Lecture 1: Introduction to Plate Bending Problems

6.1.1 Introduction

A plate is a planer structure with a very small thickness in comparison to the planer dimensions. The
forces applied on a plate are perpendicular to the plane of the plate. Therefore, plate resists the applied
load by means of bending in two directions and twisting moment. A plate theory takes advantage of this
disparity in length scale to reduce the full three-dimensional solid mechanics problem to a two-
dimensional problem. The aim of plate theory is to calculate the deformation and stresses in a plate
subjected to loads. A flat plate, like a straight beam carries lateral load by bending. The analyses of
plates are categorized into two types based on thickness to breadth ratio: thick plate and thin plate
analysis. If the thickness to width ratio of the plate is less than 0.1 and the maximum deflection is less
than one tenth of thickness, then the plate is classified as thin plate. The well known as Kirchhoff plate
theory is used for the analysis of such thin plates. On the other hand, Mindlin plate theory is used for
thick plate where the effect of shear deformation is included.

6.1.2 Notations and Sign Conventions

Let consider plates to be placed in XY plane. Representation of plate surface slopes Wy, W by right
hand rule produces arrows that point in negative Y and positive X directions respectively. Both surface
slopes and rotations are required for plate elements. Signs and subscripts of rotations and slopes are
reconciled by replacing 0y by ¥y and 0y by -
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Fig. 6.1.1 Notations and sign conventions

6.1.3 Thin Plate Theory



Classical thin plate theory is based upon assumptions initiated for beams by Bernoulli but first applied to
plates and shells by Love and Kirchhoff. This theory is known as Kirchhoff’s plate theory. Basically,
three assumptions are used to reduce the equations of three dimensional theory of elasticity to two
dimensions.

1. The line normal to the neutral axis before bending remains straight after bending.

2. The normal stress in thickness direction is neglected. i.e., o, =0. This assumption converts

the 3D problem into a 2D problem.
3. The transverse shearing strains are assumed to be zero. i.e., shear strains vy, and vy, will be
zero. Thus, thickness of the plate does not change during bending.

The above assumptions are graphically shown in Fig. 6.1.2.

Fig. 6.1.2 Kirchhoff plate after bending

6.1.3.1 Basic relationships
Let, a plate of thickness t has mid-surface at a distance% from each lateral surface. For the analysis

purpose, X-Y plane is located in the plate mid-surface, therefore z=0 identifies the mid-surface. Let u, v,
w be the displacements at any point (X, y, z).
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Fig. 6.1.3 Thin plate element
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Then the variation of u and v across the thickness can be expressed in terms of displacement w as
ow
u=-z—

(6.1.1)
Where, w is the deflection of the middle plane of the plate in the z direction. Further the relationship
between, the strain and deflection is given by,

. = ou _ ?w s
X7 ax dx2 A
e = ov _ ?w s
y — dy - ayz Xy
ou = ov 2%w
= —4+—=-2z
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where,

€ corresponds to direct strain
y corresponds to shear strain

¥ corresponds to curvature along respective directions
Or in matrix form, the above expression can written as

62
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X | 62 |
Eyt=—z W'W
ny 92
dxdy
Or,
e = —zAw

Where, ¢ is the vector of in-plane strains, and A is the differential operator matrix.

6.1.3.2 Constitutive equations

(6.1.2)

(6.1.3)

(6.1.4)



From Hooke’s law,

o=[D]e (6.1.5)
Where,
1 o 0
[D]= (1_502) b 1 0 (6.1.6)
0 0 v
2

Here, [D] is equal to the value defined for 2D solids in plane stress condition (i.e., o, =0).

6.1.3.3 Calculation of moments and shear forces

Let consider a plate element of dx X dy and with thickness t. The plate is subjected to external
uniformly distributed load p. For a thin plate, body force of the plate can be converted to an equivalent
load and therefore, consideration of separate body force is not necessary. By putting eq. (6.1.4) in eq.
(6.1.5),

o =-z[D]Aw (6.1.7)
It is observed from the above relation that the normal stresses are varying linearly along thickness of the

plate (Fig. 6.1.4(a)). Hence the moments (Fig. 6.1.4(b)) on the cross section can be calculated by
integration.

-t/2 12

-t/2

MX t/2 t/2 t3
M=M, = | mdt:-“ zzdtj[D]AW=——[D]AW (6.1.8)
M
xy



| e
@ QL--—----.-—.--.__.-_.._{.T_-E: e 4 e y

7 Y __ o,
/";.' / v j
P /‘G = 7 cr_ -
) AANTIEN A /i
,-" 7 ¢ 0 »

(a) Stresses in plate

(b) Forces and moments in plate

Fig. 6.1.4 Forces on thin plate



On expansion of eq. (6.1.8) one can find the following expressions.

Et® o’'w  o°w
M :_12(1—02)(6x2 oy j: De (2:+02)
Et® o’'w  o'w
My=—12(1_02)£8y2 +Uax2J:DP(Zy+%) 49
3 2 _
M. =M. = Et' o'w _ Dy(1 U)){X
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Where, Dp is known as flexural rigidity of the plate and is given by,
Et®
D,=———+ 6.1.10
"o12(1-07) ( )
Let consider the bending moments vary along the length and breadth of the plate as a function of x and
y. Thus, if My acts on one side of the element, M, =M+ Gg/lx dx acts on the opposite side. Considering
X
equilibrium of the plate element, the equations for forces can be obtained as
0
a—QX+&+p=O (6.1.11)
ox oy
oM
M, My _q (6.1.12)
OX oy
oM, M,
- =Q, (6.1.13)
OX oy
Using eq.6.1.9 in eqs.6.1.12 & 6.1.13, the following relations will be obtained.
0 (o°w o*w
Q=—D,—| —F+— (6.1.14)
ox\ ox” oy
R 6119
y P 8y aXZ ayZ s
Using egs. (6.1.14) and (6.1.15) in eq. (6.1.11) following relations will be obtained.
4 4 4
o'w dw Jdw_ p (6.1.16)
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6.1.4 Thick Plate Theory

Although Kirchhoff hypothesis provides comparatively simple analytical solutions for most of the cases,
it also suffers from some limitations. For example, Kirchhoff plate element cannot rotate independently
of the position of the mid-surface. As a result, problems occur at boundaries, where the undefined
transverse shear stresses are necessary especially for thick plates. Also, the Kirchhoff theory is only



applicable for analysis of plates with smaller deformations, as higher order terms of strain-displacement
relationship cannot be neglected for large deformations. Moreover, as plate deflects its transverse
stiffness changes. Hence only for small deformations the transverse stiffness can be assumed to be
constant.

Contrary, Reissner—Mindlin plate theory (Fig. 6.1.5) is applied for analysis of thick plates, where
the shear deformations are considered, rotation and lateral deflections are decoupled. It does not require
the cross-sections to be perpendicular to the axial forces after deformation. It basically depends on
following assumptions,

1. The deflections of the plate are small.

2. Normal to the plate mid-surface before deformation remains straight but is not necessarily
normal to it after deformation.

3. Stresses normal to the mid-surface are negligible.
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Fig. 6.1.5 Bending of thick plate

Thus, according to Mindlin plate theory, the deformation parallel to the undeformed mid surface, u and
v, at a distance z from the centroidal axis are expressed by,



u = z0, (6.1.17)

v =—z20, (6.1.18)
Where 6y and 6, are the rotations of the line normal to the neutral axis of the plate with respect to the x
and y axes respectively before deformation. The curvatures are expressed by

00
7, =—~ (6.1.19)
OX
2, =% (6.1.20)
oy
Similarly the twist for the plate is given by,
00
Z[_@j (6.1.21)
oy oX
Using eqs.6.1.9-6.1.10, the bending stresses for the plate is given by
M X O X
M —E—t3 v 1 0 j(( (6.1.22)
T112(1-0%) ! .
MXy 0 0 1-v sy
L 2 |
Or
{M}=[D]{x} (6.1.23)
Further, the transverse shear strains are determined as
oW
=0, +— 6.1.24
j/xz y 6X ( )
ow
Vyp=—0,+— (6.1.25)
’ oy
The shear strain energy can be expressed as
1 2
Us = aGA ffA [()/x)2 + (yy) ] dx dy
_1 ow\? ow\?
=~aGA [f, [(9y +29 + (-6, + 5) ] dx dy (6.1.26)
Where, G = —L __ The shear stresses are
2(1+w)
Txz) _ E 1 01(Yx
{Tyz} - 2(1+p) [O 1] {Vy} (6127)
Hence the resultant shear stress is given by,
Qx _ Eta [1 071(Yx
{Qy} T 2(1+p) [0 1] {Vy} (6.1.28)
Or,

{Q} = [D;){r} (6.1.29)



Here "a" is the numerical correction factor used to characterize the restraint of cross section against
warping. If there is no warping i.e., the section is having complete restraint against warping then a = 1
and if it is having no restraint against warping then o = 2/3. The value of « is usually taken to be 7*/12 or
5/6. Now, the stress resultant can be combined as follows.
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leJ 00 0 e o] o 4w
Qy 0 0 O 20+ 0 « y aax
w
(—0x T35,

The above relation may be compared with usual stress-strain relation. Thus, the stress resultants and
their corresponding curvature and shear deformations may be considered analogous to stresses and
strains.

6.1.5 Boundary Conditions

For different boundaries of the plate (Fig. 6.1.6), suitable conditions are to be incorporated in plate
equation for solving the governing differential equations. For example, following conditions need to
satisfy along y direction of the plate for various boundaries.
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Fig. 6.1.6 Plate with four boundaries

1. Simply support edge (Along y direction)
w(x,y)=0,M,=0 [x=const & 0<y<b]
2. Clamped Edge (Along y direction)

w(x,y)=0, ;—a\:(v(x,y)=0 [x=const & 0<y<b]
3. Free Edge (Along y direction)
oM,
M, =0,Q + axy:O’ [x=const & 0<y<b]

Similar to the above, the boundary conditions along x direction can also be obtained. Once the
displacements w(x,y) of the plate at various positions are found, the strains, stresses and moments
developed in the plate can be determined by using corresponding equations.
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Lecture 2: Finite Element Analysis of Thin Plate

6.2.1 Triangular Plate Bending Element
A simplest possible triangular bending element has three corner nodes and three degrees of freedom per

nodes (w, 6y, 6, ) as shown in Fig. 6.2.1.
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Fig. 6.2.1 Triangular plate bending element

As nine displacement degrees of freedom present in the element, we need a polynomial with nine
independent terms for defining, w(x,y) . The displacement function is obtained from Pascal’s triangle by
choosing terms from lower order polynomials and gradually moving towards next higher order and so
on.

Thus, considering Pascal triangle, and in order to maintain geometric isotropy, we may consider the
displacement model in terms of the complete cubic polynomial as,

W(X,Y)=ay +aX+a,y + o, X +a, Xy + oy’ +a X +a, (x2y+ xy2)+058y3 (6.2.1)
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Corresponding values for (6., 6, )are,

0, =%=a2 +a,X+2a.y+a, (x2 +2xy)+30¢8y2 (6.2.2)
0, = —é—a\:(v =—a, — 20X -,y 3 X" — o, (2xy + ¥°) (6.2.3)
In the matrix form,

20
o
2 2 3 2 2 3 0!2

wl [T x vy oy vy X (Xy+xy) o, (6.2.4)
6:=/0 0 1 0 x 2y 0 (¥+2xy) 3y’ |{e,
) 1o -1 0 =2x -y 0 -3¢ —(2xy+y2) 0 ||%
s
a7
aS

Putting the nodal displacements and rotations for the triangular plate element as shown in Fig. 6.2.1 in
the above equation, one can express following relations.

W 1 0 O 0 0 0 0 0 0 |
h 2
0 0 0 1 0 0 0 0 0 0
x1 a]_
0 0 -1 0 0 0 0 0 0 0
y1 2 3 a,
wlt oy, 0o 0o yoo0 0 Vil
2 2 3
g l_(0 0 1 0 0 2y o0 0 3|, 6.25)
0-10 0 -y, 0 O —y? 0
eyz 2 2 3 2 2 2 %s
P I R T A T I (R e N Y I 1P
6,/ |0 0 1 0 x -2y, O (2x3y3+x32) 3y: ||«
Os) |0 -1 0 -2% -y, 0 3¢ (-yi+2xy,) 0 |l%
Or,
{a} =[®]"{d;} (6.2.6)
Further, the curvature of the plate element can be written as
_ 9w
Xx oy
w
{Xﬁ/} =152 (6.2.7)
Axy 20%w
dxdy

Again, from eq. (6.2.1) the following equations can be obtained.
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The above equation is expressed in matrix form as

Or,

Thus,

{x}=

Or

M}

{F} =

(B[] {d}

Further for isotropic material,

=a, +2a,(Xx+Y)

1

L

0

20, +6a X+ 2a,y

20+ 2a, X + 60y

1

0

[D][B][@]" {d}

Now the strain energy stored due to bending is

U= %foa [y DT {MYdxdy = %f(,“ [{d}" [ [BI"[D1B1l¢ ™ {d}dxdy
Hence the force vector is written as

= [¢~'1" J; [ [BIT[D][Bldxdy [¢~*]{d} = [K]{d}

Thus, [K] is the stiffness matrix of the plate element and is given by

(6.2.8)

(6.2.9)

(6.2.10)

(6.2.11)

(6.2.12)

(6.2.13)

(6.2.14)



(k] = [~ [ [, [BI"[D][Bldxdy [¢~"]

For a triangular plate element with orientation as shown in Fig. 6.2.2, the stiffness matrix defined in

local coordinate system [K] can be transformed into global coordinate system.
[K] =I[T]"[k ] [T]

14

(6.2.15)

(6.2.16)

Where, [K] is the elemental stiffness matrix in global coordinate system and [T] is the transformation
matrix given by
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(6.2.17)

Here, (Ix, my) and (ly, my) are the direction cosines for the lines OX and OY respectively as shown in Fig.

6.2.2.

6.2.2 Rectangular Plate Bending Element

Fig. 6.2.2 Local and global coordinate system

A rectangular plate bending element is shown in Fig. 6.2.3. It has four corner nodes with three degrees
of freedom (w, 0, Hy) at each node. Hence, a polynomial with 12 independent terms for defining w(x,y)

IS necessary.



15

YA
|
|
|
|
|
|
|
2 e 3
(W2,8,2.8,2) (W3,8,,8,0) A
o
1 4
. ¢ ———-1-———p
{W1 -Bx1 .e-_.-‘I:] {Wltlexd,eya} x
- a |

Fig 6.2.3 Rectangular plate bending element

Considering Pascal triangle, and in order to maintain geometric isotropy the following displacement
function is chosen for finite element formulation.

W(X,Y) = ag + X + Y + X’ + o, XY + oy’ + X’ + a, X’y

(6.2.18)
+ogXy? + gy’ 4 X’y 4 oy, xy?
Hence Corresponding values for (8., 6, )are,
0, = 2—\/; = o, + X + 20 + X2 4 200, XY + 3oy + ouy X3 + 3oy, Xy (6.2.19)
ow 2 2 2 3 (6.2.20)
b, = v —;, — 200X — QY — 30X — 20, XY — gy — 30 XY — oY xa
The above can be expressed in matrix form
wl 1 x y x* xy v x* xy xy vy Xy xy Yo
6r=(0 0 1 0 x 2y O x?  2xy 3y?  x¥  3xy? Ofl
6] 0 -1 0 —2x —y 0 —-3x* —2xy —-y* 0 -=3x% -y’
Qg
(6.2.21)

In a similar procedure to three node plate bending element the values of {a} can be found from the
following relatios.



(w,] 1 0 0 0 0 O O 0 0 0 0 0
6] [0 0 1 0 0 O 0 0 0 0 0 0
6o 0 -2 0 0 0 O 0 0 0 0 0 0
w,[ 1 0 b 0 0 b® 0 0 0 b 0 0
bo| 0 001 0 O 20 0 0O 0 3 0 0
b2l 0 -1 0 0 -b O 0 0 —b*> 0 0 —b?
W, [1 a b a® a b* a® ah ab®* b* ab ab’
bl [0 0O 1 0 a 2b O a®> 2ab 3> a® 3ab’
0 |0 -1 0 —2a —b 0 -3a° —2ab —b*> 0 —3a’h -—b’
w, 1 a 0 a° 0 O a’ 0 0 0 0 0
0., 0O 0 1 O a o0 0 a’ 0 0 a’ 0
‘9y4‘ 0 -1 0 —2a 0 —3a° 0 0 0 0 0
Thus,
-1
{a}=[®] {d}
Further,
(_ 92w\
Xx I ale
Xxy IZOZWI
kaxayJ
Where,
82
XV;I = 20, + 60 X + 20,y + 6oy XY
82
V;/:20L5+2048x+60¢9y+60¢11xy
82
8X(\;vy = o, + 20, X + 20y + 30, X% + 3o, Y
Thus, putting values of eg. (6.2.25) in eq. (6.2.24), the following relation is obtained.
.| looo 200 -6x -2y 0o o -6xy o |
x,1=[0 00 0 02 0 0 -2x 6y o —6xy[{"
x.] 000 0 20 0 4 4 0 e 6
xy
Qlyy

Or,
{x}=[B]2*}{d}

(6.2.22)

(6.2.23)

(6.2.24)

(6.2.25)

(6.2.26)

(6.2.27)

16
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Further in a similar method to triangular plate bending element we can estimate the stiffness matrix for
rectangular plate bending element as,

M, . v 0 Ve
Mb=—EC o1 0 [y (6.2.28)
M T112(1-0%) . g
Xy 0 0 L A VA
L 2 ]
Or
{M}=[D]{z} =[D][B][@]*{d) (6229)
The bending strain energy stored is
U =3[ [T U (MYdxdy = [ [ {d)T[¢ 1T [BIT[D][Bll¢{d}dxdy  (6.2.30)
Hence, the force vector will become
(F} = 5o = [07'1" J; [, IBYT[D][Bldxdy [¢~*{d} = [Kk]{d} (6.2.31)
Where, [K] is the stiffness matrix given by
(k] =[¢~1" [ [ [BI"[D][Bldxdy [¢~"] (6.2.30)

The stiffness matrix can be evaluated from the above expression. However, the stiffness matrix also can
be formulated in terms of natural coordinate system using interpolation functions. In such case, the
numerical integration needs to be carried out using Gauss Quadrature rule. Thus, after finding nodal
displacement, the stresses will be obtained at the Gauss points which need to extrapolate to their
corresponding nodes of the elements. By the use of stress smoothening technique, the various nodal
stresses in the plate structure can be determined.
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Lecture 3: Finite Element Analysis of Thick Plate

6.3.1 Introduction
Finite element formulation of the thick plate will be similar to that of thin plate. The difference will be
the additional inclusion of energy due to shear deformation. Therefore, the moment curvature relation
derived in first lecture of this module for thick plate theory will be the basis of finite element
formulation. The relation is rewritten in the below for easy reference to follow the finite element
implementation.

Et

M, [
M
y Il12(1 u2)
2(1+p) 0 a

{{{g}}} ) {[[E]] [[gs] ]H%} (6.3.2)

The above relation is comparable to stress-strain relations.

O T B

0 0
0 0
0 0

‘|
j xy (6:3.1)

Or,

{o}, =[Cl, ¢}, (6.3.3)
Where,
( %x)
Xy
{e}p = %y p = [BI{d;} (6.3.4)
Yx
Ly, )

Where [B] is the strain displacement matrix and {d;} is the nodal displacement vector. Thus, combining
egs. (6.3.3) and (6.3.4), the following expression is obtained.

{o}, =[C].[B]{d}} (6.3.5)

6.3.2 Strain Displacement Relation

Let consider a four node isoparametric element for the thick plate bending analysis purpose. The
variation of displacement w and rotations, 6x and 6, within the element are expressed in the form of
nodal values.

w=)> Nw

(6.3.6)

D
Il
M- M- F-
=
NS

I
1N

e
I
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Where, the shape function for the four node element is expressed as,
1
N, =Z(1+§§i)(1+7777i) (6.3.7)

Here, & and n,are the local coordinates £and ;7 of the i" node. Using eq. (6.3.6), eq. (6.3.4) can be
rewritten as

4 ON.
=>0,—-
Xx e yi OX

4 ON. & ON.
Xy :Z@yi_'_z.g._' (6.3.8)

N 4
i=1 ox T e
4 4
7/y=ZWI%+20XINI
iz oy O
The above can be expressed in matrix form as follows:
0 0 %
OX
X« 0 _% 0
p oy
y
ON. ON.
= = 0 -— —l|{d 6.3.9
{E}P ;(Xy aX ay { l} ( )
7x
ON,
e 0N
NN 0
L Oy ]

Here, for a four node quadrilateral element, the nodal displacement vector {d;} will become

T
{d;} = {Wl' Ox1, 9y1' Wy, 02, 8y2' W3, O3, 9y3; Wy, Oxa, 9y4} (6.3.10)
Thus, the strain-displacement relationship matrix will be



0 0 N, 0 0 N, 0 0
OX OX
o M g0 M ol M
oy oy oy
(B]= © ON,  ON; 0 _ON, 0N, 0 _ON,
ox oy ox oy OX
N, 0 N, ON, 0 N, N, 0
OX OX OX
N S LS
| Oy oy oy
Or,
[B]= [[Bl](sw) [B, ](5><3) [B; ](5><3) B ](5x3):|
Now, eqg. (6.3.5) can be expressed using above relation as
4
to} =[Cl, [Bl{di} =[C], 2.[B]{d,}
Or,
[C], 18] = [CoB.][CoB.] [ [CoBu). [CBA), |
Considering the i sub-matrix of the above equation,
. e EE)
0 1-pu\ 0y ) 1-p
—t* (GNi] ot? i]
0 1-u\ ox ) 1-p( oy
2
[CB]=rsm— —_tz(%j t_%j
12(1+ p) 0 2 | ox 2\ oy
oN,
6o | —-
a( ax] 0 6N,
60{%}
i oy —6aN, 0

ON,
OX

oN,
oy

N3

0 0
0 _aN4
oy
0 _aN4
OX
oN, 0
OX
oN, N,
oy

The bending and shear terms form above equation are separated and written as

N, |
OX

0

(6.3._11)

(6.3.12)

(6.3.13)

(6.3.14)

(6.3.15)

20
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(N ¢ [éﬂ . -

0 1-pldy) 1—plox 0 0 0
1—plox ) 1-pl @ 0 0 0
i[ﬂ] t_[_l] OX 0 N,

o 2 |ox 2| 9y N,

0 0 0 oy —N; o

10 0 0

(6.3.16)

The above expression can be written in compact form as

[CB,]=[CB,], +[CB|, (6.3.17)
Here, the contributions of bending and shear terms to stress displacement matrix is denoted as [CB;]p and
[CBi]s respectively. Generally, the contribution due to bending, [CBi], in eq. (6.3.17) is evaluated
considering 2x2 Gauss points where as the shear contribution [CBi]s is evaluated considering 1x1 Gauss
point.

6.3.3 Element Stiffness Matrix
The expression for element stiffness matrix is

K= J [ [B] [c], [Bldxdy (6.3.18)
In natural coordinate system, the stiffness matrix is expressed as
K= [ J 18] [c], [B] jo|de dn (6.3.19)

Using value of [C]p form eq. 6.3.1 and [B;] from 6.3.11, the product of [B]T [C]p [BJis evaluated as



0 ON; - ON;
ox oy
K T ON,  ON,
K=[ElcBl=| 0 -T+ -+ o0 N,
oy OX
e M N, o
ax 8y i=1,2,3,4
o o N
OX
e | 0 0 0 o N
|2(1t )u 1 0 00 ay
X ) 1—v 00 |« o N N
00 = ax  ay
00 0 Eta [1 O % 0o N,
X
000 2(L+v)jo ] | o0
il _Ni 0
| 9y
Or in short,
E11 _E12 RlS R14
Ky | [Ky| [kyl [
T T 21 22 | 23 | 24
CRCICIOR e
| 33 32 33 | 34
R41 R42_ R43_ E44_
Where,
6o [ I O | OT%, O, e Miy, Ny
ox ox 0y oy oy gy
t \%%] it (9N, AN,
* 1- 1—
[kij]zix —604Ni% p| oy oy v gy Ox
12(1+p) dy ©2[aN, 0N, tz[aN aNj]
—|—_—2L|+6aN,N,| [——|——
2| Ox Ox : 2| ox 9y
_ t? |ON, ON; £ [ON; ON;
ON, 1—p| Ox Oy 1—p| 0x Ox
—6aN, —+
o _E[oN, ON, L[N N,
2|0y Ox 2| dy oy

i=1,2,3,4
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(6.2.20)

(6.2.21)



(6.3.22)
By separating the bending and shear terms from above equation,
0 0 0
K=t t° |ON, ON;|  EION ONGl| | ut® [ON, ON; | t*( 0N, ON;
1 (12-p) 1—p| dy dy | 2|dx ox 1—pl dy ox | 2| dx dy
O _ Mtz %% _ﬁ 8NI 8NJ tz 8N| 8NJ +£ 8N| aNJ
1—p| Ox 3y | 2|0y Ox 1—pl| Ox 90X 2| 0y oy
ON; ON; | ON;ON; | ON;  ON,
ox dx 9y dy ay ' ox !
ON,
+60L Nla_y NiNj 0
% J. 0 NN,
(6.3.23)

Thus, the matrix [E] can now be written as the sum of bending and shear contributions

k)=l +[K]
Or,
E11 b E12:b
[E]: EZI.b :Ezz b
33, 32|,
E41 b :E42 b

b

3],

43]

. Xll

I Xl
N
=~

34

=~

44

Ib
b

Ib

=

=
[N

. Xll

21

!

33

. xl.

i

S

S

S

S

S

S

The stiffness matrix [k] can be evaluated from the

[E]for[B]T [c]p [B]in ed. (6.3.19) and is given as

K= [, [K]plee an

Here,|J| is the determinate of the Jacobian matrix. The Gauss Quadrature integration rule is used to

compute the stiffness matrix [k].

6.3.4 Nodal Load Vector

R13 s El4:s
R23 s R24 s
:E33 S E34:S
E43 s R44 s

(6.2.24)

(6.2.25)
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following expression by substituting

(6.2.26)

Considering a uniformly distributed load q on the plate, the equivalent nodal load vector can be
calculated for finite element analysis from the flowing expression.
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FX q 1 1 q
{Q}={M, = [aggord A [ [N1o]3|d (6.3.27)
M, A 0 1A 0
Using Gauss Quadrature integration rule the above expression can be evaluated as,
Ni
{Q}=ad> > “ww,[J|{ 0 (6.3.28)
i=1 i=1 0

i=1,234
The nodal load vectors from each element are assembled to find the global load vector at all the nodes.
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Lecture 4: Finite Element Analysis of Skew Plate

6.4.1 Introduction
Skew plates often find its application in civil, aerospace, naval, mechanical engineering structures.

Particularly in civil engineering fields they are mostly used in construction of bridges for dealing
complex alignment requirements. Analytical solutions are available for few simple problems. However,
several alternatives are also available for analyzing such complex problems by finite element methods.
Commonly used three discretization methods for skew plates are shown in Fig 6.4.1.

\

\

(b) Discretization using combination of
rectangular and triangular plate
elements

(a) Discretization using rectangular plate
elements

NANANAVAUANAN
ARV
ANV
NANANANANANAN
AR
ANV

(c) Discretization using skew plate element

Fig 6.4.1 Discretization of a skew plate
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If the skew plate is discretized using only rectangular plate elements, the area of continuum excluded
from the finite element model may be adequate to provide incorrect results. Another method is to use
combination of rectangular and triangular elements. However, such analysis will be complex and it may
not provide best solution in terms of accuracy as, different order of polynomials is used to represent the
field variables for different types of elements. Another alternative exist using skew element in place of
rectangular element.

6.4.2 Finite Element Analysis of Skew Plate
Let consider a skew plate of dimension “2a” and ““2b”” as shown in Fig. 6.4.2. Let the skew angle of the
element be “¢”. It is possible for the parallelogram shown in Fig. 6.4.3 to map the coordinate from
orthogonal global coordinate system to a skew local coordinate system. If the local coordinates are
represented in the form of & #, then the relationship can is represented as,

X=¢€+mcosd, y=nsino (6.4.1)
Hence,

1= Y COSEeco, E=X—-ycoto (6.4.2)

A’

Fig. 6.4.2 Skew plate in global coordinate system
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p(x.y)
En)

Fig. 6.4.3 Point “P” in global and local coordinate system

It is important to note that the terms (& #) in the above equations represent the absolute coordinate of the
point “P” in skew coordinate system, not the natural coordinates. Since the above element has four
corner nodes and each node have three degrees of freedom present, a polynomial with minimum 12
independent terms are necessary for defining the displacement function w(x,y). Considering Pascal
triangle, and in order to maintain geometric isotropy, the displacement function may be considered as
follows:

W =0, + o€ +a,n+ 0‘3€2 +a,En+ 0‘5n2 + %£3 + 0L7€2’ﬂ

2 3 3 3 (6.4.3)
+ Q&N +agn” + oM+ agtn
Hence corresponding values for (8., 6, )are,
b = _Z_VT\]/ = _(OLZ 00+ 2000 + 0" 4 20Em + Bagn” 4 g€’ + 30‘11&]2) (6.4.4)
0
6, = a—vgv =y + 20,C + M+ 30E 4 2006 + agn’” + 3oy £ + ayym’ (6.4.5)
Or, in matrix form,
Q
witg o & oot € o’ o g
61=[0 0 -1 0 —& —2n 0 —€ —26n -3 £ —3?f
2 2 2 3
0, 01 0 2 n 0 3¢ 2tn 0 3 M o,
(6.4.6)

Or,
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The value of [a] can be determined using value of (w, 8¢, 6,,) at four nodes as

W,

D> D
x
o

><CD§‘<CD><CDE»<
W W NN NN

D>

2 J
B w

o>
x
~

<
N
.

Or,

1

O O OO Pk OO PFr O o

0

O r OO0 kP T O T O Bk

0

o O O O O

N

ta} =[@] " {d}

Further, considering eq. (6.4.2)

M_y
OX
%,
OX
Again,
Xx
(2):
Xky

on
oy
o8 _

02w

dx2

__azw

dy?

202w
oxdy
The values in right hand side of the eq. (6.4.11) can be calculated by using chain rule as,

0 O
0 O
0 O
0 b’
0 2b
-b 0
ab b?
a 2b
—b 0
0 O
a o0
0 O

— = COSeco

0

0
0
0
0
0
a

w

0
—3a’°
a3
0
—3a’®

ow _ow 0 ow on_ ow

ox 9L Ox
Therefore,

o'w _ O’w

x> oe?

on OX_(?_&

o O O o o

(6.4.7)

(6.4.8)

(6.4.9)

(6.4.10)

(6.4.11)

(6.4.12)

(6.4.13)



Similarly,
ow _ow 82 — + a—W o _ = —cosq)a—w + cosecd)a—w
dy oe dy on Oy ZS o
Thus, further derivation provides
9w , O*W , , O*W 2
= C0seC + cot — 2C0Sd cosec
; o 5 ¢ 2 o o DEom
And,
o’w 9 [ow)| 2
8x8y Ox 8y agan
Hence eq. (6.4.11) is converted to
( 82W ) . 82W ‘
— 5 8 2
gzx 1 0 0 a§
— V;I - =|cot’d» cosec’d -COtdCOSecH|{— V;I »
oy on
-2coto 0 cosec’d
20°wW 20°wW
| OX0Y | | 0£0n |
Or,
{Xxyy} - [H <¢)HX£'H}
Further, by partial differentiation of eq. (6.4.3),
0°w
- aiz = —205 — 60eE — 2a;m — B €M
0°w
- 87]2 = —205 — 20§ —6agn — 60 €
0*w
2 9E0m =4a,§ +4agm + 60‘10&2 + 60‘11711

Or, in matrix form,

(6.4.14)

(6.4.15)

(6.4.16)

(6.4.17)

(6.4.18)
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o
o€’

| (000 20 0 -6 21 0 0 -6

1—8"2’:0 00 0 0 -2 0 0 -2 —63 0
282” 000 0 0 0O 0 4 4q 0 6€
W

[9€O |

Or,

{Xe.}=[B{a}=[B]e"|{d}
{Xx,y} - [H <¢)][B][¢il]{di}

Again,

{MX,V}Z[DHXM}

Where [D] for plane stress condition is

Or,

1 p O
Eh?
D|= 1 0
D] |2<1—pJ2)LL 1
o o0 —"
2 |

Using eg. (6.4.20) in eq. (6.4.21),

{M,,}=[D][H(¢)|[B][A|{d}

The expression for bending strain energy stored,

U %JZ‘{xx,y}T{Mx,yhxdy

Hence force vector,

8{d} ff[q) ] [B]'[H (¢)][B][@’l]{d}dxdy
:ff[q)_l] [B]T[H(d))} [DHH(¢>][B][@_1H3|didn{d}

Where,

—6En

(6.4.19)

(6.4.20)

(6.4.21)

(6.4.22)

(6.4.23)

(6.4.24)

(6.4.25)
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|o(xy)| o og| | 1 e
J]= )| ox oy “leoso sinG =sind (6.4.26)
on  On|

From expression in eq. (6.4.25)

(Fl ==K} 6427

o{d}

Hence,
a b

[k]zsinﬂ-[@lf[ f [B(e,n)] [H(o)]' [D][H(0)][B(& )] dedn[~]

(6.4.28)
Thus, the element stiffness matrix of a skew element for plate bending analysis can be evaluated from
the above expression using Gauss Quadrature numerical integration.

31
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Lecture 5: Introduction to Finite Strip Method

6.5.1 Introduction

The finite strip method (FSM) was first developed by Y. K. Cheung in 1968. This is an efficient tool for
analyzing structures with regular geometric platform and simple boundary conditions. If the structure is
regular, the whole structure can be idealized as an assembly of 2D strips or 3D prisms. Thus the
geometry of the structure needs to be constant along one or two coordinate directions so that the width
of the strips or the cross-section of the prisms does not change. Therefore, the finite strip method can
reduce three and two-dimensional problems to two and one-dimensional problems respectively. The
major advantages of this method are (i) reduction of computation time, (ii) small amount of input (iii)
easy to develop the computer code etc. However, this method will not be suitable for irregular geometry,
material properties and boundary conditions.

6.5.2 Finite Strip Method

To understand the finite strip method, let consider a rectangular plate with x and y axes in the plane of
the plate and axis z in the thickness direction as shown in Fig. 6.5.1. The corresponding displacement
components of the plate are denoted as u, v and w.

Fig. 6.5.1 Finite strip in a plate

The strips are assumed to be connected to each other along a discreet number of nodal lines that coincide
with the longitudinal boundaries of the strip. The general form of the displacement function in two
dimensions for a typical strip is given by

w=w(x,y) = Xh=1 fin (V)X () (6.5.1)
Here, the functions f,(y) are polynomials and the functions Xy,(x) are trigonometric terms that satisfy the
end conditions in the x direction. The functions Xn,(x) can be taken as basic functions (mode shapes) of
the beam vibration equation.
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atx ut,
Here L is the length of beam strip and p is a parameter related to material, frequency and geometric

properties. The general solution of the above equation will become
Xm(x) = C; sin (Lx) + C, cos (Lx) + (3 sinh (%) + C, cosh (nLix) (6.5.3)

n n
L L
Four conditions at the boundaries are necessary to determine the coefficients C; to C4 in the above
expression.

6.5.2.1 Boundary conditions
According to different end conditions eq. (6.5.3) can be solved. Solution of the above equation is
evaluated for few boundary conditions in the below.
(a) Both end simply supported
For simply supported end, following conditions will arise:
Q) At one end (say at x =0) displacement and moment will be zero: x(0)=x"(0)=0

(i) Atother end (at x =L) displacement and moment will be zero: x(L)=x"(L)=0
Thus, considering above boundary conditions, eg. (6.5.3) yields to the following mode shape function:

Since the functions Xm are mode shapes, they are orthogonal and therefore, they satisfy the following
relations:
fOL Xm (X)X, (x)dx = 0 form#n (6.5.5)
And
fOLX"(x)m X"(xX)pdx =0 form#n (6.5.6)
The orthogonal properties of Xm(x) result in structural matrices with narrow bandwidths and thus

minimizing computational time and storage. Using relation in eq. (6.5.4), eq. (6.5.1) can now be written
as

w=w(xy) = T, fr().sin (22) (65.7)
(b) Both end fixed supported
In case of fixed supported end at both the side, the following boundary conditions will be adopted:
Q) At one end (say at x =0) displacement and slope will be zero: x(0)=x'(0)=0

(i) Atother end (at x =L) displacement and slope will be zero: x(L)=x(L)=0
For the above boundary conditions, eq. (6.5.3) yields to the following:

X, ()= sin[fléla_ﬁ}esin h[L"IZJé%s h, [%] [M” (6.5.8)

L
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+ -si i
Where [,um=4.73,7.8532,]0.996 ........ 2m 1n}‘andy’.fc“rf"=‘ o m
) -coshy  cos o

(c) One end simply supported, other end fixed
() At simply supported end (say at x =0) displacement and moment will be zero: x(0)=x"(0)=0

(i)  Atfixed end (say at x =L) displacement and slope will be zero: x(L)=x'(L)=0
Thus, the solution of eq. (6.5.3) will become

X, (x):win{rf—‘/?ﬁ] - [“I—mx] (65.9)

sinu,,
sinhy,,

where, 1, = 3.9266,7.0685,10.2102....... 2 m and a, =

(d) Both end free
If both the end of the strip element is free, the following boundary conditions will be assumed:

(1) At one end (say at x =0) moment and shear will become zero: x"(0)=x"(0)=0
(i) Atotherend (at x =L) moment and shear will become zero: x"(L)=x"(L)=0

Thus, for the above end conditions, eq. (6.5.3) yields to the following:

2X

X =l 70&X F1- i =1
(6.5.10)
Xm(x)zsin[ﬁ?f—c]dosinh“#l)é@sh”[ ol

2m-3

Where, o = ¥n =S Ry o0y —473,7.8532,10.996..... 7, form=234;--x

cosu,, - coshy,,

6.5.3 Finite Element Formulation
In this section, finite element solution for a finite strip will be evaluated considering simply supported
conditions at both the end. As a result, the functions fn(Y) in eq. (6.5.7) can be expressed for the

bending problem as

fn(Y) = w(y) = <oty y +o; y? +ocz 3 (6.5.11)
Applying boundary conditions of the strip plate of width b, the following relations will be obtained.
Wo 10 0 0 (24
HxO _ 0 1 0 O ay
wo( = [1 b p2 p? {az (6.5.12)
Bxo 0 1 2b 3p2|\a3
Thus, the nodal displacement can be written in short as
{d} = [Al{a} (6.5.13)

Thus, the unknown coefficient a are obtained from the following relations.
{a} = [A]7H{d} (6.5.14)
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The formulation of the finite strip method is similar to that of the finite element method. For example,
for a strip subjected to bending, the moment curvature relation will become

_ 2w
M, D, D, O 92
m,\_|p, D, o |J_2% 6.5.1
y - 1 y ayz ( 5 5)
My, 0 0 2Dy|| 42

dxdy

Where Mx , My and Mxy are moments per unit length and [D] is the elasticity matrix. From eq. (6.5.7)
the following expressions are evaluated to incorporate in the above equation.

0%w nm\% . nmx
5 = Tw) () sinE

a2 :
— 57 = —Zne—(2az + 6azy)sin=- (6.5.16)
2
;x;; = Y™ 2(a; + 2a,y + 3a3y?) (nL—”) cosnLix
The above expression is written in matrix form in the below
_ 8w
I g;cz | (Zw(y)N2sinNx
w .
4 “52 (T Y. —(Q2a, + 6asy)sinNx (6.5.17)
| 5 0w | ¥ 2(a; + 2a,y + 3azy?*)NcosNx
k axay)
Here,nL—" is denoted as N. Rearranging the above expression, one can find the following.
(_ 22w
I gfz | [sinNx 0 0 w(y)N?
4 o7 ¥ = 0 sin Nx 0 —(2a, + 6asy)
| 5 9w | 0 0 cos Nxl (2(a; + 2a,y + 3azy?)N
k dxdy
sinNx 0 0 T[N* N2y NZ? NZHE|(0°
= o sin Nx 0 0 0 -2 —6y a; (6.5.18)
0 0 cosNxl|0 2N 4Ny 6Ny?|{q,
Thus, in short, the curvature and moment equation will become
{3 = [HEIBO){a} = [H()BODIIA]H{d} (6.5.19)
{M} = [DI{x} = [DI[H()I[BO)]IIA]{d} (6.5.20)

Now, the strain energy for the bending element can be written similar to plate bending formulation.

L b L b
v =3[ [oronaray =3 [ [t 4T BOIHT DIHNBEIA (@) dxdy
00 00

(6.5.21)
Thus the force vector can be derived as
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{F} a{d} = f [AT T [BONIT[H ()] [DI[H ()][BDIA] ™ dx dy {d} = [k]{d}
(6.5.22)
Thus, the stiffness matrix of a strip element can be obtained from the following expression.

[k] = f [ AT BO)T[H@)IT[DIHOBG)I[A] dx dy
s B(y)] [H ()] [DI[H(0)]B ()] dx dy [A]™ (6.5.23)
The stiffness matrix [K] can be simplified by integrating the termeL[H(x)]T[D][H(x)] dx as follows.
[ THCOTT[D][H (x)] dx

s [sin Nx 0 0 D, D, 0 sin Nx 0 0
=[] 0 sin Nx 0 Dy Dy 0 0 sin Nx 0 |dx
0 0 cosNxl[{0 0 2D, 0 0 cos Nx

[D,sinNx D;sin Nx 0 sin Nx 0 0
= fOL D;sinNx  Dysin Nx 0 0 sin Nx 0 dx

i 0 0 2Dyycos Nx 0 0 cos Nx

D, sin? Nx D;sin? Nx 0
= foL Dysin®* Nx  Dysin® Nx 0 dx (6.5.24)

0 0 Znycos Nx

Here, the terms Dy, Dyand Dy are constant and not varied with x or y. Following integrations are carried
out to simplify the above expression further.

2

Now fL sin?Nx dx = fL (1—0052Nx) dx = 1 [ _ sinZNx](L) _ 1 [ _ sinZNL]

2 2 2N 2N

st—L 1
Putting, N = —flnallyf sin?Nx dx will become = [L T] =L

L
1+cos2Nx

Similarly; fo cos’Nx dx = fo ( )dx =5[x + %]z :%L
Thus,
D, D, O
[H@DIH@]dx =£|D1 Dy 0 | = L[p] (6.5.25)
0 0 2D,

Using eq. (6.5.25), the expression for stiffness matrix [K] in eq. (6.5.23) is simplified as follows.
[k] = [A]" [ [BO)IT £ [DI[B(»)] dy [A7']
[ N? 0 0 ]
N2y 0 2N
N2y2 -2 4Ny
N2y3 _6y 6Ny2

D Dl 0 NZ NZy N2y2 N2y3
b, b, 0 0 o0 -2 -6y |dy[4]™?

_ Lra-117 (P
_Z[A ]fo
0 2Dyy||0 2N 4Ny 6Ny?
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NZ2D, N2D, 0
[ N?%yD, N%yD, 4ND,,
N%y2D, —2D, N?y?D; —2D,  8Dx,Ny
N2?y®D, — 6yD, NZ2y3D, —6yD, 12Ny?D,,

] NZ N2y N2y2 N2y3
0 0 -2 —6y |dy[A]™
0 2N 4Ny 6Ny?

o

(N*D,) (N*yD,) (N*y®D, — 2N?D,) (N*y*D, — 6N?yD,)
(N*yD,) (N*y?D, + 8N?D,,) (N*y®D, — 2N?yD, + 16N?yD,,) (N*y*D, — 6N?y?D, + 24N?y?D, )

Lo b < N*y*D, — 4N2y2D1) (N4y5Dx —2D;N?y3 — 6N%y3D, .
=-[4 f +4D, + 32N%y?D —12yD,, + 48N?y3D. dy[A]~
2[ ] ) (N4y2Dx—2N2D1) (N4y3Dx—2N2yD1 +8N2nyy) Ve 55/ en? y3ny N4y6[y) _6N2y4ny y[ ]

(N*y*D, — 6N2yD,) (N*y*D, — 6N2y2D, + 24N?y2D,,,) Yok Yo Y Y
* *y —2N*y*D; +12yD, —6N*y*D, +36y°D,
+48N%y*D,, +72N%y*D,,
(6.5.26)

Thus, by putting the assumed shape function, the stiffness matrix of a strip element can be evaluated
numerically using Gaussian Quadrature or other numerical integration methods.
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Lecture 6: Finite Element Analysis of Shell

6.6.1 Introduction
A shell is a curved surface, which by virtue of their shape can withstand both membrane and bending
forces. A shell structure can take higher loads if, membrane stresses are predominant, which is primarily
caused due to in-plane forces (plane stress condition). However, localized bending stresses will appear
near load concentrations or geometric discontinuities. The shells are analogous to cable or arch structure
depending on whether the shell resists tensile or, compressive stresses respectively. Few advantages
using shell elements are given below.

1. Higher load carrying capacity
Lesser thickness and hence lesser dead load
Lesser support requirement
Larger useful space
Higher aesthetic value.

SAE I A

The example of shell structures includes large-span roof, cooling towers, piping system, pressure vessel,
aircraft fuselage, rockets, water tank, arch dams, and many more. Even in the field of biomechanics,
shell elements are used for analysis of skull, Crustaceans shape, red blood cells, etc.

6.6.2 Classification of Shells
Shell may be classified with several alternatives which are presented in Fig 6.6.1.
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Fig 6.6.1 Classification of shells

Depending upon deflection in transverse direction due to transverse shear force per unit length, the shell
can be classified into structurally thin or thick shell. Further, depending upon the thickness of the shell
in comparison to the radii of curvature of the mid surface, the shell is referred to as geometrically thin or
thick shell. Typically, if thickness to radii of curvature is less than 0.05, then the shell can be assumed as
a thin shell. For most of the engineering application the thickness of shell remains within 0.001 to 0.05
and treated as thin shell.

6.6.3 Assumptions for Thin Shell Theory
Thin shell theories are basically based on Love-Kirchoff assumptions as follows.

1. As the shell deforms, the normal to the un-deformed middle surface remain straight and normal
to the deformed middle surface undergo no extension. i.e., all strain components in the direction
of the normal to the middle surface is zero.

2. The transverse normal stress is neglected.

Thus, above assumptions reduce the three dimensional problems into two dimensional.

6.6.4 Overview of Shell Finite Elements
Many approaches exist for deriving shell finite elements, such as, flat shell element, curved shell
element, solid shell element and degenerated shell element. These are discussed briefly bellow.
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(a) Flat shell element

The geometry of these types of elements is assumed as flat. The curved geometry of shell is obtained by
assembling number of flat elements. These elements are based on combination of membrane element
and bending element that enforced Kirchoff’s hypothesis. It is important to note that the coupling of
membrane and bending effects due to curvature of the shell is absent in the interior of the individual
elements.

(b) Curved shell element

Curved shell elements are symmetrical about an axis of rotation. As in case of axisymmetric plate
elements, membrane forces for these elements are represented with respected to meridian direction
as(u, N,, My) and in circumferential directions as(w, Ny, M,). However, the difficulties associated with
these elements includes, difficulty in describing geometry and achieving inter-elemental compatibility.
Also, the satisfaction of rigid body modes of behaviour is acute in curved shell elements.

(c) Solid shell element

Though, use of 3D solid element is another option for analysis of shell structure, dealing with too many
degrees of freedom makes it uneconomic in terms of computation time. Further, due to small thickness
of shell element, the strain normal to the mid surface is associated with very large stiffness coefficients
and thus makes the equations ill conditioned.

(d) Degenerated shell elements

Here, elements are derived by degenerating a 3D solid element into a shell surface element, by deleting
the intermediate nodes in the thickness direction and then by projecting the nodes on each surface to the
mid surface as shown in Fig. 6.6.2.

(@) 3D solid element (b) Degenerated Shell element
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6.6.2 Degeneration of 3D element

This approach has the advantage of being independent of any particular shell theory. This approach can
be used to formulate a general shell element for geometric and material nonlinear analysis. Such element
has been employed very successfully when used with 9 or, in particular, 16 nodes. However, the 16-
node element is quite expensive in computation. In a degenerated shell model, the numbers of unknowns
present are five per node (three mid-surface displacements and two director rotations). Moderately thick
shells can be analysed using such elements. However, selective and reduced integration techniques are
necessary to use due to shear locking effects in case of thin shells. The assumptions for degenerated
shell are similar to the Reissner-Mindlin assumptions.

6.6.5 Finite Element Formulation of a Degenerated Shell

Let consider a degenerated shell element, obtained by degenerating 3D solid element. The degenerated
shell element as shown in Fig 6.6.2(b) has eight nodes, for which the analysis is carried out. Let (¢,7)
are the natural coordinates in the mid surface. And ¢ is the natural coordinate along thickness direction.
The shape functions of a two dimensional eight node isoparametric element are:

L _-90-ne—my)  @+9a-90-1)
1 4 5 2

o _ArO-ne-n-y @+t
i 4 : 2 (6.6.1)

o _HOMEn(EE-) A=+
3 4 7 2

O e N ¢ 50 )
4 4 8 2

The position of any point inside the shell element can be written in terms of nodal coordinates as

X . . X . X,
y :ZNi<€1 77) % Yi +%§ Yi (6.6.2)
z - Z; top Z; bottom

Since, ¢ is assumed to be normal to the mid surface, the above expression can be rewritten in terms of a
vector connecting the upper and lower points of shell as

X s 1 X X X X
S
Y= Ni<§’ 77) E Yi 1Y +E Yi —1Yi
i=1
z Z top Zi bottom Z top Zi bottom

Or,
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X X.
8 1
Y= Z N; (f’ 77) Yi +§V3i (6.6.3)
| Z - Z;
Where,
X, . X, X; X, X,
1Yi :E Yi 1Y and, V3i =1Yi —1Yi (6-6-4)
Z Z ) Z Z
! I Jtop 1 J bottom ' Jtop ! J bottom

z(w)

r(v)
u} x(u)

Fig. 6.6.3 Local and global coordinates

For small thickness, the vector V3 can be represented as a unit vector tivs;:

X X:

8 1
y = Z Ni (5! 77) yi +§tiv3i (665)
z| z

Where, t; is the thickness of shell at i node. In a similar way, the displacement at any point of the shell
element can be expressed in terms of three displacements and two rotation components about two
orthogonal directions normal to nodal load vector V3; as,

u u,
=3 u i+ S )| 655)
W i=1 W i

Where, («;, B;) are the rotations of two unit vectors vi; & v, about two orthogonal directions normal to
nodal load vector V3;. The values of vi; and v,; can be calculated in following way:
The coordinate vector of the point to which a normal direction is to be constructed may be defined as

X=Xi + Y] + 2K (6.6.7)
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In which, 1, J, k are three (orthogonal) base vectors. Then, V,,is the cross product of i & V3 as shown

below.
V, =ixV, & V, =V, xV, (6.6.8)
and,
Vi
= & v, = 6.6.9
W= Al & (6:69)
6.6.5.1 Jacobian matrix
The Jacobian matrix for eight node shell element can be expressed as,
8 ON 8 «\ ON. ON
X; +tX; Aty ) — zZ, +1z,
) RoemiFe Lla )G
8 «\ON 8 «\ ON. 8 ON,
D=0 +) == So(vi+ty)) = (z+1z ) (6.6.10)
i—1 an i1 an i=1
8 8 8
> N > Ny, > Nz
i=1 i=1 i=1
6.6.5.2 Strain displacement matrix
The relationship between strain and displacement is described by
{e}=[B]{d} (6.6.11)
Where, the displacement vector will become:
{d }T ={u v, wovy, oy VigVos | (6.6.12)
And the strain components will be
ou
OX
o
oy
ou ov
A | 6.6.13
<] dy  ox (6.6.13)
v, ow
0z oy
o, ou
ox 0z

Using eg. (6.6.6) in eq. (6.6.13) and then differentiating w.r.t. (&,n, ¢) the strain displacement matrix

will be obtained as
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ou v oowl [oN N (0N
0& 0§ 0¢ o0& o0& 4T o0& T
uov owl SN s NG| g oN |
on on on| FHlop|t TV F 2| oy ﬂz =2 Yoy
ou v w0 N | NG|
¢ O¢ 0Jg
(6.6.14)
6.6.5.3 Stress strain relation
The stress strain relationship is given by
{o}=[D|{e} (6.6.15)
Using eqg. (6.6.11) in eq. (6.6.15) one can find the following relation.
{o}=[D]B]{d} (66.16)
Where, the stress strain relationship matrix is represented by
1 u 0 0 0
u 1 0 0 0
0o o =« 0 0
D)= E 2 (6.6.17)
1—4° -
“lo o o s 0
2
1—
0 0 0 0 il > )

The value of shear correction factor « is considered generally as 5/6. The above constitutive matrix can
be split into two parts ([Dy] and [Ds] )for adoption of different numerical integration schemes for
bending and shear contributions to the stiffness matrix.

o] &[]
[D]: (6.6.18)
o] ¢ [D]
Thus,
1 u 0
[Db]:l_E sl 1 0 (6.6.19)
8 0 1-u
2
and
Ea |1 O
[Ds]: 2(1+M) 0 J (6.6.20)
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It may be important to note that the constitutive relation expressed in eg. (6.6.19) is same as for the case
of plane stress formulation. Also, eq. (6.6.20) with a multiplication of thickness h is similar to the terms
corresponds to shear force in case of plate bending problem.

6.6.5.4 Element stiffness matrix
Finally, the stiffness matrix for the shell element can be computed from the expression

K]= [[[18]'[D][B]d (6.6.21)
However, it is convenient to divide the elemental stiffness matrix into two parts: (i) bending and
membrane effect and (ii) transverse shear effects. This will facilitate the use of appropriate order of
numerical integration of each part. Thus,

k]=[k], +[k], (6.6.22)
Where, contribution due to bending and membrane effects to stiffness is denoted as [k], and transverse
shear contribution to stiffness is denoted as [K]s and expressed in the following form.

K, = [[[18],"[D], 8], a2 and [k], = [ [[B]"[D][B], a© (66.23)
Numerical procedure will be used to evaluate the stiffness matrix. A 2 x2 Gauss Quadrature can be used

to evaluate the integral of [k], and one point Gauss Quadrature may be used to integrate [k]s to avoid
shear locking effect.



