Grit Wall analysis

Input data

Material of blocks - filling

lumber	Name	∜ [kN/m ³]	φ [°]	c [kPa]
1	Rubble Masonry	24.00	45.00	0.00

Material of blocks - mesh

Numbe	Number	Name	Strength overh.	Spacing of vert. meshes	Bear.cap. of front joint
			R _t [kN/m]	b [m]	R _s [kN/m]
ı	1	Rubble Masonry	0.00	35.00	0.00

Geometry of structure

	Width	Height	Offset	
Number	b [m]	h [m]	a [m]	Material
14	0.30	0.82	0.00	Rubble Masonry
13	0.30	1.20	0.00	Rubble Masonry
12	0.30	1.20	0.00	Rubble Masonry
11	0.30	1.20	0.00	Rubble Masonry
10	0.30	1.20	0.00	Rubble Masonry
9	0.30	1.20	0.00	Rubble Masonry
8	0.30	1.20	0.00	Rubble Masonry
7	0.30	1.20	0.00	Rubble Masonry
6	0.30	1.20	0.10	Rubble Masonry
5	0.40	1.20	0.20	Rubble Masonry
4	0.60	1.20	0.20	Rubble Masonry
3	0.80	1.20	0.20	Rubble Masonry
2	1.00	1.20	1.00	Rubble Masonry
1	2.00	1.20	-	Rubble Masonry

Gabion slope = 45.00° Overall height = 10.41° m M Noverall wall volume = 8.89° m M M

Soil parameters

Soil Sandy

Unit weight : $\gamma = 19.00 \text{ kN/m}^3$

Stress-state: effective

 $\begin{array}{lll} \mbox{Angle of internal friction:} & \phi_{ef} = 30.00 \, ^{\circ} \\ \mbox{Cohesion of soil:} & c_{ef} = 0.00 \, \text{kPa} \\ \mbox{Angle of friction struc.-soil:} & \delta = 10.00 \, ^{\circ} \\ \mbox{Soil:} & \mbox{cohesionless} \end{array}$

Saturated unit weight : $\gamma_{sat} = 20.50 \text{ kN/m}^3$

1

Geological profile and assigned soils

Number	Layer [m]	Assigned soil
1	15.00	Soil Sandy

Terrain profile

Terrain behind the structure is flat.

Input surface surcharges

	Jumber	Surch	narge	Action	Mag.1	Mag.2	Ord.x	Length	Depth
	vuilibei	new	change	ACTION	[kN/m ²]	[kN/m ²]	x [m]	I [m]	z [m]
	1	YES		permanent	5.00				on terrain

Resistance on front face of the structure

Resistance on front face of the structure: passive

Soil on front face of the structure - Soil Sandy

Angle of friction struc.-soil δ = 0.00 ° Soil thickness in front of structure h = 1.10 m

Terrain in front of structure is flat.

Global settings

Active earth pressure calculation - Coulomb Passive earth pressure calculation - Coulomb

Settings of the stage of construction

Analysis carried out according to classical theory (safety factor)

Safety factor for slip = 1.50 Safety factor for overturning = 2.00 Factor of safety for bearing capacity = 1.00 Safety factor for net stress = 1.00

Verification No. 1

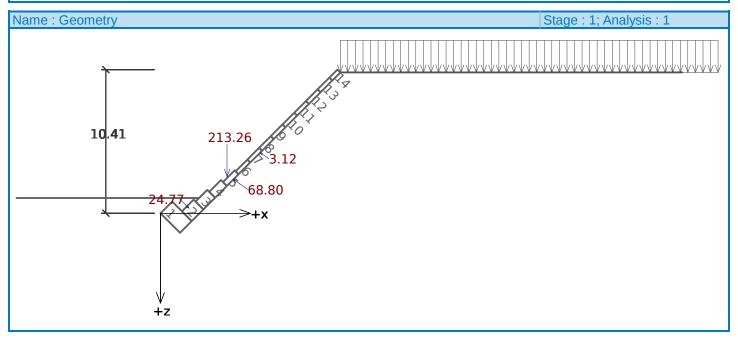
Forces acting on construction

Name	F _{hor}	App.Pt.	F _{vert}	App.Pt.	Design
	[kN/m]	Z [m]	[kN/m]	X [m]	coefficient
Weight - wall	0.00	-2.67	213.26	4.83	1.000
FF resistance	-17.51	-0.37	17.51	2.06	1.000
Active pressure	56.35	-2.46	-39.46	5.28	1.000
Surch.1 - surface	2.55	-4.39	-1.79	7.22	1.000

Verification of complete wall

Check for overturning stability

Resisting moment $M_{res} = 843.79 \text{ kNm/m}$ Overturning moment $M_{ovr} = 143.20 \text{ kNm/m}$


Safety factor = 5.89 > 2.00

Wall for overturning is SATISFACTORY

Forces acting at the centre of footing bottom

Overall moment M = -537.30 kNm/mNormal force N = 163.29 kN/mShear force Q = -86.19 kN/m

Overall check - WALL is SATISFACTORY

Bearing capacity of foundation soil

Forces acting at the centre of the footing bottom

Jumbo	Moment	Norm. force	Shear Force	Eccentricity	Stress	
Numbe	[kNm/m]	[kN/m]	[kN/m]	[m]	[kPa]	
1	-537.30	163.29	-86.19	0.00	81.64	

Bearing capacity of foundation soil check

Eccentricity verification

Max. eccentricity of normal force e = 0.0 mmMaximum allowable eccentricity $e_{alw} = 660.0 \text{ mm}$

Eccentricity of the normal force is SATISFACTORY

Footing bottom bearing capacity verification

Max. stress at footing bottom σ = 81.64 kPa Bearing capacity of foundation soil R_d = 180.00 kPa

Safety factor = 2.20 > 1.00

Bearing capacity of foundation soil is SATISFACTORY

Overall verification - bearing capacity of found. soil is SATISFACTORY

Slope stability analysis

Results (Stage of construction 1)

Analysis 1

Circular slip surface

F								
Slip surface parameters								
Contor:	x =	-10.21	[m]	Angles :	α ₁ =	-35.28 [°]		
Center :	z =	2.27	[m]		α ₂ =	80.61 [°]		
Radius :	R =	13.94	[m]					
The slip surface after optimization.								

Slope stability verification (Bishop)

Sum of active forces : $F_a = 675.03 \text{ kN/m}$ Sum of passive forces : $F_p = 1028.21 \text{ kN/m}$ Sliding moment : $M_a = 9404.34 \text{ kNm/m}$ Resisting moment : $M_p = 14324.83 \text{ kNm/m}$

Factor of safety = 1.52 > 1.50 Slope stability ACCEPTABLE