Introduction

In this appendix, we will develop the basic equations of the theory of elasticity. These
equations should be referred to frequently throughout the structural mechanics por-
tions of this text. - :

There are three basic sets of equations included in theory of elasticity. These
equations must be satisfied if an exact solution to a structural mechanics problem is
to be obtained. These sets of equations are (1) the differential equations of equilibrium
formulated here in terms of the stresses acting on a body, (2} the strain/displacement
and compatibility differential equations, and (3) the stress/strain or material constitu-
tive laws.

A .1 Differential Equations of Equilibrium A

-For simplicity, we initially consider the equilibrium of 2 plane element subjected to
normal stresses oy and o, in-plane shear stress 7, (in units of force per unit area),
and body forces X} and Y} (in units of force per unit volume), as shown in Figure C-1.
The stresses are assumed to be constant as they act on the width of each face. How-
ever, the stresses are assumed to vary from one face to the opposite. For example,
we have o, acting on the left vertical face, whereas oy + (00,/0x) dx acts on the
right vertical face. The element is assumed to have unit thickness.

Summing forces in the x direction, we have

S0 =0 (o + ) 1) = (1) + Xy

+ (zyx +—}—dy) dx(1) — 1 dx(l).= 0 (C.1.1)
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Figure C-1 Plane differential element subjected to stresses

After simplifying and canceling terms in Eq. (C.1.1), we obtain

50',( ar,x _

T 3y +X,=0 (C.1.2)
Similarly, summing forces in the y direction, we obtain

day 01y,

?y-'l'a--f- Y,=0 o N (C.1.3)

Because we are considering only the planar element, three equilibrium equations
must be satisfied. The third equation is equilibrium of moments about an axis normal
to the x-y plane; that is, taking moments about point C in Figure C-1, we have

S M =0= zxydy(l)%"+ (tw+a—rﬂdx) &

ox 2
| dy ' Otyx , Y dy _
Simplifying Eq. (C.1.4) and neglecting higher-order terms yields
Ty = Tyx (C.1.5)

We now consider the three-dimensional state of stress shown in Figure C-2,
which shows the additional stresses 0z, Txz, and 1,,. For clarity, we show only the
stresses on three mutually perpendicular planes. With a straightforward procedure,
we can extend the two-dimensional equations (C.1.2), (C.1.3), and (C.1.5) to three
dimensions. The resulting total set-of equilibrium equations is

0oy | Otxy 4 9a 0Ty

ax+ 2 e +Xb 0

3zxy 60, 0Ty,

ax "y + %z +Y,=0 (C.1.6)
a‘[_“:.pa_t_ ?££+Zb 0
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Figure C-2 Three~-dimensional stress element

gnd Tay = Tyx Ty = Tox Tye = Ty (C.1.7)
A c2 Strain/Displacement and Compatibility A
Equations

We first obtain the strain/displacement or kinematic differential relationships for
the two-dimensional case. We begin by consideﬁng the differential element shown in
Figure 'C-3, where the undeformed state is represented by the dashed lines and the
deformed shape (after straining takes place) is represented by the solid lines.
Considering line element 4B in the x direction, we can see that it becomes A'B’
after deformation, where u and v represent the displacements in the x and y directions.
By the definition of engineering normal strain (that is, the change in length divided by

Ayo

Figure C-3 Differential element before and after deformation
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the original length of 2 line), we have

& = 5-13;;——’!—-3 (C2.1)

Now AB =dx (C2.2)

and (A'B')? = (a'x + iu—dx)z + (?i’-dx)z (C.2.3)
' ox ox -

Therefore, evaluating A'B’ using the binomial theorem and neglecting the higher-
order terms (du/dx)* and (v/dx)* (an approach consistent with the assumption of
small strains), we have

ou |
rpt ve
| A'B = dx+ axdx (C.24)
Using Egs. (C.2.2) and {C.2.4) in Eq. (C.2.1), we obtain
du
& X - "a'—x ' (C.2.5)
Similarly, considering line element AD in the y direction, we have
dv
& = & (C.2.6)

The shear strain y,, is defined to be-the change in the angle between two lines,
such as 4B and AD, that originally formed a right angle. Hence, from Figure C-3,
we can see that y,,, is the sum of two angles and is given by

ou v

Yo =3+ 3 (€27)

Equations (C.2.5)—(C.2.7) represent the strain/displacement relationships for in-plane
behavior. _ .

For three-dimensional situations, we have a displacement w in the z direction. It
then becomes straightforward to extend the two-dimensional derivations to the three-
dimensional case to obtain the additional strain/displacement equations as

ow
Es = -a? (C.2.8)
ou ow
Vee =3+ 5o (C29)
oo ow
=7, + % (C.2.10)

Along with the strain/displacement equations, we need compatibility equations
to ensure that the displacement components u, v, and w are single-valued continuous
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functions so that tearing or overlap of elements does not-occur. For the planar-elastic
case, we obtain the compatibility equation by differentiating y,,, with respect to both x
and y and then using the definitions for &, and ¢, given by Eqs (C.2.5) and (C.2.6).
Hence

Py & ou & e | Ve
Oxdy 6x¢3y3y 3x3yax gyt ox?

(C.2.11)

where the second equatxon in terms of the strains on the right side is obtained by not-
ing tha,t smglc—valucd contmulty of dxsplacements requlres that the partial differentia-

" tionis with respect to x and y be interchangeable in order. Therefore, we have
& /8xdy = 6 /dyéx. Equation (C.2.11) is called the condition of compatibility, and it
must be satisfied by the strain components in order for us to obtain unique expressions
for u and v. Equations (C.2.5), (C.2:6), (C.2.7), and (C.2.11) together are then suffi-
cient to obtain unique single-valued functions for i and v.

In three dimensions, we obtain five additional compatibility equations by differ-
entiating y,. and y,, in a manner similar to that described above for y,,. We need not
list these equations here; details of their derivation can be found in Reference{l1].

In addition to the compatibility conditions that ensure single-valued continuous
functions within the body, we must also satisfy displacement or kinematic boundary
conditions. This simply means that the displacement functions must also satisfy pre-
scribed or given displacements on the surface of the body. These conditions often
occur as-support conditions from rollers and/or pins. In general, we might have

u=up Py=ny W=W- . . (C2.12)

" at spccxﬁcd surfacc }ocanons on the body We may also have conditions other than
displacements prescribed (for example prescribed rotations).

A C3 Stress/Strain Relationships. .= . - A

‘We will now develop the three-dimensional stress/stram rclatxonshlps for an isotropic

body only. This is done by conmdenng the response of a-body to imposed stresses.

We sub_}ect the body to the stresse‘s ax,ay, and az mdependently as shown in Figure
~C-4."

We first consider the change in length of the element in the x direction due to the
independent stresses gy, gy, and o,. We assume the principle of superposition to hold;
that is, we assume that the resultant strain in a system due to several forces is the
algebraic sum of their individual effects. -

Considering Figure C~4(b), the stress in the x direction produces a positive
strain '

r . Ox

g, == (C3.1)

where Hooke’s law, ¢ = Ez, has been used in writing Eq. (C.3.1}, and E is defined as
the modulus of elasticity. Considering Figure C—4(c), the positive stress in the
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) @

Figure C-4 Element subjected to normal stress acting in three mutually
perpendicular directions

y direction produces 2 negative strain in the x direction as a result of Poisson’s effect
given by -

g = 222 (C.32)

where v is Poisson’s ratio. Similarly, considering Figure C—4(d), the stress in the z
direction produces 2 negative strain in the x direction given by

| | = (C33)
Using superposition of Egs. (C.3.1)-(C.3.3), we obtain
=Xy 2% . (C.3.4)

E E E

The strains in the y and z directions can be determined in a2 manner similar to that
used to obtain Eq. (C.3.4) for the x direction. They are

e =224 D O
= —ymp 2222
EYE 'E €35
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Solving Egs. (C.3.4) and (C.3.5) for the normal stresses, we obtain

—(l—_*—_';j%—:—z—v')'[&x(l e V) + VEy -+ VB;_]

.X=

gy = ﬁ—;—g‘g—::—fv)— [vex + (1 — v)ey + vey (C.3.6)

G- =(1-—;-;’-)-‘;1;—-:§;5[ve,+ vey + (1 — v)e

The Hooke’s law relationship, ¢ = Ee, used for normal stress also applies for
shear stress and strain; that is,
| =Gy (C.3.7)

where G is the shear modulus. Hence, the expressions for the three different sets of
shear strains are '

T _ 0= - (C3.8)

yo\)’ G yyz - G Yox = G
Solving Egs. (C.3.8) for the stresses, we have
Ixy = Cr}’xy Ty = G}’ﬂ Té = G,y (C.3.9)

In matrix form, we can express the stresses in Egs. (C.3.6) and (C.3.9) as

( Ox )
Ty
0 }_ E
DD
Tyz
~ T:X &
(1 —v v v 0 0 1
1—v y 0 0 .
I-v 0 0 [ &
&
1-2v
x 5 0 0 =1 (c3.10)
_ 1 Vxy
1—-2v Vyz
2 0 [ Vzx
'| Symmetry lzzv

where we note that the relationship

E

C=31+v
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has been used in Eq. (C.3.10). The square matrix on the right side of Eq. (C.3.10) is
called the stress/strain or constitutive marrix and is defined by D, where D is

i 1=y y v 0 0
1—v v 0 0

E 1-2v

- = 0 0
Pl == 2 (C3.41)
1-2y
3 0
Symmetry 1 ;2\?

A Reference

[1] Timoshenko, S., and Goodier, J., Theory of Elasticity, 3rd ed., McGraw-Hill, New York,
1970. :




