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Overview of Differential Equations

There are two types of differential equations:

Ordinary differential equations (ODEs) are differential
equations where the solution has one independent variable.
An example is

y ′(t) = t2y(t)

Partial differential equations (PDEs) are differential equations
where the solution has many independent variables. An
example is

∂u

∂x
(x , y) +

∂u

∂y
(x , y) = x2 + xy

Differential equations usually have an associated domain with
initial conditions (called boundary conditions).
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Overview of Differential Equations

PDEs have many applications to real world problems.

Helmholtz’s Equation: Used in electrodynamics

−∂2u

∂x2
(x , y)− ∂2u

∂y2
(x , y)− ku(x , y) = f (x , y)

Heat Equation: Governs distribution of heat

∂u

∂t
(x , y , t)− ∂2u

∂x2
(x , y , t)− ∂2u

∂y2
(x , y , t) = f (x , y , t)

Burgers’ Equation: Used for traffic flow

∂u

∂t
(x , t) + u(x , t)

∂u

∂x
(x , t) = 0

Beam Equation: Used in elasticity of materials

∂u

∂t
(x , t) +

∂4u

∂x4
(x , t) = 0
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Overview of Differential Equations

An exact solution to a differential equation is a function that,
when substituted into the differential equation, results in a
true statement.

A numerical solution to a differential equation is an
approximation to an exact solution.
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The Galerkin Method

The Galerkin Method is very popular for finding numerical
solutions to differential equations.

The idea is to approximate the solution to a differential equation
by very nice and simple functions.
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The Galerkin Method

1 Identify the differential equation to solve, along with its
domain and boundary conditions.

2 Identify the vector space in which to look for a solution, called
the solution space.

3 Rewrite the differential equation in a special way, know as the
weak formulation.

4 Decide what type of functions are to be used to approximate
the solution.

5 Rewrite the weak formulation to reflect these approximating
functions.

6 Solve the resulting weak formulation for an approximate
solution.
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1. Identify the Differential Equation

We will use Helmholtz’s Equation in one dimension (an ODE).

−u′′(x)− 3u(x) = cos(x) for x ∈ [0, 2]

u(0) = 0

u′(2) = 1
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2. Identify the Solution Space

Based upon the given differential equation and domain, we use for
our solution space the set of all smooth functions with domain
[0, 2] that are 0 for x = 0. We will call this vector space V .

Note that we want the solution of the differential equation to come
from this set. (But it also should satisfy the condition u′(2) = 1.)
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3. Find the Weak Formulation

Let v ∈ V .

−u′′(x)− 3u(x) = cos(x)

−u′′(x)v(x)− 3u(x)v(x) = cos(x)v(x)∫ 2

0
−u′′(x)v(x)dx −

∫ 2

0
3u(x)v(x)dx =

∫ 2

0
cos(x)v(x)dx

−v(2) +

∫ 2

0
u′(x)v ′(x)− 3u(x)v(x)dx =

∫ 2

0
cos(x)v(x)dx∫ 2

0
u′(x)v ′(x)− 3u(x)v(x)dx =

∫ 2

0
cos(x)v(x)dx + v(2)

The last line is the weak formulation.
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4. Develop Approximating Functions

To approximate the solution, we use a subspace of V .

Consider {x , x2, x3}. We use we use this as a basis for our
approximating subspace.

Let V3 = span{x , x2, x3}. We will also let u3 denote our
approximate solution (in V3). As such, there exists {αi}, i = 1, 2, 3
such that

u3(x) = α1x + α2x
2 + α3x

3
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5. Update Weak Formulation

To approximate the solution, we replace our solution space V with
our approximating solution space V3. The weak formulation
becomes:

∫ 2

0
u′(x)v ′(x)− 3u(x)v(x)dx =

∫ 2

0
cos(x)v(x)dx + v(2)∫ 2

0
u′3(x)v ′3(x)− 3u3(x)v3(x)dx =

∫ 2

0
cos(x)v3(x)dx + v3(2)

for all v3 ∈ V3.
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6. Solve the Approximate Weak Formulation

To solve this for our approximation, we start by using

u3(x) =
3∑

i=1

αix
i and u′3(x) =

3∑
i=1

αi ix
i−1

This gives us

∫ 2

0
u′3(x)v ′3(x)− 3u3(x)v3(x)dx =

∫ 2

0
cos(x)v3(x)dx + v3(2)∫ 2

0
[

3∑
i=1

αi ix
i−1]v ′3(x)− 3[

3∑
i=1

αix
i ]v3(x)dx =

∫ 2

0
cos(x)v3(x)dx + v3(2)
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6. Solve the Approximate Weak Formulation

The approximate weak formulation can be written as

3∑
i=1

[αi

∫ 2

0
ix i−1v ′3(x)− 3x iv3(x)dx ] =

∫ 2

0
cos(x)v3(x)dx + v3(2)

Since this still holds for all v3 ∈ V3, we get three equations by
picking three choices for v3 ∈ V3: x , x2, and x3 (the basis for our
approximation space V3).
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6. Solve the Approximate Weak Formulation

3∑
i=1

[αi

∫ 2

0
ix i−1 − 3x ixdx ] =

∫ 2

0
cos(x)x dx + 2

3∑
i=1

[αi

∫ 2

0
2ix i−1x − 3x ix2dx ] =

∫ 2

0
cos(x)x2dx + 4

3∑
i=1

[αi

∫ 2

0
3ix i−1x2 − 3x ix3dx ] =

∫ 2

0
cos(x)x3dx + 8
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6. Solve the Approximate Weak Formulation

The resulting linear system is

−6α1 − 8α2 − 11.2α3 = 2.402448

−8α1 − 8.533333α2 − 8α3 = 4.154008

−11.2α1 − 8α2 + 2.742857α3 = 7.865929

Solving gives u3(x) = −.350567x − .402926x2 + .261104x3.
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The Galerkin Method

Ways to improve accuracy of our approximation

1 Higher degree polynomials

2 Use other functions for a basis
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The Finite Element Method

The Finite Element Method is a Galerkin Method that uses
piecewise functions to approximate the solution of a differential
equation.

We divide the domain into geometric regions called elements. We
then form an approximate solution on each of these elements.
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The Finite Element Method

As an example, consider Poisson’s Equation in 2 variables:

−∂2u

∂x2
(x , y)− ∂2u

∂y2
(x , y) = y2sin(xy) + x2sin(xy)

u(0, y) = 0

u(x , 0) = 0

u(2, y) = sin(2y)

u(x , 2) = sin(2x)

The solution is given by u(x , y) = sin(xy).
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The Finite Element Method

Domain
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The Finite Element Method

Exact Solution
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The Finite Element Method

Triangular Mesh - 20 Triangles
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The Finite Element Method

Approximate Solution with 20 Triangles
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The Finite Element Method

Triangular Mesh - 80 Triangles
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The Finite Element Method

Approximate Solution with 80 Triangles
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The Finite Element Method

Triangular Mesh - 320 Triangles
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The Finite Element Method

Approximate Solution with 320 Triangles
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