S.N.	PROGRAM CODE	COMMENTS		
1 2 3 4 5 6 7 9	<pre>clc clear K=[5.5 -4.6 0 0 0;-4.6 14 -4.6 0 0; .4 -4.6 11 -4.6 .4; 0 0 -4.6 14.2 - 4.6; 0 0 4.0 -4.6 6.5]; P=[50 200 100 200 90]; K</pre>	Note: 1. Important variables that store information for pre- processing and those that store results for post- processing will be introduced in the beginning. Other variables, of lesser importance, used in the program will be explained as and when it is observed. 2. It is assumed that reader is conversed with the symbols used in the theoretical formulation produced here in the earlier section.		
10 11 12 13 14 15 16 17 18 10	<pre>P nn=5; ne=4; loc=[1 5]'; bc=[15 4]'; c=length(bc); for i=1:c aa=K(loc(i),loc(i)); P(loc(i))=aa*bc(i);</pre>	Variable information:K: Global stiffness matrix (Input 1)P: Load vector (Input 2)nn: Number of nodes (Input 3)ne: Number of elements (Input 4)loc: Boundary location matrix (Input 5)bc: Boundary value matrix (Input 6)KM: Modified global stiffness matrix (Output 1)PM: Modified global force matrix (Output 2)		
20 21 22 23 24 25 26	<pre>ior j=1:nn if j==loc(i) K(loc(i),j)=K(loc(i),j); else K(loc(i),j)=0; end end end</pre>	 (Line 1-2): It clears the command window¹ screen and clears the workspace² of all its historical contents. (Line 3-6): Assign the global stiffness matrix to variable K without applying boundary conditions. [INPUT 1] 		
27 28 29 30 31 32 33 34 35 36	<pre>for i=1:c for j=1:nn if j~=loc(i) sum(j)=K(j,loc(i))*bc(i); P(j)=P(j)-sum(j); K(j,loc(i))=0 else end end end</pre>	 (Line 7): Assign global force matrix to variable P without applying boundary conditions. [INPUT 2] (Line 9-10): Displays global stiffness matrix K and global force matrix P without applying boundary conditions. (Line 11-12): Assign number of nodes and number of elements to variable pp and pe respectively. [INPUT] 		
37 38 39	KM PM=P' U=inv(KM)*PM	 3,4] (Line 13-14): Assign node number of boundary conditions to be specified in column form in variable loc and assign the boundary values to variable bc corresponding to loc matrix. [INPUT 5,6] (Line 15-26): The for loop runs c times corresponding 		

	to the number of boundary conditions to be specified.
	This is step one of the manipulation. If U_i and U_j are
	known boundary conditions then set row <i>i</i> and <i>j</i> equal
	to zero except K_{ii} and K_{ii} . At the same corresponding
	row i and i of global force matrix is replaced by $K_{i} * U_{i}$
	and $V \neq U$ respectively
	and \mathbf{X}_{jj} U _j respectively.
	(Line 27-36): The for loop runs c times corresponding
	to the number of boundary conditions to be specified.
	Initially replace global force matrix such that
	$P(:,i) = P(:,i) - K(:,i) * U_i - K(:,j) * U_j$ except
	$P(i,1)$ and $P(j,1)$. U_i Corresponds to the
	displacement at node i . Then set column i and i equal
	to zero except K and K
	(Line 37-38): Displays modified global stiffness matrix
	and global force matrix.
	[OUTPUT 1,2]
	(Line 39): Displays displacements.

Terms:

1. Command window:

2. Editor:

3. Workspace: