind (BOCAcode, 10 psf)
1.25	31.75	Federal limit to protect homes from cosmetic cracking from surface
		coal mine blasts (OMS, for distance < 300 ft)
2.00	50.80	USBM recommendation for safe blasting from 1962 and 1971 (RI 5968 and B 656)
2.00	50.80	Most state, s limit for protecting homes from blasting
2.00	50.80	Safe-level criteria for cosmetic cracking in homes from high-
		frequency blasts, such as construction (USBM RI 8507)
2.00	50.80	ANSI limit for human health: Steady state vibration (S-3.18-1979)
2.00	50.80	Highest vibrations generated inside homes by walking, jumping, slamming doors, etc.
4.00	101.6	ANSI limit for human health: steady-state vibration (S-3, 18)
5.00	127.0	Vibration tolerance for buried utilities including wells and pipelines
5.00	127.0	Lowest vibration for masonry vibration cracking from blasting

10.0	254.0	Threshold for cracking of mass concrete
12.0	304.8	Damage threshold for underground works

19. After Rosenthal and Morlock (1983)

Distance from blasting site	Maximum allowable ppv
[m]	[mm/s]
0 to 91.4	37.75
91.4 to 1524.0	25.40
1524 and above	19.05

AIR OVERPRESSURES STANDARDS AND LIMIT

1. typical overpressure criteria (After Oriard, 2002)

1.0 psi (171 dB)	General window breakage
0.1 psi (151 dB)	Occasional window breakage
0.029 psi (140 dB)	Long-term history of application for as a safe project
	specifications
0.0145 psi (134 dB)	Bureau of mines recommendation following a study of large-scale
	surface mine blasting

2. Overpressure limit recommended by USBM for surface mining (RI 8485)

134 dB	0.1 Hz high pass measuring system	
133 dB	2.0 Hz high pass measuring system	
129 dB	6.0 Hz high pass measuring system	
105 dB	C-slow weighting scale on a sound level meter	
(events less than or equal to 2-sec duration)		