
Lecture 1: Constant Strain Triangle 
 
The triangular elements with different numbers of nodes are used for solving two dimensional 
solid members. The linear triangular element was the first type of element developed for the 
finite element analysis of 2D solids. However, it is observed that the linear triangular element is 
less accurate compared to linear quadrilateral elements. But the triangular element is still a very 
useful element for its adaptivity to complex geometry. These are used if the geometry of the 2D 
model is complex in nature. Constant strain triangle (CST) is the simplest element to develop 
mathematically. In CST, strain inside the element has no variation (Ref. module 3, lecture 2) and 
hence element size should be small enough to obtain accurate results. As indicated earlier, the 
displacement is expressed in two orthogonal directions in case of 2D solid elements. Thus the 
displacement field can be written as 

  u
d

v
                  (5.1.1) 

Here, u and v are the displacements parallel to x and y directions respectively.  
 
5.1.1 Element Stiffness Matrix for CST  
A typical triangular element assumed to represent a subdomain of a plane body under plane 
stress/strain condition is represented in Fig. 5.1.1. The displacement (u, v) of any point P is 
represented in terms of nodal displacements  
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        (5.1.2) 

Where, N1, N2, N3 are the shape functions as described in module 3, lecture 2.  

 
Fig. 5.1.1 Linear triangular element for plane stress/strain 



 
The strain-displacement relationship for two dimensional plane stress/strain problem can be 
simplified in the following form from three dimensional cases (eq.1.3.9 to1.3.14).  
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In case of small amplitude of displacement, one can ignore the nonlinear term of the above 
equation and will reach the following expression.  
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Hence the element strain components can be represented as,  
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Or,  
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Or,  [ ]{ }B dε =           (5.1.6) 



In the above equation [B] is called as strain displacement relationship matrix. The shape 
functions for the 3 node triangular element in Cartesian coordinate is represented as,  
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Where,  

 1 2 3 3 2x y x y ,     2 3 1 1 3x y x y ,     3 1 2 2 1x y x y ,    

 1 2 3y y ,      2 3 1y y ,      3 1 2y y ,    (5.1.8) 
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Hence the required partial derivatives of shape functions are, 
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Hence the value of [B] becomes:  
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According to Variational principle described in module 2, lecture 1, the stiffness matrix is 
represented as, 

[ ] [ ] [ ][ ]Tk B D B d
Ω

= Ω∫∫∫        (5.1.10) 

Since, [B] and [D] are constant matrices; the above expression can be expressed as 
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For a constant thickness (t), the volume of the element will become A.t . Hence the above 
equation becomes, 

[ ] [ ] [ ][ ]Tk B D B At=         (5.1.12) 

For plane stress condition, [D] matrix will become:  
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Therefore, for a plane stress problem, the element stiffness matrix becomes, 
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Or,  
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Where, ( )1
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Similarly for plane strain condition, [D] matrix is equal to,  
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Hence the element stiffness matrix will become: 
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Where ( )1M µ= −  

 
 
5.1.2 Nodal Load Vector for CST  
From the principle of virtual work, 

           T T Td u F d u F d 
  

            (5.1.18) 

Where, FΓ, and FΩ are the surface and body forces respectively.  Using the relationship between 
stress-stain and strain displacement, one can derive the following expressions: 
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Hence eq. (5.1.18) can be rewritten as, 
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Or,            TT TSB D B d d N F d N F d 
  

          (5.1.21) 

Here, [Ns] is the shape function along the boundary where forces are prescribed. Eq.(5.1.21) is 
equivalent to    k d F , and thus, the nodal load vector becomes 
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For a constant thickness of the triangular element eq.(5.1.22) can be rewritten as  
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For the a three node triangular two dimensional element, one can represent Fand F  as,   
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For example, in case of gravity load on CST element,   x

y

F 0
F

F g





                    
 

For this case, the shape functions in terms of area coordinates are:  
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     (5.1.24) 

As a result, the force vector on the element considering only gravity load, will become,  
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     (5.1.25) 

The integration in terms of area coordinate is given by, 
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Thus, the nodal load vector will finally become 
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Lecture 2: Linear Strain Triangle 
 
5.2.1 Element Stiffness Matrix for LST 
In case of CST, it is observed that the strain within the element remains constant. Though, these 
elements are able to provide enough information about displacement pattern of the element, but 
it is unable to provide adequate information about stress inside an element. This limitation will 
be significant enough in regions of high strain gradients. The use of a higher order triangular 
element called Linear Strain Triangle (LST) significantly improves the results at these areas as 
the strin inside the element is varying. The LST element has six nodes (Fig. 5.2.1) and hence, 
twelve degrees of freedom. Thus the displacement function can be chosen as follows. 
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Fig. 5.2.1 Linear strain triangle element 

 
Therefore, the element strain matrix is obtained as  
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In the area coordinate system as discussed in module 3, lecture 3 we can write the shape function 
for the six node triangular element as 
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The displacement (u,v) of any point within the element can be represented in terms of their nodal 
displacements with the use of interpolation function. 
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Using eq.(5.2.4) we can rewrite eq.(5.2.2) as,  
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Or,  
[ ]{ }B dε =           (5.2.5) 

Where,  
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Using Chain rule,  
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As discussed in module 3, lecture 1, we can write the above expression as,  
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Similarly we can evaluate expressions for other terms and can be written as, 
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The stiffness matrix of the element is represented by, 

[ ] [ ] [ ][ ]Tk B D B d
Ω

= Ω∫∫∫         (5.2.7) 

The, [D] matrix is the constitutive matrix which will be taken according to plane stress or plane 
strain condition. The nodal strain and stress vectors are given by, 
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Referring to section 3.3.1, using proper values of area coordinates in [B] matrix, one can find 
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And, 
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Thus, the element stiffness can be evaluated by putting the values from eq. (5.2.11) in eq. (5.2.7).   
 
5.2.2 Nodal Load Vector for LST 
Similar to 3-node triangular element, the load will be lumped at each node which can be 
computed using the earlier expression, 
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And for element with constant thickness, 
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5.2.3 Numerical Example using CST 
Determine the displacements at the nodes for the following 2D solid continuum considering a 
constant thickness of 25 mm, Poisson’s ratio, µ as 0.25 and modulus of elasticity E as 2 x 105 
N/mm2. The continuum is discritized with two CST plane stress elements. 
 

 
 

Fig. 5.2.2 Geometry and discretization of the continuum 
 
The element 1 is connected with node 1, 3 and 4 and let assume its Cartesian coordinates are (x1, 
y1), (x3, y3) and (x4, y4) respectively. If we consider nodes 1, 3 and 4 are similar to node 1, 2 and 
3 in eq.(5.1.9) then the [B] can be written as 
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By introducing values of β & γ discussed in previous lecture note, we can get value of [B] as 
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For plain stress problem, putting the values of E and µ one can find the following values. 
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Therefore the stiffness matrix for the element 1 will be 

[ ] [ ] [ ][ ]1

Tk tA B D B=  

Putting values of t, A, [B] & [D]we will get, 
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Similarly element 2 is connected with nodes 1, 2 and 3 and global coordinates of these nodes are 
(x1, y1), (x2, y2) and (x3, y3) respectively. For this element, by proceeding in a similar manner to 
element 1 we can calculate [B] matrix as, 

[ ]
1 1 0 0 0 0

1 0 0 0 0 3 3
1500

0 3 3 1 1 0
B

− 
 = − 
 − − 

 

Hence, the elemental stiffness matrix becomes, 
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By assembling the stiffness matrices into global stiffness matrix [K],
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Now, applying equation [ ] [ ]{ }F K d= , the following expression can be written. 
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Putting boundary conditions 1 1 2 4 4 0u v u u v= = = = =  and adopting elimination technique for 
applying boundary condition we get expression, 
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Solving the above expression, the unknown nodal displacements may be obtained as follows. 
5

2 25.96 10v −= × mm, 5
3 10.02 10u −= − × mm and 5

3 96.92 10v −= × mm. 

  



Lecture 3: Rectangular Elements 
 
The rectangular elements are widely used for solving two dimensional continuums. The main 
advantage of this type of element is the easy formulation and easy development of computer 
code. The element stiffness of such elements is derived here using the concept of isoparametric 
formulation.  
 
5.3.1 Computation of Element Stiffness 
In case of a four node rectangular element, the geometry and displacement filed can be expressed 
in terms of their nodal values with the help of interpolation function. As the formulation will be 
isoparametric, the interpolation function will become same for expressing both the variables. 
Thus, coordinates and displacements at any point inside the element (Fig. 5.3.1) can be expressed 
as 
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The above equations can be written in matrix form as 
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And  
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     (5.3.4) 

The shape function four node rectangular element is derived and shown in module 3, lecture 4. 
However the shape functions are reproduced here for easy reference for the derivation of the 
stiffness matrix. 
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Fig. 5.3.1 Four node rectangular element 

 



The strain-displacement relationship for two dimensional plane stress/strain problem can be 
simplified in the following form from three dimensional cases (eq.1.3.9 to1.3.14).  
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In case of small amplitude of displacement, one can ignore the nonlinear term of the above 
equation and will reach the following expression.  
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Using the shape function the above expression can be written as 
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Here, [B] is known as strain displacement relationship matrix. The derivatives of the shape 
functions are calculated using the chain rule. 
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Here, i is referred to number of nodes in an element and will be 4 in this case. Converting above 
expression in matrix form 
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The matrix [J] is referred to Jacobian matrix which is discussed in Lecture 7, module 3. Using 
eq. (5.3.1) one can write 
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    x x x x x

     (5.3.11) 

Putting the values of the nodal coordinates and shape functions of the four node element in the 
above equation the following relations will be obtained. 
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Substituting above values in Jacobian matrix the following relations will be obtained. 

    1

2 00
2

20 0
2

a
aJ and J

b
b



  
  
      
  
        

      (5.3.13) 

Thus, eq.(5.3.10) can be written as 
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After derivation of the shape functions expressed in eq.(5.3.5), the following values will be 
obtained. 
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So, the strain displacement relationship matrix, [B] will become as follows. 
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The element stiffness matrix will become 

[ ] [ ] [ ][ ] [ ] [ ][ ]T Tk t B D B dx dy t B D B J d dξ η= =∫∫ ∫∫    (5.3.17) 

It is seen that the above is expressed in terms of ξ and η and hence can be numerically integrated 
by the Gauss Quadrature rule.  The stiffness matrix for each element can be found which needs 
to be globally assembled for getting the global stiffness matrix to obtain the solution. The 
stiffness matrix of higher order rectangular element can be derived in a similar fashion. For 
example, in case of eight node rectangle element, the size of [B] matrix will become 16 × 3 
which was 8 × 3 for four node element. Thus the size of element stiffness for eight node element 
will become 16 × 16. 
 
5.3.2 Computation of Nodal Loads 
If a distributed load acts on a side of a four node rectangular element, the nodal load vector can 
be calculated the similar procedure as discussed in case of triangular element. If an element as 
shown below is subjected to a linearly varying intensities of load at its one side, then the 
magnitude of this at any point on the side can be expressed by its interpolation function as 
follows. 
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Here, qx2 and qx3 are the force intensities per unit length at nodes 2 and 3 respectively. The load 
at nodes can be calculated from the following expression.  
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As ξ=1 along the side 2-3, the interpolation function will become  
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If the element thickness is t, then dΓ1 =t.dl. Thus the eq.(5.3.19) can be replaced as 

{ }
( )

( )

1
2

31

0
1

1 12
2 21

2
0

x
x

x

q
F t dl

q

η
η η

η

+

−

 
 − 

   − + =     +     
 
 
 

∫      (5.3.21) 

 
 

Fig. 5.3.2 Varying load on a four node element 
 
After integrating the above expression, the nodal load vector along x direction will become as 
follows. 
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Lecture 4: Numerical Evaluation of Element Stiffness 
 
Derivation of element stiffness for a four node rectangle element has been demonstrated in last 
lecture. The stiffness matrix of each element can be calculated easily by developing a suitable 
computer algorithm. To help students for developing their own computer code, a numerical 
example has been solved and demonstrated here.  
 
5.4.1 Numerical Example 
Calculate the stiffness matrix for the given four node rectangular element by the Gauss 
Quadrature integration rule using one point and two point formula assuming plane stress 
formulation. Consider, the thickness of element = 20 cm, E=2 × 103 kN/cm2 and µ =0.  
 

 
Fig. 5.4.1 Element Dimension 

 
5.4.2 Evaluation of Stiffness using One Point Gauss Quadrature 
For the calculation of stiffness matrix, first, 1×1 Gauss Quadrature integration procedure has 
been carried out. Thus, the natural coordinate of the sampling point will become 0,0 and weight 
will become 2.0 which is shown in the figure below.    

 
Fig. 5.4.2 Natural coordinates for one point Gauss Quadrature 

 



For a four node quadrilateral element, the shape functions and their derivatives are as follows. 
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The Jacobian matrix can be found from the following relations. 
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Considering the sampling point, (ξ=0 and η=0 ), the value of the Jacobian, [J] is  
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Now, the strain vector for the element will become 
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For plane stress condition 
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Assume the values of gauss weight, w = 2, the stiffness matrix [k] at this sampling point is 
[ ] [ ] [ ] [ ] | |Tk tw B C B J= , Where t is thickness of the element. Thus,
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5.4.3 Evaluation of Stiffness using Two Point Gauss Quadrature 



In this case, 2×2 Gauss Quadrature integration procedure has been carried out to the calculate the 
stiffness matrix of the same element for a comparison. The natural coordinate of the sampling 
point is shown in the figure below.    

 
Fig. 5.4.3 Natural Coordinates for Two Points Gauss Quadrature 

 
The natural co-ordinates of the sampling points for 2×2 Gauss Quadrature integration are 

1 +0.57735 +0.57735  
2 -0.57735 +0.57735 
3 -0.57735 -0.57735  
4 +0.57735 -0.57735 
 

For a four node quadrilateral element, the shape functions and their derivatives are as follows. 
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The Jacobian matrix will be 
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(a) At sampling point 1, (ξ=0.57735, η=0.57735)  
The value of the Jacobian, [J] at sampling point 1 will become  
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The values of gauss weights are wi=wj=1.0. Therefore, the stiffness matrix [k] at this sampling 

point is [ ] [ ] [ ] [ ] | |T
i j ij ij ijk tw w B C B J= , where t is thickness of the element. Thus at sampling point 
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(b) At sampling point 2, (ξ=-0.57735, η=0.57735)  
The value of the Jacobian, [J] at sampling point 2 can be calculated in a similar way and finally 
the strain-displacement relationship matrix and then the stiffness matrix [k2] can be evaluated 
and is shown below.  
 

 

[ ] 3
2

0.0113 0 0.0042
0 0.0042 0.0113

0.0113 0 0.0158
0 0.0158 0.0113

20 1 1 875 2 10
0.003 0 0.0158

0 0.0158 0.003
0.003 0 0.0042

0 0.0042 0.0030

0.0113 0 0.0113 0 0.0030 0 0.0030 0
0 0.0042 0 0.015

k

− − 
 − − 
 −
 − = × × × × × × 
 
 
 −
 

−  
− −

− − 8 0 0.0158 0 0.0042
0.0021 0.0056 0.0079 0.0056 0.0079 0.0015 0.0021 0.0015

 
 
 
 − − − − 

 

 
 

[ ] 4
2

0.4756 0.0833 0.3276 0.0833 0.2357 0.0223 0.0878 0.0223
0.2847 0.3110 0.0112 0.3110 0.2929 0.0833 0.0030

0.8797 0.3110 0.3164 0.0833 0.2357 0.0833
1.0930 0.3110 0.8113 0.0833 0.2929

10
0.4673 0.0833 0.0848 0.08

k

− − − −
− − − −

− − − −
− −

= ×
− 33

0.8868 0.0223 0.2174
0.0632 0.0223

0.0785

sym

 
 
 
 
 
 
 
 
 
 −
 
  

 



 
 
(c) At sampling point 3, (ξ=-0.57735, η=-0.57735)  
The value of the strain-displacement relationship matrix and then the stiffness matrix [k3] can be 
evaluated and is shown below.  
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− − 0042 0 0.0042 0 0.0158
0.0079 0.0056 0.0021 0.0056 0.0021 0.0015 0.0079 0.0015

 
 
 
 − − − − 

 

 

[ ] 4
3

0.8797 0.3110 0.3276 0.3110 0.2357 0.0833 0.3164 0.0833
1.0930 0.0833 0.0112 0.0833 0.2929 0.3110 0.8113

0.4756 0.0833 0.0878 0.0223 0.2357 0.0223
0.2847 0.0833 0.0030 0.3110 0.2929

10
0.0632 0.0223 0.0848 0.02

k

− − − − −
− − − −

− − −
− −

= ×
− 23

0.0785 0.0833 0.2174
0.4673 0.0833

0.8868

sym

 
 
 
 
 
 
 
 
 
 −
 
  

 

 
 

(d) At sampling point 4, (ξ=0.57735, η=-0.57735)  
The value of the strain-displacement relationship matrix and then the stiffness matrix [k3] can be 
evaluated and is shown below.  
 



[ ] 3
4

0.0030 0 0.0158
0 0.0158 0.0030

0.0030 0 0.0042
0 0.0042 0.0030

20 1 1 875 2 10
0.0113 0 0.0042

0 0.0042 0.0113
0.0113 0 0.0158

0 0.0158 0.0113

0.0030 0 0.0030 0 0.0113 0 0.0113 0
0 0.0158 0 0.

k

− − 
 − − 
 −
 − = × × × × × × 
 
 
 −
 

−  
− −

− − 0042 0 0.0042 0 0.0158
0.0079 0.0015 0.0021 0.0015 0.0021 0.0056 0.0079 0.0056

 
 
 
 − − − − 

 

 
 

[ ] 4
4

0.4673 0.0833 0.0848 0.0833 0.2357 0.3110 0.3164 0.3110
0.8868 0.0223 0.2174 0.0223 0.2929 0.0833 0.8113

0.0632 0.0223 0.0878 0.0833 0.2357 0.0833
0.0785 0.0223 0.0030 0.0833 0.2929

10
0.4756 0.0833 0.3276 0.08

k

− − − −
− − − −

− − −
− −

= ×
− − 33

0.2847 0.3110 0.0112
0.8797 0.3110

1.0930

sym

 
 
 
 
 
 
 
 
 
 −
 
  

 

 
The stiffness matrix of the element can be computed as the sum of the values at the four 
sampling points: 1 2 3 4[ ] [ ] [ ] [ ] [ ]k k k k k= + + + . Thus, the final value of the stiffness matrix will 
become 
 

 [ ] 4

1.8857 0.5000 0.4857 0.5000 0.9429 0.5000 0.4571 0.3110
2.3429 0.5000 0.4571 0.5000 1.1714 0.5000 1.6286

1.8857 0.5000 0.4571 0.5000 0.9429 0.5000
2.3429 0.5000 1.6286 0.5000 1.1714

10
1.8857 0.5000 0.4857 0.

k

− − − − −
− − − −

− − − −
− − −

= ×
− − 5000

2.3429 0.5000 0.4571
1.8857 0.5000

2.3429

sym

 
 
 
 
 
 
 
 
 
 −
 
    

  



Lecture 5: Computation of Stresses, Geometric Nonlinearity and Static Condensation 
 
5.5.1 Computation of Stresses 
After solving the static equation of {F} = [K]{d}, the nodal displacement {d} can be obtained in 
global coordinate system. The element nodal displacement d  can then be calculated from the 

nodal connectivity of the element. Using strain-displacement relation and then stress-strain 
relation, the stress at the element level are derived. 

        σ= DεD B d         (5.5.1) 

Here,   is the stress at the Gauss point of the element as the sampling points for the integration 

has been considered as Gauss points. Here, [D] is the constitutive matrix, [B] is the strain 
displacement matrix of the element. As a result these stresses at Gauss points need to extrapolate 
to the corresponding nodes of the element. It is well established that 2 × 2 Gauss integration 
points are the optimal sampling points for two dimensional isoparametric elements. The ‘local 
stress smoothing’ is a technique that can be used to extrapolate stresses computed at Gauss 
points to nodal points. The stresses are computed at four Gauss points (I, II, III and IV) of an 8 

node element as shown in Fig. 5.5.1. For example, at point III, r = s =1 an d  ξ = η =  31 . 

Therefore the factor of proportionality is 3 ; i.e., 

3ξ=r  and 3η=s    (5.5.2) 
Stresses at any point P in the element are found by the usual shape function as 

∑ ′= idiP N σσ  for i = 1,2,3,4   (3.5.3) 

In the above equation, Pσ  is yx σσ ,  and xyτ  at point P. diN ′  are the bilinear shape functions 

written in terms of r and s rather than ξ and η as 

( )( )srNdi ±±=′ 11
4
1    (5.5.4) 

diN ′  are evaluated at r and  s  coordinates of point P. Let the point P coincides with the corner 1. 

To calculate stress 1xσ  at corner 1 from xσ values at the four Gauss points, substitution of r and 
s into the shape functions will give 

xIVxIIIxIIxIxI σσσσσ 500.0134.0500.08666.1 −+−=    (5.5.5) 
 
 
 
 



 
 
Fig. 5.5.1 Natural coordinate systems used in extrapolation of stresses from Gauss points 
 
The resultant extrapolation matrix thus obtained may be written as 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )





















































+−−+
++−−
−++−
−−++
+−−−
−+−−
−−+−
−−−+

=

































IV

III

II

I

σ
σ
σ
σ

σ
σ
σ
σ
σ
σ
σ
σ

431431431431
431431431431
431431431431
431431431431
2315.02315.0

5.02315.0231
2315.02315.0

5.02315.0231

8

7

6

5

4

3

2

1

  (5.5.6) 

 
Here, 1σ , 2σ …….. 8σ  are the smoothened nodal values and Iσ … IVσ are the stresses at the 
Gauss points. Smoothened nodal stress values for four node rectangular element can be also be 
evaluated in a similar fashion. The relation between the stresses at Gauss points and nodal point 
for four nodel element will be 
 



1 I

2 II

3 III

IV4

3 1 3 11 1
2 2 2 2

1 3 1 31 1
2 2 2 2

3 1 3 11 1
2 2 2 2

1 3 1 31 1
2 2 2 2

 
     
                                                                
 
      

    (5.5.7) 

 
 

The stress at particular node joining with more than one element will have different magnitude as 
calculated from adjacent elements (Fig. 5.5.2(a)). The stress resultants are then modified by 
finding the average of resultants of all elements meeting at a common node. A typical stress 
distribution for adjacent elements is shown in Fig. 5.5.2(b) after stress smoothening. 



 
 

Fig. 5.5.2 Stress smoothening at common node 
 
 
5.5.2 Geometric Nonlinearity  
As discussed earlier, nonlinear analysis is mainly of two types: (i) Geometric nonlinearity and 
(ii) Material nonlinearity. For geometric nonlinearity consideration, the relation between strain 
and displacement is of utmost importance in the finite element formulation for stress analysis 
problems. In case of plane stress/strain problem, the nonlinear term of the strain expression are 
dropped for the sake of simplicity in the analysis. However, for large displacement problems, the 
nonlinear strain term plays a vital role to obtain accurate response. The generalized strain-
displacement relations for the two-dimensional plane stress/strain problems are rewritten here to 
derive the nonlinear solution. 
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y

xy

u u v
x x x
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ε

ε

γ

 ∂ ∂ ∂   = + +    ∂ ∂ ∂     
    ∂ ∂ ∂

= + +    ∂ ∂ ∂     
 ∂ ∂ ∂ ∂ ∂ ∂

= + + + ∂ ∂ ∂ ∂ ∂ ∂ 

       (5.5.8)
 

 
The displacements at any point inside the node are expressed in terms of their nodla 
displacements. Thus, 

 [ ]{ }
1

n

i i i i
i

u N u N u
=

= =∑  and [ ]{ }
1

n

i i i i
i

v N v N v
=

= =∑
    (5.5.9) 

Therefore, 



[ ]{ } [ ]{ }
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= =
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∂

=
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=
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∂

=
∂

 

 (5.5.10)
 

Here, [B1] and [B2] are the derivative of the shape function [Ni] with respect to x and y 
respectively. The vectors {ui} and {vi} represent the nodal displacements vectors in x and y 
directions respectively. The vector of strains at any point inside an element,{ }ε  may be 
expressed in terms of nodal displacement as 

{ } [ ] { }B dε =  

 (5.5.11) 
where [B] is the strain displacement matrix. {d} is the nodal displacement vector and may be 
expressed as  

{ } { }
{ }

i

i

u
d

v
  =  
  

 

 (5.5.12) 
The matrix [B] may be expressed with two components as 

[ ] [ ] [ ]l nlB B B= +   

 (5.5.13) 
where, [Bl] and [Bnl] are the linear and nonlinear part of the strain-displacement matrix 
respectively and are expressed as follows: 

[ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]
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12

2

1

0
0

BB
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B
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 (5.5.14) 
and 
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 (5.5.15) 
5.5.2.1 Steps to include effect of geometrical nonlinearity  
The nonlinear geometric effect of the structure at a particular instant of time can be obtained by 
performing the following steps. 

1. Calculation of displacement {d}1  considering linear part of strain matrix [Bl]. 
2. Evaluation of nonlinear part of the strain matrix [Bnl] (eq5.5.15) adopting {d}1   from 

previous step. 
3. Evaluation of total strain matrix [B]  = [Bl]  + [Bnl]. 
4. Calculation of displacement {d}2 considering both linear and nonlinear part of strain 

matrix [B]. 
5. Repetition of steps 2 to 4 with {d}2, from which modified displacement, {d}3 are 

obtained. 
6. Step 5 is carried out until the displacements for two consecutive iteration converge 

i.e.,  

   

{ } { }
{ }

1j j

j

d d

d
ε−

−
<  

Where ε is any pre-assigned small value and j is the number of iterations. 
 
5.5.3 Static Condensation 
The higher order Lagrangian elements (i.e., nine node, sixteen node rectangular element) contain 
number of internal nodes.  This is necessary sometimes for the completeness of the desired 
polynomial used in displacement function for derivation of interpolation function. These internal 
nodes are not connected to the adjoining elements in the assemblage (Fig. 5.5.3). 



 
 

Fig. 5.5.3 Internal nodes of Nine node elements 
 
Thus, the displacements of these nodes are not required to formulate overall equilibrium 
equations of the structure. This limits the usefulness of these elements. A technique known as 
“static condensation” can be used to suppress the degrees of freedom associated with the internal 
nodes in the final computation. The technique of static condensation is explained below. The 
equilibrium equation for a system are expressed in the finite element form as 

    F = K d         (5.5.16) 

Where, {F}, [K] and {d} are the load vector, stiffness matrix and displacement vector for the 
entire structure. The above equation can be rearranged by separating the relevant terms 
corresponding to internal and external nodes of the elements. 

 
 

   
   

 
 

i ii ie i

e ei ee e

F K K d
=

F K K d

                         
      (5.5.17) 

Here, {di} and {de} are the displacement vectors corresponding to internal and external nodes 
respectively. Similarly, {Fi} and {Fe} are force vectors corresponding to internal and external 
nodes.  Now, the above expression can be written in the following form separately.  
 

       i ii i ie eF K d K d        (5.5.18) 

 

       e ei i ee eF K d K d        (5.5.19) 

The stiffness matrix and nodal load vector corresponds to the internal nodes can be separated out. 
For this, eq.(5.5.18) can be rewritten as 

          1 1
i ii i ii ie ed K F K K d        (5.5.20) 

Substituting the value of {di} obtained from the above equation in eq.(5.5.19), the following 
expression will be obtained. 



                1 1
e ei ii i ii ie e ee eF K K F K K d K d      (5.5.21) 

Here, the equations are reduced to a form involving only the external nodes of the elements. The 
above reduced substructure equations are assembled to achieve the overall equations involving 
only the boundary unknowns. Thus the above equation can be rewritten as 

                 1 1
e ei ii i ee ei ii ie e eF K K F K K K K d d        (5.5.22) 

Or 

    c c eF = K d         (5.5.23) 

Where,                   and-1 -1
c e ei ii i c ee ei ii ie eF = F - K K F K = K - K K K d . Here, [Kc] 

is called condensed or reduced stiffness matrix and {Fc} is the condensed or effective nodal load 
vector corresponding to external nodes of the elements.  In this process, the size of the matrix for 
inversion will be comparatively small. The unknown displacements of the exterior nodes, {de} 
can be obtained by inverting the matrix [Kc] in eq.(5.5.23). Once, the values of {de} are obtained, 
the displacements of internal nodes {di} can be found from eq.(5.5.20).  
  



Lecture 6: Axisymmetric Element 
 
5.6.1    Introduction 
Many three-dimensional problems show symmetry about an axis of rotation. If the problem 
geometry is symmetric about an axis and the loading and boundary conditions are symmetric 
about the same axis, the problem is said to be axisymmetric. Such three-dimensional problems 
can be solved using two-dimensional finite elements. The axisymmetric  problem are most 
conveniently defined by polar coordinate system with coordinates (r, θ, z) as shown in Fig. 5.6.1. 
Thus, for axisymmetric analysis, following conditions are to be satisfied. 

1. The domain should have an axis of symmetry and is considered as z axis.  
2. The loadings on the domain has to be symmetric about the axis of revolution, thus they 

are independent of circumferential coordinate θ. 
3. The boundary condition and material properties are symmetric about the same axis and 

will be independent of circumferential coordinate. 

 
Fig. 5.6.1 Cylindrical coordinates 

 
Axisymmetric solids are of total symmetry about the axis of revolution (i.e., z-axis), the field 
variables, such as the stress and deformation is independent of rotational angle θ. Therefore, the 
field variables can be defined as a function of (r, z) and hence the problem becomes a two 
dimensional problem similar to those of plane stress/strain problems. Axisymmetric problems 
includes, circular cylinder loaded with uniform external or internal pressure, circular water tank, 
pressure vessels, chimney, boiler, circular footing resting on soil mass, etc. 
 
5.6.2 Relation between Strain and Displacement 
An axisymmetric problem is readily described in cylindrical polar coordinate system:  r, z and θ. 
Here, θ measures the angle between the plane containing the point and the axis of the coordinate 

P( r,z, )θ•



system. At θ = 0, the radial and axial coordinates coincide with the global Cartesian X and Y 
coordinates.  Fig. 5.6.2 shows a cylindrical coordinate system and the definition of the position 
vectors. Let ˆˆ ˆr, z and  be unit vectors in the radial, axial, and circumferential directions at a point 
in the cylindrical coordinate system. 

 

 
 

Fig. 5.6.2 Cylindrical Coordinate System 
 
If the loading consists of radial and axial components that are independent of  θ and the material 
is either isotropic or orthotropic and the material properties are independent of θ, the 
displacement at any point will only have radial (𝑢𝑟) and axial (𝑢𝑧) components. The only stress 
components that will be nonzero are 𝜎𝑟𝑟 , 𝜎𝑧𝑧, 𝜎𝜃𝜃 𝑎𝑛𝑑 𝜏𝑟𝑧 . 

 
 

(a) Element in r-z plane (b) Element in r-θ plane 



 
Fig. 5.6.3 Deformation of the axisymmetric element 

A differential element of the body in the r-z plane is shown in Fig. 5.6.3(a). The element 
undergoes deformation in the radial direction. Therefore, it initiates   increase in circumference 
and associated circumferential strain. Let denote the radial displacement as u, the circumferential 
displacement as v, and the axial displacement as w. Dashed line represents the deformed 
positions of the body in Fig. 5.6.3(b). The radial strain can be calculated from the above diagram 
as  

r
1 u uε = u+×dr - u  =
dr r r

      
       (5.6.1) 

Since the rz plane is effectively the same as a rectangular coordinate system, the axial strain will 
become 

z
1 w wε = w+×dz - w  =
dz z z

      
      (5.6.2) 

 
Considering the original arc length versus the deformed arc length, the differential element 
undergoes an expansion in the circumferential direction. Before deformation, let the arc length is 
assumed as ds = rdθ. After deformation, the arc length will become ds = (r+u) dθ. Thus, the 
tangential strain will be 

 r +u d - rd uε =
rd r

 



       (5.6.3) 

Similarly, the shear strain will be 
 

rz

r z0 and 0

u w
z r

 

   
 

   
        (5.6.4) 

 
Thus, there are four strain components present in this case and is given by 
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   ∂ ∂     ∂ ∂            ∂ ∂= = =      

      
          ∂ ∂ ∂ ∂ +  

∂ ∂ ∂ ∂   

     (5.6.5) 

 
 



5.6.3   Relation between Stress and Strain 
The stress strain relation for axisymmetric case can be derived from the three dimensional 
constitutive relations. We know the stress-strain relation for a three-dimensional solid is 
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           (5.6.6) 
 
The stresses acting on a differential volume of an axisymmetric solid under axisymmetric 
loading is shown in Fig. 5.6.4. 
 

 
 

Fig. 5.6.4 Stresses acting on a differential volume 
 

Now, comparing the stress-strain components present in the axisymmetric case, the stress-strain 
relation can be expressed from the above expression as follows 
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  (5.6.7) 

 
Thus, the constitutive matrix [D] for the axisymmetric elastic solid will be 

 [D] = 𝐸
(1+𝜇)(1−2𝜇)

⎣
⎢
⎢
⎢
⎢
⎡
1 − 𝜇 𝜇 𝜇 0

𝜇 1 − 𝜇 𝜇 0

𝜇 𝜇 1 − 𝜇 0

0 0 0 1−2𝜇
2 ⎦
⎥
⎥
⎥
⎥
⎤

    (5.6.8) 

 
5.6.4    Axisymmetric Shell Element 
A cylindrical liquid storage container like structures (Fig. 5.6.5) may be idealized using 
axisymmetric shell element for the finite element analysis. It may be noted that the liquid in the 
container may be idealized with two dimensional axisymmetric elements. Let us consider the 
radius, height and, thickness of the circular tank are R, H and h respectively.  

 
Fig. 5.6.5 Thin wall cylindrical container 

 



The strain energy of the axisymmetric shell element (Fig. 5.6.6) including the effect of both 
stretching and bending are expressed as 

( )
0

H

y yθ θ y y
1U = Nε + N ε + M χ 2πRdy
2 ∫      (5.6.9) 

Here, Ny  and Nθ are the membrane force resultants and My is the bending moment resultant. The 
shell is assumed to be linearly elastic, homogeneous and isotropic. Thus the force and moment 
resultants can be expressed in terms of the mid-surface change in curvature χy as follows. 
 

 
 

Fig 5.6.6 Axisymmetric plate element 
 
Here, the strain-displacement relation is given by 

{ } [ ]{ }σ  ε D=          (5.6.10) 

                                                  
In which,  

{ }
y

yM
 

N
Nθσ

 
 =  
 
 

, { }
y

y

 θ

ε
ε ε

χ

 
 =  
 
 

 and [ ] 2
2

1 0
1 0

1
0 0

12

EhD
h

 
µ

µ
µ

 
 
 

=  −  
 
 

   (5.6.11) 

The generalized strain vector can be expressed in terms of the displacement vectors as follows. 

{ } [ ]{ } B dε =          (5.6.12) 

Where, 
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      (5.6.13) 

Here, u and v are the displacement components in two perpendicular directions. With the use of 
stress and strain vectors, the potential energy expression are written in terms of displacement 
vectors as 

{ } [ ] [ ][ ]{ }( )
0

T
H

Td B D B d1U = 2πR dy
2
× ∫      (5.6.14) 

Thus, the element stiffness are derived as 

[ ] [ ] [ ][ ]
0

2π  
H

Tk R B D B dy= ∫        (5.6.15) 

Similarly, neglecting the rotary inertia, the kinetic energy can be expressed as  

{ } [ ] [ ]{ }( )
0

TH
Td N m N1T = 2πR dyd

2
× ∫        (5.6.16)

 
Where, m denotes the mass of the shell element per unit area and { } d represents the velocity 

vector. Thus, the element mass matrix is given by  

[ ] [ ] [ ]
0

2π  
eL

TM Rm N N dy = ∫        (5.6.17) 

Lecture 7: Finite Element Formulation of Axisymmetric Element  
 
Finite element formulation for the axisymmetric problem will be similar to that of the two 
dimensional solid elements. As the field variables, such as the stress and strain is independent of 
rotational angle θ, circumferential displacement will not appear. Thus, the displacement field 
variables are expressed as 

   

   

n

i i
i=1

n

i i
i=1

u r,z = N r,z u

w r,z = N r,z w




       (5.7.1) 

Here, ui and wi represent radial and axial displacements respectively at nodes.  Ni (r, z) are the 
shape functions. As the geometry and field variables are independent of rotational angle θ, the 
interpolation function Ni (r, z) can be expressed similar to 2-dimensional problems by replacing 
the x and y terms with r and z terms respectively.   



 
5.7.1   Stiffness Matrix of a Triangular Element 
Fig. 5.7.1 shows the cylindrical coordinates of a three node triangular element. Hence the 
analysis of the axisymmetric element can be approached in a similar way as the CST element. 
Thus the field variables of such an element can be expressed as 
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        (5.7.2) 

Or,   

{ } [ ]{ }d φ α=          (5.7.3) 
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     (5.7.4) 

Or,  
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Here { }d are the nodal displacement vectors. 



 
 

Fig. 5.7.1 Axisymmetric three node triangle in cylindrical coordinates 
 
 

Putting above values in eq.(5.7.3), the following relations will be obtained. 

{ } [ ][ ] { } { }1 [ ]d A d N dφ −= =        (5.7.6) 

Or,  
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     = =    

     
 
 
  

    (5.7.7) 

Using a similar approach as in case of CST elements, the three shape functions [ ]1 2 3, ,N N N  can 

be assumed as, 
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 3 3 2 2 3 3 2

2 3 1 1 3 3 1 1 3

3 1 2 2 1 1 2 2 1
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2
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N r z r z r z z z r r r z
A

N r z r z r z z z r r r z
A

N r z r z r z z z r r r z
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= − + − + −  

= − + − + −  

       



Or,  
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      (5.7.8) 

 
Where,  

 

( )12
2

i j k k j j k i i k k i j j i

i j k j k i k i j

i k j i i k i j i

i j j k k i i k j i k j
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z z z z z z
r r r r r r

A r z r z r z r z r z r z

α α α

β β β

γ γ γ

= − = − = −

= − = − = −

= − = − = −

= + + − − −

   (5.7.9) 

Putting the value of {u,w} in eq. (5.7.7) from eq. (5.6.5), 
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  (5.7.10) 

Thus, the strain displacement matrix can be expressed as, 

 [ ]

0 0 0

0 0 01
2 0 0 0

i j k

ji k

i j k

i j k i j k

NN N
B r r r

A

β β β

γ γ γ
γ γ γ β β β

 
 
 
 =
 
 
  

     (5.7.11) 

 

Where, 
3

i j kr r r
r

+ +
= . Thus the stiffness matrix will become 

[ ] [ ] [ ][ ]Tk B D B d= Ω∫∫∫        

Or,  [ ] [ ] [ ][ ] [ ] [ ][ ]
2

0

2T Tk B D B r d dA B D B r dr dz
π

θ π= =∫ ∫ ∫ ∫ ∫
 
 (5.7.12) 



Since, the term [B] is dependent of ‘r’ terms; the term [ ] [ ][ ]TB D B cannot be taken out of 

integration. Yet, a reasonably accurate solution can be obtained by evaluating the [B] (denoted as 
[B]) matrix at the centroid. 

Hence, [ ] [ ] [ ][ ]2 Tk r B D B dr dzπ= ∫ ∫  

Or,   

[ ] [ ] [ ][ ]2Tk B D B rAπ         (5.7.13) 

 
5.7.2   Stiffness Matrix of a Quadrilateral Element 
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The strain-displacement relation for axisymmetric problem derived earlier (eq.(5.6.5)) can be 
rewritten as 

{ }

r

z

rz

u
r

1 0 0 0 0 u
0 0 0 1 0 z

w10 0 0 0 rr
w0 1 1

u
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0 0
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u w
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∂
∂  ∂ ∂ ∂   ∂  ∂     ∂= = = ∂   

    ∂
     ∂ ∂ ∂ + ∂

 
   


∂ ∂ 

   
 
 
 

     (5.7.14) 

 
Applying chain rule of differentiation equation we get, 
 

 

* *
11 12
* *
21 22

* *
11 12
* *
21 22

uu
ξr

J J 0 0 0 uu
ηJ J 0 0 0z

w w0 0 J J 0
rξ 0 0 J J 0
w w0 0 0 0 1
z η

u u

∂ ∂   ∂ ∂      ∂ ∂     ∂ ∂        =∂ ∂   
    ∂ ∂    

∂   ∂    
   ∂ ∂
   
    

           (5.7.15) 

Hence, the strain components are calculated as 

* *
11 12

r * *
21 22

z * *
11 12

θ * *
21 22

rz

u
ξ

J J 0 0 0 u1 0 0 0 0ε
ηJ J 0 0 00 0 0 1 0ε
w0 0 J J 01ε 0 0 0 0 ξ0 0 J J 0r

0 1 1 0 0 w0 0 0 0 1
η

u

γ

∂ 
 ∂ 

  ∂         ∂          = ∂    
     ∂         ∂      

 ∂
 
  

 

Or, 
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* *
11 12

r * *
21 22
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     x                  h                           x                     h     





      (5.7.16) 

With the use of interpolation function and nodal displacements, , , ,u u w w
x h x h

            
can be expressed 

for a four node quadrilateral element as 
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  (5.7.17) 

 
Putting eq. (5.7.17) in eq. (5.7.16) we get, 

31 2 4

* *
31 2 411 12

r * *
21 22

z
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2
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4
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2

3

4
1 2 3 4 1 2 3 4

u
u
u
u
w
w
w
wN N N N N N N N

                                                      h           

 

(5.7.18) 
Thus, the strain displacement relationship matrix [B] becomes       
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31 2 4
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(5.7.19) 

For a four node quadrilateral element, 
( ) 1 1

1

1ξ 1 η N N1η 1 ξN          and     
4ξ 4 η 4
( ) ( ) ( )− − ∂ ∂− −

= ⇒ = − = −
∂ ∂

 

( ) 2 1
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(5.7.20) 

( ) 2 1
3
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( ) 2 1
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Thus, the [B] matrix will become 
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 x h x h 
    
            (5.7.21) 
The stiffness matrix for the axisymmetric element finally can be found from the following 
expression after numerical integration. 

[ ] [ ] [ ][ ] [ ] [ ][ ]
1 1

T

1 1

B D B .2πr. .dξdηTk B D JB d
+ +

Ω − −

= Ω =∫ ∫ ∫     (5.7.22) 
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Lecture 8: Finite Element Formulation for 3 Dimensional Elements 
 
5.8.1 Introduction 
Solid elements can easily be formulated by the extension of the procedure followed for two 
dimensional solid elements. A domain in 3D can be discritized using tetrahedral or hexahedral 
elements. For example, the eight node solid brick element is analogous to the four node rectangular 
element. Regardless of the possible curvature of edges or number of nodes, the solid element can be 
mapped into the space of natural co-ordinates, i.e the 1,1,1 ±=±=±= ζηξ  just like a plane element.  

 
 

Fig. 5.8.1Eight node brick element  
 
For three dimensional cases, each node has three degrees of freedom having u, v, and w as 
displacement field in three perpendicular directions (X, Y and Z). In this case, one additional 
dimension increases the computational expense manifolds. 
 
5.8.2 Strain Displacement Relation  
The strain vector for three dimensional cases can be written in the following form 
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     (5.8.1) 

 
The following relation exists between the derivative operators in the global co-ordinates and the 
natural co-ordinate system by the use of chain rule of partial differentiation. 
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Where  the Jacobian Matrix will be 

[ ]
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J          (5.8.3) 

For an isoparamatric element the coordinates at a point inside the element can be expressed by its 
nodal coordinate. 

1 1 1
and

n n n

i i i i i i
i i i

x N x ; y N y z N z
= = =

= = =∑ ∑ ∑                                                   (5.8.4) 
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Substituting the above equations into the Jacobian matrix for an eight node brick element, we get 
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The strain displacement relation is given by { } [ ]{ }dB=ε , where, { }















=

w
v
u

d . 

The displacements in the x, y and z direction are u, v, and w respectively. Let consider the inverse of 
Jacobian matrix as 
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Thus, the relation between two coordinate systems can be rewritten as 
1

11 12 13

21 22 23

31 32 33

* * *

* * *

* * *

x y z
x J J J

x y z J J J
y

J J J
x y z

z

ξ ξ ξ ξ ξ

η η η η η

ζ ζ ζ ζ ζ

−
     ∂ ∂ ∂ ∂ ∂ ∂
       ∂ ∂ ∂ ∂ ∂∂        
     ∂ ∂ ∂ ∂ ∂ ∂   = =        ∂ ∂ ∂ ∂ ∂ ∂               ∂ ∂ ∂ ∂ ∂∂

      ∂ ∂ ∂ ∂ ∂∂       

    (5.8.7) 

 
Thus, one can write the following relations 

8 8

11 12 13 11 12 13
1 1

* * * * * *i i i
i i i

i i

N N Nu u u uJ J J J J J u a u
x ξ η ζ ξ η ζ= =
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 ∂ ∂ ∂ ∂ ∂ ∂ ∂
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i i

N N Nu u u uJ J J J J J u c u
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 ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + = + + = ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

∑ ∑
 

Similarly, 
8 8 8 8 8 8

1 1 1 1 1 1
andi i i i i i i i i i i i

i i i i i i

v v v w w wa v ; b v ; c v ; a w ; b w c w
x y z x y z= = = = = =

∂ ∂ ∂ ∂ ∂ ∂
= = = = = =

∂ ∂ ∂ ∂ ∂ ∂∑ ∑ ∑ ∑ ∑ ∑
 

Using above relations, the strain vector can be written as 
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∑      (5.8.8) 

 
Now, the strain displacement relationship matrix [B] can be identified from the above equation by 

comparing it to { } [ ]{ }dB=ε . 
 
5.8.3 Element Stiffness Matrix 
The element stiffness matrix can be generated similar to two dimensional case using the following 
relations. 

[ ]
1 1 1

1 1 1

Tk [ B ] [ D ][ B ]d d d Jξ η ζ
+ + +

− − −

= ∫ ∫ ∫       (5.8.9) 

The size of the constitutive matrix [D] for solid element will be 6 × 6 and is already discussed in 
module 1, lectures 3. For eight node brick element, the size of stiffness matrix will become 24 × 24 
as number of nodes in one element is 8 and the degrees of freedom at each node is 3. It is well 
established that 2 × 2 × 2 Gauss integration points are the optimal sampling points for eight node 
isoparametric brick elements. 

 
5.8.4 Element Load Vector 
The forces on an element can be generated due to its self weight or externally applied force which 
may be concentrated or distributed in nature. The distributed load may be uniform or non-uniform. 
All these types of loads are to redistributed to the nodes using finite element formulation.   

 
5.8.4.1 Gravity load 
The load vector due to body forces in general is given by  

{ } TQ [ N ] { X }d
Ω

= Ω∫         (5.8.10) 
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where }{X is the body forces per unit volume. The nodal load vector at any node i may be expressed 
as 

{ } T
i iQ [ N ] { X }d

Ω

= Ω∫         (5.8.11) 

In case of gravity load, the force will act in the global negative Z direction. Therefore, 
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      (5.8.12) 

Here, the mass density of the material is ρ and the acceleration due to gravity is g. Thus, eq.(5.8.11) 
will become 

{ }
0
0i

i

Q d
N gρΩ

 
 = Ω 
 − 
∫         (5.8.13) 

For isoparametric element the, the above expression will become 

ζηξ
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−
=
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}{        (5.8.14) 

Using Gauss Quadrature integration rule, the above expression may be evaluated as 

1 1 1

0
0

i j k

n n n

i i j k i j k
i j k

i ( , , )

{ Q } w w w J ( , , )
N g

ξ η ζ

ξ η ζ
ρ= = =

 
 =  
 − 

∑∑∑    (5.8.15) 

Where, n is the number of nodes in an element. For eight node linear brick element the value of n 
will be 8 and the integration order suggested is 2×2×2. Similarly, for twenty node quadratic brick 
element, the value of n will be 20 and the integration order suggested is 3×3×3. 

 
5.8.4.2 Surface pressure  
Let assume a uniform surface pressure of intensity q is acting normal to the element face. The load 
vector due to surface pressure is given by 

{ } ∫∫= dApNQ Ts }{][         (5.8.16) 

The nodal load at any node i may be expressed as 
{ } ∫∫= dApNQ Ts

ii }{][         (5.8.17) 

In case of surface load, the value of ][ s
iN  in the above equation will become 
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Here s
iN is the interpolation function for the node i. For example, the value of s

iN can be obtained 

by substituting ξ =1 in s
iN  for face 1. Thus, the surface pressure is expressed as, 
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Where, 333 ,, nml are the direction cosines. Thus, eq.(5.8.17) can be expressed using eq.(5.8.19) in the 
following form.  
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        (5.8.20)

 
The value of dA is can be evaluated considering the cross product of vectors along the natural 
coordinates parallel to the loaded faces of the element. Thus, 

ζηddeedA 32 ×=          (5.8.21) 

 
5.8.5 Stress Computation  
Using the relation of {F} = [K]{d}, the unknown nodal displacement vector {d} are calculated in 
global coordinate system. Once the nodal displacements are obtained, the strain components as each 
node can be computed using strain-displacement relations for each element.  Similarly element stress 
can be calculated using stress-strain relation. These stresses at Gauss points are extrapolated to the 
corresponding nodes of the element to find the nodal stresses. In general, for three dimensional state 
of stress there are at least three planes, called principal planes. The corresponding stress vector is 
perpendicular to the plane and where there are no normal shear stresses. These three stresses which 
are normal to these principal planes are called principal stresses. The principal stresses σ1, σ2, and σ3 
are computed from the roots of the cubic equation represented by the determinant of the flowing. 
 

0
x xy xz

xy y yz

xz yz z

σ σ τ τ
τ σ σ τ
τ τ σ σ

−
− =

−
        (5.8.22)

 
The characteristic equation has three real roots σi, due to the symmetry of the stress tensor. The 
principal stresses are arranged so that σ1 > σ2 > σ3. The maximum shear stress can be computed 
from the following relations. 
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 1 2 2 3 3 1
max = largest of and

2 2 2
,

σ σ σ σ σ σ
τ

 − − − 
 
 

    (5.8.23) 

These three shear stress components will occur on planes oriented at 450 from the principal planes. 
The distortion energy theory suggests that the total strain energy can be divided into two 
components. They are (i) volumetric strain energy and (ii) distortion or shear strain energy. It is 
anticipated that yield develops if the distortion component exceeds that at the yield point for a simple 
tensile test. From the concept of distortion energy theory, the equivalent stress which is historically 
known as Von Mises stress are defined as 

( ) ( ) ( )2 2 2
1 2 2 3 3 1=

2e

σ σ σ σ σ σ
σ

 − + − + −
 
 
 

     (5.8.24)

 The Von Mises stresses offer a measure of the shear or distortional stress in the material. In general, 
this type of stress tends to cause yielding in metals. 
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Worked out Examples 
 
Example 5.1 Calculation of nodal loads on a triangular element  
A CST element as shown in Fig. 5.I gets axial loading of (Fx1) 10 kN/m in X direction and (Fy1) 20 
kN/m in Y direction. Compute the nodal loads in the element.  

 
Fig. 5.I Distributed loading on a triangular element 

 
From the above figure, the length of sides 1, 2 and 3 are calculated and will be 10, 8 and 6 cm 
respectively. First, let consider side 1: 

{ } [ ] { }
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1
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TF N F dsΓ= ∫  
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∫ ∫ ∫  

Putting, 
( )1 2

! !
1 !

p q p qL L ds l
p q

=
+ +∫ , we will get,  
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Similarly for side 2, 
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∫ ∫  

Since no force is acting on side 3, 
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Hence, the nodal load vector in all the nodes in x and y directions will become, 

{ }

0
0.5
0.5
0.8
0

0.8

F

 
 
 
 

=  
 
 
 
 

kN.  

 
 
 
 
 
  


	Fig. 5.5.1 Natural coordinate systems used in extrapolation of stresses from Gauss points
	(a) Element in r-z plane (b) Element in r-θ plane
	Fig. 5.6.3 Deformation of the axisymmetric element
	(5.6.1)
	(5.6.2)
	(5.6.3)
	(5.6.4)
	Fig. 5.6.5 Thin wall cylindrical container

