
Journal of Computer and Information Technology

Nawari. O. Nawari, Ph.D., P.E.:
A FRAMEWORK FOR AUTOMATING CODES CONFORMANCE IN STRUCTURAL DOMAIN

Journal of Computer and Information Technology

A FRAMEWORK FOR AUTOMATING CODES CONFORMANCE IN STRUCTURAL DOMAIN
Nawari. O. Nawari, Ph.D., P.E.

ABSTRACT

The concept of intelligent codes
(SMARTcodes) is a new initiative of the
International Code Council (ICC) in coordination
with buildingSmart Alliance that strives to automate
code compliance check which takes the building plan
as represented by a Building Information Model
(BIM), and instantly checks for code compliance via
model checking software. The goal is to be able to
create an inspection checklist of building elements to
look for, and viewing the building components that
don't comply with code provisions and for what
reasons.

This paper examines automated code
compliance checking systems that assess building
designs according to various structural code
provisions. This includes evaluating and reviewing
the functional capabilities of both the technology and
schema of smart codes and current building design
rule checking systems. The paper proposes a new
framework for development of automated rule
checking systems to verify structural design against
code provisions and other user defined rules.

INTRODUCTION

Currently structural design and construction
processes become more complex every day because
of the introduction of new building technologies,
research outcomes and increasingly stringent building
codes. As a result, structural engineers are responsible
to comply with many regulations and specifications
ranging from seismic, blast resistance, progressive
collapse, to fire safety and energy performance
requirements. They are constantly facing the problem
of checking the conformance of products and
processes to international, national and local
regulations. They are also more and more subject to
increasing expectations on several knowledge
domains, striving towards building designs with
better performance and quality. These challenges
require an intense collaboration among project

participants, and a profound verification of the
building design starting from the earliest stages in the
design process.

The introduction of Smart Codes will greatly
improve the current design practice by simplifying
the access to code provisions and complaints checks.
Converting Code and Standards from a textual rigid
format into digitally dynamic actionable format does
play the key role. By breaking through the precincts
of Code and Standard provisions, design software,
and the Building Information Modeling a solution to
insurmountable hurdle can be achieved.

Smart or intelligent code is referred to as the
electronic digital format of the building codes that
allow automated rule and regulation checking without
modifying a building design, but rather assesses a
design on the basis of the configuration of parametric
objects, their relations or attributes. Smart Codes
employ rule-based systems to a proposed design, and
give results in format such as “PASS”, “FAIL” or
“WARNING”, or „UNKNOWN‟‟ for conditions
where the required information is incomplete or
missing.

There has been a long historical interest in
transforming building codes into a format acquiescent
for machine interpretation and application. The initial
effort was started in 1966 when Fenves made the
observation that decision tables, an if-then-novel
programming and program documentation technique,
could be used to represent design standard provisions
in a precise and unambiguous form. The concept was
put to use when the 1969 AISC Specification (AISC
1969) was represented as a set of interrelated decision
tables. The stated purpose of the decision table
formulation was to provide an explicit representation
of the AISC Specification, which could then be
reviewed and verified by the AISC specification
committee and subsequently used as a basis for
preparing computer programs. Subsequently, Lopez
et al. implemented the SICAD (Standards Interface

Journal of Computer and Information Technology

Nawari. O. Nawari, Ph.D., P.E.:
A FRAMEWORK FOR AUTOMATING CODES CONFORMANCE IN STRUCTURAL DOMAIN

Journal of Computer and Information Technology

for Computer Aided Design) system (Lopez and Elam
1984; Lopez and Wright 1985; Elam and Lopez 1988;
Lopez et al. 1989). The SICAD system was a
software prototype developed to demonstrate the
checking of designed components as described in
application program databases for conformance with
design standards. The SICAD concepts are in
production use in the AASHTO Bridge Design
System (AASHTO 1998). Garrett developed the
Standards Processing Expert (SPEX) system (Garrett
and Fenves 1987) using a standard-independent
approach for sizing and proportioning structural
member cross-sections. The system reasoned with the
model of a design standard, represented using SICAD
system representation, to generate a set of constraints
on a set of basic data items that represent the
attributes of a design to be determined.

Then further research effort was led by
Singapore building officials, who started considering
code checking on 2D drawings in 1995. In its next
development, it switched and started the CORENET
System working with IFC (Industry Foundation
Classes) building models in 1998 (Khemlani,, 2005).
In the United States similar works have been initiated
under the Smart Code initiative. There are also other
several research implementations of automated rule-
checking to assess accessibility for special
populations (SMC, 2009) and for fire codes (Delis,
1995). The GSA and US Courts has recently
supported development of design rules checking of
federal courthouses, which is an early example of rule
checking applied for automating design guides (GSA,
2007) .

More focused research efforts on frameworks
for the representation and processing of design
standards for automated code conformance began two
decades ago (Yabuki and Law 1992; Kiliccote 1996).

During that time, building models and the methods
for rule checking have been developed, but effective
Smart Codes systems are just beginning to emerge. In
the 1990s, the introduction of the Industry Foundation
Classes (IFC) led to early research for using this
building model schema for building code checking.
Han and others laid out schema for a client–server
approach (Han et.al, 1997 and Vassileva,, 2000).
They later developed a simulation approach of
American Disability Act (ADA) wheelchair
accessibility checking (Han et. al, 1999, 2002). These
efforts set the stage for larger, more industrial-based
efforts. A comprehensive survey of developments for
computer representation of design codes and rule
checking was reported by Fenves et al. (1995) and
Eastman et al. (2009).

SMART CODES

This refers to the electronic digital
representation of the rules and regulations of the
building codes and the dictionary needed for that
format. In the United State, the International Codes
Council (ICC) will be available in a some form of
XML. To maintain consistency of properties within
the digital format of the Codes a dictionary of the
properties found within the building codes is being
developed (Figure 1). The dictionary is being
developed as part of the International Framework for
Dictionaries (IFD) effort and, in the US, is being
managed by the Construction Specifications Institute
(CSI) in cooperation with ICC. This work is also
enabling the properties within the codes to be
identified against appropriate tables within the
Omniclass classification system that has been
developed by CSI.

Journal of Computer and Information Technology

Nawari. O. Nawari, Ph.D., P.E.:
A FRAMEWORK FOR AUTOMATING CODES CONFORMANCE IN STRUCTURAL DOMAIN

Journal of Computer and Information Technology

Figure 1. Automated Code Checking.

Recently, a number of researchers

investigated the application of ontology-based
approach (Yurchyshyna et al. 2009) and the semantic
web information as a possible rule checking
framework (Pauwels et. al. 2009). The first research
approach works on formalizing conformance
requirements conducted under the following methods
(Yurchyshyna et al. 2009): (i) knowledge extraction
from the texts of conformance requirements into
formal languages (e.g. XML, RDF); (ii) formalization
of conformance requirements by capitalizing the
domain knowledge. (ii) semantic mapping of
regulations to industry specific ontologies; and (iv)
formalization of conformance requirements in the
context of the compliance checking problem. On the
other hand the semantic web approach focuses on
enhancing the IFC model by using description
language based on a logic theory such as the one
found in semantic web domain Pauwels et. al. 2009).
Because the IFC schema was not explicitly designed
for interaction with rule checking environments, its
specification is not based on a logic theory. By
enhancing IFC onto a logical level, it could be
possible to enable design and implementation of
significantly improved rule checking systems.

As can be seen, Smart Codes systems depend
on Information availability and rule conformance
checking system. Each of these components has some

limitations aspects. Major cluster of difficulties are
related to the nature of Codes and Standards. Building
Codes can be extremely subjective in certain
provisions. That means legal scholars have the ability
to argue either side of a question using accepted
methods-of legal discourse. The most recurring cause
of indeterminacy of Code provisions is caused by
open-textured concepts used in expressing the
provisions. An open-textured concept is one in which
application to factual situations cannot be automatic,
but which requires subjective decision and is context
dependent.

It is clear that a powerful semantic-oriented
representation that encompasses most of the Codes
and Standard provisions and the encoding of the
knowledge domain are keys in the success of Smart
Code initiative. The paper proposes a new framework
based upon XML and LINQ (Language Integrated
Query) language to enable basic and complex level of
rules and reasoning to be expressed both in XML as a
normative concrete syntax and in a more human-
readable abstract syntax to allow for effective AC3
systems.

Journal of Computer and Information Technology

Nawari. O. Nawari, Ph.D., P.E.:
A FRAMEWORK FOR AUTOMATING CODES CONFORMANCE IN STRUCTURAL DOMAIN

Journal of Computer and Information Technology

THE ROLE OF BUILDING INFORMATION
MODELING (BIM)

The primary requirement in application of
Smart Codes is that object-based building models
(BIM) must have the necessary information to allow
for complete code checking. BIM objects being
created normally have a family, type and properties.
For example, an object that represents a structural
columns possess type and properties such as steel,
wood or concrete, and sizes etc. Thus the
requirements of a building model adequate for code
conformance checking are stricter than normal
drafting requirements. Architects and Engineers
creating building models that will be used for code
conformance checking must prepare them so that the
models provide the information needed in well-
defined agreed upon structures. The BIM models
created by typical BIM platform such as REVIT and
ARCHICAD to date do not typically include the level
of detail needed for building code or other types of
rule checking. The GSA BIM Guides (GSA, 2009)
provide initial examples of modeling requirements for
simple rule checking. This information must then be
properly encoded in IFC by the software developers
to allow proper translation and testing of the design
program or the rule checking software. IFC is
currently considered one of the most appropriate
schemas for improving information exchange and
interoperability in the construction industry. New

applications have been developed, capable of parsing
IFC models, interpreting and reusing the available
information. These software applications have mainly
concentrated on deriving additional information
concerning specialized domains of interest. The code
conformance domain represents a new level of details
and requirements on IFC model. This should be
achieved by developing the appropriate Information
Delivery Manuals (IDMs) and Model View
Definitions (MVDs) for the Automated Code
Conformance Checking (AC3) domain. For instance
figure 2 below depicts the process map of the
structural design IDM (Nawari 2010) while figure 3
expands the illustration of the exchange requirements
for code conformance checking of the design review
tasks.

Development of the required model views
goes hand-in-hand with the preparation of code
conformance checking functions. Code conformance
checking can be constructed upon different types of
model views in response to the exchange
requirements specified in the IDM. An example of
these model view for code checking some sections of
codes has been developed by International Code
Council (). This Model View is intended to enable
BIM based automated building code compliance
checking. The scope for this version includes code
provisions from the International Energy
Conservation Code (IECC, 2006).

Journal of Computer and Information Technology

Nawari. O. Nawari, Ph.D., P.E.:
A FRAMEWORK FOR AUTOMATING CODES CONFORMANCE IN STRUCTURAL DOMAIN

Journal of Computer and Information Technology

D
es

ig
n

R
eq

ui
re

m
en

ts

Architectural
Design

Client approvalClient needs and
programs

No

Yes
Structural Concept

Client and Architect
approval

Yes

No

E
xc

ha
ng

es

AS_EM02

ER: Preliminary
Design Model

Data

B
IM

D
at

a:
A

rc
hi

te
ct

ur
e

to
St

ru
ct

ur
al

C
on

ce
pt

AS_EM01

ER: Preliminary
Design Model

Data

D
es

ig
n

D
ev

el
op

m
en

t

Prepare and Adjust For
Structural Analysis

Structural Engineering
Requirements

E
xc

ha
ng

es

DD_EM01

ER: Loads,
boundary

conditions, & other
design and analysis

parameters

Export Model for
Analysis

Concrete Design

Wood Design

Steel Design

Others Material Design

DD_EM02

ER: Concrete
Design

DD_EM03

ER: Wood Design

DD_EM04

ER: Steel Design

DD_EM05

ER: Other
Material
Design

Design Results

C
on

st
ru

ct
io

n
D

oc
um

en
ts

Structural Design Review

No

Yes
Detailing & Fabricaiton Construction

Foundation &
Geotech Design

DD_EM06

Approved?

E
xc

ha
ng

es
E

xc
ha

ng
es

DC_EM01 DC_EM02

B
IM

D
at

a:
D

et
ai

lin
g

an
d

fa
br

ic
at

io
n

to
C

on
st

ru
ct

io
n

ER: Detailing and Fabricaiton to
Structural Review

ER: Detailing and
Fabrication to Construction

+

1.0 2.0

2.1 2.2

2.3

2.4

2.5

2.6

2.7 2.8

2.9 2.10 3.0

Figure 2. Process Map of the Structural IDM.

Journal of Computer and Information Technology

Nawari. O. Nawari, Ph.D., P.E.:
A FRAMEWORK FOR AUTOMATING CODES CONFORMANCE IN STRUCTURAL DOMAIN

Journal of Computer and Information Technology

St
ru

ct
ur

al
R

ev
ie

w

B
IM

D
at

a:
C

od
e

C
on

fo
rm

an
ce

C
he

ck
in

g Minimum Loads ASCE-7, 2010

Reinforced Concrete AC-318

Structural Steel Design, AISC

Wood Design, NDS
Structural design Review

(from subtask 1.1)

+

+

+

+

Foundation & Geotech, AASHTO
+

C3_EM01

ER: Loads &
Loading Conditons

E
xc

ha
ng

es

B
IM

D
at

a:
St

ru
ct

ur
al

D
es

ig
n

to
C

od
e

C
on

fo
rm

an
ce

C
he

ck
in

g
Code Conformance Checking (C3)

Return to Structural
design Review

C3_EM02

ER: Reinforced Concrete
Requirements

C3_EM03

ER: Steel Design
Requirements

C3_EM04 C3_EM05

ER: Wood Design
Requirements

ER: Foundation &
Geotech Requirements

Figure 3. Process Map Illustrating the Exchange Requirements for the AC3 Framework.

AUTOMATED RULE-BASED EVALUATION
SYSTEMS

Currently there are a number of different
software platforms that have been developed to
support implementation aspects of code provision
checking systems. They vary generally in their
capability of automating design checking process,
flexibility of modeling design information, flexibility
of encoding building codes and domain knowledge,
capability of providing friendly reporting systems and
3D visualization, and the ability of integrating with
other applications. Three of these commonly used
platforms are briefly described herein:

Solibri Model Checker (SMC):
SMC is a JAVA-based stand along platform
application that reads an IFC model and maps it to an
internal structure facilitating access and processing
(SMC, 2009). It includes a variety of built-in
functions: such as a library for pre-checking a model,
such as shape overlaps, name and attribute
conventions, object existence, Fire code exit, path
distance checking, space program checking against
the actual spaces in a building and others. It also
offers automatic viewing of checking issues along
with a variety of means for reporting checking issues
that include pdf, xml, and xls formats, as well as
proprietary SMC visualization and reporting format
suitable for

design reviews using the free Solibri Model Viewer.
Rules can be parametrically varied through table-set
control parameters. However, entirely new rules can
be added in JAVA using the SMC application
programming interface (API). The API interface is
not publicly available, but can be requested from
Solibri.

Jotne EDModelChecker (EDM):

EDM provides an object database and
supports the open development of rule checking using
the EXPRESS language, which is the language in
which the IFC model schema is written. New model
views can be developed using EXPRESS and
EXPRESS-X, which is a language for mapping
instance data from one EXPRESS schema to another
and supports extensive queries and reports (ISO,
1997, 1999). These facilities make EDM open to
sophisticated user extensions. EDMalso provides
textual reporting and server services. It is supported
by EDMModel Server, an object-based backend
database server, that allows EDM to deal with large
building models and potentially several of them at a
time (EDM, 2009).

FORNAX:

FORNAX is the first substantial effort in
building code checking represented by the Singapore

Journal of Computer and Information Technology

Nawari. O. Nawari, Ph.D., P.E.:
A FRAMEWORK FOR AUTOMATING CODES CONFORMANCE IN STRUCTURAL DOMAIN

Journal of Computer and Information Technology

CORENET when created its own platform, called
FORNAX, developed by novaCITYNETS Pte. Ltd on
top of EDM Model Checker (EDM, 2009).
FORNAXt is a C++ object library that derives new
data and generates extended views of IFC data.
FORNAX objects carry rules for assessing
themselves, providing good object-based modularity.
It has been reviewed by a number of other building
code efforts as a possible platform including the
Norwegian Selvaag Group, who experimented with it
to check fire exit provisions(Selvaag, 2007).

Proposed Automated Code Conformance
Checking Framework (AC3)

The suggested rule-based checking system is
based upon a number enabling technologies described
earlier. Namely, these are XML smart Codes, BIM,
and LINQ (Language Integrate Query) LINQ. The
framework schema of this platform is depicted in
figure 4 below:

In this framework the BIM model data is
represented in ifcXML and FBM (Feature-based
Model) as suggested by Nepal et. al. 2008. Due to the
complicated query paths and sometimes requirements
of multiple separated queries or functions, extracting
features/properties from the original ifcXML is quite
complicated leading to performance degradation.
Thus, the FBM is introduced to improve performance
and simplicity. It is an intermediate schema in XML
to store information that extracted from ifcXML to
enable code conformance checking. It is sometimes

referred to as FBM-xml. The schema of FBM-xml is
really simple: every instance of a feature is an
element; all properties of a feature with their values
are explicitly represented as sub-elements. The FBM-
xml system instantiates feature instances and property
values by directly extracting explicitly-defined
components and by analyzing the geometry and
topological relationships between objects in the IFC
model to derive implicitly-defined features. The result
is an XML data model tailored for AC3 in structural
design domain (see figure 5).

Rule Base Configuration

Figure 4: Automated Code Conformance Checking Framework (AC3)

Journal of Computer and Information Technology

Nawari. O. Nawari, Ph.D., P.E.:
A FRAMEWORK FOR AUTOMATING CODES CONFORMANCE IN STRUCTURAL DOMAIN

Journal of Computer and Information Technology

Convert Model
Data into
ifcXML

Create FBM-
xml

BIM Model (IFC
format)

FBM BIM Model

AC3
Framework

Create a Feature-Based Model
for specific subdomains

+

Figure 5. Preparing BIM model for AC3 Processing

This study focuses on developing a framework for
rule-based checking systems utilizing LINQ and
XML Smart Codes. The LINQ (Language-integrated
query) technology as a part of Microsoft .Net
framework allows query expressions to benefit from
the rich metadata, compile-time syntax checking,
static typing and IntelliSense. Language-integrated
query also allows a single general purpose declarative
query facility to be applied to all in-memory
information, not just information from external
sources. The .NET Language-Integrated Query
defines a set of general purpose standard query
operators that allow traversal, filter, and projection
operations to be expressed in a direct yet declarative
way in any programming language. The standard
query operators allow queries to be applied to any
IEnumerable<T>-based information source. LINQ
allows third parties to augment the set of standard
query operators with new domain-specific operators
that are appropriate for the target domain or
technology. More importantly, third parties are also
free to replace the standard query operators with their
own implementations that provide additional services
such as remote evaluation, query translation, and
optimization. By adhering to the conventions of the
LINQ pattern, such implementations enjoy the same
language integration and tool support as the standard
query operators.

More specifically, the framework suggested focused
on LINQ to XML based data. It is in essence a LINQ-
enabled, in-memory XML programming interface
that facilitates communicating with XML from within
the .NET Framework programming languages. The
powerful extensibility of the query architecture used
in the LINQ provides implementations that work over
both XML and SQL data stores. The query operators
over XML (LINQ to XML) use an efficient, easy-to-
use, in-memory XML facility to provide
XPath/XQuery functionality in the host programming
language.

To illustrate the concept of the AC3 system, XML file is created
for a part of the ACI 318-05 Code (ACI 318, 2005) and depicted
in Figure 6 below.

Journal of Computer and Information Technology

Nawari. O. Nawari, Ph.D., P.E.:
A FRAMEWORK FOR AUTOMATING CODES CONFORMANCE IN STRUCTURAL DOMAIN

Journal of Computer and Information Technology

<?xml version="1.0" encoding="utf-8" ?>
<ACI318>
 <Year year="2005">
 <Section Number = "7.7" title="Concrete Protection for Reinforcement">
 <SubSection Number="7.7.1" title="Cast-in-place concrete (nonprestressed)">
 <Category title ="Concrete cast against and permanently exposed to earth" >
 <MinimumCover> 3 </MinimumCover>
 </Category >
 <Category title ="Concrete exposed to earth or weather" >
 <Rebar Min="#6" Max="#18" Members="All">
 <MinimumCover> 2 </MinimumCover>
 </Rebar>
 <BarSizes Min="#3" Max="#5" Members="All">
 <MinimumCover> 1.5 </MinimumCover>
 </BarSizes>
 </Category >
 <Category title ="Concrete not exposed to weather or in contact with ground" >
 <Rebar Min="#14" Max="#18" Members="Slabs, Walls, Joists">
 <MinimumCover> 1.5 </MinimumCover>
 </Rebar>
 <Rebar Min="#3" Max="#11" Members="Slabs, Walls, Joists">
 <MinimumCover> 0.75 </MinimumCover>
 </Rebar>
 <Rebar Min="#3" Max="#18" Members="Beams, Columns">
 <MinimumCover> 1.5 </MinimumCover>
 </Rebar>
 <Rebar Min="#6" Max="#18" Members="Shells, folded plate members">
 <MinimumCover> 0.75 </MinimumCover>
 </Rebar>
 <Rebar Min="#3" Max="#5" Members="Shells, folded plate members">
 <MinimumCover> 0.5 </MinimumCover>
 </Rebar>
 </Category >
 </SubSection>
 <SubSection Number="7.7.2" title="Cast-in-place concrete (prestressed)">
 <Category title ="Concrete cast against and permanently exposed to earth" >
 <MinimumCover> 3 </MinimumCover>
 </Category >
 <Category title ="Concrete exposed to earth or weather" >
 <Rebar Min="#3" Max="#18" Members="Wall panels, slabs, joists">
 <MinimumCover> 1 </MinimumCover>
 </Rebar>
 <Rebar Min="#3" Max="#18" Members="Beams, Columns">
 <MinimumCover> 1.5 </MinimumCover>
 </Rebar>
 </Category >

<Category title ="Concrete not exposed to weather or in contact with ground" >
 <Rebar Min="#3" Max="#18" Members="Slabs, Walls, Joists">
 <MinimumCover> 0.75 </MinimumCover>
 </Rebar>
 <Rebar Min="#3" Max="#11" Members="Slabs, Walls, Joists">
 <MinimumCover> 1 </MinimumCover>
 </Rebar>
 <Rebar Min="#5" Max="#18" Members="Beams, Columns">
 <MinimumCover> 1.5 </MinimumCover>
 </Rebar>
 <Rebar Min="#3" Max="#5" Members="Beams, Columns">
 <MinimumCover> 1.0 </MinimumCover>
 </Rebar>
 <Rebar Min="#6" Max="#18" Members="Shells, folded plate members">
 <MinimumCover> 0.75 </MinimumCover>
 </Rebar>
 <Rebar Min="#3" Max="#5" Members="Shells, folded plate members">
 <MinimumCover> 0.4 </MinimumCover>
 </Rebar>
 </Category >
 </SubSection>
 </Section>
 </Year>
</ACI318>

Figure 6. XML Data from ACI 318-05 Code

Journal of Computer and Information Technology

Nawari. O. Nawari, Ph.D., P.E.:
A FRAMEWORK FOR AUTOMATING CODES CONFORMANCE IN STRUCTURAL DOMAIN

Journal of Computer and Information Technology

The second step in implementing the Automated
Conformance Code Checking is to establish the rules
schema that allow communication with the Smart
Code. This will be achieved by applying LINQ to the
Smart Code example shown in figure 5. This section
describes how to use Language-Integrated Query with
Smart Code.

Standard query operators form a complete
query language for IEnumerable<T>. Standard
query operators show up as extension methods on any
object that implements IEnumerable<T> and can be
invoked like any other method. In addition to
standard query operators are query expressions for
five common query operators: Where, Select,

SelectMany, OrderBy, and GroupBy. Using LINQ
to extract rules from Smart Code provides the
following apparent advantages:

By implementing the above described ACCC
framework, the following checking can be executed
to examine minimum concrete cover requirement for
reinforced concrete beam according to the ACI 318-
05. The example shown below is the case of checking
the beams in a single storey reinforced building
frame. The LINQ code below accesses the Smart
Code and read the encoded provisions given by the
ACI 318-05 (figure 7) and subsequently applies them
to the type of a reinforced concrete beam in the
building.

Figure 7. LINQ to Smart Code Example
The first four line of the above code illustrates clearly
the power of LINQ to extract information from the
Smart Code in a very efficient and flexible format.
The query searches the Smart Code for the minimum
cover provision and read the values allocated for
beams and then compares them to the actual instance
of the beam in the building. The actual building
structural framing information is extracted from the
BIM generated IFC file which is converted into
ifcXML and then into fbmXML as described

previously (figure 8). A portion of the file is shown in
figure 8. In the AC3 framework this is given by Line
10 to 17 in figure 7, which implement LINQ to BIM
via fbmXML.

This concise example depict the potential of
automating an unlimited range of rules, including
unlimited nested conditions and branching of
alternative contexts within a specified Code or
Standard domain.

1. XElement ACCC = XElement.Load("C:\Pap\BIM\SmartCode\XMLFile1.xml");
2. var c = ACCC...<Section>;
3. IEnumerable<XElement> QUERY =
 From i In c.<SubSection> Where (string) i.@title = "Concrete Protection for Reinforcement"
Select i;
4. ForEach (XElement i In QUERY) {
5. string pt1 = i.<Points>.Distinct.<Grade1>.Value.ToString();
6. string pt2 = i.<Points>.Distinct.<Grade2>.Value.ToString();
7. string pt3 = i.<Points>.Distinct.<Grade3>.Value.ToString();
8. }
9. System.Xml.XmlDocument doc = new System.Xml.XmlDocument();
10. doc.Load("C:\Pap\BIM\SmartCode\XMLFile2.xml");
11. System.Xml.XmlNodelList list = doc.GetElementsByTagName("ShellSurface");
12. ForEach(System.Xml.XmlElement j In list) {
13. string wType = j.GetAttribute("surfaceType");

14. If wType == "Wall" {
15. string buildinginsulation=j.Item("Insulation").InnerText; }
16. }
17. Switch (Buildinginsulation) {
18. Case "grade1":
19. int points = pt1;
20. Break;
21. Case "grade2":
22. int points = pt2;
23. Break;
24. Case "grade3":
25. int points = pt3;
26. Break;
27. }

Journal of Computer and Information Technology

Nawari. O. Nawari, Ph.D., P.E.:
A FRAMEWORK FOR AUTOMATING CODES CONFORMANCE IN STRUCTURAL DOMAIN

Journal of Computer and Information Technology

Figure 8: A portion of an fbmXML produced from a BIM model for a building.

DISCUSSION

The proposed AC3 framework provides an
object model that is lighter weight and easier to work
with, and that takes advantage of modern
programming languages. The most important
advantage of the AC3 framework lies in the
integration power of Language-Integrated Query
(LINQ). This integration enables encoding queries on
the in-memory XML document to retrieve collections
of elements and attributes. The integration of LINQ in
modern programming platform provides stronger
typing, compile-time checking, and improved
debugger support. Further benefits of this framework
include the ability to use query results as parameters
to XElement and XAttribute object constructors
enables a powerful approach to creating XML trees.

This approach, called functional construction,
facilitate the easy transformation of XML trees from
one shape to another.

The current evaluation of Smart Codes and the
automated model checking technologies to assist
building analysis and design practices demonstrated
an immense advancement to achieve an optimum
design. Examples include more complete and
accurate performance estimates earlier in the design
process, improved life-cycle costing analysis,
increased opportunities for measurement and
verification during building occupation, and
improved processes for gathering lessons learned in
high performance building. In general, advancements
in these technologies will increase the role Smart
Codes and model checking play during both design

<?xml version="1.0" encoding="utf-8" ?>
<fbmModel>
 <feature type="Component" id="0" ifcid="ID428" ifcTitle="ifcBeam">
 <feature_type>Beam</feature_type>
 <contained_in_the_Storey> Level 1</contained_in_the_Storey>
 <material>Concrete - Cast-in-Place Concrete</material>
 <beam_type> Concrete-Rectangular Beam:12 x 24:12 x 24:24795</beam_type>
 <depth>24</depth>
 <width>12</width>
 24:24795
 <is_external>false</is_external>
 <fire_rating>1 hr</fire_rating>
 <is_curved>false</is_curved>
 <is_clipped>false</is_clipped>
 <has_opening>false </has_opening>
 <is_loadbearing>true</is_loadbearing>
 <has_Rebar>true</has_Rebar>
 <rebar_shape></rebar_shape>
 <rebar_bottom_size>9 </rebar_bottom_size>
 <rebar_bottom_number>3</rebar_bottom_number>
 <rebar_bottom_cover>1.5</rebar_bottom_cover>
 <rebar_top_size>9</rebar_top_size>
 <rebar_top_number>2</rebar_top_number>
 <rebar_top_cover>1.5</rebar_top_cover>
 ...
 </feature>
 …

</fbmModel>

Journal of Computer and Information Technology

Nawari. O. Nawari, Ph.D., P.E.:
A FRAMEWORK FOR AUTOMATING CODES CONFORMANCE IN STRUCTURAL DOMAIN

Journal of Computer and Information Technology

and building operation, leading to an overall
optimization in building design.

Notwithstanding the significant advantage that
the intelligent cods technologies is promising, some
difficulties still persist. For instance, the automatic
verification demands the interpretations of building
codes information and performance requirements
supported by the domain knowledge, which is
basically the regulations and provisions that are first
defined by people and represented in human language
formats, typically written text, tables and equations.
In building codes, these provisions have legal status.
How can the interpretation of these rules into a digital
format be done, without violating the written rules?
Currently, in some Code conformance checking
implementations, the process relies on the software
developer‟s interpretation and translation of the
written rules into computer-based conformance
evaluation. In other cases, the logic of the human
language statements in the Codes is formally
interpreted and then translated into a machine
executable format. Furthermore, some important
design rules apply to properties that require complex
simulations or analyses, such as for structural
integrity or energy usage. These require the
application of an analysis model to derive the
complex information, then to apply the rules to the
analytically derived data. Other issues deal with
missing information of the model view of the
building. Having the code conformance checking
system derive new data or generate model views that
explicitly derive the lacking data represent
vulnerability and legal risks.

CONCLUSIONS

Application of the AC3 framework in
structural design has the impending to optimize and
simplify the automated code and standard
conformance checks by leveraging building
information that exists in the architectural and
structural models created by BIM authoring platform.
The proposed automated code conformance checking

(AC3) framework has many advantages over existing
rule checking systems. The major differentiator of the
AC3 lies in the abilities of LINQ to XML as in-
memory XML programming platform. Language-
Integrated Query provides a consistent query
experience across different data models as well as the
ability to mix and match data models within a single
query, it is able to depict an unlimited range of rules,
including unlimited nested conditions and branching
of alternative contexts within a specified domain.
Furthermore, AC3 provides flexibility of encoding
building codes provisions and domain knowledge,
capability of providing friendly user-defined rules,
and the ability of integrating with other applications.
Increasing BIM adoption and the concomitant
increasing interest in the interoperability potential of
XML prove to be the essential catalyst in the
successful adoption and further advancement of
automated code conformance checking (AC3)
systems.

ACKNOWLEDGEMENT

The author would like to express his appreciation to
College of Design, Construction & Planning,
University of Florida, Gainesville, Florida for funding
and supporting this research.

Journal of Computer and Information Technology

Nawari. O. Nawari, Ph.D., P.E.:
A FRAMEWORK FOR AUTOMATING CODES CONFORMANCE IN STRUCTURAL DOMAIN

Journal of Computer and Information Technology

REFERENCES

Conover, D. (2007).”Development and
Implementation of Automated Code Compliance
Checking in the U.S.”, International Code Council,
2007.

Delis, E.A., and Delis, A. (1995). “Automatic fire-

code checking using expert-system technology”,
Journal of Computing in Civil Engineering, ASCE
9 (2), pp. 141–156.

Ding, L., Drogemuller, R., Rosenman, M., Marchant,

Gero, D. J. (2006). “ Automating code checking for
building designs: in: K. Brown, K. Hampson, P.
Brandon (Eds.), Clients Driving Construction
Innovation”: Moving Ideas into Practice, CRC for
Construction, Innovation, Brisbane, Australia, pp.
113–126.

Eastman, C. M., Jae-min Lee, Yeon-suk Jeong, Jin-

kook Lee (2009). “Review Automatic rule-based
checking of building designs “, Journal of
Automation in Construction (18), pp. 1011–1033,
Elsvier.

EDM (2009).” EXPRESS Data Manager”, EPM

Technology, http://www.epmtech.jotne.com.

Fenves, S. J. (1966). “ Tabular decision logic for

structural design”, J. Structural Engn 9 92, pp.
473-490

Fenves, S. J. and Garett Jr, J. H. (1986). “Knowledge-

based standards processing”, Int. J. Artificial
Intelligence Engn 1, pp. 3-13.

Fenves, S. J., Garrett, J. H., Kiliccote. H., Law. K. H.,

and Reed, K. A. (1995). "Computer
representations of design standards and building
codes: U.S. perspective." The Int. J. of Constr.
Information Technol., 3(1), pp. 13-34.

Garrett, J. H., Jr., and S. J. Fenves, (1987). “A
Knowledge-based standard processor for
structural component design” Engineering with
Computers, 2(4), pp 219-238.

GSA (2007). “U.S. Courts Design Guide”,

Administrative Office of the U.S. Courts, Space
and Facilities Division, GSA,
http://www.gsa.gov/Portal/gsa/ep/contentView.do?
P=PME&contentId=15102&contentType=GSA_D
OCUMENT .

GSA (2009). “BIM Guide for Circulation and

Security Validation”, GSA Series 06 (draft).

Hietanen, J. (2006). “IFC Model View Definition

Format”, International Alliance for
Interoperability.

ICC (2006). “MDV for the International Energy

Conservation Code”, http://www.blis-
project.org/IAI-MVD/.

ISO TC184/SC4 (1997). “ Industrial automation

systems and integration—Product data
representation and exchange” , ISO 10303-11:
Description Methods: The EXPRESS Language
Reference Manual, ISO Central Secretariat.

 ISO TC184/SC4 (1999).” Industrial automation

systems and integration—Product data
representation and exchange:”, ISO 10303-14:
Description Methods: The EXPRESS-X Language
Reference Manual, ISO Central Secretariat.

Jeong, Y-S., Eastman, C.M., Sacks, R., Kaner, I.
(2009) “Benchmark tests for BIM data exchanges
of precast concrete”, Automation in Construction
18 (2009) 469–484.

Khemlani, K. (2005). “ CORENET e-PlanCheck:

Singapore's automated code checking system”,
AECBytes,
http://www.aecbytes.com/buildingthefuture/2005/
CORENETePlanCheck.html.

Journal of Computer and Information Technology

Nawari. O. Nawari, Ph.D., P.E.:
A FRAMEWORK FOR AUTOMATING CODES CONFORMANCE IN STRUCTURAL DOMAIN

Journal of Computer and Information Technology

Lopez, L. A., and S. L. Elam (1984). “ SICAD: A

Prototype Knowledge Based System for
Conformance Checking and Design”, Technical
Report, Department of Civil Engineering.
University of Illinois at Urbana-Champaign,
Urbana-Champaign, IL.

Lopez, L. A., and R. N. Wright (1985). “Mapping

Principles for the Standards interface for
Computer Aided Design”, NBSIR 85-3115,
National Bureau of Standards, Gaithersburg, MD.

Lopez, L. A., S. Elam and K. Reed (1989). “
Software concept for checking engineering designs
for conformance with codes and standards”.
Engineering with Computers, 5, pp.63-78.

Nawari, N. O. (2009). “Intelligent Design Codes”,

The Structures Congress, 2009, Structural
Engineering Institute, ASCE, pp.2303-2312.

Nawari, N. O. (2010).”Standardization of Structural

BIM”, ASCE 2011 Workshop of Computing in
Civil Engineering, Florida, Miami, June 19-22,
2011.

SMC (2009). “automated code checking for

accessibility” Solibri,
http://www.solibri.com/press-releases/solibri-
model-checker-v.4.2-accessibility.html

Vassileva, S. (2000). “An approach of constructing

integrated client/server framework for operative
checking of building code”, in Taking the
Construction Industry into the 21st Century,
Reykjavik, Iceland, ISBN: 9979-9174-3-1, June
28–30 2000.

