Lecture 1: Stiffness of Truss Members

4.1.1 Introduction

Analysis of frame structures can be carried out by the approach of stiffness method.
However, such types of structures can also be analyzed by finite element method. A unified
formulation will be demonstrated based on finite element concept in this module for the
analysis of frame like structures. A truss structure is composed of slender members pin
jointed together at their end points. Truss element can resist only axial forces (tension or
compression) and can deform only in its axial direction. Therefore, in case of a planar truss,
each node has components of displacements parallel to X and Y axis. Planar trusses lie in a
single plane and are used to support roofs and bridges. Such members will not be able to
carry transverse load or bending moment. The major benefits of use of truss structures are:
lightweight, reconstructable, reconfigurable and mobile. Configuration of few standard truss
structures are shown in Fig. 4.1.1.

Pratt Truss Brown Truss
Howe Truss Warren Truss

Fig. 4.1.1 Configuration of various truss structures

4.1.2 Element Stiffness of a Truss Member

Since, the truss is an axial force resisting member, the displacement along its axis only will
be developed due to axial load. Therefore, using Pascal’s triangle, the displacement function
of truss member for development of shape function can be expressed as:

u(x)=ep+ax=[1 X]{%}

* (4.1.1)
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Fig. 4.1.2 Axial force on the member along X axis

Applying boundary conditions as shown in Fig. 4.1.2:
At x=0, u(0)=u, andat x=L, u(L)=u,

u, —u
Thus, e, =u, and «a, :% Therefore,

u(x) = (1_%}11%% _[NJu) (4.12)
Here, N is the shape function of the element and is expressed as:
X X
Nf={1l-— — 4.1.3
[N] [ L J (4.13)
So we get the element stiffness matrix as
[k]=[[[[B] [D][B]de (4.1.4)
Q
Where, [B]:M:{—1 1}
dx L L
So, the stiffness matrix will become:
1
_ A oLyt o1f, _AEL -l
= | [B] E[B]Adx = AE] Py { 3 de_ =
L

Thus, the stiffness matrix of the truss member along its member axis will be:

AE|l 1 -1
[k]:TLl 1} (4.1.5)

4.1.3 Element Stiffness of Truss Member with Varying Cross Section



Now, let us find the stiffness matrix of a pin-jointed member of length L with respect to local
axis, having cross sectional areas A; and A, at the two ends of the member as shown in the

figure below.
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Fig. 4.1.3 Member with varying cross section

From the above figure, the cross sectional area at a distance of x from left end can be
expressed as:
A —
A=A +2TA1x (4.1.6)
As it is a pin-jointed member, the displacement at any point may be expressed in terms of
nodal displacement as u = N,u, + N,u,

Similarly the cross sectional area at any point may be represented in terms of the cross
sectional area of the two ends. Thus A, = N, A + N, A,

Where the shape functions are: N, =1—%; N, =%

Now, the strain may be written as:

ou oN, o, 11 u,

_ou_oN, 0N, 111 _ 417

T T ox Tk L' L °? L[1 1’{“} [Blu} (417)
2

As the stress is proportional to strain according to Hook’s law, the stress-strain relationship
will be as follows:

o,=Eg, =—[-1 1} =E[BJu} (4.1.8)

Now the strain energy may be expressed as

L L
U =3 fe o= e Eo mo <3 [l T Elelula @19)

0 0

Applying Castigliano’s theorem, the force will become:



Thus, the stiffness matrix will be:

1 -1 L
_E i(asA=A _Ej1 -t A=A e
[k]= 5 Ll 1 }!(Aﬁ i dex =0 Ll . }[Alx+ TR L

_E[1 -1 A-Al_ E 1 -1
_J—1 1}&” 2 }_ZL(AHAZ)[—l 1} (4.1.11)

4.1.4 Generalized Stiffness Matrix of a Plane Truss Member
Let us consider a member making an angle ‘0’ with X axis as shown in the figure below. By
resolving the forces along local X and Y direction, the following relations are obtained.

F=Fyc0s0+F,sing

F,=F,cos0+F,sind

eemm e (4.1.12)
F,=-F4siné+F, cosd

oL

2 =—F,sind+F,cosd

Where, F,and F ,are the axial forces along the member axis X . Similarly, Ifyland Ifyzare

the forces perpendicular to the member axis X .
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Fig. 4.1.4 Inclined truss member



The relationship expressed in eq. (4.1.12) can be rewritten in matrix form as follows:

F, cos@ sind 0 0 1(F,
F —sin@ cosé 0 0 ||F
Tyl _ n (4.1.13)
F, 0 0 cos@ sind ||F,
F, 0 0 —sin@ cosd ||F,,
Now, the above equation can be expressed in short as:
Fi=[T}F) (4.1.14)

Here, [T] is called transformation matrix. This relates between the global (X,Y axis) and
member axis (X,Y axis). Similarly, the relations of nodal displacements between two
coordinate systems may be written as:

{d}=[T]{d} (4.1.15)

Again, the equation stated in (4.1.5) can be generalized and expressed with respect to the
member axis including force and displacement vector as:

F, 1 0 -1 0](q
F 0 0 0%,
Tl _AE K (4.1.16)
F.l L|-10 1 of|g
F. 0 0 0]V,

Where, the nodal forces in Y direction are zero. The above equation may also be expressed in
short as:

Fl=[kla} (4.1.17)

Where, the matrices in the above equation are written with respect to the member axis. Now,
eq. (4.1.17) can be rewritten with the use of eq. (4.1.14) and (4.1.15) as given below.

[T }F)= k] ]} (4.1.18)
Or,
Fy =Tk (4.1.19)



Here, the transformation matrix [T] is orthogonal, i.e., [T]* is equal to [T]". Therefore, from
the above relationship, the generalized stiffness matrix can be expressed as:

K]=[T k[T] (4.1.20)
Thus,
cosd -sind@ 0 0 1 0 -1 0} cos@ sin@ 0 0
[k]— sin@ co s O 0 AEI 0O O O Of/{-sind codfs O 0
1o 0 cosd -sind|L|-10 1 0| O 0 cosd sind
0 0 sin@ co @s 0O 0 0 O 0 0 —sin@ co @
(4.1.21)
Or,
cos’ 0 sin@cosé —cos’ 0 —sinfcosd |
sin@cosé sin® g —sin@cosé —sin%@
[]-AE (4.1.22)
L | _cos?e —sin@cosé cos’ @ sin@cosd
| —sindcoso —sin® @ sin@cosd sin?6 |

The above stiffness matrix can be used for the analysis of two-dimensional truss problems.




Lecture 2: Analysis of Truss

4.2.1 Element Stiffness of a 3 Node Truss Member

o @
.

Fig. 4.2.1 3-node truss member

Here, the displacement function using Pascal’s triangle can be expressed as:
24
U(X)=a, +aX+a,X" [1 X X ] o (4.2.1)

a,

Applying boundary conditions:
At x=0, u(0)=u, x=L/2, u(L/2)= u and at x=L, u(L) = u

And solving for «,, ¢, and «,

_BU AU, Uy and g, = 2u, —4532 +2u,
L

3x  2x? 4x  4x? X 2x?
u(X):[l_TJF?]Uﬁ(T—?}Uz +(_E+?ju =[NJ{u} (4.2.2)

Here, N is the shape function of the element and is expressed as:
3x 2x%) (4x 4x® X 2x°
N l-—+— | | —— | | ——+— 4.2.3

Now, the element stiffness matrix can be written as

m D][B]d (4.2.4)

[ 4_8
d

d|N
Where, [B]= ]x[ %+% i ?_)2( —%+%}

So, the stiffness matrix will be:

[K]- JIj18] [P][BJde = [ [8] E[B] Adx
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=AEf { Al - X __+_x Al __+_x dx
o | L 12 L1z L 12 L I2
1 4x
RN
16x2 24x ) 40x 32x2 16x 16x2
12 L L 12 L 12
_AE (* o dox 32 edx 6ad 24x 3207
Lz ), L 12 L 12 L 12
16x 16x2 24x  32x? 8x 16x?
L 12 L 12 L 12
(4.2.5)

After integrating the above equation, the stiffness matrix of the 3-node truss member will
become:

T 3L

7 -8 1
[k] = 2& [—8 16 —8] (4.2.6)
1 -8 7

4.2.2 Worked Out Example

Analyze the truss shown below by finite element method. Assume the cross sectional area of

the inclined member as 1.5 times the area (A) of the horizontal and vertical members. Assume
modulus of elasticity is constant for all the members and is E.

If)
A
> 2P
L
L I
I B 1

Fig. 4.2.2 Plane truss



Solution

The analysis of truss starts with the numbering of members and joints as shown below:
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Fig. 4.2.3 Numbering of members and nodes

The member information for the truss is shown in Table 4.2.1. The member and node
numbers, modulus of elasticity, cross sectional areas are the necessary input data. From the
coordinate of the nodes of the respective members, the length of each member is computed.
Here, the angle 6 has been calculated considering anticlockwise direction. The signs of the

direction cosines depend on the choice of numbering the nodal connectivity.

Table 4.2.1 Member Information for Truss

Member | Starting | Ending | Value | Area | Modulus of
No. Node Node | of© Elasticity

1 1 2 90° | A E

2 2 3 315° |15A | E

3 3 1 180° | A E

Now, let assume the coordinate of node 1 as (0, 0). The coordinate and restraint joint
information are given in Table 4.2.2. The integer 1 in the restraint list indicates the restraint
exists and O indicates the restraint at that particular direction does not exist. Thus, in node no.

2, the integer 0 in x and y indicates that the joint is free in x and y directions.

Table 4.2.2 Nodal Information for Plane Truss

Node No. | Coordinates Restraint List
X y X y

1 0 0 1 1

2 0 L 0 0

3 L 0 1 1
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The stiffness matrices of each individual member can be found out from the stiffness matrix
equation as shown below.

cos® 6 cosdsin 6 —cos® 6 —cos@sin6 |

1 AE cos@sin @ sin? @ —cos@sing  —sin’@
[]:T —cos” @ —cos@sin @ cos’ @ cos@sin @
| —cosgsing  —sin’@ cosdsin @ sin®0 |

Thus the local stiffness matrices of each member are calculated based on their individual
member properties and orientations and written below.

1 2 3 4 3 4 5 6
0 0 0 0] 1 1 -1 -1 1] 3
_ -1 1 1 -1| 4
[k]l_AEo 10 -1 2 ] SAE
_ = ==
Lo 0o o ol 3 aoL| .y 1 1 _1l s
0 -1 0 1| g4 1 -1 -1 11| 6 ]
B - - - an
6 1 2
1 0 -1 0715
|0 0 0 -1l6
[k]szT
-1 0 1 01
|0 0 0 0]2

Global stiffness matrix can be formed by assembling the local stiffness matrices into globally.
Thus the global stiffness matrix are calculated from the above relations and obtained as
follows:



1 0
0 1
0
AE
Kl=— 0 -1
k)=~
-1 0
0

The equivalent load vector for the given truss can be written as: {F}

0 0 -1
0 -1 0
8 .8 _3
42 a2 42
3 .3 3
42 T a2 a2
3 3 3 .,
42 42 42
8 .3 _3
W2 a2 42

a2
3

42
3

42 |

11

Let us assume that u and v are the horizontal and vertical displacements respectively at joints.
Thus the displacement vector will be expressed as follows:

u, 0
v, 0
{d}: 2 — u2
V2 VZ
U, 0
A 0

Therefore, the relationship between the force and the displacement will be:
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1 0 0 0 -1 0
0 1 0 -1 0 0
Fa o o B _3 3 3 0
Fy 42 N N NG 0
2P| AE 3 3 3 3 U,
=—0 -1 - 1+ - =
P L NN NP W2 ||y,
F
& 10 8 3 8 4 3| |0
Fﬂ 4J§ 4J§ 4J§ 4J§ 0
3 3 3 3
a2 a2 42 42 ]

From the above relation, the unknown displacements u, and v, can be found out through
computer programming. However, as numbers of unknown displacements in this case are
only two, the solution can be obtained by manual calculations. The above equation may be
rearranged with respect to unknown and known displacements in the following form:

b el
Fﬂ kﬁa kﬂﬂ dﬁ

Thus the developed matrices for the truss problem can be rearranged as:

e N r
2P 3 -3 0 0 -3 3 . 3
a2 a2 | a2 42 Uz
P S o3 0 4 2 =
W2 a2 42 a2 V2
A I T T N
AE 0
< Ra b == o 0 i1 1 0 4 e
|
Fi 0 1 10 1 0 0 0
-3 3 3 1 .3
Fys 42 42 | 42 42 0
3 =3 1y o -3 3
" Fy3 J _4\/5 4\/5 ' 4\/5 4\/5 -0

The above relation may be condensed into following

3 -3
2P| _AE|4V2 42 ]y,
P/ L| -3 3 |V

— 1+
a2 a2
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The unknown displacements can be derived from the relationships expressed in the above

equation.
-1

3 -3 3 3
- - 1+— ——
u| _AE|4v2 a2 2P| _aVoL|" 42 42 |[2P
v L83 P/ 3AE| 3 3 ||P
42 a2 W2 a2

Thus the unknown displacement at node 2 of the truss structure will become:

] _PLiss B2
v, AE 3

Support Reactions:

The support reactions {Ps} can be determined from the following relation:

(P} =={Ra}+ Ky J{d.}

Where, {Pc} correspond to equivalent loadings at supports. Thus, the support reaction of the
present truss structure will be:

0 0
0
0 0o -1 5
by [0l AE| 8 3 |pLisyBE )
: o L |42 af2|AE| | -2P
0 3 -3 2P
142 442 ]

Member End Actions:

Now, the member end actions can be obtained from the corresponding member stiffness and
the nodal displacements. The member end forces are derived as shown below.

Member -1
0
mel 0 0 0 0 0
me1 :E 0 0 -1 8\/5 &: -3P
Fox L |0 0 3+T AE 0
me2 0O -1 0 1 3 3P




Member — 2

F 1 -1 -1 1] 3+ﬂ 2P
Foo| _BAE|-1 1 1 -1 33 PL_|-2P
Fosl 4J2L1-1 1 1 -1 0 AE |-2P
Foye B A I | 2P
Member -3
F 1 0 -1 0]f0 0
Fyns| AE[O O 0 O0f/0/PL |0
F.[  L|-10 ollo[ AE o
mel 0 O 0|0 0

Thus the member forces in all members of the truss will be:

3P 3P
(F.}=1-J(2P)" +(2P)" { ={-22P
0 0

The reaction forces at the supports of the truss structure will be:
0

{FR}: _op

2P

Thus the member force diagram will be as shown in Fig. 4.2.4.
Fh

2P

ap 2.2P

A

Fig. 4.2.4 Member Force Diagram
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Lecture 3: Stiffness of Beam Members

4.3.1 Introduction

A beam is a structural member which is capable of withstanding load primarily by resisting
bending. The primary tool for analysis of beam is the Euler—Bernoulli beam equation. Other
methods for determining the deflection of beams include "slope deflection method" and
"method of virtual work". For calculation of internal forces of beam include "moment
distribution method", force or flexibility method and stiffness method. However, all these
methods have limitations if either of geometry, loading, material properties or boundary
conditions becomes arbitrary in nature. Finite element techniques can well handle such cases
and relieve the analyzer of making simplifications to arrive approximate solutions.

4.3.2 Derivation of Shape Function
The degrees of freedom at each node for a beam member will be (i) vertical deflection and

(i) rotation. For a beam member, the slope of the elastic curve 0 is given by: 9 = % where
X

the variable v is the displacement function of the beam. As the beam has two degrees of
freedom at each node, the variation of v will be cubic and can be expressed using Pascal’s
triangle as:

Q
V(X):Oto +a1X+052X2+0{3X3:[1 x x> X % (431)
a,
o
and
Q
o= _o 1 2x 3] ™ (4.3.2)
dx a,
o
Y
N
M,.0, M,.0,

. % P X
TF_\],V] TF.HV’

Fig. 4.3.1 Beam element
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Now, applying boundary conditions, the following expressions from the above relations can

be obtained:
At x=0:
o, (o
(04 . o, |-
V,=[1 0 0 0] *}i@g=[0 1 0 o4 ‘i;
1 [ ]052 1 [ ]sz
(22 Q;
At x=L:
0{0 ao

V,=[1 L 1 g =[o 1 2 32|

a, a,

a, a,

Thus combining the above expressions one can write:

V,] 1 0 0 0 e
6| |01 0 0|lg AT
V,[ 11 L 2 0llg
6, |0 1 2L 32|«
So,
a, 1 0 -1 V, 1 0 0 0 ] V.
0 1 0 0
0:120102 03 02=_i_2i_£91
a, 1 L L L V2 LZ L |_2 L V2
a) 0012030 (g | 2 1 _2 11,
| L L L L® |
Therefore,
1 0 0 0] Y
0 1 0 o0 91
v(x)=fi x X XS]_E2 2 % _1p& =[N, N, N, N,
I I |V,
2 1 2 1 0
For E o)
Where,
3 2 x3 3x?  2x°
lel—FXZ‘i‘ 3X3, N2=X——X2+F, 3_ L2 - 3

<

(4.3.3)

(4.3.4)

(4.3.5)
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N is called shape function which interpolates the beam displacement in terms of its nodal
displacements.

4.3.3 Derivation of Element Stiffness Matrix
Now, the strain displacement relationship matrix [B] can be expressed from the following
expressions with the help of eq. (4.3.1):

e L SO SR O O @37)

= O
o

1 \A

" _ 0 ) 0,
Where, [B]=[0 0 2 6x]; [Al= | . [ {d}=1,
2

0 0,

'—\
N
—
w
s

From the moment curvature relationship, we can write:

M =Ely = El j:‘z’ - EI[B]A*{d} (4.3.8)
Strain energy,

U= E[Z]T [M Jdx :%T{d VAT [8T [B]A*Jid )dx (4.3.9)
Thus,

{F}= % ~El I[A-l]T [BT [B]A*](d Jax (4.3.10)

So, the stiffness matrix will be:

L L
k1=l [[a*] [B] [B]A*ix = E1[A*] [[B] [Blux(A]" (4.3.11)
0 0
0 00 0 0 0 0 0 0]
L L L
Now, [[B" [BJdx = | %o o0 2 6x]o|x=j0 T o R
) . Jlo 0 4 12x T
6X 0 0 12x 36x°
0 0 6L 120°]

(4.3.12)



So,
[0
0
[k]=e1[a]
0
0
1 0
0 1
[k]=El
0 0
0 0
0 0 0 6
0 0 -2 0
= El
0 0 0 -6
0 0 2 @l

o O o o

4L
6L2

o O o o

l_,\,|ooo o

Thus, the element stiffness of a beam member is:

12 6L

El| 6L 4L°
K== ,, _

L}|-12 -6L
6L 2L°

~12
-6L 217
12
—-6L 417

6L

—6L

0
0 1
[A]
6L2
121° |
0 o0 o 1
0 o0 o | O
3
0 4L 62|z
2
0 6.2 121°] =
0] 12
L3
0 6
1| L
1l-8 b,
L e
2 1 L
= Tz 6
N =

4.3.4 Generalized Stiffness Matrix of a Beam Member
Consider a beam member making an angle ‘0” with X axis as shown in Fig 4.3.2 below. By
resolving the forces along local X and Y direction, the following relations are obtained.

18

(4.3.13)
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Fu=F,c0s0+F,sing )

F.=F,c0s0+F,sing

liyl =—F, sind+F, cosd \ (4.3.14)
F,=-F,sind+F,cosd

M, =M,

Mz =M, )

Where, F,, and F,,are the axial forces along the member axis X . Similarly, Ifyland Ify2 are

17 x1

the forces perpendicular to the member axis X .M, and M, are the moment about its axis at

node 1 and 2 respectively.

X.u

> X.u

Fig. 4.3.2 Inclined beam member

The relationship expressed in eq. (4.3.14) can be rewritten in matrix form as follows:

F,| [cos¢ sing 0 0 0 O0](F,
F.| |-sin@ cos® 0 0 0 Of||F,
M| | 0 0 1 0 0 0)M (4.3.15)
F,| | 0 0 0 cosd sind Of|F,
F. 0 0 0 -sind coséd Of|F,
M,] | O 0 0 O 0 1||M,

Now, the above equation can be expressed in short as:

{FI=[TIF} (4.3.16)
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Similarly, the displacement vector in local coordinate system (X,Y) may be transformed to
global (X, Y) coordinate system by the following relation.

{d}=[T]{d} (4.3.17)

The force-displacement relation in local coordinate system may be expressed as:

0 0 0 0 0 0
— 12EI  6EI 12EI  6El |(—
E_Xl 0 B 12 0 - E o™
i 6EI  4EI 6EI  2EI ||V
—1 |0 2 = 0 22— = ||+
M, | _ L L L L 0, (4.3.18)
Fx,| |0 0 0 0 0 o ||,
71 o _12§| _g 0 12§| _6I52I v
- L L L C |,
2 6EI 2EI 6EI  4EI 2
0 2 = o -— =
i L L L L

The matrices in the above equation are written with respect to the member axis. Now, the eq.
(4.3.18) can be rewritten as follows with the use of egs. (4.3.16) and (4.3.17).

[TIF}=[k]r]a} (4.3.19)
Or,
{(FY=[T]"[K][T]{d} (4.3.20)

Here, the transformation matrix [T] is orthogonal. Thus, from the above relationship, the
generalized stiffness matrix can be expressed as:

[]= [T ki) (4.3.21)

Considering 4 =cos@ and u =sin@ the above expression can be written as follows:



0 O 0O 0 O 0
_ 1o 12 6 0 12 6 |_
A -4 0 0 0 O T NEE A wu 0 0 O
u A 0 0 0 O 6 4 6 2 ||-# 4 0 0 O
[k]_E|0010000Ff0‘Ff 0 01 0 0
- 0 0 0 4 —u 0O}j0 O 0O 0 O 0 0 00 A2 wu
OOOleO_E_EOE_EOOO—y}L
10 0 0 0 0 1] L L2 L2 LZ_O 0 0 0 O
0 8 2, 8 4
L L L L L |
(4.3.22)
Thus, the generalized stiffness matrix of a beam member is derived as:
124 12puA4 6u 1247 12ud 6y
K N T E KT
12pur 1227 64 12uA 122* 64
BE K N T
bu B2 4 6u 6L 2
2 2 2 2
K]=e1] - L Lt oL (4.3.23)
124°  12uA 6u 12° 12u4  6u
E L 2 & 0 v
12.ul 124% 64  12ui  124° 61
T T
6w B4 2 6u 6L 4
L L L L L L |

R O O O O O
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Lecture 4: Analysis of Continuous Beam

4.4.1 Equivalent Loading on Beam Member

In finite element analysis, the external loads are necessary to be acting at the joints, which
does not happen always; as some forces may act on the member. The forces acting on the
member should be replaced by equivalent forces acting at the joints. These joint forces
obtained from the forces on the members are called equivalent joint loads. These joint loads
are combined with the actual joint loads to provide the combined joint loads, which are then
utilized in the analysis.

4.4.1.1 Varying Load

Let a beam is loaded with a linearly varying load as shown in the figure below. The
equivalent forces at nodes can be expressed using finite element technique. If w(x) is the
function of load, then the nodal load can be expressed as follows.

.
{Q} = [INT w(x)dx (4.4.1)
The loading function for the present case can be written as:
W, — W,
W(X)=w, + = x (4.4.2)

w(x):Force/ Length

wl

Fig. 4.4.1 Varying load on beam

From egs. (4.4.1) and (4.4.2), the equvalent nodal load will become

L 3 2
I[ZL—3L+1]w(x)dx (7W1 L 3w, jL

L L*

F, 0 20 20
x®  2x? W, W
— - + X [w(x)dx Lz
Q)= "l Q(LZ ) j “ = [20 30) 443
ol T2 2 g || ST (443)
: I 20 20

<
N
O ey
7\
'_.\,| >
w
|
— | =,
N
=
—_
=<
N
o
>
|
gl
|
N
N|E
N—
N
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Now, if wi=w,=w, then the equivalent nodal force will be:
wL
2
wL?

12

Q=1 1
2
wlL?
12

(4.4.4)

4.4.1.2 Concentrated Load

Consider a force F is applied at a point is regarded as a limiting case of intense pressure over
infinitesimal length, so that p(x)dx approaches F. Therefore,

(Q}=[[NT p(x)dx=[N"] F

[ o= X
== L e i
>

Fig. 4.4.2 Concentrated load on beam

(4.4.5)

Here, [N*] is obtained by evaluating [N] at point where the concentrated load F
Is applied. Thus,

2x3  3x° 2a® 3a’
T et T et
3 2 3 2
N*|= at distance a =
RS RS
X X a’_a’
2 L 2 L
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2a® 3a’
(?‘?”}
[_E 31] (@47

a _a
L2 L

Now, if load F is acting at midspan (i.e., a=L/2), then equivalent nodal load will be

~n

=z

E
VR
| ®
w

|
I
N

QD
N

Therefore, {Q}

N

|
N
7\
w
N

(4.4.8)

n N oo‘ﬁ N |

|
w|m

With the above approach, the equivalent nodal load can be found for various loading function
acting on beam members.

4.4.2 Worked Out Example

Analyze the beam shown below by the stiffness method. Assume the moment of inertia of
member 2 as twice that of member 1. Find the bending moment and reactions at supports of
the beam assuming the length of span, L as 4 m, concentrated load (P) as 15 kN and udl, w as
4 KN/m.

PN

Y
A
N
-

Fig. 4.4.3 Example of a continuous beam
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Solution
Step 1: Numbering of Nodes and Members

The analysis of beam starts with the numbering of members and joints as shown below:

PN

wkN [ m

A

] i

Fig. 4.4.4 Numbering of nodes and members

The member AB and BC are designated as (1) and (2). The points A,B,C are designated
by nodes 1, 2 and 4. The member information for beam is shown in tabulated form as shown
in Table 4.4.1. The coordinate of node 1 is assumed as (0, 0). The coordinate and restraint
joint information are shown in Table 4.4.2. The integer 1 in the restraint list indicates the
restraint exists and 0 indicates the restraint at that particular direction does not exist. Thus, in
node no. 2, the integer O in rotation indicates that the joint is free rotation.

Table 4.4.1Member Information for Beam

Member Starting node Ending node Rigidity modulus
number

1 1 2 El

2 2 3 2El

Table 4.4.2 Nodal Information for Beam

Node No. | Coordinates Restraint List
X y Vertical Rotation
1 0 0 1 1
2 L 0 1 0
3 2L 0 1 0
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Step 2: Formation of member stiffness matrix:
The local stiffness matrices of each member are given below based on their individual
member properties and orientations. Thus the local stiffness matrix of member (1) is:

1 2 3 4
[ 12EI 6El 12EI 6EIl | 1
E EE L2
6EI 4EI _6EI 2EI 5
kl=| L L L? L
1 12El 6EI 12El 6EI 3
T E E
6EI 2EI _ 6EI 4EI 4
L L L2 L

Similarly, the local stiffness matrix of member (2) is:

3 4 5 6
24E| 12EI 24E| 12E1 ] 4
L3 L2 - L3 L2
12EI 8EI  12EI AEI 4
k], =| L L L2 L
2 24E| 12EI 24E| 12El 5
T E E
12EI 4El 12EI 8EI 6
L2 L L2 L]

Step 3: Formation of global stiffness matrix:
The global stiffness matrix is obtained by assembling the local stiffness matrix of members
(1) and (2) as follows:

1 2 3 4 5 6
" 12EI 6EI 12El  6EI i
L3 L2 L3 L2 0 0
6!52I AE| _6EZI 2EI 0 0
L L L L
_12EI _6El  36EI 6EI  24El  12EI
K] = L3 L2 L L2 L3 L2
6EI 2El 6EI 12El  12EI  4El
L2 L L2 L L2 L
24E]| 12El  24El 12El
0 0 - T T
12EI 4E| 12El  8EI
0 0 2 -V Tz
i L L L L
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Step 4: Boundary condition:
The boundary conditions according to the support of the beam can be expressed in terms of

the displacement vector. The displacement vector will be as follows

Step 5: Load vector:
The concentrated load on member (1) and the distributed load on member (2) are replaced by

equivalent joint load. The equivalent joint load vector can be written as

P 5 5 wi
~»

PL PL  wl’ W,

8 8 12 1

[3S)

S X

Fig. 4.4.5 Equivalent Load

Step 6 : Determination of unknown displacements:.
The unknown displacement can be obtained from the relationship as given below:



{F}=[K]{d}
-1
{d} =[K]"{F}
12El  6EI  12El  6EI T _P
3 2 E 2 0 0 2
L L L L
0 6EI  4El  6EI  2El _PL
2 T2 0 0 8
0 L L L L P wL
12El  6El 36El  6El 24El  12EI _(+
0 _ - L3 - L2 L L2 - L3 LZ y 2 2
0, 6EI  2EI  6El  12EI  12El  4El PL wl?
0 L2 L L2 L L2 L 8 12
0 0 0 _2£|1_3EI _12L|25| 24L|35| _12L|25| wL
0 0 12El 4El 12El  BEI WLZZ
2 2
L L L L L o
The above relation may be condensed into following
1261 4E1) (PL_wi® PL_w®
Gl L L | J8 12__L |2 -1j8 12
0, 4El  8EI w2 20ElI|-1 3 wL?
L L 12 12
PL_wLf
%l__L | 4 a
o, 20ElI _&erLz
8 3
PL? wL?
0, = —
80ElI 8O0ElI
__PL wl®
°  160El 60EI

Step 7: Determination of member end actions:
The member end actions can be obtained from the corresponding member stiffness and the
nodal displacements. The member end actions for each member are derived as shown below.

Member-(1)

28
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(126l 6El  12EI  6El ] 3P 3wl
E L2 I 0 40 40
i 6EI  4El  6El  2EI 0 PL wl?
Mil_ L2 L L? L _J 40 40
- 3P 3wL
F, [ 20E1| 12EI  6El 12EI  6El o, a2 3P
M K > U | |- 40 40
? 6EI  2EI  6El  4El 4 4 PL wL’
L2 L L2 L 20 20
Member-(2)
(24 12 24 12] w3
= L L > L 0 20 40
2 2 g 12, PL  wL? 3PL  wl’
M| _El| L L a4 |0 30
F| L2 12 24 12 0 | |_wL_3pP
M, 2 L L L| |_PL wL 20 40
E 4 _E 8 8 3 wlL?
L L L i} L 12
Actual member end actions:
Member (1)
3P _swL P 23P 3wl
— 40 40 2 0 a0
% PL_wl® PL 64F9L véleZ
| 40 40 8 40 40
il + _J 40 40
F, _3P 3wl P [~ 17P | 3wl
YR 40 40 2 40 40
Y| PL_wl®) | PLE T PL_wi®
20 20 8 40 20
Member (2)
wL 3Pl L]
— | 20 a0 2 | AL,
Pl el w2 | | wl? BFZ’E 4Lg
Mol |20 30 || 12 |_Jo=+2
= wL 3P wL |~) 40 20
R I — owL 3P
M 20 40 2 0 20
’ wL® _wl 0
12 1L 12|
23P 3wl
R, 40 40
The support reactions at the supports A, B and C are {Fe}=1Rg = % g
Re] | owL 3P
20 4

Putting the numerical values of L, P and w (P=15, L=4, w=4) the member actions and support
reactions will be as follows:



Member end actions:

F,] [9.925 F ) (7.425
M, 7.7 M, 7.4
r | leors| R [ |75
M, 0 M, [-77

Support reactions:




Lecture 5: Plane Frame Analysis

4.5.1 Introduction

The plane frame is a combination of plane truss and two dimensional beam. All the members
lie in the same plane and are interconnected by rigid joints in case of plane frame. The
internal stress resultants at a cross-section of a plane frame member consist of axial force,

bending moment and shear force.

4.5.2 Member Stiffness Matrix

In case of plane frame, the degrees of freedom at each node will be (i) axial deformation, (ii)
vertical deformation and (iii) rotation. Thus the frame members have three degrees of

freedom at each node as shown in Fig. 4.5.1 below.

E,u

_> e
/ T F. v
M8

F\:‘UZ
*—>
/ TFIE“‘E
M8,

Fig. 4.5.1 Plane frame element

Therefore, the stiffness matrix of the frame in its local coordinate system will be the

combination of 2-d truss and 2-d beam matrices:

Uy Vi 01 Uz )
- AE AE
— 0 0 —— 0
L L
12EI 6EI 0 12EI
L3 Iz I
6EI 4E1 0 6EI
—[ ]_ 12 L L2
- AE AE
—— 0 0 — 0
L L
12EI 6EI 12EI
0o - —— 0
L3 L2 L3
6EI 2EI 6EI
2= kel 0 2=
L 12 L L2

4.5.3 Generalized Stiffness Matrix

In plane frame the members are oriented in different directions and hence it is necessary to
transform stiffness matrix of individual members from local to global co-ordinate system

0>

0

6EI
L2
2EI

6EI]

LZ
4E1

—>

(4.5.1)
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before formulating the global stiffness matrix by assembly. The generalized stiffness matrix
of a frame member can be obtained by transferring the matrix of local coordinate system into
its global coordinate system. The transformation matrix can be expressed as:

r cos @ sind 0 0 0 01
—sinf cosf8 O 0 0 0
0 0 1 0 0 0
[T1= 0 0 0 cosf® sinf O
0 0 0 —sin@ cosf8 O

0 0 0 0 0 14

(4.5.2)

Now, the generalized stiffness matrix of the member can be obtained from the relation of
[K] = [T]T[K][T] . Thus considering A = cos @ and u = sin @ the stiffness matrix in global

coordinate system can be written as follows:

- AE 0 0 AE 0 0
L L
12EI 6EI 12EI 6EI
A —u 0 0 0 O 13 12 E 12
L A 0 0 0 ©0 6EI 4EI 0 6EI 2EI
0 0 10 0 0 = L 12 L
K| = EI
(K] 0 0 0 A —u 0| AE . AE .
0 0 0 u A 0 L L
0 0 O o0 O 1- 12EI 6EI 12EI 6EI
= T Y wm Twm
6EI 2EI 0 6EI 4EI
12 L 12 L
‘A p 0 0 0 O
L A0 0 0 0
% 0 0 1 0O 0 O
0 00 A pu 0
0 0 0 —u A 0
L0 0 0O O o 1
[ (EA,,  12EI EA  _12E _OEL ¢ EA, 12El ,\ (_EA ~ 12El _OEL 1
(LX L3“> (LM E X“) iz ® ( L L3”) ( LMt X“) iz ®
EA  12EI EA . 12EI 6EI EA  12EI EA _ 12EI 6EI
(Tr-m) (Ter2) Tr (pwegm) (pe-or) &
6EI 6EI 4EI 6EI 6EI 2EI
| e = T = 7 T
_EA , 12El ,y (_EA ~_ 12EI 6EI EA .  12El , EA, _ 12EI 6EI
( L LS”)( Lt L3ML) iz ® (L}L+L3u) (LX” L3ML) iz ®
_EA  12E _EA , _12El,\ _S6El EA, _12El EA . 12EL,\ _S6El
( LMt s x”) ( LM LSX) " (LX” E x”) (L”+L37‘) 12
6EI 6EI 2EI 6EI 6EI 4EI
BT 1z L 7 Tz L
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(4.5.3)

4.5.4 Worked Out Example

Analyse the plane frame shown below by the stiffness method. Assume the modulus of
elasticity of the horizontal member is 1.5 times that of the vertical member and length of
the vertical member is 1.5 times that of horizontal member. Find the bending moment and
reactions at support assuming the length, cross section area and modulus of elasticity of
vertical member as 3.0 m, 0.4 x 0.4 m? and 2 x 10** N/mm?, respectively.

w

/

B C
LA1SEI &

1.5L,4,E,1

A
77

Fig. 4.5.2 Plane frame
Solution

Step 1: Numbering of Nodes and Members
The numbering of members and joints of the plane frame are as shown below:

Fig. 4.5.3 Numbering of Nodes and Members

The members AB and BC are designated as (1) and (2). The points A, B and C are designated
by nodes 1, 2 and 3. The member information for the frame is shown in tabulated form as
shown in Table 1(a). The coordinate of node 1 is assumed as (0,0). The coordinate and
restraint joint information are shown in Table 1(b). The integer 1 in the restraint list indicates
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the restraint exists and O indicates the restraint at that particular direction does not exist.
Thus, in node no. 2, the integer O all the restraint type indicates that the joint is in free all the

three directions.

Table 4.5.1 Member Information for Beam

Member number Starting node Ending node Rigidity modulus
1 1 2 El
2 2 3 1.5El
Table 4.5.2 Nodal Information for Beam
Node no. Coordinates Restraint list
X Y Axial Vertical Rotation
1 0 0 1 1 1
2 0 1.5L 0 0 0
3 L 1.5L 1 1 1

Step 2: Formation of member stiffness matrix:

The individual member stiffness matrices can be found out directly from egn. shown above.
Thus the stiffness matrices of each member in global coordinate system are given below
based on their individual member properties and orientations. Thus the stiffness matrix of

member (1) is:

1 2 3 4 5 6
- 12EI ___GEI __12EI 0 __6EIL 1
(1.5L)3 (1.5L)2 (1.5L)3 (1.5L)2
AE AE
0 (1.5L) 0 0 ©(15L) 0
___G6EI 0 4EI 6EI 0 2EL
| (15L)2 (1.5L) (1.5L)2 1.5L
[ke]4 __12El 0 6EI 12EI 0 6EI
(1.5L)3 (1.5L)2 (1.5L)3 (1.5L)2
AE AE
0 ~ (15L) 0 0 (1.5L) 0
__GEI 0 2EI 6EI 0 4EI
L (1.5L)2 (1.5L) (1.5L)% (1.5L)
Similarly, the stiffness matrix of member (2) is :
4 5 6 7 8 9



- A(1.5E)
- 0 0
12(1.5 E)I 6(1.5 E)I
0
L3 L2
6(1.5 E)I 4(1.5E)I
— 0 L2 L
(k]2 = _ A(1L5 E) 0 0
12(1.5 E)I 6(1.5 E)I
0 — —
L3 L2
6(1.5 E)I 2(1.5E)I
0
L2 L

Step 3 : Formulation of global stiffness matrix:
The global stiffness matrix is obtained by assembling by assembling the local stiffness matrix

of member (1) and (2) as follows:

1 2 3
- 32EI 8EI
9L3 0 TR -
2AE
0 5L 0
8EI 8EI
312 3L
32El 8EI 32EI
EYE 0 312 (9L3
- _2AE
Kl=| o 250
__ BEIL 4EI
312 3L
0 0 0 —
0 0 0
0 0 0

Step 4: Boundary conditions:
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0
6(1.5 E)I

L2
2(1.5 E)I

L

0

6(1.5 E)I
-
4(1.5E)I

© 00 ~N o o Ea

__A(15E)
- 0
0 _ 12(L5E)I
L3
0 _ 6(L5E)I
L2
A(1.5E)
E— 0
0 12(1.5 E)I
L3
0 __ 6(L5E)I
L2

4 5 6
32EI 8EI
0 =
9L3 3L2
2AE
0 - 0
3L
8EI 4EI
o= 0 =
3L2 3L
1.5EA 8EI
i 0 o=
+ L ) 3L2
2AE 18EI 9EI
0 222 =
(3]_. + L3) LZ
8EI 9EI 8EI 6EI
3z = TR,
1.5AE
- 0 0
L
18EI 9EI
0 T T
9EI 3EI
0 = 2=
L2 L

L

7 8 9
0 0 0 |
0 0 0
0 0 0
1.5EA
== 0 0
18EI 9EI
0 T Tz
o % 3m
L2 L
1.5AE
== 0 0
18EI 9EI
0 L3 T
9EI 6EI
0 -& T

The boundary conditions according to the support of the frame can be expressed in terms of
the displacement vector. The displacement vector will be as follows:

{d} =

Here, 6xg, 8y and 05 indicate the displacement in X-direction, displacement in Y-direction

and rotation at point B.

Step 5: Load vector:

© 0O N oo o B~ W N
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The distributed load on member (2) can be replaced by its equivalent joint load as shown in
the figure below.

e o
W, szlz,y kW L /12
Z:W‘ @ 4=1t’
0

Fig. 4.5.4 Equivalent Joint Loads

Thus, the equivalent joint load vector can be written as

{F} =

L 12 |
Step 6: Determination of unknown displacements:
The unknown displacements can be obtained from the relationship of {F} = [K]{d} or
{d} =[K]™* {F}. Now eliminating the rows and columns in the stiffness matrix and force
matrix, corresponding to zero elements in displacement matrix, the reduced matrix will be as
follows.

‘<3ZEI 1.5EA> 0 8EI 0
5z 913 L 312 wi
2AE 18EI 9EI -—
Syp| = 0 (— +— ) — 2
5 3L L L w2
B 8EI 9EI (8E1 N 6E1) BT
312 L? 3L L/
Thus, the unknown displacements will be:
5xp 0.04327w
8ys| = 1m0 |—17127w
05 —5.4978w

Step 7: Determination of member end actions:
The member end actions can be obtained from the corresponding member stiffness and the
nodal displacements. The member end actions for each member are derived as shown below.



—-56.17
0
126.4
56.17
0
126.4

0
—7110
0
0
7110
0

Member — (1)

In case of member (1), the member forces will be:{F, }; = [K]1){d})
B, - 56.17 0 —1264
E, 0 7110 0
My} 106 | —126:4 0 379.2
E,1 —56.17 0 379.2

X2
E, 0 —7110 0
M, | L —126.4 0 189.6
0
0
y 0
4327 X 1072w
—1.7127 X 10~ 0w
[_5.4978 X 10~ 10w-
- 0.0697w 1
1.2177w
_|-0.10479w
~1-0.06925w
—1.21661w
L—0.20793w-

—126.4
0
189.6
126.4
0

379.2

37

It is to be noted that {Fn} are the end actions due to joint loads. Hence it must be added to the
corresponding end actions in the restrained structure in order to obtain the end actions due to
the loads. Therefore, {Fm}acwa are the true member end actions due to actual loading system
can be expressed as

{Fm}actual = {Fm} + {Ffm}

Where, {Fm} are the end actions in the restrained structure. Since there is no load acting on
member (1), the actual end actions will be:

{Fm}actual =

Member (2)

r 0.0697w 71 07 r 0.0697w
1.2177w 0 1.2177w
—0.10479w n 0] _ 1-0.10479w
—0.06925w 0 —0.06925w
—1.21661w 0 —1.21661w
L—0.20793w-  LO- L—0.20793wH

In similar way, the member forces in member (2) will be {Fn}@) = [Kl{d})



=10°

[ 16
0
0

—16
0

L0

0
0.284
0.426

0

—0.284
0.426

_|-0.54215w
—0.06923w

10.069232w
—0.28325w

0.283245w

- —0.3076w -

0
0.426
0.853

0

—0.426
0.426

-16
0
0

16
0
0

0
—0.284
—0.426

0

0.284
—0.426

The actual member forces in the member (2) will be:

{Fm}actual =

10.069232w
—0.28325w
—0.54215w
—0.06923w
0.283245w
- —0.3076w -

L—(0.75wH

1.5w
0.75w

1.5w

r 0.0692w 7
1.2167w
0.2078w

—0.0692w
1.7832w

L—1.0576w-

Lecture 6 Analysis of Grid and Space Frame

4.6.1 Introduction
The property of a grid member is basically a combination of 2-d beam with torsional effect.
The plane frame is assumed to be loaded in its own plane where as loading in the grid is
normal to its plane. As a result torsional effects are included in the grid analysis. Thus the
grid member can withstand bending moment, shear force as well as torsional moment.

4.6.2 Element Stiffness Matrix for Grid Members
The degrees of freedom at each node of the grid member will be (i) vertical deformation and
(ii) rotation in two different directions.

0
0.426
0.426

0

—0.426

[ 4.327 X 1072w ]

0.853 -
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—1.7127 X 107 %
—5.4978 X 107w
0
0
0
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z
M0, /’
—>>
/ TF”JII

“M:L-B:\

X

M__,.E’_/
* —pPp —>
s T M0,

Fig. 4.6.1 Degrees of freedom of grid element

Therefore, the stiffness matrix of the grid in its local coordinate system will be:

Ox1 021 vy Ox2 0y2 Vo
T
4EI, _6E2Iy 2EI, 6E2Iy .
L L L L
_6El,  12EI, 6El,  12EI .
2 3 2 3
kl=| g L L - L L (4.6.1)
- 0 0 LX 0 0 My
. 2El,  El, . 41, 6El, | w1,
L L2 L L2
. 6EI,  12EI, 6EI,  L2EI, |
| L? L3 L2 IR

Here, the G is the modulus of torsional rigidity.

4.6.3 Generalized Stiffness Matrix

The generalized stiffness matrix of a grid member can be obtained by transferring the matrix
of local coordinate system into its global coordinate system. The transformation matrix can
be expressed as:

r cos @ sind 0 0 0 01
—sinf cosf8 O 0 0 0
0 0 1 0 0 0
[T1= 0 0 0 cosf® sinf O
0 0 0 —sin@ cosf8 O

0 0 0 0 0 14
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Now, the generalized stiffness matrix of the member can be obtained from the relation
of [k] = [T]7[k][T] . Thus considering A = cos® and u =sin@ the stiffness matrix in

global coordinate system can be written as follows:

- Gly
A —u 0 0 0 O
g A 0 0 0 0 .
0 0 1.0 0 0
= X
k=10 o0 o 2 —u 0
0 0 0 g A2 O
o 0 0 0 0 1
A u 0 0 0
—4x A0 0 O
Lo 01 0 o0
0 00 A u
0 0 0 —u 2
Lo 00 0 O
Gl, , 4El, , G, A4El,

X X_ 2{
LT A L L[
G, A4El, Gl, , A4El, ,

X _ A ht'd 2
( L L J” A
6EI 6EI
_ Lzy” - Lzyl
| al 4E| Gl 2El
_ xAZ y 2 | =7x y ﬂ,

LA { L L J”
G, 2El, Gl, , 2EI, ,
2 y) _ 2 i

{ L L ]” RS
6El 6El
_ Lzy,u LZ)’//L

4.6.4 Worked Out Example

S 0 —% 0 0
4Ely  6Ely 0 2Ely 6EIy
L L2 L L2
6Ely  12EIy 6EIy 12Ely
Tz 0 -%= =
_&x 0 % 0 0
2Ely _ 6Ely 0 4Ely  _ GEly
L L2 L L2
6Ely 12Ely 0 6EIy 12Ely
L2 L3 L2 L3
O_
0
0
0
0
]__
6EI Gl AEI Gl 2El 6EI |
y _2x g2 o2 2y y _ y
= L L~ ( L L J” ez
6EI Gl 2El Gl 2El 6EI
_ y A, _ X + y ﬂ, _ X 2 + y 2,2 y ﬂ
L2 ( L L }” L L L?
1253|y 6E2Iy . ) 6E2Iy . _12E3Iy
L L L L
6Elyﬂ G|X;L2+4E|yﬂ2 Gl, A4El, » _6Elyﬂ
L2 L L L L L2
6EI Gl A4El Gl AE| 6EI
_ y ﬂ, X _ y /I X 2 + y /12 y /1
E ( T S T E
_12|53|y ) 6E2Iy ) 6E2Iy ., 12E3Iy
L L L L
(4.6.2)

Analyze the grid shown below by the stiffness method. Draw the shear force and bending
moment diagram assuming the cross sectional area and modulus of elasticity of each member
as 0.3x0.3 m® and 2x10™ N/m? respectively. Assume El = 3GJ. The length of member AB

and BC is 4 m and 5 m respectively.
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Fig. 4.6.2 Grid structure

Solution

Step 1: Numbering of Nodes and Members
The numbering of members and joints of the plane frame are as shown in the figure below:

P.D, b,

0

B,
)
Tm,

Fig. 4.6.3 Numbering of nodes and members

The member AB and BC are designated as (1) and (2). The points A, B and C are designated
by nodes 1, 2 and 3. The member information for the grid is shown in tabulated form as
shown in Table 4.6.1. The coordinate of node 1 is assumed as (0, 0). The coordinate and
restraint joint information are shown in Table 4.6.2. The integer 1 in the restraint list indicates
the restraint exists and O indicates the restraint at that particular direction does not exist.
Thus, in node no. 2, the integer 0 all the restraint type indicates that the joint is free in all the
three directions.

Table 4.6.1 Member Information

Member number | Starting node | Ending node
1 1 2
2 2 3




Table 4.6.2 Member Coordinates

ode coordinates Restraint list

No X z | Vertical | Rotation | Rotation
1 0 0 1 1 1
2 4 0 0 0 0
3 4 5 1 1 1

Step 2: Formation of member stiffness matrix:
The individual member stiffness matrices can be found out directly. Thus the stiffness
matrices of each member in global coordinate system are given below based on their
individual member properties and orientations. As the member AB is horizontal, i.e., 6 = 0,

the values of Cos 6 = 1 and Sin 6 = 0. Thus the stiffness matrix of member (1) is:

1 2
Gl .
L
0 1?_[?
6El
0 I
Gl .
L
0 _1iE|
6EI
0 I

6El
L2

]
L

0

6El
et
21
L

Assuming EI=3GJ=3K, the above equation can be written as

[k]AB =

or|x r

Ol_‘x o

3

0

18K
L2

12K
L

0

18K
-
6K

L

4

o|—7<

o r|x o

5 6
0 0
12El 6EI
- L3 L2
_EL 2Bl
L2 L
0 0
12El 6El
E N
_6EI AEL
L2 L |
5 6
0 0
36K 18K
B L2
18K 6K
L2 L
0 0
36K 18K
B K
18K 12K
L2 L |
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As the member BC member is also horizontal, the value of Cos © = 1 and Sin 6 = 0 and thus,
the stiffness matrix will be:

6 5 4 7 8 9
K 0 0 K 0 0 6
L L
0 363K 18£< 0 _363K 18i< 5
L L L L
18K 12K 18K 6K
0 y ikl 0 - == |4
[k] _ L L L L
BC K K
= 0 0 = 0 0 7
L L
0 36K 18K 0 36K 18K
L3 L2 L > | 8
18K 6K 18K 12K
0 y hahi 0 - mthd
i L L L L 19

1SS matrix of
HISHIUTID M) @HU (DW). INUW IUURINY Gt Ui yiiu suustuis, wic uspiaseincied at the fixed
supports, are known and all are equal to zero. Only the displacement at co-ordinates 4, 5, 6
are unknown. So the global system stiffness matrix, corresponding to the displacement at co-
ordinate 4, 5, 6 will be:

- K 12K 18K 0 .
Lap  Lpc Lpc®
18K 36K 36K 18K
[K] = L 2 L 3 + L 3 _L 2
BC AB BC AB
0 18K K 12K
s Lag? Lgc  LaB-
2.65 0.72 0

=K0.72 0.8505 —1.125
0 —-1.125 3.2

Step 4: Boundary condition:

The boundary conditions according to the support of the grid structure can be expressed in
terms of the displacement vector. The displacement vector will be as follows
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Here, dg4, ds, and dg indicate the displacement vectors at point B.

Step 5: Load vector:
The distributed load on member (1) can be replaced by its equivalent joint load as shown in
the figure below.

WM
A

_ WL 12 ;j &
4K / alZ = R
I AAANAATE 3
) [ 4 Zi No extarnal load on member ‘BC' B
4. VB Z 5
' . PR P
A wef2 WL /2

Reaction due to external load at joints on
mamber AB

( Yy
w12

2 z

f L2
WL /2 WL /2
s Py wEhz G ’%

- j Mo equivalent joint load on member ‘BC

FETTTI7I77777

Equivalent joint load on member
AB

_ Fig. 4.6.4 Equivalent load

Thus the equivalent load vector will be:

0
wL

2
wlL?

12
0

wL
pt=J Wt
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wL?

12
0

0
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Step 6: Determination of unknown displacements:.
The unknown displacements can be obtained from the relationship of {F} = [K]{d} or

{d}:[K]_l{F}. Now, eliminating the rows in the force matrix, corresponding to zero

element in displacement matrix, the reduced matrix will be as follows.

9
dy 2.65  0.72 0 _4_W|
[ds =k! [0.72 0.8505 —1.125 2
d 0 -1125 32 | 16_WJ

12
1[0.662 ~1.047 —0.368] _gw
=—-|-1.047 3.856 1.3556|[ 4
-0368 1.355 0789 1| Zw

Thus, the unknown displacements will be:

ds] 4 [ 1.603w

[ds] =% [ —5.905w ]

de — 1.658w
Step 7: Determination of member end actions:

The member end actions can be obtained from the corresponding member stiffness and the
nodal displacements. The member end actions for each member are derived as shown below.

Member - AB
In case of member (AB), the member forces will be: {Fm}ag) = [K]as) {d}(as)
1 o X o 0 |
4 4
0 36 18 0 36 18
T T1 7 43 42 43 42 -0
F; 0 18 12 0 18 6 0
ml_ 4" & 7 o3 1 o
T, B 0 o I 0 1.603w
F, 7 4 —5.905w
M, ] 36 18 36 18 L—1.658wA
0w e ' B g
0 18 6 0 18 12
. 42 4 42 4 |
Thus,
711 1 —0.4w 7
F 1.456w
M| _ | 4156w
Tz 0.4w
F, —1.456w
M1 L 170w
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It is to be noted that {Fn} are the end actions due to joint loads. Hence it must be added to the
corresponding end actions in the restrained structure in order to obtain the end actions due to
the loads. Therefore, {Fm} acwar are the true member end actions due to actual loading system
and can be expressed as

{Fm} Actval = {Fm} + {Fm}

Where, {Fm}are the end actions in the restrained structure. Since there is no load acting on
member (1), the actual end action will be:

0
4w
- —0.4w 1 2 —0.4w1
1.456w 42w 3.46w
| 4156w 12 | _|5.49w
{Fm}Actual - O4’W + 0 - 04’0W
—1.456w 4w 0.54w
L 1.70w 2 L0.34w
42y
12

Member - BC

In similar way, the member forces in member (BC) will be: {Fn}@c) = [Klic) {d} @0

Ly o 2o o

5 4

, 36 18 36 18
(T2 53 52 53 52 [—1.658w
F, 18 12 18 6 | —5.905w |

0 - —= 0 -= - 1
Mol _ w 52 5 52 5 |2l 1603 |
T, 1 . 0 1 . . xl o |
F3 5 5 l 0 J
| M, 36 18 36 18 0

" xw ' m Tm:
, 18 6 18 12
: 52 5 52 5

Thus,
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727 1—0.33w
F, [—o.ssw]
M,| |-0.40w
Ts |~ | 0.33w
F3 0.55w
Ml 1-2.33w

Since there is no load acting on member (BC), the actual end action will be:

—0.33w 07 —0.33w

[—O.SSW] 0 [—o.ssw}

_|-040w| |o| |-0.40w
mbactuat = | 033w | ol = 0.33w
055w | |o| | 055w

—2.33w L) —2.33w

Thus, the reaction forces at the support and load at the joints will be:

(T1] 1 —0.4w
Fy 3.46w
M; 5.49w
T, 0

F = 0

M, 0

Ts 0.33w
Fs 0.55w
[ M;1 1—=2.33w-

4.6.5 Analysis of Space Frame

Space frames are an increasingly common architectural technique especially for large roof
spans in commercial and industrial buildings. The rigid jointed frames such as building
frames are usually three dimensional space structures. Thus in case of certain structures like
multi-storeyed buildings, it is necessary consider 3-dimensional effects for analysis. The
space frame constitutes the final step of increasing complexity. It consists of plane frame and
grid actions. The displacement and rotation vector associated with each joint have three
components in case of space frame structures. There are six equilibrium equations associated
with each joint. The degrees of freedom at each node of the space frame member will be (i)
displacement in three perpendicular directions and (ii) rotations in three different directions.
Therefore, the degrees of freedom in each node of the member will be six as shown in the
figure below. The stiffness matrix in local coordinate system considering all possible degrees
of freedom will be as given in Table 4.6.1.
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Fig. 4.6.5 Degrees of freedom for space frame member

Table 4.6.1 Stiffness matrix of space frame member

1 2 3 4 5} 6 7 8 9 10 11 12
1 E’:X 0 0 0 0 0 —E’:X 0 0 0 0 0
12ElI 6EI 12EI 6EI
0 z 0 0 2| o 126 0 0 z
2 B L2 B L2
12E1, 6EI, 12E1, 6EI,
3| o 0 = = 0 L
4| 0 0 o Sk 0 0 0 o Sk 0
L L
5 | o 0 —6EZ'Y 0 LEL'V 0 0 0 6EZ'Y 0 ZEL'Y 0
6 | o GEZ'Z 0 0 0 LEL'Z 0 GEZ'Z 0 0 0 ZEL'Z
; L’:X 0 0 0 0 0 E’:X 0 0 0 0 0
12E 6El 12E 6El
g | o -Ei= o 0 o -2l o S o 0 0o -
9 | & o 2EL o GEL . o IEL o GEL
i i i L
10 | o 0 0 —Gix 0 0 0 0 0 Glx 0 0
6EI 2EI 6EI 4EI
11 | o R = o 0 0 = e o
| o e . . o 2L |, e, . o EL
L L L L L

The generalized stiffness matrix of a rigid jointed space frame member can be obtained by
transferring the matrix of local coordinate system into its global coordinate system. The
transformation matrix will become a square matrix of size 12x12 in this case as the degrees
of freedom for each node/joint is six.
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