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Finite element method in structural mechanics

Finite element method in structural mechanics

The Finite element method (FEM) is a powerful technique originally developed for numerical solution of complex
problems in structural mechanics, and it remains the method of choice for complex systems. In the FEM, the
structural system is modeled by a set of appropriate finite elements interconnected at points called nodes. Elements
may have physical properties such as thickness, coefficient of thermal expansion, density, Young's modulus, shear

modulus and Poisson's ratio.

History

The origin of finite method can be traced to the matrix analysis of structures' where the concept of displacement or
stiffness matrix approach was introduced. Finite element concepts were developed based on engineering methods in
50s. The original works such as those by Argyris 2] and Clough B became foundation for today’s finite element

[4]

structural analysis methods. Earlier books such as by Zienkiewicz " and more recent books such as by Yang 151 give

comprehensive summary of developments in finite element structural analysis.

Element properties

» Straight or curved one-dimensional elements with physical properties such as axial, bending, and torsional
stiffnesses. This type of elements is suitable for modeling cables, braces, trusses, beams, stiffeners, grids and
frames. Straight elements usually have two nodes, one at each end, while curved elements will need at least three
nodes including the end-nodes. The elements are positioned at the centroidal axis of the actual members.

* Two-dimensional elements for membrane action (plane stress, plane strain) and/or bending action (plates and
shells). They may have a variety of shapes such as flat or curved triangles and quadrilaterals. Nodes are usually
placed at the element corners and, if needed for higher accuracy, additional nodes can be placed along the element
edges or even inside the element. The elements are positioned at the mid-surface of the actual layer thickness.

* Torus-shaped elements for axisymmetric problems such as thin, thick plates, shells, and solids. The cross-section
of the elements are similar to the previously described types: one-dimensional for thin plates and shells, and
two-dimensional for solids, and thick plates and shells.

* Three-dimensional elements for modeling 3-D solids such as machine components, dams, embankments or soil
masses. Common element shapes include tetrahedrals and hexahedrals. Nodes are placed at the vertexes and

possibly in the element faces or within the element.

Element interconnection and displacement

The elements are interconnected only at the exterior nodes, and altogether they should cover the entire domain as
accurately as possible. Nodes will have nodal (vector) displacements or degrees of freedom which may include
translations, rotations, and for special applications, higher order derivatives of displacements. When the nodes
displace, they will drag the elements along in a certain manner dictated by the element formulation. In other words,
displacements of any points in the element will be interpolated from the nodal displacements, and this is the main

reason for the approximate nature of the solution.
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Practical considerations
From the application point of view, it is important to model the system such that:

* Symmetry or anti-symmetry conditions are exploited in order to reduce the size of the domain.

» Displacement compatibility, including any required discontinuity, is ensured at the nodes, and preferably, along
the element edges as well, particularly when adjacent elements are of different types, material or thickness.
Compatibility of displacements of many nodes can usually be imposed via constraint relations—When such a
feature is not available in the software package, a physical model that imposes the constraints may be used
instead.

* Elements' behaviours capture the dominant actions of the actual system, both locally and globally.

* The element mesh is sufficiently fine in order to have acceptable accuracy. To assess accuracy, the mesh is
refined until the important results shows little change. For higher accuracy, the aspect ratio of the elements should
be as close to unity as possible, and smaller elements are used over the parts of higher stress gradient.

* Proper support constraints are imposed with special attention paid to nodes on symmetry axes.

Large scale commercial software packages often provide facilities for generating the mesh, graphical display of input

and output, which greatly facilitate the verification of both input data and interpretation of the results.

Theoretical overview of FEM-Displacement Formulation: From elements to
system to solution

While the theory of FEM can be presented in different perspectives or emphases, its development for structural
analysis follows the more traditional approach via the virtual work principle or the minimum total potential energy
principle. The virtual work principle approach is more general as it is applicable to both linear and non-linear

material behaviours.

The principle of virtual displacements for the structural system expresses the mathematical identity of external and

internal virtual work:

External virtual work = f Sl dV (1)
v

The virtual internal work in the right-hand-side of the above equation may be found by summing the virtual work in
the individual elements—This is the crucial step where we will need displacement functions written only for the
small domain rather than over the entire system. As shown in the subsequent sections, Eq.(1) leads to the following

governing equilibrium equation for the system:
R = Kr +R° (2)
where
R = vector of nodal forces, representing external forces applied to the system's nodes.

I = vector of system's nodal displacements, which will, by interpolation, yield displacements at any point of

the finite element mesh.

R.2 = vector of equivalent nodal forces, representing all external effects other than the nodal forces which are
already included in the preceding nodal force vector R. These external effects may include distributed or

concentrated surface forces, body forces, thermal effects, initial stresses and strains.

K = system stiffness matrix, which will be established by assembling the elements’ stiffness matrices : k¢ .
Once the supports' constraints are accounted for, the nodal displacements are found by solving the system of linear
equations (2), symbolically:

r=K'(R-R° (3)

Subsequently, the strains and stresses in individual elements may be found as follows:
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e=Bq (4)
g=E(—-¢€)+0°=EBq—¢€)+0° (5)
where

q = vector of element's nodal displacements--a subset of the system displacement vector r that pertains to the

element under consideration.

B = strain-displacement matrix that transforms nodal displacements q to strains at any point in the element.
E = elasticity matrix that transforms effective strains to stresses at any point in the element.

¢€° = vector of initial strains in the element.

o° = vector of initial stresses in the element.

By applying the virtual work equation (1) to the system, we can establish the element matrices B, k®as well as
the technique of assembling the system matrices R?and K. Other matrices such as %, ¢°, Rand Fcan be

directly set up from data input.

Interpolation or shape functions

Let qbe the vector of nodal displacements of a typical element. The displacements at any point of the element may

be found by interpolation functions as, symbolically:
u=Nq (6)
where
u = vector of displacements at any point {x,y,z} of the element.
IN = matrix of shape functions serving as interpolation functions.
Equation (6) gives rise to other quantities of great interest:

* Virtual displacements consistent with virtual nodal displacements: Ju = Ndq (Gb)

* Strains in the elements: ¢ = Du = DINq (7)
where T)= matrix of differential operators that convert displacements to strains using linear elasticity theory.
Eq.(7) shows that matrix B in (4) is

B = DN (8)

e Virtual strains consistent with element's virtual nodal displacements: de = B5q (9)

Internal virtual work in a typical element

For a typical element of volume /¢, the internal virtual work due to virtual displacements is obtained by
substitution of (5) and (9) into (1):

e

Internal virtual work = / detadvVe =46 qTf BT{E(Bq—EO)—FUO} dv*® (10)
VE
Element matrices

Primarily for the convenience of reference, the following matrices pertaining to a typical elements may now be
defined:

Element stiffness matrix k% = f BTEB dv* (1 1)

e

Equivalent element load vector Q% = / -BT (Ee° — 0'0) ave (12)

e
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These matrices are usually evaluated numerically using Gaussian quadrature for numerical integration. Their use

simplifies (10) to the following:
Internal virtual work = 6 q7 (keq + Q"e) (13)

Element virtual work in terms of system nodal displacements

Since the nodal displacement vector q is a subset of the system nodal displacements r (for compatibility with
adjacent elements), we can replace q with r by expanding the size of the element matrices with new columns and

rows of zeros:

Internal virtual work = 6 r” (k°r + Q) (14)

where, for simplicity, we use the same symbols for the element matrices, which now have expanded size as well as

suitably rearranged rows and columns.

System virtual work

Summing the internal virtual work (14) for all elements gives the right-hand-side of (1):
System internal virtual work = Z dr’ (ker—l—Q"e) =4 rT( Z ke)r—i—(s r’ Z Q- (15)
e e e

Considering now the left-hand-side of (1), the system external virtual work consists of:

* The work done by the nodal forces R: § r' R (16)
* The work done by external forces T*®on the part §¢of the elements' edges or surfaces, and by the body forces

fE’,
s u'T*ds® + / s ulfedve
2 2 )
Substitution of (6b) gives:
5q") [ N'T°ds*+6q") [ N'fdve
e SE [ VE
o —6a"> (Q°+Q)  (17a)
where we have introduced additional element's matrices defined below:
Q* = — f N'T*ds®  (18a)
Q= - / N7fedve  (18b)

Again, numerical integration is convenient for their evaluation. A similar replacement of q in (17a) with r

gives, after rearranging and expanding the vectors Qte , Qf i

6"y (Q+ Q) (17h)
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Assembly of system matrices
Adding (16), (17b) and equating the sum to (15) gives:

STTR—6 rTZ(QtE + Q) =46 rT(ZkE)r +4 rTZQ"e

e [+ e
Since the virtual displacements § y are arbitrary, the preceding equality reduces to:
R=() _k)r+> (Q*+Q“+ Q")

Comparison with (2) shows that:

* The system stiffness matrix is obtained by summing the elements' stiffness matrices:
K= E k*
e

* The vector of equivalent nodal forces is obtained by summing the elements' load vectors:

Re = Z (Qoe 1 Qte 4 Qfe)

In practice, the element matrices are neither expanded nor rearranged. Instead, the system stiffness matrix Kis

assembled by adding individual coefficients kfj to K j; where the subscripts ij, kI mean that the element's nodal
displacements g , qj match respectively with the system's nodal displacements Tk, 71 . Similarly, R ?is assembled
by adding individual coefficients QFto ] where gf matches T . This direct addition of &;into Kj; gives the

procedure the name Direct Stiffness Method.
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Finite element method

The finite element method (FEM) (its practical application often
known as finite element analysis (FEA)) is a numerical technique for B e
finding approximate solutions of partial differential equations (PDE) as
well as of integral equations. The solution approach is based either on
eliminating the differential equation completely (steady state
problems), or rendering the PDE into an approximating system of
ordinary differential equations, which are then numerically integrated

using standard techniques such as Euler's method, Runge-Kutta, etc.

In solving partial differential equations, the primary challenge is to

create an equation that approximates the equation to be studied, but is
numerically stable, meaning that errors in the input and intermediate 2D FEM solution for a magnetostatic
calculations do not accumulate and cause the resulting output to be configuration (lines denote the direction and
. . . . colour the magnitude of calculated flux density)
meaningless. There are many ways of doing this, all with advantages

and disadvantages. The Finite Element Method is a good choice for

solving partial differential equations over complicated domains (like
cars and oil pipelines), when the domain changes (as during a solid
state reaction with a moving boundary), when the desired precision
varies over the entire domain, or when the solution lacks smoothness.
For instance, in a frontal crash simulation it is possible to increase
prediction accuracy in "important” areas like the front of the car and
reduce it in its rear (thus reducing cost of the simulation). Another
example would be in Numerical weather prediction, where it is more
important to have accurate predictions over developing

highly-nonlinear phenomena (such as tropical cyclones in the

atmosphere, or eddies in the ocean) rather than relatively calm areas.

2D mesh for the image above (mesh is denser

around the object of interest)
History

The finite element method originated from the need for solving complex elasticity and structural analysis problems
in civil and aeronautical engineering. Its development can be traced back to the work by Alexander Hrennikoff
(1941) and Richard Courant!!! (1942). While the approaches used by these pioneers are different, they share one
essential characteristic: mesh discretization of a continuous domain into a set of discrete sub-domains, usually called
elements. Starting in 1947, Olgierd Zienkiewicz from Imperial College gathered those methods together into what

would be called the Finite Element Method, building the pioneering mathematical formalism of the method.!?!

Hrennikoff's work discretizes the domain by using a lattice analogy, while Courant's approach divides the domain
into finite triangular subregions to solve second order elliptic partial differential equations (PDEs) that arise from the
problem of torsion of a cylinder. Courant's contribution was evolutionary, drawing on a large body of earlier results
for PDEs developed by Rayleigh, Ritz, and Galerkin.

Development of the finite element method began in earnest in the middle to late 1950s for airframe and structural
analysism and gathered momentum at the University of Stuttgart through the work of John Argyris and at Berkeley
through the work of Ray W. Clough in the 1960s for use in civil engineering. By late 1950s, the key concepts of
stiffness matrix and element assembly existed essentially in the form used today. NASA issued a request for
proposals for the development of the finite element software NASTRAN in 1965. The method was again provided
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Finite element method

with a rigorous mathematical foundation in 1973 with the publication of Strang and Fix's An Analysis of The Finite
Element Method,[4] and has since been generalized into a branch of applied mathematics for numerical modeling of

physical systems in a wide variety of engineering disciplines, e.g., electromagnetism, thanks to Peter P. Silvester'!

51 and fluid dynamics.

Application

A variety of specializations under the umbrella of the
mechanical  engineering  discipline  (such  as
aeronautical, biomechanical, and automotive industries)
commonly use integrated FEM in design and
development of their products. Several modern FEM
packages include specific components such as thermal,
electromagnetic, fluid, and structural working
environments. In a structural simulation, FEM helps
tremendously in producing stiffness and strength

visualizations and also in minimizing weight, materials,

and costs.

FEM allows detailed visualization of where structures
Visualization of how a car deforms in an asymmetrical crash using

bend or twist, and indicates the distribution of stresses . .
finite element analysis.[6]

and displacements. FEM software provides a wide

range of simulation options for controlling the

complexity of both modeling and analysis of a system. Similarly, the desired level of accuracy required and

associated computational time requirements can be managed simultaneously to address most engineering

applications. FEM allows entire designs to be constructed, refined, and optimized before the design is manufactured.

This powerful design tool has significantly improved both the standard of engineering designs and the methodology
of the design process in many industrial applications.m The introduction of FEM has substantially decreased the
time to take products from concept to the production line.. 1t is primarily through improved initial prototype
designs using FEM that testing and development have been accelerated.’®! In summary, benefits of FEM include
increased accuracy, enhanced design and better insight into critical design parameters, virtual prototyping, fewer

hardware prototypes, a faster and less expensive design cycle, increased productivity, and increased revenue.!”!

Technical discussion

We will illustrate the finite element method using two sample problems from which the general method can be

extrapolated. It is assumed that the reader is familiar with calculus and linear algebra.

P1 is a one-dimensional problem
u’(z) = f(z) in (0, 1),
u(0) =«(1) =0,

where fis given, 2 is an unknown function of x , and 4, is the second derivative of % with respect to Z .

P1

The two-dimensional sample problem is the Dirichlet problem

,u':L':L'('Ti y) + uyy(mv y) = f(zn y) n Q’:
u =0 on 01,

P2

where {)is a connected open region in the (3;, y) plane whose boundary @(}is "nice" (e.g., a smooth manifold or

a polygon), and Uz and Uyydenote the second derivatives with respect to « and Y, respectively.
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Finite element method

The problem P1 can be solved "directly" by computing antiderivatives. However, this method of solving the
boundary value problem works only when there is only one spatial dimension and does not generalize to

higher-dimensional problems or to problems like % + " = f . For this reason, we will develop the finite element

method for P1 and outline its generalization to P2.

Our explanation will proceed in two steps, which mirror two essential steps one must take to solve a boundary value
problem (BVP) using the FEM.

* In the first step, one rephrases the original BVP in its weak form. Little to no computation is usually required for
this step. The transformation is done by hand on paper.

* The second step is the discretization, where the weak form is discretized in a finite dimensional space.

After this second step, we have concrete formulae for a large but finite dimensional linear problem whose solution
will approximately solve the original BVP. This finite dimensional problem is then implemented on a computer.

Weak formulation

The first step is to convert P1 and P2 into their equivalents weak formulation. If u solves P1, then for any smooth

function v that satisfies the displacement boundary conditions, i.e. y = (Jat x = (Qand = 1,we have

)] /01 f@)v(z)dz = /()1 u’(z)v(z) dz.

Conversely, if u with 1(0) = u(1) = Osatisfies (1) for every smooth function u(z)then one may show that

this 2 will solve P1. The proof is easier for twice continuously differentiable 7 (mean value theorem), but may be
proved in a distributional sense as well.

By using integration by parts on the right-hand-side of (1), we obtain

/0  Fayo(z) dz = ]0 i (2)o(z) da
%) — W (2)u(=)[ - /U (@) (2) d
_ fo (e (2) de = —d(u,v).

where we have used the assumption that v(0) = v(1) = 0.

A proof outline of existence and uniqueness of the solution

We can loosely think of H& (()’ 1)to be the absolutely continuous functions of (O, 1)that are (Jat £ = (Qand
x = 1(see Sobolev spaces). Such functions are (weakly) "once differentiable” and it turns out that the symmetric

bilinear map ¢ then defines an inner product which turns Hé (O, 1)int0 a Hilbert space (a detailed proof is
1

nontrivial). On the other hand, the left-hand-side f f(z)v(;c)dg; is also an inner product, this time on the Lp
0

space LQ(D’ 1) . An application of the Riesz representation theorem for Hilbert spaces shows that there is a unique

u solving (2) and therefore P1. This solution is a-priori only a member of H. é ((), 1), but using elliptic regularity,

will be smooth if fis.
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Finite element method

The weak form of P2

If we integrate by parts using a form of Green's identities, we see that if u solves P2, then for any %,

fnfvdsz—/QVu-Vvdsz—qb(u,v),

where ¥/ denotes the gradient and - denotes the dot product in the two-dimensional plane. Once more ¢ can be
turned into an inner product on a suitable space H& (Q) of "once differentiable” functions of {)that are zero on
0{). We have also assumed that ¢ € H&(Q) (see Sobolev spaces). Existence and uniqueness of the solution can

also be shown.

Discretization

The basic idea is to replace the infinite dimensional linear problem:

Find ¢4 € H& such that

x0=0 X, x2 x3 x4 x5=1

A function in H, &7 with zero values at the

endpoints (blue), and a piecewise linear

approximation (red).

Vo € Hy, —¢(u,v) = [ fo
with a finite dimensional version:

(3) Find 74 € V/'such that

Vo eV, —g(uv) = [ fo
where V/is a finite dimensional subspace of H&. There are many possible choices for 1/ (one possibility leads to

the spectral method). However, for the finite element method we take }/to be a space of piecewise polynomial
functions.
For  problem Pl, we take the interval (0,1),  choose nvalues of  z with
O=zp <z < ... < T, < Tpt1 = land we define V' by

V ={v:[0,1] = R : v is continuous, v|[s, z,,,] is linear for

k=0,..,n,and v(0) = v»(1) = 0}

where we define zg = Qand z,41 = 1. Observe that functions in V are not differentiable according to the
elementary definition of calculus. Indeed, if ¢y € 1/ then the derivative is typically not defined at any T = Iy,
k =1,...,n. However, the derivative exists at every other value of x and one can use this derivative for the

purpose of integration by parts.
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For problem P2, we need }/to be a set of functions of (3. In the

figure on the right, we have illustrated a triangulation of a 15 sided
polygonal region ()in the plane (below), and a piecewise linear
function (above, in color) of this polygon which is linear on each
triangle of the triangulation; the space 1/would consist of functions

that are linear on each triangle of the chosen triangulation.

One often reads V}, instead of /in the literature. The reason is that
one hopes that as the underlying triangular grid becomes finer and
finer, the solution of the discrete problem (3) will in some sense

converge to the solution of the original boundary value problem P2.

The triangulation is then indexed by a real valued parameter A > ()
which one takes to be very small. This parameter will be related to the A piecewise linear function in two dimensions.
size of the largest or average triangle in the triangulation. As we refine

the triangulation, the space of piecewise linear functions }/must also change with f, , hence the notation V5, .

Since we do not perform such an analysis, we will not use this notation.

Choosing a basis

To complete the discretization, we must select a basis of }/. In the
one-dimensional case, for each control point Zx we will choose the
piecewise linear function ¥ in }/whose value is ] at Zx and zero at
every T;, j # k.ie,

>

x0=0 XX, x3 X, x5=1

Basis functions v, (blue) and a linear combination
of them, which is piecewise linear (red).

T—Tk_1 o
prp— if z € [zg-1, %k,
— Tpt1—T :
v(z) = ———— if z € [zg, Tat1],
0 otherwise,
for £ =1, ...,n; this basis is a shifted and scaled tent function. For the two-dimensional case, we choose again

one basis function Uy, per vertex Zg of the triangulation of the planar region (3. The function Vg is the unique
function of }/whose value is ]at Zx and zero at every I;, j#k.

Depending on the author, the word "element" in "finite element method" refers either to the triangles in the domain,
the piecewise linear basis function, or both. So for instance, an author interested in curved domains might replace the
triangles with curved primitives, and so might describe the elements as being curvilinear. On the other hand, some
authors replace "piecewise linear" by "piecewise quadratic” or even "piecewise polynomial". The author might then
say "higher order element" instead of "higher degree polynomial”. Finite element method is not restricted to triangles
(or tetrahedra in 3-d, or higher order simplexes in multidimensional spaces), but can be defined on quadrilateral
subdomains (hexahedra, prisms, or pyramids in 3-d, and so on). Higher order shapes (curvilinear elements) can be

defined with polynomial and even non-polynomial shapes (e.g. ellipse or circle).

Examples of methods that use higher degree piecewise polynomial basis functions are the hp-FEM and spectral
FEM.
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More advanced implementations (adaptive finite element methods) utilize a method to assess the quality of the
results (based on error estimation theory) and modify the mesh during the solution aiming to achieve approximate
solution within some bounds from the 'exact' solution of the continuum problem. Mesh adaptivity may utilize various
techniques, the most popular are:

* moving nodes (r-adaptivity)

* refining (and unrefining) elements (h-adaptivity)

* changing order of base functions (p-adaptivity)

* combinations of the above (hp-adaptivity)

Small support of the basis

The primary advantage of this choice of basis is that the inner products

Solving the two-dimensional problem
U, + Uy = —4in the disk centered at
the origin and radius 1, with zero boundary
conditions.

(a) The triangulation.

(b) The sparse matrix L of the discretized linear

system.
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(c) The computed solution,

u(z,y) =1 -2 -y

1
(v, vk :/0 Vv, dT
and
1 !
qb(vj,vk) =f0 vjvkda:

will be zero for almost all 7, k. (The matrix containing <Uj, V) in the (4, k)location is known as the Gramian
matrix.) In the one dimensional case, the support of Ugis the interval [xy_1, zg41]. Hence, the integrands of

{vj, V) and @{v;, vy )are identically zero whenever |j — k| > 1.
Similarly, in the planar case, if 5 and Ik do not share an edge of the triangulation, then the integrals

/ Uk ds
Q

f Vv, - Vugds
0

are both zero.

and

Matrix form of the problem

If we write u{z) = Zukvk(:v) and f(z) = Z Jxvp(z)then problem (3), taking v{z) = v;(x) for
k=1 k=1
j=1,...,n, becomes

— Z ukqﬁ(vk,'uj) = Z fk/UkUjde for _] = ]_, R “4)
k=1 k=1
If we denote by 1and fthe column vectors (ul’ e 'u,n)t and (fh e fn)t , and if we let
L = (Ly)
and

M = (M;;)

be matrices whose entries are
Li; = é(vi, v;)
and
Mij = f A dz
then we may rephrase (4) as

—Lu = Mf. (5
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n
It is not, in fact, necessary to assume f(z) = Z Jxvg(z). For a general function f(z), problem (3) with
k=1
v(z) = v; (z)for j =1, ..., n becomes actually simpler, since no matrix A/ is used,

where b = (y, ..., by)?and b; = /fvjda:for PR

As we have discussed before, most of the entries of [, and Af are zero because the basis functions ¥z have small
support. So we now have to solve a linear system in the unknown uwhere most of the entries of the matrix [, ,

which we need to invert, are zero.

Such matrices are known as sparse matrices, and there are efficient solvers for such problems (much more efficient
than actually inverting the matrix.) In addition, [, is symmetric and positive definite, so a technique such as the
conjugate gradient method is favored. For problems that are not too large, sparse LU decompositions and Cholesky
decompositions still work well. For instance, Matlab's backslash operator (which uses sparse LU, sparse Cholesky,

and other factorization methods) can be sufficient for meshes with a hundred thousand vertices.

The matrix [, is usually referred to as the stiffness matrix, while the matrix }f is dubbed the mass matrix.

General form of the finite element method
In general, the finite element method is characterized by the following process.

* One chooses a grid for (). In the preceding treatment, the grid consisted of triangles, but one can also use squares
or curvilinear polygons.
* Then, one chooses basis functions. In our discussion, we used piecewise linear basis functions, but it is also

common to use piecewise polynomial basis functions.

A separate consideration is the smoothness of the basis functions. For second order elliptic boundary value problems,
piecewise polynomial basis function that are merely continuous suffice (i.e., the derivatives are discontinuous.) For
higher order partial differential equations, one must use smoother basis functions. For instance, for a fourth order

problem such as Ugggy + Uyyyy = f . one may use piecewise quadratic basis functions that are (1.

Another consideration is the relation of the finite dimensional space 1/to its infinite dimensional counterpart, in the

examples above H&. A conforming element method is one in which the space 1/is a subspace of the element space

for the continuous problem. The example above is such a method. If this condition is not satisfied, we obtain a
nonconforming element method, an example of which is the space of piecewise linear functions over the mesh which
are continuous at each edge midpoint. Since these functions are in general discontinuous along the edges, this finite
dimensional space is not a subspace of the original H&.

Typically, one has an algorithm for taking a given mesh and subdividing it. If the main method for increasing
precision is to subdivide the mesh, one has an A-method (4 is customarily the diameter of the largest element in the
mesh.) In this manner, if one shows that the error with a grid # is bounded above by (YhP, for some ' < oo and
p > (), then one has an order p method. Under certain hypotheses (for instance, if the domain is convex), a
piecewise polynomial of order ¢ method will have an error of order p = d + 1.

If instead of making & smaller, one increases the degree of the polynomials used in the basis function, one has a
p-method. If one combines these two refinement types, one obtains an hp-method (hp-FEM). In the hp-FEM, the
polynomial degrees can vary from element to element. High order methods with large uniform p are called spectral

finite element methods (SFEM). These are not to be confused with spectral methods.

For vector partial differential equations, the basis functions may take values in [R™ .
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Comparison to the finite difference method

The finite difference method (FDM) is an alternative way of approximating solutions of PDEs. The differences
between FEM and FDM are:

* The most attractive feature of the FEM is its ability to handle complicated geometries (and boundaries) with
relative ease. While FDM in its basic form is restricted to handle rectangular shapes and simple alterations

thereof, the handling of geometries in FEM is theoretically straightforward.
* The most attractive feature of finite differences is that it can be very easy to implement.

* There are several ways one could consider the FDM a special case of the FEM approach. E.g., first order FEM is
identical to FDM for Poisson's equation, if the problem is discretized by a regular rectangular mesh with each

rectangle divided into two triangles.

* There are reasons to consider the mathematical foundation of the finite element approximation more sound, for

instance, because the quality of the approximation between grid points is poor in FDM.

* The quality of a FEM approximation is often higher than in the corresponding FDM approach, but this is

extremely problem dependent and several examples to the contrary can be provided.

Generally, FEM is the method of choice in all types of analysis in structural mechanics (i.e. solving for deformation
and stresses in solid bodies or dynamics of structures) while computational fluid dynamics (CFD) tends to use FDM
or other methods like finite volume method (FVM). CFD problems usually require discretization of the problem into
a large number of cells/gridpoints (millions and more), therefore cost of the solution favors simpler, lower order
approximation within each cell. This is especially true for 'external flow' problems, like air flow around the car or

airplane, or weather simulation in a large area.

Various types of finite element methods

Generalized finite element method

The Generalized Finite Element Method (GFEM) uses local spaces consisting of functions, not necessarily
polynomials, that reflect the available information on the unknown solution and thus ensure good local
approximation. Then a partition of unity is used to “bond” these spaces together to form the approximating subspace.
The effectiveness of GFEM has been shown when applied to problems with domains having complicated

boundaries, problems with micro-scales, and problems with boundary layers.[g]

hp-FEM
The hp-FEM combines adaptively elements with variable size & and polynomial degree p in order to achieve
exceptionally fast, exponential convergence rates.!%)
hpk-FEM

The hpk-FEM combines adaptively elements with variable size /4, polynomial degree of the local approximations p

and global differentiability of the local approximations (k-1) in order to achieve best convergence rates.

Other applications of finite elements analysis

FEA has also been proposed to use in stochastic modelling, for numerically solving probability models. See the

references list[“] .[12]
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External links
web.comlab.ox.ac.uk/people/endre.suli/fem.pdf

* NAFEMS (http://www.nafems.org) -- The International Association for the Engineering Analysis Community

* Finite Element Analysis Resources (http://www.feadomain.com)- Finite Element news, articles and tips

* Finite-element Methods for Electromagnetics (http://www.fieldp.com/femethods.html) - free 320-page text

* Finite Element Books (http://www.solid.ikp.liu.se/fe/index.html)- books bibliography

* Mathematics of the Finite Element Method (http://math.nist.gov/mcsd/savg/tutorial/ansys/FEM/)

* Finite Element Methods for Partial Differential Equations (http://web.comlab.ox.ac.uk/people/endre.suli/
fem.pdf) - Lecture notes by Endre Siili

* FEA Described - what is it, what is it for. (http://knol.google.com/k/fea)



http://en.wikipedia.org/w/index.php?title=Giuseppe_Pelosi
http://en.wikipedia.org/w/index.php?title=Gilbert_Strang
http://en.wikipedia.org/w/index.php?title=George_Fix
http://en.wikipedia.org/w/index.php?title=Roberto_Coccioli
http://en.wikipedia.org/w/index.php?title=Tatsuo_Itoh
http://en.wikipedia.org/w/index.php?title=Giuseppe_Pelosi
http://en.wikipedia.org/w/index.php?title=Peter_P._Silvester
http://impact.sourceforge.net
http://web.archive.org/web/20061030200423/http://www.mclaren.com/features/technical/stress_to_impress.php
http://web.archive.org/web/20061030200423/http://www.mclaren.com/features/technical/stress_to_impress.php
http://www.mclaren.com/features/technical/stress_to_impress.php
http://www.mclaren.com/features/technical/stress_to_impress.php
http://en.wikipedia.org/w/index.php?title=Ivo_Babu%C5%A1ka
http://en.wikipedia.org/w/index.php?title=John_E._Osborn_%28mathematician%29
http://www.nafems.org
http://www.feadomain.com
http://www.fieldp.com/femethods.html
http://www.solid.ikp.liu.se/fe/index.html
http://math.nist.gov/mcsd/savg/tutorial/ansys/FEM/
http://web.comlab.ox.ac.uk/people/endre.suli/fem.pdf
http://web.comlab.ox.ac.uk/people/endre.suli/fem.pdf
http://en.wikipedia.org/w/index.php?title=Endre_S%C3%BCli
http://knol.google.com/k/fea

List of finite element software packages

16

List of finite element software packages

This is a list of software packages that implement the finite element method for solving partial differential equations

or aid in the pre- and post-processing of finite element models.

Free/Open source

CalculiX is an Open Source FEA project. The solver uses a partially compatible ABAQUS file format. The
pre/post-processor generates input data for many FEA and CFD applications.

Code Aster: French software written in Python and Fortran, GPL license.

DUNE, Distributed and Unified Numerics Environment GPL Version 2 with Run-Time Exception, written in
C++

Elmer FEM solver: Open source multiphysical simulation software developed by Finnish Ministry of Education's
CSC, written primarily in Fortran

FEBio, Finite Elements for Biomechanics

FEniCS Project: a LGPL-licensed software package developed by American and European researchers
FreeFem++: GPL software

Hermes Project: Modular C/C++ library for rapid development of space- and space-time adaptive hp-FEM
solvers.

Impact: Dynamic Finite Element Program Suite, for dynamic events like crashes, written in Java, GNU license
OOFEM: Object Oriented Finite EleMent solver, written in C++, GPL v2 license

OpenFOAM (Field Operation And Manipulation). Originally for CFD only, but now includes finite element
analysis through tetrahedral decomposition of arbitrary grids.

OpenSees is an Open System for Earthquake Engineering Simulation

7Z88: FEM-software available for Windows and Linux/UNIX, written in C, GPL license

Proprietary/Commercial

Abaqus: Franco-American software from SIMULIA, owned by Dassault Systemes

ADINA

Advance Design BIM software for FEM structural analysis, including international design eurocodes, a solution
developed by GRAITEC

ANSA: An advanced CAE pre-processing software for complete model build up.

ANSYS: American software

AutoForm: Swiss origin German software for Sheet metal forming process chain

COMSOL Multiphysics COMSOL Multiphysics Finite Element Analysis Software formerly Femlab

Creo Elements / Pro Mechanica: A p-version finite element program that is embedded in the MCAD application
Creo Elements Pro, from PTC (Parametric Technology Corporation)

Diffpack Software for finite element analysis and partial differential equations

Falcon2.0 : Lightweight FEM POST Processor and Viewer for 3D UNV and NASTRAN files

FEFLOW: simulates groundwater flow, mass transfer and heat transfer in porous media

Femap, Siemens PLM Software: A pre and post processor for Windows

FEMtools, Dynamic Design Solutions: A toolbox for static and dynamic simulation, verification, validation and
updating of finite element models. Includes also modules for structural optimization and for obtaining
experimental reference data.

FlexPDE

Flux : American electromagnetic and thermal FEA

Genie: DNV (Det Norske Veritas) Software
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HydroGeoSphere: A 3D control-volume finite element hydrologic model, simulating surface and subsurface
water flow and solute and thermal energy transport

JMAG: Japanese software

LS-DYNA, LSTC - Livermore Software Technology Corporation

LUSAS: UK Software

MADYMO: TASS - TNO Automotive Safety Solutions

Nastran: American software, from MSC Software

nastran/EM: Nastran Suit for highly advanced Durability & NVH Analyses of Engines; born from the AK32
Benchmark of Audi, BMW, Daimler, Porsche & VW; Source Code available

NEi Fusion, NEi Software: 3D CAD modeler + Nastran FEA

NEi Nastran, NEi Software: General purpose Finite Element Analysis

NEi Works, NEi Software: Embedded Nastran for SolidWorks users

NISA: Indian software

PAK: Serbian software for linear and nonlinear structural analysis, heat conduction, fluid mechanics with heat
transfer, coupled problems, biomechanics, fracture mechanics and fatigue.

PZFlex: American software for wave propagation and piezoelectric devices

Quickfield : Physics simulating software

Radioss: A linear and nonlinear solver owned by Altair Engineering

Range Software: Multiphysics simulation software

SAMCEF: CAE package developed by the Belgian company

SAP2000: American software

STRAND7: Developed in Sydney Australia by Strand7 Pty. Ltd. Marketed as Straus7 in Europe.
StressCheck developed by ESRD, Inc (USA) emphasizing solution accuracy by utilizing high order elements
Vflo: Physics-based distributed hydrologic modeling software, developed by Vieux & Associates, Inc.
Visualfea: User friendly finite element analysis program developed by Intuition Software,Inc.

Zébulon: French software

References

External links

Public Domain FE Programs (http://homepage.usask.ca/~ijm451/finite/fe_resources/node139.html) listed by
Ian MacPhedran (http://homepage.usask.ca/~ijm451/)
What is the status of open source finite element codes? (http://imechanica.org/node/470) - a discussion thread
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