Grit Wall analysis

Input data

Material of blocks - filling

Numbe	Name	∜ [kN/m ³]	© [°]	c [kPa]
1	Rubble Masonry	24.00	45.00	0.00

Material of blocks - mesh

			Strength	Spacing of	Bear.cap.
Nu	mber	Name	overh.	vert. meshes	of front joint
			R_t [kN/m]	b [m]	R _s [kN/m]
	1	Rubble Masonry	0.00	35.00	0.00

Geometry of structure

Number	Width	Height	Offset	Material
Number	b [m]	h [m]	a [m]	Material
14	0.30	0.82	0.00	Rubble Masonry
13	0.30	1.20	0.00	Rubble Masonry
12	0.30	1.20	0.00	Rubble Masonry
11	0.30	1.20	0.00	Rubble Masonry
10	0.30	1.20	0.00	Rubble Masonry
9	0.30	1.20	0.00	Rubble Masonry
8	0.30	1.20	0.00	Rubble Masonry
7	0.30	1.20	0.00	Rubble Masonry
6	0.30	1.20	0.10	Rubble Masonry
5	0.40	1.20	0.20	Rubble Masonry
4	0.60	1.20	0.20	Rubble Masonry
3	0.80	1.20	0.20	Rubble Masonry
2	1.00	1.20	1.00	Rubble Masonry
1	2.00	1.20	-	Rubble Masonry

Gabion slope = 45.00° Overall height = 10.41° m Overall wall volume = 8.89° m³/m

Soil parameters

Soil Sandy

Unit weight: $\gamma = 19.00 \text{ kN/m}^3$

Saturated unit weight : $\gamma_{sat} = 20.50 \text{ kN/m}^3$

1

Grit Wall

Geological profile and assigned soils

Number	Layer [m]	Assigned soil
1	15.00	Soil Sandy
	,	

Terrain profile

Terrain behind the structure is flat.

Input surface surcharges

Number	Surcl	harge	Action	Mag.1	Mag.2	Ord.x	Length	Depth
	new	change	Action	[kN/m ²]	[kN/m ²]	x [m]	l [m]	z [m]
1	YES		permanent	5.00				on terrain

Resistance on front face of the structure

Resistance on front face of the structure: passive

Soil on front face of the structure - Soil Sandy

Angle of friction struc.-soil $\delta = 0.00$ ° Soil thickness in front of structure h = 1.10 m

Terrain in front of structure is flat.

Global settings

Active earth pressure calculation - Coulomb Passive earth pressure calculation - Coulomb

Settings of the stage of construction

Analysis carried out according to classical theory (safety factor)

Safety factor for slip = 1.50 Safety factor for overturning = 2.00 Factor of safety for bearing capacity = 1.00 Safety factor for net stress = 1.00

Grit Wall

Verification No. 1

Forces acting on construction

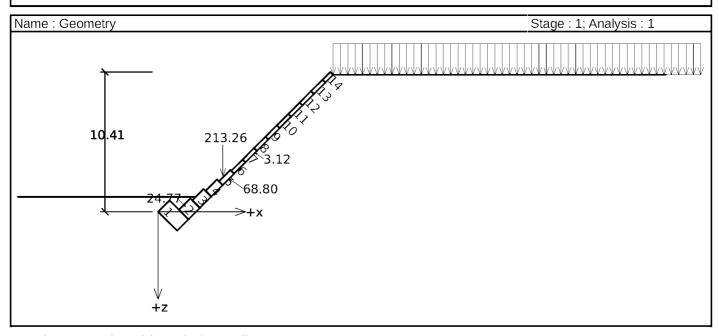
Name	F _{hor}	App.Pt.	F _{vert}	App.Pt.	Design
	[kN/m]	Z [m]	[kN/m]	X [m]	coefficient
Weight - wall	0.00	<i>-</i> 2.67	213.26	4.83	1.000
FF resistance	-17.51	-0.37	17.51	2.06	1.000
Active pressure	56.35	-2.46	- 39.46	5.28	1.000
Surch.1 - surface	2.55	-4.39	-1.79	7.22	1.000

Verification of complete wall

Check for overturning stability

Resisting moment $M_{res} = 843.79 \text{ kNm/m}$ Overturning moment $M_{ovr} = 143.20 \text{ kNm/m}$

Safety factor = 5.89 > 2.00


Wall for overturning is SATISFACTORY

Forces acting at the centre of footing bottom

Overall moment M = -537.30 kNm/m Normal force N = 163.29 kN/m Shear force Q = -86.19 kN/m

Overall check - WALL is SATISFACTORY

Grit Wall

Bearing capacity of foundation soil

Forces acting at the centre of the footing bottom

Number	Moment	Norm. force	Shear Force	Eccentricity	Stress
	[kNm/m]	[kN/m]	[kN/m]	[m]	[kPa]
1	-537.30	163.29	-86.19	0.00	81.64

Bearing capacity of foundation soil check

Eccentricity verification

Max. eccentricity of normal force e=0.0 mmMaximum allowable eccentricity $e_{alw}=660.0 \text{ mm}$

Eccentricity of the normal force is SATISFACTORY

Footing bottom bearing capacity verification

Max. stress at footing bottom σ = 81.64 kPa Bearing capacity of foundation soil R_d = 180.00 kPa

Safety factor = 2.20 > 1.00

Bearing capacity of foundation soil is SATISFACTORY

Overall verification - bearing capacity of found. soil is SATISFACTORY

\sim	rit	Wa	ш
U	IΙL	vva	ш

Slope stability analysis

Results (Stage of construction 1)

Analysis 1

Circular slip surface

Slip surface parameters						
Contor	x =	-10.21 [m]	Angles	$\alpha_1 =$	-35.28 [°]	
Center :	z =	2.27 [m]	Angles :	α ₂ =	80.61 [°]	
Radius :	R =	13.94 [m]				
The slip surface after optimization.						

Slope stability verification (Bishop)

Sum of active forces : $\ddot{F}_a = 675.03 \text{ kN/m}$ Sum of passive forces : $F_p = 1028.21 \text{ kN/m}$ Sliding moment : $M_a = 9404.34 \text{ kNm/m}$ Resisting moment : $M_p = 14324.83 \text{ kNm/m}$

Factor of safety = 1.52 > 1.50 Slope stability ACCEPTABLE