IS: 10317 - 1982

Indian Standard

GUIDE FOR EVALUATION OF SOIL PROPERTIES RELEVANT TO IRRIGATION

UDC 631.41:631.67

Copyright 1983

INDIAN STANDARDS INSTITUTION MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG NEW DELHI 110002

January 1983

Indian Standard GUIDE FOR EVALUATION OF SOIL PROPERTIES

RELEVANT TO IRRIGATION

Water Requirements for Crops Sectional Committee, AFDC 46 Chairman Representing DR I. P. ABROL Central Soil Salinity Research Institute (ICAR). Karnal Members SHRI SWARAN SINGH BAINS Department of Agriculture (Government of Punjab), Chandigarh Agriculture SHRI SAT PAL BANSAL Department of (Government · of Haryana), Chandigarh SHRI S. K. BUZRUK Department of Agriculture (Government of Maharashtra), Pune DR R. P. DHIR Central Arid Zone Research Institute, Jodhpur SHRI V. S. DINKAR Department of Irrigation (Ministry of Agriculture & Irrigation), New Delhi SHRI P. K. KOCHAR (Alternate) IOINT DIRECTOR OF AGRICULTURE Department of Agriculture (Government of Gujarat), Ahmadabad (IRRIGATED Agronomist AGRICULTURE) (Alternate) JOINT DIRECTOR OF AGRICULTURE Department of Agriculture (Government of (SOIL CONSERVATION) Karnataka), Bangalore DEPUTY DIRECTOR OF AGRI-CULTURE (WATER USE SPECIALITIES) (Alternate) DR R. S. JOSHI DR S. S. KHANNA Gujarat Agricultural University, Ahmadabad Haryana Agricultural University, Hissar DR S. D. KHEPAR Punjab Agricultural University, Ludhiana DR U.R. MEHTA Department of of Agriculture (Government Rajasthan), Jaipur DR G. S. SHEKAWAT (Alternate) DR S. L. PANDAY Indian Agricultural Research Institute, New Delhi DR N. P. SINGH (Alternate) DR B. D. PATHAK Central Ground Water Board, Lucknow SHRI G. H. SHANKAR REDDY Andhra Pradesh Agricultural University, Hyderabad DR A. VENKATACHARY (Alternate)

(Continued on page 2)

© Copyright 1983 INDIAN STANDARDS INSTITUTION

This publication is protected under the Indian Copyright Act (XIV of 1957) and reproduction in whole or in part by any means except with written permission of the publisher shall be deemed to be an infringement of copyright under the said Act.

(Continued from page 1)

Members

Representing

DR G. B. SHENDE National Environmental Engineering Research Institute, Nagpur University of Udaipur, Udaipur National Dairy Research Institute (ICAR), Karnal Mahatma Phule Krishi Vidyapeeth, Rahuri Dr H. G. Singh DR P. S. TOMER DR N. K. UMBANI SHRI C. V. J. VARMA Ce Shri R. Rajaraman (Alternate) Central Board of Irrigation and Power, New Delhi Director General, ISI (Ex-officio Member) SHRI T. PURNANANDAM, Director (Agri & Food)

Secretary

SHRI V. S. MATHUR Deputy Director (Agri & Food), ISI

Indian Standard

GUIDE FOR EVALUATION OF SOIL PROPERTIES RELEVANT TO IRRIGATION

0. FOREWORD

0.1 This Indian Standard was adopted by the Indian Standards Institution on 25 October 1982, after the draft finalized by the Water Requirements for Crops Sectional Committee had been approved by the Agricultural and Food Products Division Council.

0.2 Irrigation water plays a vital role in many soil process. The manner in which water is distributed within the soil mass depends to a consider able extent on the individual soil properties.

0.3 In rating land for irrigation (agriculture), first attention should be given to physical condition which make the land adoptable to careful control of moisture. Freedom from undesirable chemical characteristics receives second consideration and third, the soil properties which effect the inherent productivity are to be considered.

0.4 It is hoped that this guide would help in deciding the method of irrigation, suitable crops for the area in relation to efficient utilization of water. This would also be useful to planners in selecting site for irrigation projects.

0.5 For the purpose of deciding whether a particular requirement of this standard is complied with, the final value, observed or calculated, expressing the result of a test or analysis, shall be rounded off in accordance with IS: 2-1960*. The number of significant places retained in the rounded off value should be the same as that of the specified value in this standard.

1. SCOPE

1.1 This standard gives guidelines for evaluation of soil properties in relation to irrigation.

^{*}Rules for rounding off numerical values (revised).

IS: 10317 - 1982

2. PHYSICAL PROPERTIES

2.1 Texture

2.1.1 Texture is an expression to indicate the coarseness or fineness of the soil as determined by the relative proportion of the various sized primary particles in the soil mass. It is one of the fundamental and permanent characteristics that has direct bearing on structure, porosity adhesion and consistency. Sandy soils of open characters possess good drainage and aeration and are usually loose and friable and easy to handle in tillage operation. Clayey and silty soils owing to have large surface area possess high absorbtive and retention capacity for moisture. They usually have fine pores, are moderate to poor in drainage and aeration and are relatively difficult to handle for cultivation purpose. Proforma for land irrigability classes has also been mentioned in Appendix A.

2.1.2 The standards followed for soil irrigability classes are mentioned below:

Soil Irrigability Class	Texture		
A	Sandy loam to clay loam		
В	Loamy sand and clay		
С	Sand and clay		
D	Sand and clay		
Non-irrigable class	Any texture		

2.1.3 Basis for above classification of soil texture are given in Table 1.

2.2 Effective Soil Depth

2.2.1 Soil depth modifies to a great extent the rooting system of plants which is ultimately reflected in irrigation, crop growth and yield.

2.2.2 The standards followed for effective soil depth in soil irrigability classification are as under:

Soil Irrigability Class	Effective Depth in mm		
Α	More than 900		
В	450 to 900		
C	225 to 450		
D	75 to 225		
Non-irrigable soil class	Less than 75		

			(Clause 2.	1.3)			
SL	TYPE OF	CLASSIFICATION	TEXTURE	SYMBOL	RANGE IN PERCENT		
No.	SUL	of Soil			Sand	Silt	Clay
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
i)	Sandy soils	Coarse	Sands Loamy sands	s Is	93-100 63-92	0 -4 5-25	0-18 0-12
ii)	Loamy soils	Møderately course	Sandy loam Fine sandy loam	il Îsl	70-92 —	0-13	9 -20
		Medium	Very fine sandy loa:	<i>bsfl</i> in	<u></u>		-
			— Loam	l	50-70	10-25	10-26
			- Silt loam	sil	25-75	25=50	0-26
			— Silt	si	0-50	50-100	0-26
		Moderately fine	Sandy clay loam	scl	65-85	0-13	17-30
			Clay loam	cl	35-70	8-25	21-40
			Silty clay loam	sicl	0-48	28-74	25-40
iii)	Clayey	Fine	- Sandy clay	sc	50-75	0-8	26-50
,	soils		- Silty clay	sic	0-35	25-60	40-75
	_		- Clay	c	0-62	0-25	32-100

TABLE 1 BASIS FOR CLASSIFICATION FOR TEXTURE { Clause 2.1.3 }

2.3 Infiltration

2.3.1 Infiltration is the downward entry of water into the soil. It is the maximum rate at which a soil in a given condition at given time can absorb rain or irrigation water. It is classified as below:

Class	Basic Infilteration Rate mm/Hour
1. Very slow	Less than 0.25 cm/hour to 2.5
2. Slow	2.5 to 12.5
3. Moderate	12.5 to 25
4. Rapid	More than 25

2.3.2 Infiltration is a dynamic and quite variable character of soil and can be fairly well controlled by management practices.

2.4 Permeability

2.4.1 Permeability are of two types (i) Qualitative (ii) Quantitative.

2.4.1.1 Qualitative — The quality or state of porous medium relative to the readyness with which such a medium conducts or transmit fluids.

2.4.1.2 Quantitative — The specific properties governing the rate or readyness with which a porous medium transmits fluid under standard position.

2.4.2 The permeability depends upon pore size distribution of the soil. Texture and structure of a soil often studied in field for qualitative assessment of permeability. Concentration and composition of salts dissolved in irrigation water also effect the permeability of soils.

2.4.3 The degree of permeability may be distinguished as follows:

Permeability Class	mm/hour		
1. Very slow	Less than 1.2		
2. Slow	1.3 to 5		
3. Moderately slow	5 to 20		
4. Moderate	20 to 50		
5. Moderately rapid	50 to 130		
6. Rapid	130 to 250		
7. Very rapid	Above 250		

2.4.4 The standards followed for permeability for soil irrigability class are as under:

Soil Irrigability Class	Permeability mm/hour
Α	5 to 50
В	1.3 to 5
	50 to 130
С	0.3 to 1.3
	130 to 250
D	Less than 0.3 and greater than 250

Soil permeability as a criteria is not applicable to deep black soil because of their unique properties. Deep black soils (vertisols) which are inherently slowly permeable due to expanding 2:1 lattic type minerals do not qualify for irrigability class-A, they would qualify for B, C & D Class.

2.5 Drainage

2.5.1 The processes of discharge of water from an area of soil by sheet or streams flow (surface drainage) and removal of excess water from within soil by downward flow through the soil (internal drainage). Generally speaking coarse texture soil drain better than fine texture soil. Drainage depends directly on permeability of soil.

2.5.2 Standards followed for drainage for irrigability class are as below:

A and B Class	:	Lower subsoil is at least moderately permeable
		or permeable layer of at least 6 inch thickness occurs immediately below soil but within 10
		occurs immediately below soil but within 10
		feet (sand and gravels).

C and D Class : Moderately permeable subsoil or other permeable layer of at least 6 inch thickness occurs with depth of 10 metres.

2.6 Soil Temperature

2.6.1 Soil temperature has extensive effect on soil properties and behaviour. The water holding capacity of soil decreases slightly with rise in temperature. Soil moisture is the most vital controlling factor in soil temperature.

3. CRITERIA FOR CLASSIFICATION

3.1 Criteria for classification of soil on the basis of properties (see 2) are given in Table 2.

13 : 10317 - 1982

TABLE 2 CRITERIA FOR CLASSIFYING SOILS INTO IRRIGABILITY CLASSES

(Clause 3.1)

SL No.	SOIL PROPERTIES	_	NON-IRRIGABLE SOIL			
ITO. INOPERATES		A	В	C	D	
(1)	(2)	(3)	(4)	(5)	(6)	(7)
i)	Effective soil depth (useful to crops)	More than 900 mm	450 to 900 mm	225-4 50 mm	75 -225 mm	Less than 75 mm
ii)	Texture of surface 30 cm	Sandy loam to clay loam inclusive	Loamy sand; clay	Saad; clay	Sand clay	Any texture
iii)	Soil permeability (see Note 1) (of least permeable layer)	5 ·0-50 mm/hr	1·3-5 mm/hr 50-130 mm/hr	0 ·3~1· 3 mm/hr 1 30-2 50 mm/h r	Less than 0.3 mm, Greater than 250 mm/hr	Not applicable
iv)	Available water holding capacity to depth of 90 cm	120 mm or more	90-1 20 mm	60 -90 mm	20-60 mm	Less than 20 mm
v)	Coarse fragments cobbles and stones (more than 75 mm	Less than 5 percent 1)	5-15 percent	15-35 percent	35-65 percent	More than 65 percent
vi)	Gravel and Kankar (more than 25 up to 75 mm)	Less than 15 percent	15-35 percent	35-55 percent	55-70 percent	More than 70 percent
vii)	Rockout crops (distance apart in metres)	40 metres	20 metres	15 metres	5 metres	Less than 5 metres

œ

viii)	Salinity (E.C × 10 ³) (in saturation extract) (see Note 2)	Less than 4 mmhos	4-8 mmhos	8-12 mmhos	12-16 mmhos	More than 16 mmhos
ix)	Salt affected (visual)(percent of area affected)	Less than 20 percent		20 -5 0 perc ent	-	More than 50 percent
x)	Severity of alkali problem	ESP (see Note 3) less than 15 percent		ESP (see Note 3) more than 15 percent	ESP (see Note 3) more than 15 percent	
xi)	Sub-soil or substrata drainage charac- teristics	Lower subsoil is a a permeable lay occurs immedia metres (sand, g	er of at least 18 o tely below the so	m thickness	other permea	permeable subsoil or ble layer of at least s occurs within depth
xii)	Soil erosion status	Effects of sheets a holdi ng capacity soils may be cla	nd rill erosion are y and in some oth ssified based on le	her factors shown a	tive soil depth, ava above. Moderate	ailable moisture ly or severely gullied

NOTE 1 — Soil permeability as a criteria is not applicable to deep black soils because of their unique properties. Deep black soil (vertisols) which are inherently slowly permeable due to expanding 2 : 1 lattice type minerals do not qualify for irrigation soil class A. They would qualify for being placed in B, C & D Class.

NOTE 2 — The method recommended by soil testing laboratories in India prescribed 1: 2 soil to water ratio for soil salinity determinations and hence corresponding conductivity figures are given here:

Salinity in	Less than	1-1.2	1.5-5.5	2.2-3	More than
1:2 dilution	1 mmhos	mmhos	mmhos	mmhos	3 mmhos

Note 3 - Exchangeable sodium percent.

و

APPENDIX A

(Clause 2.1.1)

PROFORMA FOR LAND IRRIGABILITY CLASSES

LAND CHARACTERISTISCS		s	IRRIGABLE LAND CLASS			CLASS 5	CLASS 6 NOT SUITABLE FOR	
		Class 1	Class 2	Class 3	Class 4	NON-IRRIGABLE (UNCLASSIFIED	IRRIGATION	
	l Irrig ability I lass	A	A to B	A to C	A to D	Further Investi- 1 gations needed	Includes lands which do not meet the minimum re-	
			TOPOGI	RAPHY			quirements for the	
1.	Slope	Less than 1 percent	1-3 percent	3-5 percent	5-10 percer	1t	other land classes and are not suitable for irrigation or	
2.	Surface grading	No restric- tion or less than metres excava tion per ha., less than metres averag cut and fill	developed locally)	Moderately severe restrictions (develop specifications locally)	Severe res trictions (develo specifica tions locally	р 1-	small isolated tracts (specifying size or distance from canal) not suscepti- ble to delivery or irrigation water	
			DRA	INAGE				
1.	Outle ts	Suitable outlets available	Suitable outlets available	Suitable outlets available	No draina outlets availab	investigatio	ons	
2.	Surface	Less than metres of shallow surface drains required per acre	Less than metres of shallow surface drains required per acre					

3.	Subsurface	drainage needed	; drainage needed or land is within metres of adequate drain-	needed. Specifications	No natural drainage outlets available; cost of pump off drainage exceedRs/ha
4.	Depth of	More than 5	3.0-5 metres	1.5-3 metres	1.5 metres and

With regard to items under Topography (2) and Drainage (2) and (3) the criteria will have to be worked out for each project on the basis of local conditions.

below

water table metres

INTERNATIONAL SYSTEM OF UNITS (SI UNITS)

Base Units

.

QUANTITY	UNIT	SYMBOL	
Length	metre	m	
Mass	kilogram	kg	
Time	second	s	
Electric current	ampere	А	
Thermodynamic temperature	kelvin	K	
Luminous intensity	candela	cd	
Amount of substance	mole	mol	
Supplementary Units			
QUANTITY	UNIT	SYMBOL	
Piane angle	radian	rad	
Solid angle	steradian	sr	
Derived Units			,
QUANTITY	Unit	Symbol	DEFINITION
Force	newton	N	$1 N = 1 kg.m/s^2$
Energy	joule	J	1 J = 1 N.m
Power	watt	W	1 W = 1 J/s
Flux	weber	Wb	1 Wb = 1 V.s
Flux density	tesla	Т	$1 T = 1 Wb/m^3$
Frequency	hertz	Hz	$1 Hz = 1 c/s (s^{-1})$
Electric conductance	siemens	S	1 S = 1 A/V
Electromotive force	volt	V	1 V = 1 W/A
Pressure, stress	pascal	Pa	$1 Pa = 1 N/m^2$

AMENDMENT NO. 1 APRIL 1984 TO

IS:10317-1982 GUIDE FOR EVALUATION OF SOIL PROPERTIES RELEVANT TO IRRIGATION

Corrigendum

(Page 6, clause 2.4.3, against Sl No. 1) -Substitute 'Less than 1.3' for 'Less than 1.2'.

(AFDC 58)

Reprography Unit, ISI, New Delhi, India