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Lecture 1: Stiffness of Truss Members 
 
4.1.1 Introduction  
Analysis of frame structures can be carried out by the approach of stiffness method. 
However, such types of structures can also be analyzed by finite element method. A unified 
formulation will be demonstrated based on finite element concept in this module for the 
analysis of frame like structures. A truss structure is composed of slender members pin 
jointed together at their end points. Truss element can resist only axial forces (tension or 
compression) and can deform only in its axial direction.  Therefore, in case of a planar truss, 
each node has components of displacements parallel to X and Y axis. Planar trusses lie in a 
single plane and are used to support roofs and bridges. Such members will not be able to 
carry transverse load or bending moment. The major benefits of use of truss structures are: 
lightweight, reconstructable, reconfigurable and mobile. Configuration of few standard truss 
structures are shown in Fig. 4.1.1. 
 

 
 

Fig. 4.1.1 Configuration of various truss structures 
 
 
 

4.1.2 Element Stiffness of a Truss Member  
Since, the truss is an axial force resisting member, the displacement along its axis only will 
be developed due to axial load. Therefore, using Pascal’s triangle, the displacement function 
of truss member for development of shape function can be expressed as:  
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Fig. 4.1.2 Axial force on the member along X axis 
 
 
Applying boundary conditions as shown in Fig. 4.1.2:  
At   x= 0,   u(0)= u 1  and at  x=L,  u(L) = u 2  

Thus, 10 u=α  and 
L

uu 12
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−
=α
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(4.1.2) 

Here, N is the shape function of the element and is expressed as:  
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So we get the element stiffness matrix as  
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Thus, the stiffness matrix of the truss member along its member axis will be: 
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4.1.3 Element Stiffness of Truss Member with Varying Cross Section 
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Now, let us find the stiffness matrix of a pin-jointed member of length L with respect to local 
axis, having cross sectional areas A1 and A2 at the two ends of the member as shown in the 
figure below. 

 
Fig. 4.1.3 Member with varying cross section 

 
From the above figure, the cross sectional area at a distance of x from left end can be 
expressed as: 
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As it is a pin-jointed member, the displacement at any point may be expressed in terms of 
nodal displacement as 1 1 2 2u N u N u= + . 

Similarly the cross sectional area at any point may be represented in terms of the cross 
sectional area of the two ends. Thus 2211 ANANAx +=  
 

Where the shape functions are: 1 21 ;x xN N
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Now, the strain may be written as: 
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As the stress is proportional to strain according to Hook’s law, the stress-strain relationship 
will be as follows:  
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Now the strain energy may be expressed as 
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Applying Castigliano’s theorem, the force will become: 
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Thus, the stiffness matrix will be: 
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4.1.4 Generalized Stiffness Matrix of a Plane Truss Member  
Let us consider a member making an angle ‘θ’ with X axis as shown in the figure below. By 
resolving the forces along local X and Y direction, the following relations are obtained. 
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       (4.1.12)  

 
Where, 1xF and 2xF are the axial forces along the member axis X . Similarly, 1yF and 2yF are 

the forces perpendicular to the member axis X . 
 

  
 

Fig. 4.1.4 Inclined truss member 
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The relationship expressed in eq. (4.1.12) can be rewritten in matrix form as follows: 
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Now, the above equation can be expressed in short as: 

 
{ } [ ]{ }FTF =          (4.1.14) 

 
Here, [T] is called transformation matrix. This relates between the global (𝑋,𝑌 axis) and 
member axis (𝑋�,𝑌� axis). Similarly, the relations of nodal displacements between two 
coordinate systems may be written as: 
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Again, the equation stated in (4.1.5) can be generalized and expressed with respect to the 
member axis including force and displacement vector as: 
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Where, the nodal forces in Y direction are zero. The above equation may also be expressed in 
short as: 
 

{ } [ ]{ }dkF =          (4.1.17) 
 
Where, the matrices in the above equation are written with respect to the member axis. Now, 
eq. (4.1.17) can be rewritten with the use of eq. (4.1.14) and (4.1.15) as given below. 
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Here, the transformation matrix [T] is orthogonal, i.e., [T]-1 is equal to [T]T. Therefore, from 
the above relationship, the generalized stiffness matrix can be expressed as: 

[ ] [ ] [ ][ ]TkTk T=         (4.1.20) 
 
Thus,  
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The above stiffness matrix can be used for the analysis of two-dimensional truss problems.  
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Lecture 2: Analysis of Truss 
 
4.2.1 Element Stiffness of a 3 Node Truss Member  
 

 
 

Fig. 4.2.1 3-node truss member 
 
Here, the displacement function using Pascal’s triangle can be expressed as: 
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Applying boundary conditions:   
At   x= 0,   u(0)= u 1 ,  x=L/2,  u(L/2) = u
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3 

 
And solving for 0α , 1α  and 2α  

 
10 u=α
 
,
  

1 2 3
1

3 4u u u
L

α − + −
=

  
and 3

321
2

242
L

uuu +−
=α

 
Therefore,  

( ) [ ]{ }
2 2 2

1 2 32 2 2

3 2 4 4 21 x x x x x xu x u u u N u
L L L L L L

     
= − + + − + − + =     
       

(4.2.2)
 

 
Here, N is the shape function of the element and is expressed as: 
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Now, the element stiffness matrix can be written as  
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(4.2.5) 

 
After integrating the above equation, the stiffness matrix of the 3-node truss member will 
become: 

 [𝑘] = AE
3L
�

7 −8 1
−8 16 −8
1 −8 7

�       (4.2.6) 

 
 
4.2.2 Worked Out Example 
 
Analyze the truss shown below by finite element method. Assume the cross sectional area of 
the inclined member as 1.5 times the area (A) of the horizontal and vertical members. Assume 
modulus of elasticity is constant for all the members and is E.      

 
                                                       

Fig. 4.2.2 Plane truss 
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Solution 
 
The analysis of truss starts with the numbering of members and joints as shown below: 
 

 
                                   

Fig. 4.2.3 Numbering of members and nodes 
 
The member information for the truss is shown in Table 4.2.1. The member and node 
numbers, modulus of elasticity, cross sectional areas are the necessary input data. From the 
coordinate of the nodes of the respective members, the length of each member is computed. 
Here, the angle θ has been calculated considering anticlockwise direction. The signs of the 
direction cosines depend on the choice of numbering the nodal connectivity.  
 
 
 
 
 
 
 
 
Now, let assume the coordinate of node 1 as (0, 0). The coordinate and restraint joint 
information are given in Table 4.2.2. The integer 1 in the restraint list indicates the restraint 
exists and 0 indicates the restraint at that particular direction does not exist. Thus, in node no. 
2, the integer 0 in x and y indicates that the joint is free in x and y directions. 
 
 
 
 
 
 

Table 4.2.1 Member Information for Truss 
 

Member 
No. 

Starting 
Node 

Ending 
Node 

Value 
of θ 

Area Modulus of 
Elasticity 

1 1 2 90° A E 
2 2 3 315° 1.5A E 
3 3 1 180° A E 

 
 
 
 
 
 

Table 4.2.2 Nodal Information for Plane Truss 
 

Node No. Coordinates Restraint List 
x y x y 

1 0 0 1 1 
2 0 L 0 0 
3 L 0 1 1 
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The stiffness matrices of each individual member can be found out from the stiffness matrix 
equation as shown below.  
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Thus the local stiffness matrices of each member are calculated based on their individual 
member properties and orientations and written below. 

    and 

 

Global stiffness matrix can be formed by assembling the local stiffness matrices into globally. 
Thus the global stiffness matrix are calculated from the above relations and obtained as 
follows: 
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The equivalent load vector for the given truss can be written as: { }
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Let us assume that u and v are the horizontal and vertical displacements respectively at joints. 
Thus the displacement vector will be expressed as follows: 
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Therefore, the relationship between the force and the displacement will be: 
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From the above relation, the unknown displacements u2 and v2 can be found out through 
computer programming. However, as numbers of unknown displacements in this case are 
only two, the solution can be obtained by manual calculations. The above equation may be 
rearranged with respect to unknown and known displacements in the following form: 
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Thus the developed matrices for the truss problem can be rearranged as: 
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The above relation may be condensed into following               
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The unknown displacements can be derived from the relationships expressed in the above 
equation.  

1

2
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3 3 3 31
2 24 24 2 4 2 4 2 4 2
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Thus the unknown displacement at node 2 of the truss structure will become: 
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Support Reactions: 
 
The support reactions {Ps} can be determined from the following relation: 

{ } { } { }s csP P K dβα α = − +     
 
Where, {Pcs} correspond to equivalent loadings at supports. Thus, the support reaction of the 
present truss structure will be: 
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Member End Actions: 
 
Now, the member end actions can be obtained from the corresponding member stiffness and 
the nodal displacements. The member end forces are derived as shown below. 
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Thus the member forces in all members of the truss will be:  
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The reaction forces at the supports of the truss structure will be: 
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Thus the member force diagram will be as shown in Fig. 4.2.4. 

     

                                                   
 

Fig. 4.2.4 Member Force Diagram 
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Lecture 3: Stiffness of Beam Members 
 
4.3.1 Introduction  
A beam is a structural member which is capable of withstanding load primarily by resisting 
bending. The primary tool for analysis of beam is the Euler–Bernoulli beam equation. Other 
methods for determining the deflection of beams include "slope deflection method" and 
"method of virtual work". For calculation of internal forces of beam include "moment 
distribution method", force or flexibility method and stiffness method. However, all these 
methods have limitations if either of geometry, loading, material properties or boundary 
conditions becomes arbitrary in nature. Finite element techniques can well handle such cases 
and relieve the analyzer of making simplifications to arrive approximate solutions. 
 
4.3.2 Derivation of Shape Function 
The degrees of freedom at each node for a beam member will be (i) vertical deflection and 

(ii) rotation. For a beam member, the slope of the elastic curve θ is given by: 
dx
dv

=θ , where 

the variable v is the displacement function of the beam. As the beam has two degrees of 
freedom at each node, the variation of v will be cubic and can be expressed using Pascal’s 
triangle as:  
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Fig. 4.3.1 Beam element 
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Now, applying boundary conditions, the following expressions from the above relations can 
be obtained: 
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Thus combining the above expressions one can write:  
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N is called shape function which interpolates the beam displacement in terms of its nodal 
displacements.  
 
4.3.3 Derivation of Element Stiffness Matrix 
Now, the strain displacement relationship matrix [B] can be expressed from the following 
expressions with the help of eq. (4.3.1): 
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From the moment curvature relationship, we can write:  
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2

2
−=== χ          (4.3.8) 

Strain energy,   

[ ] [ ]dxMU T
L

χ∫=
0 2

1  = { } [ ] [ ] [ ][ ]{ }∫ −−
L

TTT dxdABBAdEI

0

11

2
   (4.3.9) 

 
Thus,  

{ } { } [ ] [ ] [ ][ ]{ }dxdABBAEI
d
UF T

L
T 1

0

1 −−∫=
∂
∂

=      (4.3.10) 

 
So, the stiffness matrix will be:  

[ ] [ ] [ ] [ ][ ]dxABBAEIk T
L

T 1

0

1 −−∫= [ ] [ ] [ ] [ ] 1

0

1 −− ∫= AdxBBAEI
L

TT    (4.3.11) 
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(4.3.12) 
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So,  
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Thus, the element stiffness of a beam member is:  
 

[ ]
2 2

3

2 2

12 6 12 6
6 4 6 2
12 6 12 6

6 2 6 4

L L
L L L LEIk

L LL
L L L L

− 
 − =
 − − −
 − 

      (4.3.13) 

 
 
4.3.4 Generalized Stiffness Matrix of a Beam Member  
Consider a beam member making an angle ‘θ’ with X axis as shown in Fig 4.3.2 below. By 
resolving the forces along local X and Y direction, the following relations are obtained. 
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1 1 1

2 2 2

1 1 1

2 2 2

1 1

2 2

cos sin

cos sin

sin cos

sin cos

x x y

x x y

y x y

y x y

F F F

F F F

F F F

F F F

M M
M M

θ θ

θ θ

θ θ

θ θ

= +

= +

= − +

= − +

=

=

       (4.3.14) 

 

Where, 1xF  and 2xF are the axial forces along the member axis X . Similarly, 1yF and 2yF are 

the forces perpendicular to the member axis X . 1M  and 2M are the moment about its axis at 
node 1 and 2 respectively. 
 

 
 

Fig. 4.3.2 Inclined beam member 
 
 
The relationship expressed in eq. (4.3.14) can be rewritten in matrix form as follows: 
 

11

11

11

22

22

22

cos 0 0 0 0
cos 0 0 0 0

0 0 1 0 0 0
0 0 0 cos 0
0 0 0 cos 0
0 0 0 0 0 1

xx

yy

xx

yy

FsinF
FsinF
MM
FsinF
FsinF
MM

θ θ
θ θ

θ θ
θ θ

    
    −    
       =    
    
    −
    

         

   (4.3.15) 

 
Now, the above equation can be expressed in short as: 
 

{ } [ ]{ }F T F=          (4.3.16) 
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Similarly, the displacement vector in local coordinate system (𝑋�,𝑌�) may be transformed to 
global (𝑋,𝑌) coordinate system by the following relation.  
 

{ } [ ]{ }d T d=          (4.3.17) 

 
The force-displacement relation in local coordinate system may be expressed as: 
 

1 13 2 3 2

1 1

2 2
1 1

2 2

2 23 2 3 2

22

2 2

0 0 0 0 0 0
12 6 12 60 0

6 4 6 20 0

0 0 0 0 0 0
12 6 12 60 0

6 2 6 40 0

EI EI EI EIFx u
L L L L

Fy vEI EI EI EI
M L L L L
Fx u

EI EI EI EIFy v
L L L LM EI EI EI EI

L L L L

θ

θ

 
 

    −
   
   
  −  
   =          − − −       

 −  











   (4.3.18) 

 
The matrices in the above equation are written with respect to the member axis. Now, the eq. 
(4.3.18) can be rewritten as follows with the use of eqs. (4.3.16) and (4.3.17). 

 
[ ]{ } [ ][ ]{ }dTkFT =           (4.3.19) 

Or,  

{ } [ ] [ ]{ }1F T k T d−  =          (4.3.20) 

 
Here, the transformation matrix [T] is orthogonal. Thus, from the above relationship, the 
generalized stiffness matrix can be expressed as: 
 

[ ] [ ] [ ][ ][ ]TkTk T=         (4.3.21) 
 
Considering cosλ θ=  and sinµ θ=  the above expression can be written as follows:  
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[ ]

3 2 3 2

2 2

3 2 3 2

2 2

0 0 0 0 0 0
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L L L L

λ µ λ µ
µ λ µ λ

λ µ λ µ
µ λ µ λ

 
 
 −−     −   −    =    −     − − − −      
 −
 

 
 
 
 
 
 
 
 
 

           

(4.3.22) 
 
Thus, the generalized stiffness matrix of a beam member is derived as: 
 

[ ]

2 2

3 3 2 3 3 2

2 2

3 3 2 3 3 2

2 2 2 2

2 2
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µ µλ µ µ µλ µ

µλ λ λ µλ λ λ
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− − − −


− −

 − −

= 
− −


− − − −

− −














 
 
 
 
 



  (4.3.23) 
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Lecture 4: Analysis of Continuous Beam 

4.4.1 Equivalent Loading on Beam Member 
In finite element analysis, the external loads are necessary to be acting at the joints, which 
does not happen always; as some forces may act on the member. The forces acting on the 
member should be replaced by equivalent forces acting at the joints. These joint forces 
obtained from the forces on the members are called equivalent joint loads. These joint loads 
are combined with the actual joint loads to provide the combined joint loads, which are then 
utilized in the analysis. 
 
4.4.1.1 Varying Load 
Let a beam is loaded with a linearly varying load as shown in the figure below. The 
equivalent forces at nodes can be expressed using finite element technique. If w(x) is the 
function of load, then the nodal load can be expressed as follows. 

{ } [ ] ( )TQ N w x dx= ∫       (4.4.1) 

The loading function for the present case can be written as:  

( ) 2 1
1

w ww x w x
L
−

= +        (4.4.2) 
 
 

 
 
 

Fig. 4.4.1 Varying load on beam 
 
From eqs. (4.4.1) and (4.4.2), the equvalent nodal load will become 
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Now, if w1=w2=w, then the equivalent nodal force will be:   

 { }

2

2

2

12

2

12

wL

wL

Q
wL

wL

 
 
 
 
  =  
 
 
 
 −
  

        (4.4.4) 

 
 
4.4.1.2 Concentrated Load 
Consider a force F is applied at a point is regarded as a limiting case of intense pressure over 
infinitesimal length, so that p(x)dx approaches F. Therefore, 

{ } [ ] ( ) * TTQ N p x dx N F = =  ∫      (4.4.5) 
 

 
 

Fig. 4.4.2 Concentrated load on beam 
 
Here, [N*] is obtained by evaluating [N] at point where the concentrated load F 
is applied. Thus, 
 

[ ]
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3 2 3 2

3 2 3 2

2 2
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   (4.4.6) 
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Therefore, { }
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     (4.4.7) 

 
Now, if load F is acting at midspan (i.e., a=L/2), then equivalent nodal load will be 
 

{ }

2

8

2

8

F

FL

Q
F

FL

 
 
 
 
 

=  
 
 
 
 −
 

         (4.4.8) 

 
With the above approach, the equivalent nodal load can be found for various loading function 
acting on beam members. 
 
4.4.2 Worked Out Example 
Analyze the beam shown below by the stiffness method. Assume the moment of inertia of 
member 2 as twice that of member 1. Find the bending moment and reactions at supports of  
the beam assuming the length of span, L as 4 m, concentrated load (P) as 15 kN and udl, w as 
4 kN/m.  

 
 

Fig. 4.4.3 Example of a continuous beam 
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Solution    
Step 1: Numbering of Nodes and Members 
 
    The analysis of beam starts with the numbering of members and joints as shown below: 
 

 
 

Fig. 4.4.4 Numbering of nodes and members 
 
 
The member AB and BC are designated as (1) and (2). The points A,B,C are designated      
by nodes 1, 2 and 4. The member information for beam is shown in tabulated form as shown 
in Table 4.4.1. The coordinate of node 1 is assumed as (0, 0). The coordinate and restraint 
joint information are shown in Table 4.4.2. The integer 1 in the restraint list indicates the 
restraint exists and 0 indicates the restraint at that particular direction does not exist. Thus, in 
node no. 2, the integer 0 in rotation indicates that the joint is free rotation. 
 

Table 4.4.1Member Information for Beam 
 

Member 
number 
 

Starting node Ending node Rigidity modulus 

1 1 2 EI 
2 2 3 2EI 

 
 
 
 
 
 
 
 
 

 

             Table 4.4.2 Nodal Information for Beam 
 

Node No. Coordinates Restraint List 
x y Vertical Rotation 

1 0 0 1 1 
2 L 0 1 0 
3 2L 0 1 0 
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Step 2: Formation of member stiffness matrix: 
The local stiffness matrices of each member are given below based on their individual 
member properties and orientations. Thus the local stiffness matrix of member (1) is: 
 
                 1            2         3     4 

 
 

 
Similarly, the local stiffness matrix of member (2) is: 
             
                     3              4              5         6 

 
 
   
 
 
 
 
 

 
Step 3: Formation of global stiffness matrix: 
The global stiffness matrix is obtained by assembling the local stiffness matrix of members 
(1) and (2) as follows: 
 
               1             2              3            4               5              6 
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Step 4: Boundary condition: 
The boundary conditions according to the support of the beam can be expressed in terms of 
the displacement vector. The displacement vector will be as follows 
 

     { }
2

3

0
0
0

0

d
θ

θ

 
 
 
  =  
 
 
 
    

 
 

Step 5: Load vector: 
The concentrated load on member (1) and the distributed load on member (2) are replaced by 
equivalent joint load. The equivalent joint load vector can be written as  
 

 
                        

Fig. 4.4.5 Equivalent Load 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
Step 6 : Determination of unknown displacements:. 
The unknown displacement can be obtained from the relationship as given below: 
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The above relation may be condensed into following  
 

 
 
 

 
 

                      
 
 
 
 

 
 

 
 
 

 
Step 7: Determination of member end actions: 
The member end actions can be obtained from the corresponding member stiffness and the 
nodal displacements. The member end actions for each member are derived as shown below. 
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Actual member end actions: 
Member (1) 
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The support reactions at the supports A, B and C are { }
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Putting the numerical values of L, P and w (P=15, L=4, w=4) the member actions and support 
reactions will be as follows:  
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Member end actions: 
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Support reactions:  
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Lecture 5: Plane Frame Analysis 
 
4.5.1 Introduction 
The plane frame is a combination of plane truss and two dimensional beam.  All the members 
lie in the same plane and are interconnected by rigid joints in case of plane frame. The 
internal stress resultants at a cross-section of a plane frame member consist of axial force, 
bending moment and shear force. 
 
4.5.2 Member Stiffness Matrix 
In case of plane frame, the degrees of freedom at each node will be (i) axial deformation, (ii) 
vertical deformation and (iii) rotation. Thus the frame members have three degrees of 
freedom at each node as shown in Fig. 4.5.1 below.  
 

 
 

Fig. 4.5.1 Plane frame element 
 
Therefore, the stiffness matrix of the frame in its local coordinate system will be the 
combination of 2-d truss and 2-d beam matrices: 
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   (4.5.1) 

 
4.5.3 Generalized Stiffness Matrix 
In plane frame the members are oriented in different directions and hence it is necessary to 
transform stiffness matrix of individual members from local to global co-ordinate system 

u1                 v1                    θ1            u2                 v2                  θ2 
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before formulating the global stiffness matrix by assembly. The generalized stiffness matrix 
of a frame member can be obtained by transferring the matrix of local coordinate system into 
its global coordinate system. The transformation matrix can be expressed as: 
 

 

[T]=

⎣
⎢
⎢
⎢
⎢
⎡

cos 𝜃 sin𝜃 0 0 0 0
− sin 𝜃 cos 𝜃 0 0 0 0

0 0 1 0 0 0
0 0 0 cos 𝜃 sin𝜃 0
0 0 0 − sin𝜃 cos 𝜃 0
0 0 0 0 0 1⎦

⎥
⎥
⎥
⎥
⎤

    (4.5.2) 

 
Now, the generalized stiffness matrix of the member can be obtained from the relation of 
[𝐾] = [𝑇]𝑇[𝐾�][𝑇] . Thus considering 𝜆 = cos𝜃 and  𝜇 = sin𝜃 the stiffness matrix in global 
coordinate system can be written as follows: 

[K] = EI 

⎣
⎢
⎢
⎢
⎢
⎡
λ −µ 0 0 0 0
µ λ 0 0 0 0
0 0 1 0 0 0
0 0 0 λ −µ 0
0 0 0 µ λ 0
0 0 0 0 0 1⎦

⎥
⎥
⎥
⎥
⎤

×

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

AE
L

0 0 −
AE
L

0 0

0
12EI

L3
6EI
L2

0 −
12EI

L3
6EI
L2

0
6EI
L2

4EI
L

0 −
6EI
L2

2EI
L

−
AE
L

0 0
AE
L

0 0

0 −
12EI

L3
−

6EI
L2

0
12EI

L3
−

6EI
L2

0
6EI
L2

2EI
L

0 −
6EI
L2

4EI
L ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 ×

⎣
⎢
⎢
⎢
⎢
⎡
λ µ 0 0 0 0
−µ λ 0 0 0 0
0 0 1 0 0 0
0 0 0 λ µ 0
0 0 0 −µ λ 0
0 0 0 0 0 1⎦

⎥
⎥
⎥
⎥
⎤

 

 
 

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ �

EA
L

λ2 +
12EI

L3
μ2� �

EA
L

λμ −
12EI

L3
λμ� −

6EI
L2

μ �−
EA
L

λ2 −
12EI

L3
μ2� �−

EA
L

λμ +
12EI

L3
λμ� −

6EI
L2

μ

�
EA
L

λμ −
12EI

L3
λμ� �

EA
L

μ2 +
12EI

L3
λ2�

6EI
L2

λ �−
EA
L

λμ +
12EI

L3
λμ� �−

EA
L

μ2 −
12EI

L3
λ2�

6EI
L2

λ

−
6EI
L2

μ
6EI
L2

λ
4EI

L
6EI
L2

μ −
6EI
L2

λ
2EI

L

�−
EA
L

λ2 −
12EI

L3
μ2� �−

EA
L

λμ +
12EI

L3
λμ�

6EI
L2

μ �
EA
L

λ2 +
12EI

L3
μ2� �

EA
L

λμ −
12EI

L3
λμ�

6EI
L2

μ

�−
EA
L

λμ +
12EI

L3
λμ� �−

EA
L

μ2 −
12EI

L3
λ2� −

6EI
L2

λ �
EA
L

λμ −
12EI

L3
λμ� �

EA
L

μ2 +
12EI

L3
λ2� −

6EI
L2

λ

−
6EI
L2

μ
6EI
L2

λ
2EI

L
6EI
L2

μ −
6EI
L2

λ
4EI

L ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤
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(4.5.3) 
 
 
4.5.4 Worked Out Example 
Analyse the plane frame shown below by the stiffness method. Assume the modulus of 
elasticity of the horizontal member is 1.5 times that of the vertical member and length of 
the vertical member is 1.5 times that of horizontal member. Find the bending moment and 
reactions at support assuming the length, cross section area and modulus of elasticity of 
vertical member as 3.0 m, 0.4 x 0.4 m2 and 2 x 1011 N/mm2, respectively. 
 

 
 

Fig. 4.5.2 Plane frame 
 
Solution 
 
Step 1: Numbering of Nodes and Members 
The numbering of members and joints of the plane frame are as shown below: 
 

                          
 

Fig. 4.5.3 Numbering of Nodes and Members 
 
 
The members AB and BC are designated as (1) and (2). The points A, B and C are designated      
by nodes 1, 2 and 3. The member information for the frame is shown in tabulated form as 
shown in Table 1(a). The coordinate of node 1 is assumed as (0,0). The coordinate and 
restraint joint information are shown in Table 1(b). The integer 1 in the restraint list indicates 
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the restraint exists and 0 indicates the restraint at that particular direction does not exist. 
Thus, in node no. 2, the integer 0 all the restraint type indicates that the joint is in free all the 
three directions. 

 
Table 4.5.1 Member Information for Beam 

Member number Starting node Ending node Rigidity modulus 
1 1 2 EI 
2 2 3 1.5EI 

 
 

Table 4.5.2 Nodal Information for Beam 
Node no. Coordinates Restraint list  

X Y Axial Vertical Rotation 
1 0 0 1 1 1 
2 0 1.5L 0 0 0 
3 L 1.5L 1 1 1 

 
 
Step 2: Formation of member stiffness matrix: 
The individual member stiffness matrices can be found out directly from eqn. shown above. 
Thus the stiffness matrices of each member in global coordinate system are given below 
based on their individual member properties and orientations. Thus the stiffness matrix of 
member (1) is: 

 
 

[𝑘]1=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

12EI
(1.5L)3

0 − 6EI
(1.5L)2

− 12EI
(1.5L)3

0 − 6EI
(1.5L)2

0 AE
(1.5L)

0 0 − AE
(1.5L)

0

− 6EI
(1.5L)2

0 4EI
(1.5L)

6EI
(1.5L)2

0 2EI
1.5L

− 12EI
(1.5L)3

0 6EI
(1.5L)2

12EI
(1.5L)3

0 6EI
(1.5L)2

0 − AE
(1.5L)

0 0 AE
(1.5L)

0

− 6EI
(1.5L)2

0 2EI
(1.5L)

6EI
(1.5L)2

0 4EI
(1.5L) ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
Similarly, the stiffness matrix of member (2) is : 
 
  

 1                  2         3     4         5      6 

1 

2 

3 

4 

5 

6 

 4                     5         6  7          8    9 
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[𝑘]2 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
A(1.5 E)

L
0 0 −A(1.5 E)

L
0 0

0 12(1.5 E)I
L3

6(1.5 E)I
L2

0 −12(1.5 E)I
L3

6(1.5 E)I
L2

0 6(1.5 E)I
L2

4(1.5 E)I
L

0 −6(1.5 E)I
L2

2(1.5 E)I
L

− A(1.5 E)
L

0 0 A(1.5 E)
L

0 0

0 −12(1.5 E)I
L3

− 6(1.5 E)I
L2

0 12(1.5 E)I
L3

− 6(1.5 E)I
L2

0 6(1.5 E)I
L2

2(1.5 E)I
L

0 −6(1.5 E)I
L2

4(1.5 E)I
L ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
Step 3 : Formulation of global stiffness matrix: 
The global stiffness matrix is obtained by assembling by assembling the local stiffness matrix 
of member (1) and (2) as follows:  
 
 

[K] = 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
32EI
9L3

0 − 8EI
3L2

− 32EI
9L3

0 − 8EI
3L2

0 0 0

0 2AE
3L

0 0 −2AE
3L

0 0 0 0
8EI
3L2

0 8EI
3L

8EI
3L2

0 4EI
3L

0 0 0

−32EI
9L3

0 8EI
3L2

(32EI
9L3

+ 1.5EA
L

) 0 8EI
3L2

− 1.5EA
L

0 0

0 −2AE
3L

0 0 (2AE
3L

+ 18EI
L3

) 9EI
L2

0 −18EI
L3

9EI
L2

− 8EI
3L2

0 4EI
3L

8EI
3L2

9EI
L2

(8EI
3L2

+ 6EI
L

) 0 −9EI
L2

3EI
L

0 0 0 −1.5AE
L

O O 1.5AE
L

0 0

0 0 0 0 −18EI
L3

− 9EI
L2

0 18EI
L3

− 9EI
L2

0 0 0 0 9EI
L2

3EI
L

0 −9EI
L2

6EI
L ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

Step 4: Boundary conditions: 
The boundary conditions according to the support of the frame can be expressed in terms of 
the displacement vector. The displacement vector will be as follows: 

{𝑑} =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0
0
0
𝛿𝑥𝐵
𝛿𝑦𝐵
𝜃𝐵
0
0
0 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

Here, 𝛿𝑥𝐵 , 𝛿𝑦𝐵 and 𝜃𝐵 indicate the displacement in X-direction, displacement in Y-direction 
and rotation at point B. 
 
Step 5: Load vector: 

4 

5 

6 

7 

8 

9 

 1          2   3         4                   5    6               7            8         9 

1 

2 

3 

4 

5 

6 

7 

8 

9 
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The distributed load on member (2) can be replaced by its equivalent joint load as shown in 
the figure below. 

 

 
Fig. 4.5.4 Equivalent Joint Loads 

 
 
Thus, the equivalent joint load vector can be written as 

{𝐹} =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0
0
0
0

−
𝑤𝐿
2

−
𝑤𝐿2

12
0

−
𝑤𝐿
2

𝑤𝐿2

12 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

Step 6: Determination of unknown displacements: 
The unknown displacements can be obtained from the relationship of {F} = [K]{d} or        
{d} =[k]-1 {F}. Now eliminating the rows and columns in the stiffness matrix and force 
matrix, corresponding to zero elements in displacement matrix, the reduced matrix will be as 
follows. 

�
𝛿𝑥𝐵
𝛿𝑦𝐵
𝜃𝐵

� =

⎣
⎢
⎢
⎢
⎢
⎡�

32𝐸𝐼
9𝐿3

+
1.5𝐸𝐴
𝐿

� 0
8𝐸𝐼
3𝐿2

0 �
2𝐴𝐸
3𝐿

+
18𝐸𝐼
𝐿3

�
9𝐸𝐼
𝐿2

8𝐸𝐼
3𝐿2

9𝐸𝐼
𝐿2

�
8𝐸𝐼
3𝐿

+
6𝐸𝐼
𝐿
�⎦
⎥
⎥
⎥
⎥
⎤
−1

 

⎣
⎢
⎢
⎢
⎡

0

−
𝑤𝐿
2

−
𝑤𝐿2

12 ⎦
⎥
⎥
⎥
⎤

 

Thus, the unknown displacements will be: 

�
𝛿𝑥𝐵
𝛿𝑦𝐵
𝜃𝐵

� =
1

1010
�

0.04327𝑤
−1.7127𝑤
−5.4978𝑤

� 

Step 7: Determination of member end actions: 
The member end actions can be obtained from the corresponding member stiffness and the 
nodal displacements. The member end actions for each member are derived as shown below. 
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Member – (1) 
In case of member (1), the member forces will be:{𝐹𝑚}1 = [𝐾](1){𝑑}(1) 

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝐹𝑥1
𝐹𝑦1
𝑀1
𝐹𝑥2
𝐹𝑦2
𝑀2⎦

⎥
⎥
⎥
⎥
⎥
⎤

= 106  

⎣
⎢
⎢
⎢
⎢
⎡

56.17 0 −126.4 −56.17 0 −126.4 
0 7110 0 0 −7110 0

−126.4 0 379.2 126.4 0 189.6 
−56.17 0 379.2 56.17 0 126.4

0 −7110 0 0 7110 0
−126.4 0 189.6 126.4 0 379.2 ⎦

⎥
⎥
⎥
⎥
⎤

×

⎣
⎢
⎢
⎢
⎢
⎡

0
0
0

4.327 𝑋 10−12𝑤
−1.7127 𝑋 10−10𝑤
−5.4978 𝑋 10−10𝑤⎦

⎥
⎥
⎥
⎥
⎤

 

 

                   = 

⎣
⎢
⎢
⎢
⎢
⎡

0.0697𝑤
1.2177𝑤

−0.10479𝑤
−0.06925𝑤
−1.21661𝑤
−0.20793𝑤⎦

⎥
⎥
⎥
⎥
⎤

 

 
It is to be noted that {Fm} are the end actions due to joint loads. Hence it must be added to the 
corresponding end actions in the restrained structure in order to obtain the end actions due to  
the loads. Therefore, {Fm}actual are the true member end actions due to actual loading system 
can be expressed as 
                                   {𝐹𝑚}𝑎𝑐𝑡𝑢𝑎𝑙 = {Fm} + {Ffm} 
 
Where, {Ffm} are the end actions in the restrained structure. Since there is no load acting on 
member (1), the actual end actions will be: 
 

{Fm}actual =   

⎣
⎢
⎢
⎢
⎢
⎡

0.0697𝑤
1.2177𝑤

−0.10479𝑤
−0.06925𝑤
−1.21661𝑤
−0.20793𝑤⎦

⎥
⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎢
⎡
0
0
0
0
0
0⎦
⎥
⎥
⎥
⎥
⎤

=   

⎣
⎢
⎢
⎢
⎢
⎡

0.0697𝑤
1.2177𝑤

−0.10479𝑤
−0.06925𝑤
−1.21661𝑤
−0.20793𝑤⎦

⎥
⎥
⎥
⎥
⎤

 

 
Member (2) 
In similar way, the member forces in member (2) will be {Fm}(2) = [K](2){d}(2) 

 



38 
 

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝐹𝑥2
𝐹𝑦2
𝑀2
𝐹𝑥3
𝐹𝑦3
𝑀3⎦

⎥
⎥
⎥
⎥
⎥
⎤

= 109

⎣
⎢
⎢
⎢
⎢
⎡

16 0 0 −16 0 0
0 0.284 0.426 0 −0.284 0.426
0 0.426 0.853 0 −0.426 0.426

−16 0 0 16 0 0
0 −0.284 −0.426 0 0.284 −0.426
0 0.426 0.426 0 −0.426 0.853 ⎦

⎥
⎥
⎥
⎥
⎤

×

⎣
⎢
⎢
⎢
⎢
⎡ 4.327 𝑋 10−12𝑤
−1.7127 𝑋 10−10𝑤
−5.4978 𝑋 10−10𝑤

0
0
0 ⎦

⎥
⎥
⎥
⎥
⎤

 

               =

⎣
⎢
⎢
⎢
⎢
⎡

0.069232𝑤
−0.28325𝑤
−0.54215𝑤
−0.06923𝑤
0.283245𝑤
−0.3076𝑤 ⎦

⎥
⎥
⎥
⎥
⎤

 

 
The actual member forces in the member (2) will be: 
 
 

{Fm}actual = 

⎣
⎢
⎢
⎢
⎢
⎡

0.069232𝑤
−0.28325𝑤
−0.54215𝑤
−0.06923𝑤
0.283245𝑤
−0.3076𝑤 ⎦

⎥
⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎢
⎡

0
1.5𝑤

0.75𝑤
0

1.5𝑤
−0.75𝑤⎦

⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡

0.0692𝑤
1.2167𝑤
0.2078𝑤
−0.0692𝑤
1.7832𝑤
−1.0576𝑤⎦

⎥
⎥
⎥
⎥
⎤

  

 
 
 
 
 
 
 
 
Lecture 6 Analysis of Grid and Space Frame 
 
4.6.1 Introduction 
The property of a grid member is basically a combination of 2-d beam with torsional effect. 
The plane frame is assumed to be loaded in its own plane where as loading in the grid is 
normal to its plane. As a result torsional effects are included in the grid analysis. Thus the 
grid member can withstand bending moment, shear force as well as torsional moment.  
                                                                                                                                        
4.6.2 Element  Stiffness Matrix for Grid Members 
The degrees of freedom at each node of the grid member will be (i) vertical deformation and 
(ii) rotation in two different directions.  
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Fig. 4.6.1 Degrees of freedom of grid element 
 
 
Therefore, the stiffness matrix of the grid in its local coordinate system will be: 
 
 

[ ]
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3232

22

3232
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0
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0
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0

126
0
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0
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0
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L
EI

L
EI

L
EI

L
EI

L
EI

L
EI

L
EI

L
EI

L
GI

L
GI

L
EI

L
EI
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EI
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EI

L
EI

L
EI

L
EI

L
GI

L
GI
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yyyy

yyyy

xx

yyyy
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xx

  (4.6.1) 

  
Here, the G is the modulus of torsional rigidity. 
4.6.3 Generalized Stiffness Matrix 
The generalized stiffness matrix of a grid member can be obtained by transferring the matrix 
of local coordinate system into its global coordinate system. The transformation matrix can 
be expressed as: 

 

[T]=

⎣
⎢
⎢
⎢
⎢
⎡

cos 𝜃 sin𝜃 0 0 0 0
− sin 𝜃 cos 𝜃 0 0 0 0

0 0 1 0 0 0
0 0 0 cos 𝜃 sin𝜃 0
0 0 0 − sin𝜃 cos 𝜃 0
0 0 0 0 0 1⎦

⎥
⎥
⎥
⎥
⎤

 

 

 θx1       θz1                v1               θx2         θy2             v2 
 
 
 
 
    

 Mx1 

Mz1  

Fy1 

Mx2 

Mz2 

Fy2 
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Now, the generalized stiffness matrix of the member can be obtained from the relation 
of [𝑘] = [𝑇]𝑇�𝑘��[𝑇] . Thus considering 𝜆 = cos𝜃 and  𝜇 = sin𝜃 the stiffness matrix in 
global coordinate system can be written as follows: 

 

[𝑘] =

⎣
⎢
⎢
⎢
⎢
⎡
𝜆 −𝜇 0 0 0 0
𝜇 𝜆 0 0 0 0
0 0 1 0 0 0
0 0 0 𝜆 −𝜇 0
0 0 0 𝜇 𝜆 0
0 0 0 0 0 1⎦

⎥
⎥
⎥
⎥
⎤

×

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
GIx
L

0 0 −GIx
L

0 0

0 4EIy
L

− 6EIy
L2

0 2EIy
L

6EIy
L2

0 −6EIy
L2

12EIy
L3

0 −6EIy
L2

− 12EIy
L3

− GIx
L

0 0 GIx
L

0 0

0 2EIy
L

− 6EIy
L2

0 4EIy
L

− 6EIy
L2

0 6EIy
L2

− 12EIy
L3

0 6EIy
L2

12EIy
L3 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

  

  ×

⎣
⎢
⎢
⎢
⎢
⎡
𝜆 𝜇 0 0 0 0
−𝜇 𝜆 0 0 0 0
0 0 1 0 0 0
0 0 0 𝜆 𝜇 0
0 0 0 −𝜇 𝜆 0
0 0 0 0 0 1⎦

⎥
⎥
⎥
⎥
⎤
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644622
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L
EI

L
EI

L
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L
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L
EI

L
EI

L
EI

L
EI

L
GI

L
EI

L
GI

L
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L
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L
GI
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GI
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GI
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µλµµλµλµµλ
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(4.6.2) 

 
 
 
4.6.4 Worked Out Example 
Analyze the grid shown below by the stiffness method. Draw the shear force and bending 
moment diagram assuming the cross sectional area and modulus of elasticity of each member 
as 0.3×0.3 m2 and 2×1011 N/m2 respectively. Assume EI = 3GJ. The length of member AB 
and BC is 4 m and 5 m respectively. 
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Fig. 4.6.2 Grid structure 

 
 
Solution 
 
Step 1: Numbering of Nodes and Members 
The numbering of members and joints of the plane frame are as shown in the figure below: 

 

 
 Fig. 4.6.3 Numbering of nodes and members 

 
 
The member AB and BC are designated as (1) and (2). The points A, B and C are designated      
by nodes 1, 2 and 3. The member information for the grid is shown in tabulated form as 
shown in Table 4.6.1. The coordinate of node 1 is assumed as (0, 0). The coordinate and 
restraint joint information are shown in Table 4.6.2. The integer 1 in the restraint list indicates 
the restraint exists and 0 indicates the restraint at that particular direction does not exist. 
Thus, in node no. 2, the integer 0 all the restraint type indicates that the joint is free in all the 
three directions. 
 

Table 4.6.1 Member Information  
Member number Starting node Ending node 

1 1 2 
2 2 3 
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Table 4.6.2 Member Coordinates  

ode 
No 

coordinates Restraint list 
x z Vertical Rotation Rotation 

1 0 0 1 1 1 
2 4 0 0 0 0 
3 4 5 1 1 1 

 
 
Step 2: Formation of member stiffness matrix: 
The individual member stiffness matrices can be found out directly. Thus the stiffness 
matrices of each member in global coordinate system are given below based on their 
individual member properties and orientations. As the member AB is horizontal, i.e., θ = 0, 
the values of Cos θ = 1 and Sin θ = 0. Thus the stiffness matrix of member (1) is: 
 
                       1                 2                3                4                5                6       
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Assuming EI=3GJ=3K, the above equation can be written as 
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As the member BC member is also horizontal, the value of Cos θ = 1 and Sin θ = 0 and thus, 
the stiffness matrix will be: 
          
 
 
 
 
 
 
 
 
 
Step 3: Formation of global stiffness matrix: 
The global stiffness matrix can be obtained by assembling the local stiffness matrix of 
members (AB) and (BC). Now looking at the grid structure, the displacements at the fixed 
supports, are known and all are equal to zero. Only the displacement at co-ordinates 4, 5, 6 
are unknown. So the global system stiffness matrix, corresponding to the displacement at co-
ordinate 4, 5, 6 will be: 
 

              [𝐾] =

⎣
⎢
⎢
⎢
⎡
𝐾
𝐿𝐴𝐵

+ 12𝐾
𝐿𝐵𝐶

18𝐾
𝐿𝐵𝐶2

0
18𝐾
𝐿𝐵𝐶2

36𝐾
𝐿𝐴𝐵3
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𝐿𝐵𝐶3

− 18𝐾
𝐿𝐴𝐵2

0 − 18𝐾
𝐿𝐴𝐵2

𝐾
𝐿𝐵𝐶

+ 12𝐾
𝐿𝐴𝐵⎦

⎥
⎥
⎥
⎤

  

         

= K �
2.65 0.72 0
0.72 0.8505 −1.125

0 −1.125 3.2
� 

 
 
Step 4: Boundary condition: 
The boundary conditions according to the support of the grid structure can be expressed in 
terms of the displacement vector. The displacement vector will be as follows 
 

             6               5                 4               7              8                9      
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     { }
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d d
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  =  
 
 
 
 
 
  

 

Here, d4, d5, and d6 indicate the displacement vectors at point B. 
 
Step 5: Load vector: 
The distributed load on member (1) can be replaced by its equivalent joint load as shown in 
the figure below. 

 

 
Fig. 4.6.4  Equivalent load 

 
 
Thus the equivalent load vector will be:  
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Step 6: Determination of unknown displacements:. 
The unknown displacements can be obtained from the relationship of { } [ ]{ }F K d= or  

{ } [ ] { }1d K F−= . Now, eliminating the rows in the force matrix, corresponding to zero 

element in displacement matrix, the reduced matrix will be as follows. 

�
𝑑4
𝑑5
𝑑6
� = k−1  �

2.65 0.72 0
0.72 0.8505 −1.125

0 −1.125 3.2
�
−1

⎣
⎢
⎢
⎢
⎡

0

−
4𝑤
2

16𝑤
12 ⎦

⎥
⎥
⎥
⎤
 

=
1
𝑘
�

0.662 −1.047 −0.368
−1.047 3.856 1.3556
−0.368 1.355 0.789

� �

0
−2𝑤
4
3
𝑤
� 

 
    Thus, the unknown displacements will be: 

�
𝑑4
𝑑5
𝑑6
� =

1
𝐾
�

1.603𝑤
−5.905𝑤
— 1.658𝑤

� 

 
Step 7: Determination of member end actions: 
The member end actions can be obtained from the corresponding member stiffness and the 
nodal displacements. The member end actions for each member are derived as shown below. 
 
Member - AB 
In case of member (AB), the member forces will be: {Fm}(AB) = [K](AB) {d}(AB) 

⎣
⎢
⎢
⎢
⎢
⎡
𝑇1
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⎥
⎥
⎥
⎤

 

 
Thus, 

⎣
⎢
⎢
⎢
⎢
⎡
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⎥
⎥
⎤
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It is to be noted that {Fm} are the end actions due to joint loads. Hence it must be added to the 
corresponding end actions in the restrained structure in order to obtain the end actions due to 
the loads. Therefore, {Fm} Actual are the true member end actions due to actual loading system 
and can be expressed as  

{Fm} Actual = {Fm} + {Ffm} 
     
Where, {Ffm}are the end actions in the restrained structure. Since there is no load acting on 
member (1), the actual end action will be: 

{𝐹𝑚}𝐴𝑐𝑡𝑢𝑎𝑙 =
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Member - BC 
 
In similar way, the member forces in member (BC) will be: {Fm}(BC) = [K](BC) {d}(BC) 
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Thus, 
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⎣
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Since there is no load acting on member (BC), the actual end action will be: 

{𝐹𝑚}𝐴𝑐𝑡𝑢𝑎𝑙 =
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Thus, the reaction forces at the support and load at the joints will be: 
 

                                            

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑇1
𝐹1
𝑀1
𝑇2
𝐹2
𝑀2
𝑇3
𝐹3
𝑀3⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
−0.4𝑤
3.46𝑤
5.49𝑤

0
0
0

0.33𝑤
0.55𝑤
−2.33𝑤⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

      
 
4.6.5 Analysis of Space Frame 
Space frames are an increasingly common architectural technique especially for large roof 
spans in commercial and industrial buildings. The rigid jointed frames such as building 
frames are usually three dimensional space structures. Thus in case of certain structures like 
multi-storeyed buildings, it is necessary consider 3-dimensional effects for analysis. The 
space frame constitutes the final step of increasing complexity. It consists of plane frame and 
grid actions. The displacement and rotation vector associated with each joint have three 
components in case of space frame structures. There are six equilibrium equations associated 
with each joint.  The degrees of freedom at each node of the space frame member will be (i) 
displacement in three perpendicular directions and (ii) rotations in three different directions. 
Therefore, the degrees of freedom in each node of the member will be six as shown in the 
figure below. The stiffness matrix in local coordinate system considering all possible degrees 
of freedom will be as given in Table 4.6.1.  
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Fig. 4.6.5 Degrees of freedom for space frame member 

 
Table 4.6.1 Stiffness matrix of space frame member 
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The generalized stiffness matrix of a rigid jointed space frame member can be obtained by 
transferring the matrix of local coordinate system into its global coordinate system. The 
transformation matrix will become a square matrix of size 12×12 in this case as the degrees 
of freedom for each node/joint is six.  
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