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In this lecture the momentum equation for a viscousless fluid on a rotating planet is

analyzed in the frame of the natural coordinate system and special flow regimes are

described. The natural coordinate system is introduced by means of basic concepts of

differential geometry that are applied to parametric curves in the three-dimensional space.

The Frenet-Serret formulas are derived and used to project the momentum equation in

the scalar components. The geostrophic, the cyclostrophic and the inertial regimes are

discussed in detail.

1. Introduction

The physical approach to the reality largely benefits from the mathematical language.

Physical laws and concepts are traduced in mathematical relations because the logical

and completely objective mathematical frame is a proper environment where physical

models can be developed. Furthermore mathematics gives very powerful tools for the

exploration of the physical models, both for diagnostic and prognostic purposes. It is

well known that the choice of a suitable reference frame, and a coordinate system, makes

easier the mathematical analysis of a physical model. In particular the solution of the

differential equations that link the causes to the effects are reduced to special equations,

which have already been deeply studied and whose solutions are known. In this lecture,

the natural coordinate system is defined for the geophysical fluid dynamics purposes.

This coordinate system allows the analysis of the momentum equation for a fluid parcel

on a rotating planet and it makes easy the study of the motion properties for special,

but common, flow regimes.

† e-mail: dario.giaiotti@osmer.fvg.it
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2. The momentum equation

Let’s consider the momentum equation for a unit volume of fluid whose density is ρ

and moving with speed v on a slowly and uniformly rotating planet.

dv

dt
= −2Ω × v −

1

ρ
∇p + g (2.1)

Here Ω is the planet angular velocity vector, p is the pressure field and g is the gravity

acceleration vector. Viscosity has been neglected, so the corresponding term does not ap-

pear in the 2.1. Centrifugal acceleration (Ω×Ω×r) due to planet rotation has considered

negligible; in some special cases it can be included in the gravity term. Further details

on the momentum equation can be found in literature: Batchelor (1994), (Crisciani 2005,

cap. 6), Dutton (1995), Gill (1982), Haltiner & Martin (1957), Holton (1972), Meyer

(1982), Pedlosky (1987). This vectorial form of the momentum equation links the causes

of the motion of a viscousless fluid to its acceleration and it is not the result of the

application of any specific coordinate system . When a coordinate system is selected for

the space, the equation (2.1) is equivalent to a set of three scalar equations, one for each

of the vector components. In the following we will project the vectorial equation (2.1) in

scalar components by means of the the natural coordinate system.

3. Frenet-Serret formulas and the natural coordinate system

The natural coordinate system is defined by means of the trajectory of a fluid parcel.

From the geometrical point of view, the trajectory of the parcel is a curve in the three-

dimensional space that connects all the positions of the fluid parcel. In particular if r(t)

is the vector giving the parcel position at the time t, then the trajectory of the parcel is

the function:

r : [t0, t1] ⊆ R −→ R3 and r ∈ C2[t0, t1] (3.1)

that is the trajectory is a parametric curve which is differentiable and whose derivatives

are continuous at least up to the second order on the parameter interval [t0, t1]. The unit

vector τ that is tangent to the trajectory in each point is defined by means of the fluid

velocity vector v := ṙ = dr

dt , in fact:

τ :=
v

‖ v ‖
if v 6= 0 (3.2)

and it is one of the basic vectors of the natural coordinate system. Since v is a function
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of the parameter t, that describes the trajectory in the space, τ itself is a function of the

same parameter, so generally τ is not a constant vector along the trajectory.

Definition 1 (Length of the trajectory).

According to the geometrical meaning of the trajectory of a fluid parcel having velocity

v(t), v : [t0, t1] ⊆ R −→ R3, where t is the parameter of the curve r(t), for example the

time, the length of the trajectory l(t) is defined as follow:

l(t) :=

∫ t

t0

(v · v)1/2dt′ t ∈ [t0, t1] (3.3)

It is worth to note that l(t) > 0 ∀t ∈ [t0, t1], that is the length of the trajectory is a

non negative, monotonic increasing, real function of the parameter t. Furthermore:

l̇ =
dl

dt
= (v · v)1/2 = v(t) (3.4)

Corollary 1.

If the parameter of the trajectory is its length, then the velocity vector is the unit vector,

τ , tangent to the curve.

v = ṙ =
dr

dl
=

dr

dt

dt

dl
=

v

v
= τ (3.5)

Where the (3.4) has been used to express dt
dl . The length of a curve in the space is

usually referred as the natural parameter of the curve. The reason for that is easy to

understand from the property given by 3.5.

The second unit vector of the natural coordinate system is a consequence of an impor-

tant property of τ , that is shown in the following lemma.

Lemma 1.

Given an euclidean space and a unit vector τ , and τ is function od a parameter l,

τ ∈ C1[a, b] then τ̇ ⊥ τ .

Proof.

Since:

τ : [a, b] ⊆ R −→ R3 τ ∈ C1[a, b] ‖ τ (l) ‖= 1 ∀l ∈ [a, b]

then

τ · τ = 1 ⇒
d(τ · τ )

dl
= 0 ⇒ τ̇ · τ = 0 ∀l ∈ [a, b] (3.6)
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This result follows form the the definition of the modulus of a vector in an euclidean

space and because of the linearity of the scalar product with respect the differentiation

operator d
dl .

Definition 2 (Unit vector normal to the trajectory).

Given a trajectory r(t), n the unit vector normal to trajectory is defined as follow:

n :=
τ̇

‖ τ̇ ‖
‖ τ̇ ‖6= 0 (3.7)

Where τ̇ is the unit vector tangent to the trajectory in the point r(t).

Thanks to the vector product operation, it is straightforward to define the unit vector

that completes the base for the three-dimensional space where the trajectory is defined.

So naturally follows:

Definition 3 (The binormal unit vector).

Given a trajectory of a fluid parcel r(t), for each point where the unit vectors tangent

(τ ) and normal (n) to the trajectory exist, then the binormal unit vector is defined by

means of the vector product:

b := τ × n (3.8)

The unitary of the vector b is a direct consequence of the fact that τ and n are unit

vectors and τ ⊥ n.

Corollary 2 (The moving trihedral).

When a trajectory of a fluid parcel is given and the unit vectors τ , n and b are defined,

then they represent a right hand three-dimensional reference frame, so a base for the the

space. They are called the moving trihedral of the curve, furthermore τ and n lay† on the

osculating plane‡ of the curve. n is always pointing towards the concavity of the curve††.

Definition 4 (Radius of curvature).

When a trajectory r(l) is given and the parameter of the curve is the length of the trajec-

tory l, then ‖ v ‖= 1, because of the COROLLARY 1, and v̇ = k(l)n, as a consequence of

DEFINITION 2. The physical dimension of k is the inverse of a length and it is called the

† See exercise A.1
‡ The osculating plane of a curve is the limit plane that contains the two tangent unit vectors

τ (t) and τ (t + ∆t) as ∆t −→ 0 , if the plane exists.
†† See exercise A.2
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Figure 1. a) The trajectory of the fluid parcel with the position vector r(l) and the moving

trihedral. b) The radius of curvature R and the unit vector tangent to the trajectory τ for two

different, but very close, position along the trajectory. c) The difference vector ∆τ ad its relation

with the radius of curvature ∆α = ∆l

R(l)
.

curvature of the trajectory in the position r(l). The radius of curvature is defined as

R(l) := 1/k(l) if k(l) 6= 0.

Note that k =‖ τ̇ ‖, so k(l) > 0 ∀ l where the normal unit vector exists. As a

consequence, the radius of curvature in not negative too.

The geometrical interpretation of the radius of curvature is straightforward by means

of the figure 1. In fact:

k(l) =‖
dτ

dl
‖= lim

∆l→0

‖ ∆τ ‖

∆l
= lim

∆l→0

∆l
R(l)

∆l
=

1

R(l)
(3.9)

If k → 0 then R → ∞. Note that the radius of curvature is always positive because n

points towards the concavity of the trajectory.



6 D. B. Giaiotti and F. Stel

Lemma 2 (Frenet-Serret formulas).

Given the trajectory r(l), where l is the natural parameter, if it is possible to define the

moving trihedral, (τ ,n, b), then the Frenet-Serret formulas hold:

τ̇ = kn (3.10)

ṅ = −kτ − χb (3.11)

ḃ = χn (3.12)

Where k is the curvature and χ is a real number called the torsion of the trajectory.

Proof.

The identity (3.10) follows from the definition of radius of curvature. To demonstrate the

(3.12), consider that b is a unit vector (see DEFINITION 3), then, as a consequence of

LEMMA 1, ḃ ⊥ b. Furthermore:

ḃ = ˙(τ × n) = (τ̇ × n) + (τ × ṅ) = (kn × n) + (τ × ṅ) = τ × ṅ = χn (3.13)

where the derivatives are made with respect the natural parameter l. In fact the vector

τ × ṅ is perpendicular to τ and keeping in mind that ḃ ⊥ b, in the three-dimensional

space, the only possibility is ḃ ‖ n. The proof of the identity (3.11) comes from the

definition of moving trihedral (COROLLARY 2). In fact, n = b × τ , so:

ṅ = ḃ × τ + b × τ̇ = (χn × τ ) + (b × kn) = −χ(τ × n) − k(n × b) (3.14)

= −χb − kτ

The Frenet-Serret formulas are important because they tell us how the moving trihedral

is transformed along the trajectory.

τ (l + ∆l) = τ (l) + τ̇∆l + o(∆l2) (3.15)

n(l + ∆l) = n(l) + ṅ∆l + o(∆l2) (3.16)

b(l + ∆l) = b(l) + ḃ∆l + o(∆l2) (3.17)

And by means of the Frenet-Serret formulas:

τ (l + ∆l) = τ (l) + k∆l n + o(∆l2)

n(l + ∆l) = n(l) − k∆l τ − χ∆l b + o(∆l2)

b(l + ∆l) = b(l) + χ∆l n + o(∆l2)
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According to the definition of the curvature, the torsion of the trajectory and the

geometrical meaning of ∆l, both the terms k∆l and χ∆l are interpreted as small angles

of rotation of the moving trihedral when it moves along the trajectory by the infinitesimal

length ∆l. The Frenet-Serret formulas can be rewritten by means of the matrix notation

and follow:

A B Ḃ










0 k 0

−k 0 −χ

0 χ 0





















τ

n

b











=











τ̇

ṅ

ḃ











(3.18)

Note that the matrix A is antisymetric.

Observation

The moving trihedral (τ ,n, b) is not defined if τ̇ = 0, furthermore if the concavity of the

curve changes along the path, then the vector b changes abruptly its versus, see figure 2.

These features of the moving trihedral are disadvantages that limit its application as

reference frame for the study of the momentum equation. To fix the problem, restrictions

are imposed to the unit normal vector n and the natural coordinate system is defined.

Definition 5 (The natural coordinate system).

Given a trajectory r(t), r : [a, b] ⊆ R −→ R3 r ∈ C2[a, b], the natural coordinate

system is defined as follow:

τ :=
ṙ

‖ ṙ ‖
‖ ṙ ‖6= 0 (3.19)







n := τ̇

‖τ̇‖ if ‖ τ̇ ‖6= 0 and τ̇ points to the left of τ

n := − τ̇

‖τ̇‖ if ‖ τ̇ ‖6= 0 and τ̇ points to the right of τ
(3.20)

If for a specific t, τ̇ (t) = 0 then n is defined as the unit vectors normal to τ and pointing

to its left that gives continuity to the n(t) function.

b := τ × n when τ and n are defined (3.21)

Since in the natural coordinate system n is always pointing to the left of τ , then the

curvature k, as defined in the DEFINITION 4, is not sufficient to describe the trajectory

curvature in the natural coordinate systems, so it is necessary to give a sign to the

curvature k as follow:
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Figure 2. The trajectory of the fluid parcel and the disadvantages of the moving trihedral.

The normal unit vector n is always pointing towards the concavity of the curve, while the

tangent unit vector τ is along the motion, so when the curvature changes the resulting unit

vector b = τ × n experiences abrupt inversions. From position 1 to position 2 b experiences an

inversion.

Corollary 3 (The sign of the rarius of curvature).

In the natural coordinate system, given a trajectory r(l), l is the natural parameter of the

curve, the curvature is the real number:

k := τ̇ · n where τ̇ =
dτ

dl
(3.22)

So the curvature k is positive when the concavity of the trajectory is towards the

left with respect τ , while it is negative when the concavity is on the opposite side.

Consequently the sign of k is hold by the radius of curvature according its definition.

4. The momentum equations in natural coordinates

Let’s consider a fluid parcel moving along its trajectory r(t), t is the time and it is the

parameter of the curve. Consider the momentum equation (2.1) in the natural coordinate

system (τ ,n, b). The right hand side of the equation (2.1) is the parcel acceleration that,

according with the (3.2), it is:

v = vτ (4.1)

and computing of the derivative of v with respect the time, keeping in mind that v̇ can

be expressed as a function of the natural parameter of the curve l, we get an expression

for the acceleration that allows the use of the Frenet-Serret formulas for the τ̇ . In fact.

v̇ =
dv

dt
=

dv

dl

dl

dt
= v

dv

dl
=

= v
d(vτ )

dl
= v(

dv

dl
τ + v

dτ

dl
) = v(

dv

dl
τ + vkn) =

= v
dv

dl
τ + v2kn =

dv

dt
τ + v2kn (4.2)
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That is:

v̇ =
dv

dt
=

dv

dt
τ + v2kn (4.3)

v̇ =
dv

dt
=

dv

dt
τ +

v2

R
n R 6= 0 (4.4)

The (4.3) expresses the acceleration in natural coordinates by means of the curvature,

while the (4.4) make use of the radius of curvature of the trajectory, when it exists.

So in the natural coordinate system the acceleration of a fluid parcel has two contribu-

tions. One is along the trajectory tangent direction (τ ) and it is related to the velocity

modulus rate of change. The second one is perpendicular to the trajectory (n) and it

is associated with the centripetal force acting on the parcel. Note that k is positive (so

is R) if the trajectory is turning to the left of τ , while k (and R too) is negative for

right curved trajectories. No contribution of the acceleration is along the b unit vector

direction.

The right hand side of the equation (2.1) is projected on the natural coordinate system

easily. In general, the gravity acceleration contributes along all the directions (τ ,n, b),

but if b is normal to the planet surface, or better it is parallel to vertical direction, then

g has b component only. This is the typical case of horizontal motions.

The pressure gradient has three components in general:

∇p =
∂p

∂l
τ +

∂p

∂n
n +

∂p

∂z
b (4.5)

Here l denotes the length of the trajectory, that is the variable describing the displacement

along the curve, n is the spacial variable describing the displacement along the direction

of the normal unit vector n and z is the variable used for the displacements along the

binormal b.

The contribution of the Coriolis force is −2Ω × v and −Ω × v ⊥ v because of the

vectorial product properties As a consequence, the Coriolis acceleration does not act

along the trajectory, but operates normally to it, so it does not produce any work and it

modifies only the curvature and the torsion of the trajectory.

So:

−2Ω × v = −ann − abb (4.6)

Where an and ab are the components of the 2Ω×v to the n and b directions respectively.

A special case is that of an horizontal trajectory, that is a trajectory whose osculating

plane is the horizontal plane, which is normal to the vertical direction with respect to the
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Figure 3. Measurements of gravity on a ship sailing in the Pacific ocean. The route is reported

(a) on a longitude-latitude box, while the gravity data are plotted as a function of the distance

covered by the ship (b) in arbitrary units. The parts of the route parallel to the meridians, 16

and 18 in (a) show a light gravity with respect to the measurements made during the westward

part of the route, 17, due to the Coriolis contribution to the acceleration. Figure taken from

Persson (2001)

planet surface. In that case the component of the planet angular velocity vector along

b is Ω sinφ and φ is the latitude of the point r(t) along the trajectory, so the vector

−2Ω × v becomes:

−2Ω × v = −2











τ n b

Ωτ Ωn Ωsin φ

v 0 0











= −2vΩsin φn + 2Ωnvb (4.7)

The Ωn and Ωτ are the contribution of Ω along the n and τ directions respectively, while

Ω sin φ is the contribution along the vertical, that is along b. The 2Ω sin φ therm is often

summarized in the Coriolis parameter, that is defined as follow:

f := 2Ω sin φ (4.8)

The 2Ωnvb is along the vertical and, according to the previous considerations on the

gravity acceleration it modifies the intensity of g. This is known as the Eötvös effect

(Persson 2001), and it is usually several orders of magnitude weaker than g, anyway it

is possible to measure it, see figure 3.
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According the these considerations, the momentum equation (2.1) is projected in the

three scalar components in the natural coordinate system:

dv

dt
= −

1

ρ

∂p

∂l
+ gτ equation for τ (4.9)

v2

R
= v2k = −an −

1

ρ

∂p

∂n
+ gn equation for n (4.10)

0 = −ab −
1

ρ

∂p

∂z
+ gb equation for b (4.11)

If the motion is horizontal then equations (4.9), (4.10), (4.11) by means of the Coriolis

parameter (4.8) and the (4.7) become:

dv

dt
= −

1

ρ

∂p

∂l
equation for τ (4.12)

v2

R
= v2k = −fv −

1

ρ

∂p

∂n
equation for n (4.13)

0 = 2Ωnv −
1

ρ

∂p

∂z
− g equation for b (4.14)

The gravity acceleration is negative because b is pointing upward.

Considering stationary solutions of the equation of motion, that is dv

dt = 0, it is possible

to get simple models that are of useful application. According to this assumption, the

τ component of the fluid velocity is constant, see equation (4.12), so the important

information on the fluid velocity comes from the equation (4.13). From the study of that

equation and making some additional assumptions it is possible to define three special

flow regimes: the inertial motion, the cyclostrophic motion and the geostrophic motion.
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5. The inertial motion

The inertial motion occurs when:

∂p

∂l
= 0 and

∂p

∂n
= 0 (5.1)

that is there are not horizontal pressure gradients. This motion is typical of oceanic cur-

rents when there is an atmospheric forcing on the water surface pressure that vanish in a

short time. For example the passage of a rapid frontal system over a sea basin that creates

temporary pressure gradients in the water, which are removed rapidly when the front

is over. When the gradients disappear the water gets the equilibrium state through the

inertial motion. In the atmosphere the inertial motion is almost never observed because

the synoptic, mesoscale and microscale forcings generate always pressure gradients, but

in principle it exists.

By means of the equations (4.12) and (4.13) the constant value of the fluid velocity in

the inertial motion is:

v =
f

k
k 6= 0 or similarly v = −fR (5.2)

and since v > 0 this means that

fR 6 0 (5.3)

In the northern hemisphere f > 0 because φ > 0, see (4.8), so R < 0 and the motion is

anticyclonic, clockwise motion. While in the southern hemisphere φ < 0 and consequntly

f < 0, so R > 0 and the motion is cyclonic, counterclockwise motion.

In the inertial motion there is the balance between the Coriolis force and the centrifugal

force. For small scale motions where f can be considered constant, the trajectory of the

fluid parcel is a circle because the radius of curvature R is constant too, as a consequence

of the stationarity of the motion. It is possible to compute the period T of the circular

motion:

T =|
2πR

v
| (5.4)

and by means of (5.2) in the (5.4) and recalling that Ω = 2π
D , where D in the rotation

period of the planet,

T =
D

2 | sinφ |
(5.5)

It is suggested to compute the radius of curvature of the inertial motion, and the related

period of the motion, for typical atmospheric and oceanic horizontal velocities at mid

latitudes.
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Figure 4. Power spectra of the North-South component of the horizontal vector for Adriatic sea

currents of the time series measurements made in the frame of the PRISMA project by Osser-

vatorio Geofisico Sperimentale (Trieste ? ITALY), during the period [1995-07-12; 1995-08-18],

by a NBA 6 current meter moored 23 m below the sea surface, at the geographical position

44.382◦ N, 13.189◦ E, where the bottom depth is 50 m, (Giaiotti & Ursella 1996). Tide contri-

butions to the currents are marked with small arrows and the peak of the power corresponding

to the typical frequency of the inertial motion (1/17 h−1) is marked with a big arrow and a

circle.

In figure 4 is presented the power spectra of the North-South component of an hori-

zontal vector sea current time series. The current was measured in the Adriatic sea at

about half the bottom depth of the basin (Giaiotti & Ursella 1996). The geographical

position of the Adriatic basin together with its characteristic extended shape along the

North-South direction, make the inertial currents to be a significant component of the

Adriatic currents. According to the (5.5) and the mid latitudes position of the northern

part of the basin, to which the measures here reported refer to (Giaiotti & Ursella 1996),

the rotation period of the inertial currents is about 17 hours. In figure 4 the tide con-

tributions to the currents are marked with arrows, furthermore it is evident the peak of

the power corresponding to the typical frequency of the inertial motion (1/17 h−1).
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6. The cyclostrophic motion

The cyclostrophic motion occurs when:

∂p

∂l
= 0 and kv2 � fv (6.1)

that is there are not pressure gradients along the direction of motion, while the pressure

gradient is normal to the trajectory and it is balanced by the centrifugal force; the Coriolis

force is negligible. So the basic equation for the cyclostrophic motion is:

v2

R
= v2k = −

1

ρ

∂p

∂n
(6.2)

To characterize this flow regime it is useful to introduce the Rossby number, which is an

adimensional parameter defined as follow:

< :=
v

R f
=

v k

f
(6.3)

The Rossby number expresses the ratio between the centrifugal force and the Coriolis

force, so the condition for the cyclostrophic flow regime can be expressed as follow:

< � 1 (6.4)

It is worth to note that since v2 > 0 and ρ > 0 always along the trajectory, then follows

that:

R
∂p

∂n
6 0 (6.5)

then the flow is allowed to be cyclonic, counterclockwise, or anticyclonic, clockwise, but

in any case the radius of curvature is pointing toward the low pressure area.

Example of this motion is the tornado. In a tornado wind speed easily reach 50 ms−1

and the typical radius of the vortex is of the order of 100 m or less, lets say 10 m. As

an exercise, the student is suggested to compute the difference of atmospheric pressure

between the core of the tornado, the center of the air parcel trajectory, and the outer

part of the vortex, where the pressure is almost the unperturbed atmosphere pressure.

The result will give the answer to question concerning the upward aspiration of stuff

by tornadoes. The principal cause for damages during a tornado event is the strong

horizontal wind speed.
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Figure 5. Picture of the tornado. The tornado occurred in Bassett, Nebraska, on June 1999.

Figure taken form the Bluestein et al. (2003) paper.

Take your notes here below
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Figure 6. Radial profiles for a dust devil occurred in Texsas on May 1999 and observed by means

of a mobile Doppler radar. The solid black line reports the tangential velocity of the vortex in

ms−1. The vertical component of the vorticity is plotted in dashed line and it is expressed in

units of ×10 s−1. The dotted line represents the relative radar reflectivity; this variable is not

relevant in the context of this lecture so it is not describe in this caption. Picture taken from

the Bluestein & Weiss (2004) paper.

Take your notes here below
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7. The geostrophic motion

The geostrophic motion occurs when:

∂p

∂l
= 0 and fv � kv2 (7.1)

that is there are not pressure gradients along the direction of motion, while there pres-

sure normal to the trajectory is balanced by the Coriolis force and the centrifugal force

is negligible.

In this case the Rossby number becomes:

< � 1 (7.2)

So the basic equation for the geostrophic motion is:

0 = −fv −
1

ρ

∂p

∂n
(7.3)

It is worth to note that since v > 0 and ρ > 0 always along the trajectory, then follows

that:

1

f

∂p

∂n
6 0 (7.4)

the flow is allowed to be cyclonic, counterclockwise, around the low pressure areas in

the northern hemisphere because f > 0, and anticyclonic, clockwise, around the high

pressure areas. In the southern hemisphere f < 0 then the air mass motion is revesed:

cyclonic around the highs and and anticyclonic around the lows.

Example of this motion is the wind regime in mid latitude cyclonic and anticyclonic

synoptic systems.
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Appendix A. Exercises

A.1. Exercise 1

Consider a trajectory r(t) and consider a point of the trajectory where the unit vectors

τ and n exist. Demonstrate that the osculating plane exists and the vectors τ and n lay

on the plane.

A.2. Exercise 2

Consider a trajectory r(t) and consider a point of the trajectory where the unit vectors

n exists. Demonstrate that the n points always towards the concavity of the trajectory.

A.3. Exercise 3

Compute the radius of curvature for an inertial motion for an oceanic current of about

25 cms−1 at mid latitudes and compare it with those possible at 15◦N , 15◦S and 65◦N .
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Appendix B. Historical notes

B.1. Jean Frédéric Frenet

Born: 1816 in Périgueux, France

Died: 1900 in Périgueux, France

Jean Frédéric Frenet was a mathematician, astronomer, and meteorologist. He is best

known for being an (independent) co-discoverer of the Frenet-Serret formulas. He wrote

six out of the nine formulas, which at that time were not expressed in vector notation,

nor using linear algebra. These formulas are important in the theory of space curves

(differential geometry), and they were presented in his doctoral thesis at Toulouse in

1847. That year he became a professor at Toulouse, and one year later, 1848, he became

professor of mathematics at Lyon. He also was director of an astronomical observatory

at Lyon. Four years later, in 1852, he published the Frenet formulas in the Journal de

mathmatiques pures at appliques. In 1856 his calculus primer was first published, which

ran through seven editions, the last one published posthumously in 1917.

B.2. Joseph Serret

Born: 1819 in Paris, France

Died: 1885 in Versailles, France

Joseph Serret graduated from the École Polytechnique in Paris in 1840. He became

an entrance examiner for the Ècole Polytechnique in 1848. In 1861 he became professor

of celestial mechanics at Collge de France, then two years later he was appointed to the

chair of differential and integral calculus at the Sorbonne. Serret joined the Bureau des

Longitudes in 1873.

Serret did important work in differential geometry. Together with Bonnet and Bertrand

he made major advances in this topic. The fundamental formulae in the theory of space

curves are the Frenet-Serret formulae.

In 1860 Serret succeeded Poinsot in the Acadmie des Sciences. In 1871 he retired to

Versailles as his health began to deteriorate.

Serret also worked in number theory, calculus and mechanics. He edited the works of

Lagrange which were published in 14 volumes between 1867 and 1892. He also edited the

5th edition of Monge in 1850.
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B.3. Roland Eötvös

Born: 1848 in Budapest, Hungary

Died: 1919 Hungary

Roland von Eötvös, was born in 1848, the year of the Hungarian revolution. He first

studied law, but soon switched over to physics and went abroad to study in Heidelberg

and Ksönigsberg. After his doctorate he became a university professor in Budapest very

soon, and played a leading part in Hungarian science for almost half a century. He gained

international recognition first by his innovative work on capillarity, then by his refined

experimental methods and extensive field studies in gravity. He died in 1919, but his last

and probably most important paper, written together with his colleagues D. Pekr and J.

Fekete, was published only in 1922.

Eötvös’ classic experiment concerning the proportionality of inertial and gravitating

masses, performed at first in 1889, has again become the focus of scientific interest in the

1980’s, due to the possibility of the existence of a Fifth Force. Inspired by the beauty of

the Newtonian system, he experimentally investigated the proportionality of inertial and

gravitating masses in 1889, and reported his results in the Proceedings of the Hungarian

Academy in 1890.

In his life he was a well-known and respected personality of the Hungarian and the

international scientific community. His name is often related to the establishment of a

new sience, the Geophysics. His name denotes a physical unit

Most people were fascinated by his colorful personality. He often said, he was prouder

of his sport successes than his scientific descoveries. The mountaineering ”Hungarian

professor” was so popular in South Tirol, that a peak in the Dolomites was named after

him. He was an enthusiastic Photographer. He made hundreds of stereoscopic slides on

his mountaineering and scientific expeditions.

In 1873 he became associate member of the Academy, then full member in 1883, and

in 1889 he was elected president. Amongst his offices he became minister of religion and

education for seven months in 1894. In his inaugural speech as minister he addressed the

ministerial staff as follows:

”We must strive, gentlemen, to make the field of public education a true garden of

flowers. To achieve this aim we must first create order in the garden, so that every plant

has its place. It is also necessary that each one receives the right nourishment, the soil
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and air that will allow its full development. In short, we have just two things we must do

here, to make order and then to help. And gentlemen, I would like us to give more and

more assistance and show more tolerance in our regulations.”
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