Introduction

In this appendix, we provide an introduction to matrix algebra. We will consider the
concepts relevant to the finite element method to provide an adequate background
for the matrix algebra concepts used in this text.

A A.1 Definition of a Matrix A
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A matrix is an m X n array of numbers arranged in m rows and n columns. The matrix
is then described as being of order m x n. Equation (A.1.1) illustrates a2 matrix with
m rows and n columns. '

[ay an @3z a4y ... auy |
a4y ax dx ... am
[@=|an an a3 au ... a (A.LL1)
-aml amz am3s G4 e am_

If m # n in matrix Eq. (A.1.1), the matrix is called rectangular. If m = I and
n > 1, the elements of Eq. (A.1.1) form a single row called a row matrix. If m > 1
and n = 1, the elements form a single column called a column matrix. If m = n, the
array is called a square matrix. Row matrices and rectangular matrices are denoted
by using brackets { ], and column matrices are denoted by using braces { }. For sim-
plicity, matrices {row, column, or rectangular) are often denoted by using a line
under a variable instead of surrounding it with brackets or braces. The order of the
matrix should then be apparent from the context of its use. The force and displace-
ment matrices used in structural analysis are column matrices, whereas the stiffness
matrix is a square matrix.,
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To identify an element of matrix g, we represent the element by a;;, where the
subscripts i and j indicate the row number and the column number, respectively, of
a. Hence, alternative notations for a matrix are given by

a = [a] = [a] (A.12)

Numerical examples of special types of matrices are given by Egs. (A.1.3)-
(A.1.6). A rectangular matrix a s given by

a= (A.1.3)

W oW N
B e

where g has three rows and two columns. In matrix g of Eq. (A.1.1), if m =1, a row
matrix resuits, such as

a=R 3 4 -1 (A.1.49)
Ifn=11m Eq. (A.1.1), 2 column matrix results, such as
- = {3} (A.15)
If m = nin Eq. (A.1.1}, a square matrix results, such ds
2 -1
= )
a [3 _2J | (A.1.6)

Matrices and matrix notation are often used to express algebraic equations in
compact form and are frequently used in the finite element formulation of equations.
Matrix notation is also used to simplify the solution of a problem.

A A2 Matrix Operations A

We will now present some common matrix operations that will be used in this text.

Multiplication of a Matrix by a Scalar

If we have a scalar k and a matrix ¢, then the product @ = k¢ is given by

—that is, every element of the matrix ¢ is multiplied by the scalar k. As 2 numerical
example, consider
_ [I 2 k= 4

3 1]

1 2] [438
9=4[3 1_=[12 4]

Note that if ¢ is of order m x n, then g is also of order m x n.

The product a = ke is
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Addition of Matrices

Matrices of the same order can be added together by summing corresponding ele-
ments of the matrices. Subtraction is performed in a similar manner. Matrices of
unlike order cannot be added or subtracted. Matrices of the same order can be
added (or subtracted) in any order (the commutative law for addition applies). That is,

c=a+b=b+a (A.2.2)
or, in subscrpt (index) notation, we have
[ey) = lag] + [by] = [by] + [ay] (A.2.3)

As 2 nurnerical example, let

=[5 e=[i ]

The sum g + b = ¢ 1s given by

s=[:; ﬂ'FB ﬂ={g ﬂ

Again, remember that the matrices a, b, and ¢ must all be of the same order. For
instance, a 2 x 2 matrix cannot be added to a 3 x 3 matrix.

Muitiplication of Matrices

For two matrices 2 and b to be multiplied in the order shown in Eq. (A.2.4), the num-
ber of columnns in g must equal the number of rows in ). For example, consider

¢=ab . (A.2.4)

If 2 is an m x n matrix, then » must have » rows. Using subscript notation, we can
write the product of matrices 2 and b as

n

les} = aicbes . (A25)

e=}

where n is the total number of columns in g or of rows in b. For matrix a of order
2 x 2 and matrix b of order 2 x 2, after multiplying the two matrices, we have

ley] = [dnbn +apby anbn+ alzbzz] (A26)

anbn +axbyn- anbiz + anbx»
For example, let

2 1 1 =17
=35 =5 o)
The product gb is then

C[A)+1Q2) A=) +10)] - [4 -2].
“"“[3(1>+2(2) 3<—1>+2(0>} ]

—
poo
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In general, matnx multiplication is rnor commutative; that is,
ab +# ba (A2.7)
The validity of the product of two matrices g and b is commonly illustrated by
a b = ¢
(ixe){exj) (ix))
where the product matrix ¢ will be of order i x j; that is, it will have the same number
of rows as matrix 4 and the same number of columns as matrix b.

(A.2.8)

Transpose of a Matrix

Any matrix, whether a row, column, or rectangular matrix, can be transposed. This
operation is frequently used in finite element equation formulations. The transpose
of a matrix g is commonly denoted by a”. The superscript T is used to denote the
transpose of a matrix throughout this text. The transpose of a matrix is obtained by
interchanging rows and columns; that is, the first row becomes the first column, the
second row becomes the second column, and so on. For the transpose of matrix g,

lay) = lag) - (A2.9)
For example, if we let
2 1
a=13 2
4 5
then al = F‘ 3 4]
B 1 25

where we have interchanged the rows and columns of g to obtain its transpose.
Another important relationship that involves the transpose is
(ab)" =5"a” (A.2.10)

That is, the transpose of the product of matrices @ and p is equal to the transpose of
the latter matrix 4 multiplied by the transpose of matrix g in that order, provided the
order of the initial matrices continues to satisfy the rule for matrix multiplication,
Eq. (A.2.8). In general, this property holds for any number of matrices; that is,

(abc... k)" =k"... cTbTa” (A2.11)

Note that the transpose of a column matrix is a row matrix.
As 2 numerical example of the use of Eq. {A.2.10), let

) 5

g“{s 4] é"{s}

_ 1 21(5 17
First, "-’L"“[a 4 {6}_{39}

Then, (@) ={17 39 (A.2.12)
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Because 57 and a7 can be multiplied according to the rule for matrix multiplication,
we have

bTaT =15 s}[; iJ-_-m 39] (A2.13)

Hence, on comparing Egs. (A.2.12) and (A.2.13), we have shown (for this case) the
validity of Eq. (A.2.10). A simple proof of the general vaiidity of Eq. (A.2.10} is left
to your discretion.

Symmetric Matrices

If a square matrix is equal to its transpose, it is called a symmetric matrix; that is, if

a=a"

then g is a symmetric matrix. As an example,

31 2
a=11 4 0 (A.2.14)

2 0 3
is a symmetric matrix because each element a; equals a;; for i # /. In Eq. (A.2.14),
note that the main diagonal running from the upper left corner to the lower right cor-

ner is the line of symmetry of the symmeinc matrix 2. Remember that only a square
matrix can be symmetric. '

Unit Matrix
The unit (or identity) matrix J is such that
al=la=g (A.2.15)

The unit matrix acts in the same way that the number one acts in conventional
mutltiplication. The unit matrix is always a square matrix of any possible order with
each element of the main diagonal equal to one and all other elements equal to zero.
For example, the 3 x 3 unit matrix is given by

1 00
I=101 0
0 0 1

inverse of a Matrix
The inverse of a matrix is a matrix such that N
=7 (A.2.16)

where the superseript, —1, denotes the inverse of g as g~ Section A.3 provides more
information regarding the properties of the inverse of a matrix and gives a method
for determining it.

ala=

IS
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Orthogonal Matrix

A matrix T is an orthogonal matrix if

I'T=TTT=] | (A.2.17)
Hence, for an orthogonal matrix, we have
=717 (A.2.18)

An orthogonal matrix frequently used is the rransformation or rotation matrix T
In two-dimensional space, the transformation matrix relates components of a vector
in one coordinate system to components in another system. For instance, the displace-
ment {and force as well) vector components of d expressed in the x-p system are
refated to those in the £-p system (Figure A-1 and Section 3.3) by

i=Td (A2.19)

d cos sinf| | dy
or X\ = 2.
{ a, } [ —sin@  cos 6} { d, } (4.2.20)
where T is the square matrix on the right side of Eq. (A.2.20).
Another use of an orthogonal matrix is to change from the local stiffness matrix

to a global stiffness matrix for an element. That is, given a local stiffness matrix k for
an element, if the element is arbitrarily oriented in the x-y plane, then

k=TTkT =T'kT (A2.21)

Equation (A.2.21) is used throughout this text to express the stiffness matrix & in the

x-y plane.

By further examination of T, we see that the trigonometric terms in T can be
interpreted as the direction cosines of lines Ox and Oy with respect to the x-y axes.
Thus for O% or d,, we have from Eq. (A.2.20)

{m  thay =<cosf sin 9} (A.2.22}
y ’ d
- d,cos b
A\ )
* d. sin §
d,sin 8
dy -d,
8
L 6
0 / dx x

Figure A-1 Components of a vector in x-y and x-y coordinates
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and for Op or d,, we have
{try M) =<—sind cos& (A.2.23)

or unit vectors i and j can be represented in terms of unit vectors i and j [also see
Section 3.3 for proof of Eq. (A.2.24)] as

i= icos@+j}sind
. {A.2.24)
j=—isinf+jcosé
and hence \
h+t=1 2 +ih=1 (A.2.25)

and since these vectors (i and ?) are orthogonal, by the dot product, we have
{ni+ 1)y (ul + mj)
or tatn +haty =0 (A.2.26)

or we say T is orthogonal and therefore 77T = TT7T = I and that the transpose is its
mverse. That is,

T =71"! (A.2.27)

Differentiating a Matrix

A matrix is differentiated by differentiating every element in the matrix in the conven-
tional manner. For example, if '
x3 2x? 3x

2x? x* x (A.2.28)
3x x x

I
I

the derivative da/dx is given by

-

3x?  4x 3
da :
—=4x 4x 1 (A.2.29)
dx

3 1 5x*

x? xy xz 2x y z
0a ) A
==5|x ¥ yz{=|y 00 (A.2.30)
. Ox 0x ,
Xz yz z z 00

‘In structural analysis theory, we sometimes differentiate an expression of the

form |
U=1x ly}[““ “‘2]{"} (A.2.31)

ayp an Ly
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where U might represent the strain energy in a bar. Expression (A.2.31) is known as a
quadratic form. By matrix multiplication of Eq. (A.2.31), we obtain...

U =1(anx? + 2apxy + any?) (A.2.32)
Differentiating U now yields

U
.5; = gy1X -+ apy (A233)
—é}-.= anx + any
Equation (A.2.33) in matrix form becomes
ou
Ox
= [a“ a"] {x} (A.2.34)
ou @2 anjly
A general form of Eq. (A.2.31) s .
U =1{x}q{x} o (A.2.35)

Then, by comparing Eq. (A.Z.él) and (A.2.34), we obtain

=l (a2 .

-

_where x; denotes x and y. Here Eq. (A.2.36) depends on matrix g in Eq. (A.2.35) being
syrametric.

Integrating a Matrix

Just.as.in matrix differentiation; t6ntegrate:a-TRatrix, we must intégiate every element -’
in the matrix in the conventional manner. For example, if

3x2 4x 3
a=|4x 4x 1
31 5x¢
we obtain the integration of g as
x 2 3x
Jg dx=|2x? x* «x
Ix x x

In our finite element formulation of equations, we often integrate an expression of the
form

[ acas (A23)
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The tnple product in Eq. (A.2,37) will be symmetric if 4 is symmetric. The form
[X]T{A]){X) is also called a quadratic form. For example, letting

we obtain
9 2 3 Xt
XY Ul{Xy=[a x x)[2 8 0 {Xz}

= 9x,2 + 4xyx7 + 6x1%3 + 8x§ + 5x§

which is in quadratic form.

A A3 Cofactor-or Adjoint Method A
to Determine the Inverse of a Matrix :

We will now mtroduce a method for finding the inverse of a matrix. This method is
useful for longhand determination of the tnverse of smaller-order square matrices
(preferably of order 4 X 4 or less). A matrix g must be square for us to determine its
mverse. _

We must first define the determinant of a matrix. This concept is necessary in
determining the inverse of a matrix by the cofactor method A detemunant is a square
array of elements expressed by

lal = |ayl (A.3.1)

where the straight vertical bars, | |, on each side of the array denote the determinant.
The resultmg determinant of an array will be a single numerical value when the

array is evaluated.
To evaluate the determinant of a, we must first determine the cofactors of [ay)].

The cofactors of [a;] are given by
Gy = (-1)™id| (A32)

where the matrix 4, called the first minor of [ay], is matrix g w;th row i and column j
deleted. The inverse of matrix g is then given by

where C is the cofactor matrix and |gf is the determinant of a. To illustrate the method
of cofactors, we will determine the inverse of a matrix g given by

-1 3 =2
a=| 2 —4 2 (A34) -

o
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Using Eq. (A.3.2), we find that the cofactors of matrix g are

— 11+ -4 2 _
Cy =(-1) 41" 12
2 2
— (_1)1%2 -
2, -4
BRI IEE —
A (A.3.5)
— (_132+] ._ -
Cy = (1) 41 l 11
-1 =2
 (_1\242 -
Cp =(-1) o 1 ‘ 1
-1 3
(1243 -
Cn = (~1) 0 4| 4
Similarly, Cy =2 Cy=-2 Cyy= ~2 (A.3.6)
Therefore, from Eqgs. (A.3.5) and '(A.3.6),I we have
-12 -2 8
C=(-11 -1 4 (A.3.7)
-2 =2 =2
The determinant of ¢ is then
la] = Za,;-cg,- with { any row number (1 €i<n) (A.3.8)
J=1
or la = a;C;  with i any column number (1 <i < n) (A.3.9)

=1

For instance, if we choose the first rows of g and C, then i = | in Eq. (A.3.8), and j is
summed from 1 to 3 such that -

lal = anCn + a12Cra + ainCz
= (=1)(=12) + 3)(-2) + (-2)(§) = -10 " (A3.10)
Using the definition of the inverse given by Eq. (A.3.3), we have

~12 -11 =2
ct 1
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We can then check that

-
oo

1
aa ! = 0

0 0 1

The transpose of the cofactor matrix is often defined as the adjoint matrix; that is,
adja=C”

Therefore, an alternative equation for the inverse of 2 1s
-1 _adja
Tl

An important property associated with the determinant of a matrix is that if the deter-
minant of a matrix is zero—that is, |g| = 0—then the matrix is said to be singular. A
singular matrix does not have an inverse. The stiffness matrices used in the finite ele-
ment method are singular until sufficient boundary conditions (support conditions)
are applied. This characteristic of the stiffness matrix is further discussed in the text.

(A.3.12)

A A4 Inverse of a Matrix by Row Reduction ‘ A

The inverse of 2 nonsingular square matrix a can be found by the method of row

- reduction (sometimes called the Gauss—-Jordan method) by performing identical

simultaneous operations on the matrix 2 and the identity matrix / (of the same order
as a) such that the matrix g becomes an identity matrix and the original identity
matrix becomes the inverse of 4.

A numerical example will best illustrate the procedure. We begin by converting
matrix ¢ to an upper triangular form by setting all elements below the main diagonal
equal to zero, starting with the first colurnn and continuing with succeeding columns.
We then proceed from the last column to the first, setting all elements above the
main diagonal equal to zero.

We will invert the following matrix by row reduction.

1~
Il
e N N

2 1
10 : (A4.1)
11

To find 2!, we need to find x such that ax = I, where
X3 X2 X3
X= | X2t X2 X2
X3 X372 X33

2 21 1 0 0
That is, solve 21 Olx=1{01 0
1 11 0 0 1}
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A4 Inverse of a Matrix by Row Reduction

We begin by writing 2 and [ side by side as

22 1'1 00
2 1 0l010
11110 0 1

where the vertical dashed line separates a and 1.
1. Divide the first row of Eq. (A.4.2) by 2.

L1 41300
21 0,01 0
11 1:0 0 1
2. Multiply the first row of Eq. (A.4.3) by —2 and add the result to the
second row, '
I 1 i 400
0 -1 —-11-1 1 0
I 1 11 0 0 1

3. Subtract the first row of Eq. (A.4.4) from the third row.

I
11 4 oo
0 -1 =1t~} -1 0
0 0 1!-101
4. Multiply the second row of Eq. (A.4.5) by —1 and the third row by 2
1 i
11 %: 1 00
01 1! 1 1290
00 1i-1 02

-1 0 2

1
1
0
6. Multiply the third row of Eq. (A.4.7) by — 1 and add the result to the
“first row. L

110 1 0 -l
01 0; 2 -1 =2
00 1i-1 0 2

719

(A4.2)

(A4.3)

(A4d)

(A4.5)

(A.4.6)

(A47)

(A48)
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7. Subtract the second row of Eq. (A.4.8) from the first row.
1 0 0!}
010! 2 -t -2 (A.4.9)
00 1

The replacement of g by the inverse matrix is now complete. The inverse of g is then
the right side of Eq. (A.4.9); that is,

-1 1 1
al=| 2 -1 -2 (A.4.10)
-1 0 2

For additional information regarding matrix algebra, consult References (1]
.and [2].
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A Problems

Al

A2

A3

A4

Solve Problems A.1-A.6 using matrices A, B, C, D, and E given by

1 0 2 0 310
4"[-1 4] §“‘[—-2 s] Q‘[-l 0 3]

31 2 1.
D=1]1 40 E= {2}
2 0 3 3
(Write “nonsense” if the operation cannot be performed.)

(@4+B ()4+C

() 4CT (@ DE

(e) DC ) CD

Determine 4~} by the cofactor method.

Determine D! by the cofactor method.

Determine C!.
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A6

AT

A8

A9

Al0

A1l

Problems

Determine B! by row reduction.
Determine D! by row reduction.

Show-that (4B)7 = BTA” by using

ay  ap by b bzs]
A= B-.—.
- [agx azz:{ - [bZI bn bxn

Find 7! given that
7= cosf siné
=7 | —sinf cosé

and show that 7~} = T'7 and hence that T is an osthogonal matrix.
Given the matrices
=y _fa b
R I
show that the triple matrix product X7 AX is symmetric.

Evaluate the following integral in explicit form:

L
k= j BTEBdx
0
where - ....l_ _l.
§ .[ L. L]

[Note: This is the step needed to obtain Eq. (10.1.16) from Eq. (10.1.15).]
The following integral represents the strain epergy in a bar:
L
v=3[ 48" DBda
2 Jo
4 1 1
where = ! = | — =
8] a-lg ] e

Show that U /d{d} yields.kd, where k is the bar stiffness matrix given by

AE[ 1 =1
g“"if[—l 1]

A 21

e



