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Lecture 1: Virtual Work and Variational Principle 
 
2.1.1 Introduction 
Finite element formulation can be constructed from governing differential equations over a domain. 
This can be formulated by various ways like Virtual work method, Variational method, Weighted 
Residual Method etc.   
 
2.1.2 Principle of Virtual Work 
The principle of virtual work is a very useful approach for solving varieties of structural mechanics 
problem. When the force and displacement are unrelated to the cause and effect relation, the work is 
called virtual work. Therefore, the virtual work may be caused by true force moving through 
imaginary displacements or vice versa. Thus, the principle of virtual work can be divided into two 
categories: (a) principle of virtual forces and (b) principle of virtual displacements. The principle of 
virtual forces establishes the compatibility conditions. The principle of virtual displacements 
establishes the conditions of equilibrium and is used in the displacement model of the finite element 
technique. 

The external virtual work is the work done by real load moving through imaginary 
displacements in a structure. These loads include both the load distributed over the entire surface and 
volume. Thus, the virtual work done by the external force is: 
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  (2.1.1) 

Where, δu, δv and δw are the components of the virtual displacements in x, y and z direction 
respectively. FΓx, FΓy and FΓz are the surface forces and FΩx, FΩy and FΩz are the body forces in x, y 
and z direction respectively. In the above equation, the integration is carried out over the entire 
surface in the first term and over the entire volume in the second term. The above expression can be 
rewritten as: 

       T T
EW d F d d F d 
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     (2.1.2) 

Here,   Td u v w .  For the three dimensional stress-strain condition, there are six 

components of stresses ( x y z xy yz zx, , , , ,      ) and six components of strains in virtual 

displacement fields ( x y z xy yz zx, , , , ,      ).
 
Therefore, the virtual internal work can be 

expressed as follows:
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Or 

   TU d


     
        (2.1.4) 

According to principle of virtual work, the work done by external forces due to the virtual 
displacement of a structure in equilibrium is equal to the work done by the internal forces for the 
virtual internal displacement. Therefore, EW U    Thus eqs. (2.1.2) and (2.1.4) can be made equal 
and can be related as follows: 

           T T Td F d d F d d 
  

         
   (2.1.5)

 

 
2.1.3 Variational Principle  
Variational formulation is the generalized method of formulating the element stiffness matrix and 
load vector using the variational principle of solid mechanics. The strain energy in a structural body 
is given by the relation 

 { } { }1
2

TU dε σ
Ω

= Ω∫∫∫
        (2.1.6)

 

For a 3D structural problem, stress has six components:    T
x y z xy yz zx, , , , ,        . 

Similarly, there are six components of strains:    T
x y z xy yz zx, , , , ,        . Now the strain-

displacement relationship can be expressed as { } [ ]{ }B dε = , where {d} is the displacement vector in 

x, y and z directions and  [B] is called as the strain displacement relationship matrix. Again, the 
stress can be represented in terms of its constitutive relationship matrix:   { } [ ]{ }Dσ ε= . Here [ ]D  

is called as the constituent relationship matrix. Using the above relationship in the strain energy 
equation one can arrive 

              [ ]{ } [ ]{ }{ }1
2

T
U B d D B d d

Ω

 = Ω ∫∫∫
      (2.1.7)

 

Applying the variational principle one can express  
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             { } { } [ ] [ ][ ] { }TUF B D B d d
d Ω

∂
= = Ω
∂ ∫∫∫

      (2.1.8)
 

Now, from the relationship of { } [ ]{ }F K d= , one can arrive at the element stiffness matrix as: 

              [ ] [ ] [ ][ ]TK B D B d
Ω

= Ω∫∫∫
         (2.1.9)

 

 
Thus, by the use of variational principle, the stiffness matrix of a structural element can be obtained 
as expressed in the above equation. 
 
2.1.4 Weighted Residual Method 
Virtual work and Variational method are applicable and adequate for most of the problems. 
However, in some cases functional analogous to potential energy cannot be written because of not 
having clear physical meaning. For some applications, such as in fluid mechanics problem, 
functional needed for a variational approach cannot be expressed. For some types of fluid flow 
problems, only differential equations and boundary conditions are available. For Such problems 
weighted residual method can be used for obtaining the solutions. Approximate solutions of 
differential equation satisfy only part of conditions of the problem. For example a differential 
equation may be satisfied only at few points, rather than at each. The strategy used in weighted 
residual method is to first take an approximate solution and then its validity is assessed. The 
different methods in weighted Residual Method are 

• Collocation method 
• Least square method 
• Method of moment 
• Galerkin method 

The mathematical statement of a physical problem can be defined as: 
In domain Ω,    

Du f 0            (2.1.10) 
Where,  

D is the differential operator  
u = u(x) = dependent variables such as displacement, pressure, velocity,  

      potential function 
  x = independent variables such as coordinates of a point 
  f = a function of x which may be constant or zero 

 
If u  is an approximate solution then residual in domain Ω,   

R Du f            (2.1.11) 
According to the weighted residual method, the weak form of above equation will become 
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     (2.1.12) 

Where weighting function wi = wi(x) is chosen from the approximate basis function used for 
constructing approximated solution u .    
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Lecture 2: Galerkin Method 
 
2.2.1 Introduction 
Galerkin method is the most widely used among the various weighted residual methods. Galerkin 
method incorporates differential equations in their weak form,  i.e., before starting integration by 
parts it is in strong form and after by parts it will be in weak form, so that they are satisfied over a 
domain in an integral. Thus, in case of Galerkin method, the equations are satisfied over a domain in 
an integral or average sense, rather than at every point. The solution of the equations must satisfy the 
boundary conditions. There are two types of boundary conditions:  

• Essential or kinematic boundary condition 
• Non essential or natural boundary condition 

For example, in case of a beam problem (
4

4

yEI q 0
x

  


) differential equation is of forth order. 

As a result, displacement and slope will be essential boundary condition where as moment and shear 
will be non-essential boundary condition. 
 
2.2.2 Galerkin Method for 2D Elasticity Problem  
For a two dimensional elasticity problem, equation of equilibrium can be expressed as 

xyx
xF 0

x y 

   
 

    (2.2.1) 

 

xy y
yF 0

x y 

 
  

 
       (2.2.2) 

Where, x yF and F   are the body forces in X and Y direction respectively. Let assume,  

x yand    are surface forces in X and Y direction and  as angle made by normal to surface 

with X– axis (Fig. 2.2.1). Therefore, force equilibrium of element can be written as: 

     

 

x x xy

x x xy x xy x xy

     F PQ t OP t OQ t

OP OQF cos sin cos Cos 90
PQ PQ





 

      
  

x x xyThus, F m           (2.2.3) 

Where, ℓ and m are direction cosines of normal to the surface. Similarly,  

y xy yF m                  (2.2.4) 

 



6 
 

 
Fig. 2.2.1 Elemental stress in 2D 

 
 
Adopting Galerkin’s approach 

xy xy yx
x xF u F v dxdy 0

x y x y 

                              
    (2.2.5) 

 
Where u and v  are weighting functions i.e elemental displacements in X and Y directions 
respectively. Now one can expand above equation by using Green’s Theorem.  

Green Theorem states that if    x, y and x, y  are continuous functions then their first and 

second partial derivatives are also continuous. Therefore,  
2 2

2 2dxdy dxdy m ds
x x y y x y x y

                                      
   

    
(2.2.6) 

Assuming, x ; u; 0
x y

   
 

 one can rewrite with the use of above relation as 

 x
x x

u
u dx dy dx dy  u ds

x x
       

          (2.2.7) 

 

Similarly, assuming y; 0 and v
x y

   
 

  

 y
y y

v
v dx dy dx dy m v ds

y y
  

     
        (2.2.8) 
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Again, assuming x y; v; 0
x y

   
 

 

 

 x y
x y x y

v
v dx dy dx dy  v ds

y x
  

     
        (2.2.9) 

And assuming, x y; 0; u
x y

   
 

 

 x y
x y x y

u
u dx dy dx dy m u ds

y y
  

     
     

 
Putting values of eqs. (2.2.7), (2.2.8) and (2.2.9), in eq. (2.2.5), one can get the following relation: 
 

       x y xy xy

x y xy xy x y

u v v u dx dy
x y x y

u m v v m u ds F u dx dy F v dx dy 0 

                  
               



   

 

            (2.2.10) 
Rearranging the terms of above expression, the following relations are obtained. 

         x y xy xy x yu v v u dx dy F u F v dx dy
x y x y  

                      
   

   x xy xy ym uds m vds 0                (2.2.11) 

 
Here, x yF and F   are the body forces and u & v   are virtual displacements in X and Y directions 

respectively. 
 
Considering first term of eq. (2.2.11), virtual displacement u  is given to the element of unit 
thickness. Dotted position in Fig. 2.2.2 shows the virtual displacement. Thus, work done by x : 

   x x xdy u u dx dy u u dxdy
x x

          
   

     (2.2.12) 

 
Similarly, considering second term of eq. (2.2.11), virtual work done by body forces is 

 x yF u F v dx dy             
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Putting eqs. (2.2.3) & (2.2.4) in third term of eq. (2.2.11) we get the virtual work done by surface 
forces as: 

x yF uds F vds              

 

 
Fig. 2.2.2 Element subjected to stresses 
 

Due to virtual displacement u , change in strain x   is given by: 

 
 x

u u dx u
x u

dx x

     
      


      (2.2.13)  

The virtual work done by x x xis . .dxdy    . Similarly all the individual term in the first term of 
eq. (2.2.11) can be derived from eq. (2.2.13) which will be as follows: 
 

 x x xu dxdy dxdy
x
    
   

 y y yv dxdy dxdy
y
    
        (2.2.14) 

   xy xy xyv u dxdy
x y

               
   

 
Now, the work done by internal forces will be 
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 x x y y xy xyU dxdy             (2.2.15) 

 
If external work done is represented by WE and U is the internal work done then, 

E EU w 0 or U w            (2.2.16) 

Thus in elasticity problems, Galerkin’s method turns out to be the principle of virtual work, which 
can be stated that “A Deformable body is said to be in equilibrium, if the total work done by external 
forces is equal to the total work done by internal forces.” The work done above is virtual as either 
forces or deformations are also virtual. Thus, Galerkin’s approach can be followed in all problems 
involving solution of a set of equations subjected to specified boundary values. 
 
2.2.3 Galerkin Method for 2D Fluid Flow Problem 
Let consider the two dimensional incompressible fluid equation which can be expressed by pressure 
variable only as follows. 

2p 0             (2.2.17) 
Where p is the pressure inside the fluid domain. The above equation can be expressed in 2D form as: 

2 2

2 2

ii

p p 0
x y

or
p, 0

  
 


         (2.2.18) 

Applying weighted residual method, the weak form of the above equation will become 

i iiw  p,  d 0


          (2.2.19) 

Integrating by parts of the above expression, the following relation can be obtained. 

i i i,i iw  p,  d w   p,  d 0
 

          

i,i i i ior w   p,  d w  p,  d
 

         (2.2.20) 

If the nodal pressure and interpolation functions are denoted by p and N respectively, then the 
pressure at any point inside the fluid domain can be expressed as  

  p N p  

Similarly, the weighted function can also be written with the help of interpolation function as  

  w N w  
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Thus,          i,ip L p L N p B p   , where,  L
x y

       
= differential operator. 

Similarly,          i,iw L W L N w B w    

      T T
i,i iThus, w  p,  d w B B p d



         (2.2.21) 

   T T
i i

pw  p,  d = w N d
n 

 
        (2.2.22) 

Here, Γdenotes the surface of the fluid domain and n represents the direction normal to the surface. 
Thus, from eq. (2.2.20), one can write the expression as: 

          T T T T pThus, w B B p d w N d
n 

 
   

    Or, G p S          (2.2.23) 

 
Where, 

             

   

T T T

T

G B B d N N N N d
x x y y

pand S N d
n

 



              
 


 


  (2.2.27) 

Here, n is the direction normal to the surface. Thus, solving the above equation with the prescribed 
boundary conditions, one can find out the pressure distribution inside the fluid domain by the use of 
finite element technique.  
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Lecture 3: Finite Element Method: Displacement Approach 
 
2.3.1 Choice of Displacement Function 
 
Displacement function is the beginning point for the structural analysis by finite element method. 
This function represents the variation of the displacement within the element. On the basis of the 
problem to be solved, the displacement function needs to be approximated in the form of either 
linear or higher-order function. A convenient way to express it is by the use of polynomial 
expressions.  
 
2.3.1.1 Convergence criteria 
The convergence of the finite element solution can be achieved if the following three conditions are 
fulfilled by the assumed displacement function.  
 

a. The displacement function must be continuous within the elements. This can be ensured by 
choosing a suitable polynomial. For example, for an n degrees of polynomial, displacement 
function in I dimensional problem can be chosen as: 

2 3 4
0 1 2 3 4 ..... n

nu x x x x xα α α α α α= + + + + + +     (2.3.1) 
b. The displacement function must be capable of rigid body displacements of the element. The 

constant terms used in the polynomial (α0 to αn) ensure this condition. 
c.  The displacement function must include the constant strains states of the element. As 

element becomes infinitely small, strain should be constant in the element. Hence, the 
displacement function should include terms for representing constant strain states.  

 
2.3.1.2 Compatibility 
Displacement should be compatible between adjacent elements. There should not be any 
discontinuity or overlapping while deformed. The adjacent elements must deform without causing 
openings, overlaps or discontinuous between the elements.  

Elements which satisfy all the three convergence requirements and compatibility condition 
are called Compatible or Conforming elements. 
 
2.3.1.3 Geometric invariance 
Displacement shape should not change with a change in local coordinate system. This can be 
achieved if polynomial is balanced in case all terms cannot be completed. This ‘balanced’ 
representation can be achieved with the help of Pascal triangle in case of two-dimensional 
polynomial. For example, for a polynomial having four terms, the invariance can be obtained if the 
following expression is selected from the Pascal triangle. 

0 1 2 3u x y xyα α α α= + + +         (2.3.2) 
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The geometric invariance can be ensured by the selection of the corresponding order of terms on 
either side of the axis of symmetry. 

1 

x       y 

x2       xy       y2 

x3      x2y     xy2      y3 

x4      x3y     x2y2    xy3    y4 

 
Fig. 2.3.1 Pascal’s Triangle 

 
2.3.2 Shape Function 
In finite element analysis, the variations of displacement within an element are expressed by its 
nodal displacement ( i iu N u=∑ ) with the help of interpolation function since the true variation of 

displacement inside the element is not known. Here, u is the displacement at any point inside the 
element and ui are the nodal displacements. This interpolating function is generally a polynomial 
with n degree which automatically provides a single-valued and continuous field. In finite element 
literature, this interpolation function (Ni) is referred to “Shape function” as well. For linear 
interpolation, n will be 1 and for quadratic interpolation n will become 2 and so on. There are two 
types of interpolation functions namely (i) Lagrange interpolation and (ii) Hermitian interpolation. 
Lagrange interpolation function is widely used in practice. Here the assumed function takes on the 
same values as the given function at specified points. In case of Hermitian interpolation function, the 
slopes of the function also take the same values as the given function at specified points. The 
derivation of shape function for varieties of elements will be discussed in subsequent lectures. 
 
2.3.3 Degree of Continuity 
Let consider φ as an interpolation function in a piecewise fashion over finite element mesh. While 
such interpolation function φ can be ensured to vary smoothly within the element, the transition 
between adjacent elements may not be smooth. The term Cm is considered to define the continuity of 
a piecewise displacement. A function Cm is continuous if its derivative up to and including degree m 
are inter-element continuous. For example, for one dimensional problem, φ= φ(x) is C0 continuous if 
φ is continuous, but φ,x is not. Similarly, φ= φ(x) is C1 continuous if φ and φ,x are continuous, but φ,xx 
is not. In general, C0 element is used to model plane and solid body and C1 element is used to model 
beam, plate and shell like structure, where inter-element continuity of slope is necessary to ensure. 
Let assume a linear function for bar like element:

 
1 0 1xφ α α= +  This function is  C0 continuous as 
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φ1,x is discontinuous. If the interpolation function is considered as 2
2 0 1 2x xφ α α α= + + then 

2, 1 22x xφ α α= +  is also continuous but 2, 22xxφ α= is discontinuous. As a result, this function φ2 will 

become C1 continuous.  
 
2.3.4 Isoparametric Elements 
If the shape functions (Ni) used to represent the variation of geometry of the element are the same as 
the shape functions (N´i) used to represent the variation of the displacement then the elements are 
called isoparametric elements. For example, the coordinates (x,y) inside the element are defined by 
the shape functions (Ni) and displacement (u,v) inside the element are defined by the shape functions 
(N´i) as below. 
 

i i i i

i i i i

x N x                     u N u

y N y                     v N v





 
 

       (2.3.3) 

 
If Ni = N´i, then the element is called isroparametric.  Fig. 2.3.2(a) shows the two dimensional 8 node 
isoparametric element. 
 
If the geometry of element is defined by shape functions of order higher than that for representing 
the variation of displacements, then the elements are called superparametric (Fig. 2.3.2(b)). 
 
If the geometry of element is defined by shape functions of order lower than that for representing the 
variation of displacements then the elements are called subparametric (Fig. 2.3.2(c)). 
 
 

 
 

Fig. 2.3.2 Shape functions for geometry and displacements 
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2.3.5 Various Elements 
Selection of the order of the polynomial depends on the type of elements. For example, in case of 
one dimensional element having single degrees of freedom with two nodes, the displacement 
function can be chosen as 0 1u xα α= + . However, if the same has two degrees of freedom at each 

node, then the chosen displacement function should be 2 3
0 1 2 3u x x xα α α α= + + + . Various types of 

elements used in finite element analysis are given below: 
 
1. One dimensional elements. 

(a) Two node element 
(b) Three node element 

 
 

 
Fig. 2.3.3 One dimensional elements 

     
 
2.  Two dimensional elements 
                  (a) Triangular element 
                  (b) Rectangular element 
                  (c) Quadrilateral element 
                  (d) Quadrilateral formed by two triangles 
                  (e) Quadrilateral formed by four triangles 
 
Few of the elements with number of nodes are shown in Fig. 2.3.4. 
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Fig. 2.3.4 Two dimensional elements 
 
 

3.  Three dimensional elements. 
            (a) Tetrahedron  

                  (b) Rectangular brick element 
             Few of the three dimensional solid elements are shown in Fig. 2.3.5. 
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Fig. 2.3.5 Three dimensional elements 
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Lecture 4: Stiffness Matrix and Boundary Conditions 
 
2.4.1 Element Stiffness Matrix 
The stiffness matrix of a structural system can be derived by various methods like variational 
principle, Galerkin method etc. The derivation of an element stiffness matrix has already been 
discussed in earlier lecture. The stiffness matrix is an inherent property of the structure. Element 
stiffness is obtained with respect to its axes and then transformed this stiffness to structure axes. The 
properties of stiffness matrix are as follows: 

• Stiffness matrix is symmetric and square. 
• In stiffness matrix, all diagonal elements are positive.  
• Stiffness matrix is be positive definite 

 
2.4.2 Global Stiffness Matrix 
A structural system is an assemblage of number of elements. These elements are interconnected 
together to form the whole structure. Therefore, the element stiffness of all the elements are first 
need to be calculated and then assembled together in systematic manner. It may be noted that the 
stiffness at a joint is obtained by adding the stiffness of all elements meeting at that joint.  
 To start with, the degrees of freedom of the structure are numbered first. This numbering will 
start from 1 to n where n is the total degrees of freedom. These numberings are referred to as degrees 
of freedom corresponding to global degrees of freedom. The element stiffness matrix of each 
element should be placed in their proper position in the overall stiffness matrix. The following steps 
may be performed to calculate the global stiffness matrix of the whole structure.  

a. Initialize global stiffness matrix [ ]K  as zero. The size of global stiffness matrix will be equal 
to the total degrees of freedom of the structure. 

b. Compute individual element properties and calculate local stiffness matrix [ ]k  of that 

element. 
c. Add local stiffness matrix[ ]k  to global stiffness matrix [ ]K  using proper locations 

d. Repeat the Step b. and c. till all local stiffness matrices are placed globally. 
 
The steps to be followed in the computer program are shown in the form of flow chart in Fig. 2.4.1 
for assembling the local stiffness matrix to global stiffness matrix.  
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Fig. 2.4.1 Assemble of stiffness matrix from local to global  
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2.4.3 Boundary Conditions 
Under this section, procedure to include the effect of boundary condition in the stiffness matrix for 
the finite element analysis will be discussed. The solution cannot be obtained unless support 
conditions are included in the stiffness matrix. This is because, if all the nodes of the structure are 
included in displacement vector, the stiffness matrix becomes singular and cannot be solved if the 
structure is not supported amply, and it cannot resist the applied loads. A solution cannot be 
achieved until the boundary conditions i.e., the known displacements are introduced.  

In finite element analysis, the partitioning of the global matrix is carried out in a systematic 
way for the hand calculation as well as for the development of computer codes. In partitioning, 
normally the equilibrium equations can be partitioned by rearranging corresponding rows and 
columns, so that prescribed displacements are grouped together. For example, let consider the 
equation of equilibrium is expressed in compact form as: 

 { } [ ]{ }F K d=           (2.4.1) 

Where,  
            [K] is the global stiffness matrix, 
 {d} is the displacement vector consisting of global degrees of freedom, and 
           {F} is the load vector corresponding to degrees of freedom. 
By the method of partitioning the above equation can be partitioned in the following manner. 

 
{ }
{ }

[ ] { }
{ }

K KF d

F dK K
αα α βα α

β ββα ββ

           =   
              

       (2.4.2)  

Where, subscripts α refers to the displacements free to move and β refers to the prescribed support 
displacements. As the prescribed displacements {dβ} are known, eq. (2.4.2) may be written in 
expanded form as: 
 { } [ ]{ } { }F = K d + K dα αα α αβ β          (2.4.3) 

 Thus it is possible to obtain the free displacement of the structure {dα} as 

   { } [ ] { } { }{ }-1d  = K F  - K dα αα α αβ β             (2.4.4) 

If the displacements at supports {dβ} are zero, then the above equation can be simplified to the 
following expression. 

 { } [ ] { }-1d  = K Fα αα α          (2.4.5) 

Thus, by rearranging assembled matrix, the portion corresponding to the unknown displacements in 
eq. (2.4.4) can be taken out for the solution purpose. This is possible as the known displacements 
{dβ} are restrained, i.e., displacements are zero. If the support has some known displacements, then 
eq. (2.4.4) can be used to find the solution.  If the few supports of the structures yield, then the above 
method may be modified by partitioning the stiffness matrix into three parts as shown below: 
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 
 
 

   
 
 

K K KF d

F K K K d

F dK K K

   

    

   

                                                                              (2.4.6)

 

 
Here, α refers to unknown displacement; β refers to known displacement (≠0) and γ refers to zero 
displacement. Thus, the above equation can be separated and solved independently to find required 
unknown results as shown below. 

        
          

        1

F K d K d K d

or, K d F K d as d 0

Thus, d K F K d

      

     


    

       
    

          (2.4.7)

 

For computer programming, several techniques are available for handling boundary conditions. One 
of the approaches is to make the diagonal element of stiffness matrix corresponding to zero 
displacement as unity and corresponding all off-diagonal elements as zero. For example, let consider 
a 3×3 stiffness matrix with following force-displacement relationship.  

1 11 12 13 1

2 21 22 23 2

3 31 32 33 3

F k k k d
F k k k d
F k k k d

     
    =    
                 (2.4.8)

 

Now, if the third node has zero displacement (i.e., d3= 0) then the matrix will be modified as follows 
to incorporate the boundary condition. 

1 11 12 1

2 21 22 2

3

0
0

0 0 0 1

F k k d
F k k d

d

     
    =    
                  (2.4.9) 

Thus, while inverting whole matrix, d3 will become zero automatically. 
 

 
To incorporate known support displacement in computer programming following procedure may be 
adopted. Considering the displacement d2 has known value of δ, 1st row of eq. (2.4.8) can be written 
as:  

1 11 1 12 2 13 3F k d k d k d= × + × + ×
      (2.4.10)

 

Or 

1 12 11 1 13 3F k k d k dδ− × = × + ×      (2.4.11) 
 

Now the 2nd row of eq. (2.4.8) has to become: 
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{ } { }2dδ =           (2.4.12) 

Similarly 3rd row will be: 

3 32 31 1 33 3F k k d k dδ− × = × + ×        (2.4.13) 
Thus above three equations can be written in a combined form as 

1 12 11 13 1

2

32 31 33 3

0
0 1 0

0

F k k k d
d

F k k d

δ
δ
δ

−     
    =    
    −            (2.4.14) 

Another approach may also be followed to take care the known restrained displacements by 
assigning a higher value δ (say δ =1020) in the diagonal element corresponding to that displacement. 

1 11 12 13 1
20 20

22 21 22 23 2

3 31 32 33 3

10 10
F k k k d

k k k k d
F k k k d

δ
     
    × × = ×    
                (2.4.15) 

20 20
22 21 1 22 2 23 310 k k d k 10 d k d         

As d3 is corresponding to zero displacement, the above equation can be simplified to the following. 
20 20

22 21 1 22 2
20 20

22 22 2

2

10 k k d k 10 d

or 10 k k 10 d
d known displacement is ensured

     
    

   
 
If the overall stiffness matrix is to be formed in half band form then the numbering of nodes should 
be such that the bandwidth is minimum. For this the labels are put in a systematic manner 
irrespective of whether the joint displacements are unknowns or restraints. However, if the unknown 
displacements are labeled first then the matrix operations can be restricted up to unknown 
displacement labels and beyond that the overall stiffness matrix may be ignored. 
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