Grit Wall analysis

Input data

Material of blocks - filling

Number	Name		∕γ [kN/m ³]	ဏ္ [°]	c [kPa]		
1	Rubble Masonry		24.00	45.00	0.00		
Material of blocks - mesh							
		Ctrop	ath Cn	oping of	Deereen		

Number	Name	Strength overh.	Spacing of vert. meshes	Bear.cap. of front joint	
		R _t [kN/m]	b [m]	R _s [kN/m]	
1	Rubble Masonry	0.00	35.00	0.00	

Geometry of structure

Numbor	Width	Height	Offset	Matorial
Number	b [m]	h [m]	a [m]	Materia
14	0.30	0.82	0.00	Rubble Masonry
13	0.30	1.20	0.00	Rubble Masonry
12	0.30	1.20	0.00	Rubble Masonry
11	0.30	1.20	0.00	Rubble Masonry
10	0.30	1.20	0.00	Rubble Masonry
9	0.30	1.20	0.00	Rubble Masonry
8	0.30	1.20	0.00	Rubble Masonry
7	0.30	1.20	0.00	Rubble Masonry
6	0.30	1.20	0.10	Rubble Masonry
5	0.40	1.20	0.20	Rubble Masonry
4	0.60	1.20	0.20	Rubble Masonry
3	0.80	1.20	0.20	Rubble Masonry
2	1.00	1.20	1.00	Rubble Masonry
1	2.00	1.20	-	Rubble Masonry

Gabion slope= 45.00 °Overall height= 10.41 mOverall wall volume= $8.89 m^3/m$

Soil parameters

Soil Sandy		
Unit weight :	γ = 19.00 kN/m ³	
Stress-state :	effective	
Angle of internal friction :	φ _{ef} = 30.00 °	
Cohesion of soil :	c _{ef} = 0.00 kPa	
Angle of friction strucsoil :	δ = 10.00 °	
Soil :	cohesionless	
Saturated unit weight :	$\gamma_{sat} = 20.50 \text{ kN/m}^3$	

Geological profile and assigned soils

Number	Layer [m]	Assigned soil
1	15.00	Soil Sandy

Terrain profile

Terrain behind the structure is flat.

Input surface surcharges

Number	Surch new	narge change	Action	Mag.1 [kN/m ²]	Mag.2 [kN/m ²]	Ord.x x [m]	Length I [m]	Depth z [m]
1	YES		permanent	5.00				on terrain

Resistance on front face of the structure

Resistance on front face of the structure: passive				
Soil on front face of the structure - Soil Sandy				
Angle of friction strucsoil	δ	=	0.00	0
Soil thickness in front of structure	h	=	1.10	m
Terrain in front of structure is flat.				

Global settings

Active earth pressure calculation - Coulomb Passive earth pressure calculation - Coulomb

Settings of the stage of construction

Analysis carried out according to classical theory (safety factor)

Safety factor for slip	=	1.50
Safety factor for overturning	=	2.00
Factor of safety for bearing capacity	=	1.00
Safety factor for net stress	=	1.00

Verification No. 1

Forces acting on construction

Name	F _{hor}	App.Pt.	F _{vert}	App.Pt.	Design
	[kN/m]	Z [m]	[kN/m]	X [m]	coefficient
Weight - wall	0.00	-2.67	213.26	4.83	1.000
FF resistance	-17.51	-0.37	17.51	2.06	1.000
Active pressure	56.35	-2.46	-39.46	5.28	1.000
Surch.1 - surface	2.55	-4.39	-1.79	7.22	1.000

Verification of complete wall

Safety factor = 5.89 > 2.00

Wall for overturning is SATISFACTORY

Forces acting at the centre of footing bottom

Overall moment	Μ	=	-537.30	kNm/m
Normal force	Ν	=	163.29	kN/m
Shear force	Q	=	-86.19	kN/m

Overall check - WALL is SATISFACTORY

Bearing capacity of foundation soil

Forces acting at the centre of the footing bottom

Number	Moment	Norm. force	Shear Force	Eccentricity	Stress
	[kNm/m]	[kN/m]	[kN/m]	[m]	[kPa]
1	-537.30	163.29	-86.19	0.00	81.64

Bearing capacity of foundation soil check

Eccentricity verification

Max. eccentricity of normal force e = 0.0 mmMaximum allowable eccentricity $e_{alw} = 660.0 \text{ mm}$

Eccentricity of the normal force is SATISFACTORY

Safety factor = 2.20 > 1.00 Bearing capacity of foundation soil is SATISFACTORY

Overall verification - bearing capacity of found. soil is SATISFACTORY

Slope stability analysis

Results (Stage of construction 1)

Analysis 1

Circular slip surface

Slip surface parameters								
Contor	x =	-10.21	[m]	Angles :	α ₁ =	-35.28	[°]	
Center.	z =	2.27	[m]		α2 =	80.61	[°]	
Radius :	R =	13.94	[m]					
The slin surface after ontimization								

Slope stability verification (Bishop)

Sum of active forces :	F _a =	675.03	kN/m
Sum of passive forces :	F _p =	1028.21	kN/m
Sliding moment :	M _a =	9404.34	kNm/m

Resisting moment : $M_p = 14324.83$ kNm/m

Factor of safety = 1.52 > 1.50 Slope stability ACCEPTABLE