Introduction

Many problems in engineering and mathematical physics require the solution of a sys-
tem of simultaneous linear algebraic equations. Stress analysis, heat transfer, and
vibration analysis are engineering problems for which the finite element formulation
for solution typically involves the solving of simultaneous linear equations. This
appendix introduces methods applicable to both longhand and computer solutions of
simultaneous linear equations. Many methods are available for the solution of equa-
tions; for brevity’s sake, we will discuss only some of the more common methods.

A B.1 General Form of the Equations A
In general, the set of equations will have the form
anxy +apxz+ o+ aQinxn =0

B = - .
B » B .
. - . »

A Xy + A Xy ++ -+ + Ay Xy = Oy

where the a;’s are the cqefﬁcients of the unknown x;’s, and the ¢;’s are the known
right-side terms. In the structural analysis problem, the a;’s are the stiffness coeffi-
cients ky’s, the x;’s are the unknown nodal displacements d;’s, and the ¢;’s are the
known nodal forces F;’s. ‘

If the ¢’s are not all zero, the set of equations is nonhomogeneous, and all equa-
tions must be independent to yield a unique solution. Stress analysis problems typi-
cally mvolve solving sets of nonhomogeneous equations.




B.2 Unigueness, Nonuniqueness, and Nonexistence of Solution A 723

If the ¢’s are all zero, the set of equations in homogeneous, and nontrivial solu-
tions exist only if all equations are not independent. Buckling and vibration problems
typically involve homogeneous sets of equations.

A B.2 Uniqueness, Nonuniqueness, and A
Nonexistence of Solution :

To solve a system of simultaneous linear equations means to determine a unique set of
values (if they exist) for the unknowns that satisfy every equation of the set simulta-
neously. A unique solution exists if and only if the determinant of the square coeffi-
cient matrix is not equal to zero. (Al of the engineering problems considered in this
text result in square coefficient matrices.) The problems in this text usually result in a
system of equations that has a unique solution. Here we will briefly illustrate the
concepts of uniqueness, nonuniqueness, and nonexistence of solution for systems of
equations.

-

Uniqueness of Solution

2+ 1x =6
' (B.2.1)
Ix; +4x; =17
f For Egs. (B.2.1), the determinant of the coefficient matrix is not zero, and 2 unique
¥

solution exists, as shown by the single common point of intersection of the two Egs.
(B.2.1) in Figure B-1.

Nonuniqueness of Solution
2+ 1x3 =6

| (B2.2)
4x; +2x3 =12

x4

Figure B—-1 Unigueness of solution
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A X;
- X . = Xy
Figure B-2 Nonuniqueness off solution  Figure B-3 Nonexistence of solution
For Egs. (B..‘Z.Z}, the determinant of the coefficient matrix is zero; that is,
2 1
=0
4 2
"Hence the equations are called singular, and either the solution is not unique or it does
not exist. In this case, the solution is not unique, as shown in Figure B-2.
Nonexistence of Solution
2 +x2=6
(B.2.3)
4x) + 20 = 16
Again, the determinant of the coefficient matrix is zero. In this case, no solution exists
because we have parallel lines {no common point of intersection), as shown in
Figure B-3.
A B.3 Methods for Solving Lmear ‘ A

Algebralc Equations

We will now present some common methods for solving systems of linear algebraic
equations that have unique solutions. Some of these methods work best for small
sets of equations solved longhand, whereas others are well suited for computer
application. -

Cramer’s Rule

We begin by introducing 2 method known as Cramer’s rule, which is useful for the
longhand solution of small numbers of sirultancous cquanons Consider the set of
equations

= (B.3.1)
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or, in index notation,

n
Z ayx; = ¢; (B.3.2)
=1
We first let 4 be the matrix a with column 7 replaced by the column matrix ¢. Then
the unknown x;’s are determined by
=2 (B.3.3)

As an example of Cramer’s rule, consider the following equations:
-X] 43Xy —2x3 =2
2xy —4xy 4+ 2x3 = 1 {B.34)
4y +x3=3
In matnx form, Egs. (B.3.4) become

-1 3 =2((x - 2
2 -4 2|/{xm =K1 (B.3.5)
0 4 1 X3 3

By Eq. (B.3.3), we can solve for the unknown x;’s as’

2- 3 =2
1 -4 2
N e
=S 3 =2 S0
2 ~4 2
0 4 1
-1 2 =2 (B.3.6)
21 2
4?9 o3 1l
Xy .= [g[ = 10 =1.1
-1 3 2
2 -4 1
@™ o 4 31
BET ST oo

In general, to find the determinant of an n x »n matrix, we rust evaluate the
determinants of n matrices of order (n — 1) x (n — 1). It has been shown that the sol-
ution of n simultaneous equations by Cramer’s rule, evaluating determinants by
expansion by minors, requires (n — 1)(n + 1)! multiplications. Hence, this method
takes large amounts of computer time and therefore is not used in solving large sys-
tems of simultaneous equations either longhand or by computer.
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Inversion of the Coefficient Matrix

The set of equations ax = ¢ can be solved for x by inverting the coefficient matrix g
and premultiplying both sides of the original set of equations by a~!, such that

alax=a'¢

Ix=a"¢ (B.3.7)

=a’'c

Two methods for determining the inverse of a matrix (the cofactor method and row
reduction) were discussed in Appendix A.

The inverse method is much more time-consuming (becanse much time is
required to determine the inverse of ¢) than either the elimination method or the iter-
ation method, which are discussed subsequently. Therefore, inversion is practical
only for small systems of equations.

However, the concept of inversion is often used during the formulation of the
finite element equations, even though elimination or iteration is used in achieving the
final solution for the unknowns (such as nodal displacements).

Besides the tedious calculations necessary to obtain the inverse, the method usu-
ally involves determining the inverse of sparse, banded matrices (stiffness matrices in
structural analysis usually contain many zeros with the nonzero coefficients located
in 2 band around the main diagonal). This sparsity and banded nature can be used
to advantage in terms of storage requirements and solution algorithms on the com-
puter. The inverse results in a dense, full matrix with loss of the advantages resulting
from the sparse, banded nature of the original coefficient matrix.

To illustrate the solution of a system of equations by the inverse method, con-
sider the same equations that we solved previously by Cramer’s rule. For conve-
nience’s sake, we repeat the equations here.

~1 3 -2 X1 2
2 -4 2[dxp={1 (B.3.8)
0 4 i X3 3

The inverse of this coefficient matrix was found in Eq. (A.3.11) of Appendix A. The
unknowns are then determined as

x1 I -12 -11 =2)(2 4.1
Xy p = 10 -2 -1 -2 1= 1.1 (B.3.9)
X3 8 4 -2 3 ~-1.4

Gaussian Elimination

We will now consider 2 commonly used method called Gaussian elimination that is
easily adapted to the computer for solving systems of simultaneous equations. It is
based on triangularization of the coefficient matrix and evaluation of the unknowns
by back-substitution starting from the last equation.
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The general system of n equations with n unknowns given by
ay Q. ... ay X1 o
dy ay»n ... ay X2 4]
_ ,’ = (B.3.10)
Qny 4p2 ... Qpn Xn Cn
will be used to explain the Gaussian elimmation method.
1. Eliminate the coefficient of x; in every equation except the first one.
: To do this, select a4y as the ptvot, and (
i a. Add the multiple —aj;/ay; of the first row to the second row.
¥ b. Add the multiple —as)/ay; of the first row to the third row.
c. Continue this procedure through the nth row.
: The system of equations will then be reduced to the following form:
ay ap ... a4 | [ x a
(3 0 dp ... a|]|x ¢
¥ L=< (B.3.11)
] t ' 4 !
0 a, ... a,|| X c;
L 2. Eliminate the coefficient of x; in every equation below the second
; equation. To do this, select a3, as the pivot, and '
|3 ~a. Add the multiple —a3,/a3, of the second row to the third row.
' b. Add the multiple —ay,/a;, of the second row to the fourth row.
¢. Continue this procedure through the nth row.
The system of equations will then be reduced to the following form:
[an a2 au a;n| [ x1) [ €1 )
0 a g ... d|ln| |4
0 0 aj AP ES = 9 ey (B.3.12)
L 0 0 a4 ... al]lx:) L ¢} )
We repeat this process for the remaining rows until we have the
system of equations (called triangularized) as
ey a2 a3 aw .. an | [x) (¢ )
0 ay ay ay -.. @, ||x )
0 0 ajy ay ... aj, || =x e} L B3
0 0 0 aff .. oalh|yu[T) e (B-3.13)
o 0 0 o0 ... a'flx) [c;;-!J
3. Determine x, from the last equation as
el :
Xp = —= (B3.14

n—1
Qon
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and determine the other unknowns by back-substitution. These steps
are summarized in general form by

k=12,...,n—1

a¢
a,;,-:aﬁ—akj;g: i=k+1,...,n
J=k,.. . ,n+l (B.3.15)
1 n
Xj = —\ Qintt — Z X,
Qi r=i+1

where a; »+1 represent the latest right side ¢’s given by Eq. (B.3.13).

We will solve the following example to illustrate the Gaussian elimination
method.

Example B.1

Solve the following set of simultaneous equations using Gauss elimination method.’
2xi +2x2+1x3 =9
2x; + 1x =4 (B316)

Iag+Ixn+ixs=6

Step 1

Eliminate the coefficient of x; in évery equation except the first one. Select a;; =2 as
the pivot, and ’

a. Add the multiple —ay,/ay; = —2/2 of the first row to the second row
b. Add the multiple —a3;/ay; = —1/2 of the first row to the third row.
We then obtain

2xp +2x; +1x3=9 .
Ox) - lx3~lx3=4-9=-§ (B.3.17)

0x; +QX3+%;X3=6—%=

Nl

Step 2

Eliminate the coefficient of x; in every equationi below the second equation. In this
case, we accomplished this in step 1.

Step 3

Solve for x; in the third of Eqgs. (B.3.17) as

_@_;

X3—{% ==
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Solve for x; in the second of Egs. (B.3.17) as

-5+43
X = 1

Solve for x; in the first of Egs. (B.3.17) as

=2

xlzg_:.z_gg_)_:;}.,—_l

To illustrate the use of the index Eqgs. (B.3.15), we re-solve the same example as
follows. The ranges of the indexes in Egs. (B.3.15) are £ =1,2; i=2,3; and
j=1234

Step 1
Fork =1, i = 2, and j indexing from ! to 4,

an “dzl—dn;—"”fl 2

ay = ay — an——-"’ 1-2
any

SIS
MNmer””
I
=3

N
1
!
[

(B.3.18)

o1 N
N
i
L

i3 a3 = an — 613—“-"0-1
3 an

a24=a24—a1423’-=4-9(2) =5
1‘ an 2
Note that these new coefficients correspond to those of the second of Egs.
(B.3.17), where the right-side a’s of Egs. (B.3.18) are those from the previous step
[here from Eqs. (B.3.16)], the right-side ay4 is really ¢, = 4, and the left-side a4 is the
new ¢z = —5.
) 0

Fork =1, i =3, and j indexing from ! to 4,

[t

a3 = az -an———— {—-2

2

4!32—032~alz-—"1—2 %):—_0
(B.3.19)

a a a -I 1 ! -—I

33 = d33 13 = 31 =3

1 3

ay = ay — aw-—-6 9(5)_5

where these new coefficients correspond to those of the third of Eqgs. (B.3.17) as previ-
ously explained.
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Step 2
For k=2, i=23, and j (= k) indexing from 2 to 4,

0
as; =a32-azz(£§) =0~ (—1)(—-—) =0
a» -1 .

_ ap) |1 _ 0 __I_
as3 = az3 — a3 (;2;) =5 ( I)(—l) =3 (B.3.20)
3

_ asn __3 0 .
334-—034-'024(;;2')—2 (5)(_1)*-2

where the new coefficients again correspond to those of the third of Eqs. (B.3.17),
because step 1 already eliminated the coefficients of x; as observed in the third of
Egs. (B.3.17), and the &’s on the right side of Eqs. (B.3.20) are taken from Eqgs.
{B.3.18) and (B.3.19).

Step 3
By Egs. (B.3.15), for x3, we have -
[ .
X3 = — (ay — 0
3= (ax — 0)

or, using a33 and as4 from Eqgs. (B.3.20),

x3=(—;5(%)=3

where the summation is interpreted as zero in the second of Eqs. (B.3.15) whenr > n
(for x3, r = 4, and n = 3). For x;, we have

1
Xy = — (G2 — apXx3)
ap

or, using the appropriate a’s from Egs. (B.3.18),

x == (-5 - (-1)@)] =2

and for x;, we have
1
x1 = —(ajs — a;ax2 ~ A13X3)
ay
or, using the o’s from the first of Eqs. (B.3.16),
a=19-22) - 13)) =1

In summary, the latest 2’s from the previous steps have been used in Egs. (B.3.15) to
obtain the x’s. |
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Note that the pivot element was the diagonal element in each step. However, the
diagonal element must be nonzero because we divide by it in each step. An onginal
matrix with all nonzero diagonal elements does not ensure that the pivots in each
step will remain nonzero, because we are adding numbers to equations below the
pivot in each following step. Therefore, a test is necessary to determine whether the
pivot ay: at each step is zero. If it is zero, the current row {equation) must be inter-
changed with one of the following rows—usually with the next row unless that row
has a zero at the position that would next become the pivot. Remember that the
right-side corresponding element i ¢ must also be interchanged. After making this
test and, if necessary, interchanging the equations, continue the procedure in the
usual manner.

An example will now illustrate the method for treating the occurrence of a zero
pivot element. '

Example B.2

Solve the following set of simultaneous equations.
2x;+2x;+ lx3 =9
Iy +1x2+ 1x3 =6 (B.3.21)
2x) + Ix3 =4

It will often be convenient to set up the solution procedure by considering the

' coefficient matrix g plus the right-side matrix ¢ in one matrix without writing down

the unknown matrix x. This new matrix is called the augmented matrix. For the set
of Egs. (B.3.21), we have the augmented matrix written as

22119
11 1,6 (B.3.22)
21 014

We use the steps previously outlined as follows:

Step 1
We select @11 = 2 as the pivot and

a. Add the multiple —ay1 /ayy = —1/2 of the first row to the second row
of Eq. (B.3.22).

b. Add the multiple —as; /ayy = —2/2 of the first row to the third row of
Eq. (B.3.22) to obtain

2 2 1! 9
0 0 i % (B.3.23)
0 -1 -11-5

At the end of step 1, we would normally choose ax; as the next pivot. However, ax; is
now equal to zero. If we interchange the second and third rows of Eq. (B.3.23), the
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new a;; will be nonzero and can be used as a pivot. Interchanging rows 2 and 3 results
n

f2 2 119
0 -1 —12—5 (B.3.24)
o 0 43

For this special set of only three equations, the interchange has resulted in an upper-
triangular coefficient matrix and concludes the elimination procedure. The back-
substitution process of step 3 now yields

X3 =3 x2£2 Xy =1 | |

A second problem when selecting the pivots in sequential manner without test-
ing for the best possible pivot is that loss of accuracy due to rounding in the results
can occur. In general, the pivots should be selected as the largest (in absolute value)
of the elements in-any column. For example, consider the set of equations given by

0.002x; + 2.00x; = 2.00
(B.3.25)
. 3.00x; + 1.50x = 4.50

whose actual solution is given by
x; = 1.0005 x; = 0.999 (B.3.26)

The solution by Gaussian elimination without testing for the largest absolute
value of the element in any column is

0.002x, + 2.00x; = 2.00
~2998.5x, = —995.5
X2 = 0.3320

X, = 668 (B.3.27)

This solution does not satisfy the second of Egs. (B.3.25). The solution by interchanging
equations is

3.00x; + 1.50x; = 4.50
0.002x; + 2.00x; = 2.00

or 3.00x; + 1.50x; = 4.50
1.999x, = 1.997
xy = 0.999
x1 = 1.0005 (B.3.28)

Equations (B.3.28) agree with the actual solution [Egs. (B.3.26)].
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Hence, in general, the pivots should be selected as the largest (in absolute value)
of the elements in any column. This process is called partial pivoting. Even better
results can be obtained by choosing the pivot as the largest element in the whole
matnx of the\femaining equations and performing appropriate interchanging of
rows. This is called complete pivoting. Complete pivoting requires 2 large amount of
testing, so it is not recommended in general.

The finite element equations generally involve coefficients with different orders
of magnitude, so Gaussian elimination with partial pivoting is a useful method for
solving the equations.

Finally, it has been shown that for n simultaneous equations, the number of
arithmetic operations required in Gaussian elimination is » divisions, {n® 4+ n? multi-
plications, and {n* + n additions. If partial pivoting is included, the number of com-
parisons needed to select pivots is n(n + 1)/2.

Other elimination methods, including the Gauss—Jordan and Cholesky methods,
have some advantages over Gaussian elimination and are sometimes used to solve
large systems of equations. For descriptions of other methods, see References [1-3].

Gauss—-Seidel lteration

Another general class of methods (other than the elimination methods) used to solve
systems of linear algebraic equations is the iterative methods. Iterative methods work
well when the system of equations is large and sparse (many zero coefficients). The
Gauss~Seidel method starts with the original set of equations gx = ¢ written in the
form

1
Xy = ;;(81 — A13X2 — A13X3 — -+ — AipXp)

1
Xy =—(C2 — anX) — a13X3 — -+ — Az, Xy) ‘
2 (B.3.29)

1
Xy == ""'(Cn =Xy — X3 — - — arz,n-—lxn-!)
Qnpn

The following steps are then applied.

1. Assume a set of initial values for the unknowns xi, x3,. .., X,, and
substitute them into the right side of the first of Egs. (B.3.29) to solve
for the new x;.

2. Use the latest value for x; obtained from step 1 and the initial values
for x3, x4,...,x, in the right side of the second of Egs. (B.3.29) to
solve for the new x;. '

3. Continne using the latest values of the x’s obtained in the left side of
Eqs. (B.3.29) as the next tnial values in the right side for each succeed-
ing step.

4. Iterate until convergence is satisfactory.
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A good initial set of values (guesses) is often x; = ¢;/a;. An example will serve to
illustrate the method.

Exampie B.3

Consider the set of linear simultaneous equations given By
4x; — X =2
—-x; +4x3 — X3 =5
(B.3.30)
—xy+4x;— x4=6
—X3 4 2xg = -2

Using the initial guesses given by x; = ¢;/a;;, we have

ek

x4=—1

&N

L =izl x=%=
Solving the first of Egs. {B.3.30) for x; yields
=iQ2+x)=i2+1)=2
Solving the second of Egs. (B.3.30) for x;, we have
X =-}(5+x1 + x3) =%(5+%+ 1) = 1.68
Solving the third of Egs. (B.3.30) for x3, we have
=1(6+x+x)=1[6+168+(-1)]=1672
Solving the fourth of Egs. (B.3.30) for x4, we obtain
=1(-24x3) =1(~-2+1.67) = ~0.16
The first iteration has now been completed. The second iteration yields
=1(2+1.68) = 0.922
x; = 1(5+0.922 + 1.672) = 1.899
=1[6 + 1.899 + (-0.16)] = 1.944
=1(~2+1.944) = —0.028

Table B-1 lists the results of four iterations of the Gauss—Seidel method and the
exact solution. From Table B-1, we observe that convergence to the exact solution
has proceeded rapidly by the fourth iteration, and the accuracy of the solution is
dependent on the number of iterations. R

In general, iteration methods are self-correcting, such that an error made in cal-
culations at one iteration will be corrected by later iterations. However, there
are certain systems of equations for which iterative methods are not convergent.
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Table B-1 Results of four iterations of the Gauss-Seidel method for Egs. (B.3.30)

Iteration X1 Xz X3 X4
0 0.5 1.0 1.0 -1.0
1 0.75 1.68 1.672 -0.16
2 0.922 1.899 1.944 —0.028
3 0.975 1.979 1.988 ~0.006
4 0.9985 1.9945 1.9983 -0.0008
E

xact 1.0 2.0 2.00 0

When the equations can be arranged such that the diagonal terms are greater than the
off-diagonal terms, the possibility of convergence is usually enhanced.

Finally, it has been shown that for n simultaneous equations, the number of
arithmetic operations required by Gauss—Seidel iteration is » divisions, »* multiplica-
tions, and n? — n additions for each iteration.

& B.4 Banded-Symmetric Matrices, Bandwidth, ‘ A
Skyline, and Wavefront Methods |

The coefficient matrix (stiffness matrix) for the linear equations that occur in struc-
tural analysis is always symmetric and banded. Because a meaningful analysis gener-
ally requires the use of a large number of vartables, the implementation of compressed
storage of the stiffness matrix is desirable both from the standpoint of fitting into-
memory {immediate access portion of the computer) and for computational efficiency.
We will discuss the banded-symmetric format, which is not necessarily the most effi-
cient format but is relatively simple to implement on the computer.

Another method, based on the concept of the skyline of the stiffness matrix, is
often used to improve the efficiency in solvihg the equations. The skyline is an envelope
that begins with the first nonzero coefficient in each column of the stiffness matrix
(Figure B-5). In skylining, only the coefficients between the main diagonal and the
skyline are stored (normally by successive columns) in 2 one-dimensional array. In
general, this procedure takes even less storage space in the computer and is more effi- .
cient in terms of equation solving than the conventional banded format. (For more
information on skylining, consult References [10-12].)

A matrix is banded if the nonzero terms of the matrix are gathered about the
main diagonal. To illustrate this concept, consider the plane truss of Figure B—4.

From Figure B4, we see that element 2 connects nodes | and 4. Therefore, the
2 x 2 submatrices at positions 1-1, 1-4, 4-1, and 44 of Figure B-5 have nonzero
coefficients. Figure B--5 represents the total stiffness matrix of the plane truss. The
X’s denote nonzero coefficients. From Figure B-5, we observe that the nonzero
terms are within the band shown. When we use a banded storage format, only the
main diagonal and the nonzero upper codiagonals need be stored as shown in Figure
B-6. Note that any codiagonal with a nonzero term requires storage of the whole
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O] 2 3

- ® -

iﬁigure B-4 Plane truss for bandwidth
8 v ilustration

Skyline

\_ Symmetry X

Figure B-5 Stiffness matrix for the plane truss of Figure B-4, where X denotes, in
general, blocks of 2 x 2 submatrices with-nonzero coefficients

r

codiagonal and any codiagonals between it and the main diagonal. The use of banded
storage is efficient for computational purposes. The Scientific Subroutine Package
gives a more detailed explanation of banded compressed storage [4].

‘ We now define the semibandwidth 7, as np, = ng(m + 1}, where n, is the number
of degrees of freedom per node and m is the maximum difference in node numbers
determined by calculating the difference in node numbers for each element of a finite
element model. In the example for the plane truss of Figure B~4, m =4 — 1 = 3 and
ng=2son,=23+1)=8.

Execution time (primarily equation-solving time} is a function of the pumber of
equations to be solved. It has been shown [5] that when banded storage of global stiff-
ness matrix X is not used, execution time is proportional to (1 /3)n3 where n is the
number of cquamns to be solved, or, eqmvalcnt}y, the size of K. When
banded storage of X is used, the execution time is proportional to (n)n?. The ratio of
time of execution without banded storage to that with banded storage is then
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-4—-!!,,‘—"8——4

(x X 0 X)

XX XX

X 0 X X

XX 00X Figure B~6 Banded storage format of the
X X X X stiffness matrix of Figure B-5
X0 X X

X X 0 X

X X X X

X0 X X

X 0 00

X000

X 00O

(1/3)(n/ns)%. For the plane truss example, this ratio is (1/3)(24/8)* = 3. Therefore, it
takes about three times as Jong to execute the solution of the example truss if banded
storage is not used. '

Hence, to reduce bandwidth we should number systematically and try to have a
minimum difference between adjacent nodes. A small bandwidth is usually achieved
by consecutive node numbering across the shorter dimension, as shown in Figure B—4.
Some computer programs use the banded-symmetric format for storing the global
stiffness matrix, X.

Several automatic node-renumbering schemes have been computerized |6]. This
option is available in most general-purpose computer programs. Alternatively, the
wavefront or frontal method is becoming popular for optimizing equation solution

time. In the wavefront method, clements, instead of nodes, are automatically

renumbered.

In the wavefront method, the assembly of the equations alternates with their sol-
ution by Gauss elimination. The sequence in which the equations are processed is
determined by element numbering rather than by node numbering. The first equations
eliminated are those associated with element 1 only. Next, the contributions of stiff-
ness coefficients of the adjacent element, element 2, are added to the system of equa-
tions. If any additional degrees of freedom are contributed by elements 1 and 2
only—that is, if no other elements contribute stiffness coefficients to specific degrees
of freedom—these cquations are eliminated (condensed) from the system of equations.
As one or more additional elements make their contributions to the system of equa-
tions and additional degrees of freedom are contributed only by these elements, those
degrees of freedom are eliminated from the solution. This repetitive alternation
between assembly and solution was initially seen as a wavefront that sweeps over the
structure in a pattern determined by the element numbering. For greater efficiency of
this method, consecutive element numbering should be done across the structure in a
direction that spans the smallest number of nodes.

The wavefront method, though somewhat more difficult to understand and to
program than the banded-symmetric method, is computationally more efficient. A
banded solver stores and processes any blocks of zeros created in assembling the stiff-
ness matrix. In the wavefront method, these blocks of zero coefficients are not stored
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or processed. Many large-scale computer programs are now using the wavefront
method to solve the system of equations. (For additional details of this method, see
References [7-9].) Example B.4 illustrates the wavefront method for solution of a
truss problem.

Example B.4

For the plane truss shown in Figure B-7, illustrate the wavefront solution procedure.
We will solve this problem in symbolic form. Merging &’s for elements 1, 2, and
3 and enforcing boundary conditions at node 1, we have

d’zx dZy- :d3x d.'{y d4x d4y
KD+ kD KD kD 410 KD KD KD 0] (d) [0 )
T g B e A A 0 B IS
& 4| o
A N R PR
1 K2 go o o o ||d 0
K W to o o ofl4) [o]
(B.4.1)

Eliminating d», and 4y, (all stiffness contributions from node 2 degrees of freedom
have been included from these elements; these contributions are from elements 1-3)
by static condensation or Gauss elimination yields

dsy
2 ) d3ly it .
[ e dr - {Fc} (B42)
4x
djy

Figure B-7 Truss for wavefront solution
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where the condensed stiffness and force matrices are (also see Section 7.5)

[k} = [Kp) — (K )IKT) 7 K] (B4.3)
{Fl} = {Fy} - (KnlIK}\ 7 {F} (B.4.4)

where primes on the degrees of freedom, such as d;, in Eq. (B.4.1), indicate that all
stiffness coefficients associated with that degree of freedom have not yet been
included. Now include elements 4-6 for degrees of freedom at node 3. The resulting
equations are

d3x d3y dax d4y
iy + 153+ + K KD+ K + S+l KD+ K+ k]
klyy + KA K 4Ky Ky + kS + k) + ki k‘“) ki Koy Kl

...——...-____.....——.————.—-.———_—_—_-—_‘u—-—— ..__._——-—.__..__.._.._..-

i + 9 K+ K9 kY K+ kD
Kl +Ke) Motk R+ K Kur ).
[ 0
NP B2y =i (BA4.5)
dj, 0
dl, 0

Using static condensation, we eliminate di, and d, (all contributions from node 3
degrees of freedom have been included from each element) to obtain

dl
i i = e (B46)
where kT = [Kap) — KK KD (B.4.7)
{F} = {7} - IGIRRTHE ) (B43)

Next we include element 7 contributions to the stiffness matrix. The condensed set of
equations yield ‘

[ m]{ ::;} =- {EIIJ} (B.4.9)
[n [ n] { m][ m —l[ (B410)
where (B} = (Fy"} - K () (BA.1Y)

The elimination procedure is now complete, and we solve Eq. (B.4.9) for di, and dj,.
Then we back-substitute dy and dy, into Eq. (B.4.5) to obtain di, and ds,. Finally,
we back-substitute di; through dy, into Eq. (B.4.1) to obtain d,, and d,. Static con-
densation and Gauss elimination with back-substitution have been used to solve the
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set of equations for all the degrees of freedom. The solution procedure has then pro-
ceeded as though it were a wave sweeping over the structure, starting at node 2,
engulfing node 2 and elements with degrees of freedom at node 2, and then sweeping
through node 3 and finally node 4. ]

We now describe a practical computer scheme often used in computer programs
for the solution of the resulting system of algebraic equations. The significance of this
scheme is that it takes advantage of the fact that the stiffness method produces a
banded X matrix in which the nonzero elements occur about the main diagonal in
K. While the equations are solved, this banded format is maintained.

Example B.5

We will now use a simple example to illustrate this computer scheme. Consider the
three-spring assemblage shown in Figure B-8. The assemblage is subjected to forces
at node 2 of 100 1b in the x direction and 200 Ib in the y direction. Node 1 is com-
pletely constrained from displacernent in both the x and y directions, whereas node 3
is completely constrained in the y direction but is displaced a known amount § in the
x direction.

Our purpose here is not to obtain the actual X for the assemblage but rather to
illustrate the scheme used for solution. The general solution can be shown to be
given by

by ko ks ki ks ks (A=) [ Fie ]
kn ki ku ks k| | dy Fy
ks ks kss ks | ) dax F =100
< y = B.4.12
ki ki kig| | da [ )| Fay =200 [ (B412)
kss ks | | dax Fyy
| Symmetry ks | Ldsy) | Fy )

Figure B~8 Three-spring assembilage
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where K has been left in general form. Upon our imposing the boundary conditions,
the computer program transforms Eq. (B.4.12) to:

(10 0 0 00|[de] [ 0 ]

01 0 0 00|]|a 0

0 0 ks ks 0 0] [ | _ ) 100—ksso | (B4.13)
0 0 kas kg 0 O dzy 200 — k450

00 0 0 1 0|]dsx s

00 0 0 01]|(d) L o |

From Eq. (B.4.13), we can see that djy =0, dy, = 0, d3, = 0, and d3, = J. These dis-
placements are consistent with the imposed boundary conditions. The unknown
displacements, dy. and dy,, can be determined routinely by solving Eq. (B.4.13).

We will now explain the computer scheme that is génerally applicable to trans-
form Eq. (B.4.12) to Eq. (B.4.13). First, the terms associated with the known displace-

" ment boundary condition(s) within each equation were transformed to the right side
_of-those equations. In the third and fourth equations of Eq. (B.4.12), k356 and ka5

were transformed to the right side, as shown in Eq. (B.4.13). Then the right-side
force term corresponding to the known displacerent row was equated to the known
displacement. In the fifth equation of Eq. (B.4.12), where dix = &, the right-side,
fifth-row force term F3, was equated to the known displacement 4;-as shown in Eq.
(B.4.13). For the homogeneous boundary conditions, the affected rows of F, corre-
sponding to the zero-displacement rows, were replaced with zeros. Again, this is
done in the computer scheme only to obtain the nodal displacements and does not
imply that these nodal forces are zero. We obtain the unkknown nodal forces by deter-
mining the nodal displacements and back-substituting these results into the original
Eq. (B.4.12). Because d); = 0, dy, = 0, and d3, = 0 in Eq. (B.4.12), the first, second,
and sixth rows of the force matrix of Eq. (B.4.13) were set to zero. Finally, for both
nonhomogeneous and homogeneous boundary conditions, the rows and columns. of
K corresponding to these prescribed boundary conditions were set to zero except the
main diagonal, which was made unity. That is, the first, second, fifth, and sixth rows
and columns of K in Eq. (B.4.12) were set to zero, except for the main diagonal
terms, which were made unity. Although doing so'is not necessary, setting the main
diagonal terms equal to 1 facilitates the simultaneous solution of the six equations in
Eq. (B.4.13) by an elimination method used in the computer program. This modifica-
tion is shown in the K matrix of Eq. (B.4.13). |
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A Problems

B.1 " Determine the solution of the following simultaneous equations by Cramer’s rule.
Ixt+3x:=5
4x; — lxn =12

B.2 Determine the solution of the following simultaneous equations by the invers

method.
Ix; +3x2 =5
\ 4x; — 1xy =12

B.3 Solve the following system of simultaneous equations by Gaussian elimination.
x| —4xy —5x; =4
3x; +4x; = —1
—2x; = Ixp +2x3 = =3

B.4 Solve the following system of simultaneous equations by Gaussian elimination.
.2x1 +Ix—-3x3=11
4xy — 2%+ 3x3 =8
—2x; + 20 — Ixz3 = -6
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Given that
X1=2)1-y2 Z=-X-X

X2=n-—» 22 =2x; + xp.
a. Write these relationships in matrix form.

b. Express z in terms of y.
¢. Express y in terms of z.

Starting with the initial guess X7 ={1 1 1 1 1], perform five iterations of the
Gauss-Seidel method on the following system of equations. On the basis of the results
of these five iterations, what is the exact solution?

2JC1 - lx:z = —1
—1xy +6x3 — Ix3 = 4
—2x3 +4x3 — 1xy = 4

~Ixs+4x;~lxs= 6
o ~Ixg + 2x5 = -2
Solve Problem B.1 by Gauss-Seidel iteration. _
Classify the solutions to the following systems of equations according to Section B.2
as unique, nonunique, Or nonexistent.

a 2x— 4x3= 2 b. 10xy +1x; =0

—9x) + 12x; = —6 5x; +%x2 =3
c2ag+ixn+lx3s=6 d Ix+ixn+lxs=1

Ixy+1Ix; —Ixz3 =4 26 + 2%+ 2xy = 2

5x1+ 2% +2x3 =8 31 +3x+3x3=3

Determine the bandwidths of the plane trusses shown in Figure PB-9. What con-
clusions can you draw regarding labeling of nodes?

14 10

13 15 s 15
10 U 12 4 2 14
7 & N 3 § N3
4 S Ne¢ 2 7 N

:& 92 N3 l@c 96 il

Figure PB-9



