
TYPICAL PROPERtJES OF SELECTED ENGINEERING MATERIALS (Continued) 

Ultimate 02% Yield 
Strength Strength Modulus of Sbeer Coefficient of 

cr .. Cly Elasticity Modulus Thermal Expansion, Q Density. p 
E G 

Material ksi MPa ksi MPa (ttr psi GPa) (Hf psi) 1O-6tF 1O-6rC IbJin? kglm3 

Copper and its alloys 
CDA 145 copper, 

hard 48 331(1') 44 303 16 110 6.1 9.9 17.8 0.323 8940 
CDA 172 bery~ium 

copper, hard 17S 1210(1') 240 965 19 131 7.1 9.4 17.0 0.298 8250 
CDA 220 bronze, 

hard 61 421(1') 54 372 17 117 6.4 10.2 18.4 0.318 8800 
CDA 260 brass, 

bard 76 524(1) 63 434 16 110 6.1 11.1 _ 20.0 0.308 8530 

Magnesium alloy 
(8.5% AI) 55 380(1) 40 275 4.5 45 2.4 14.5 26.0 0.065 1800 

Monel alloy 400 (Ni-Cu) 
Cold-worked 98 675(1') 85 580 26 180 7.7 13.9 0.319 8830 
Annealed 80 550(1') 32 220 26 180 7.7 13.9 0.319 8830 

Steel 
Structural 

(ASTM-A36) 58 4OO(T) 36- 250 29 200 11.5 6.5 Ih7 0.284 7860 
High-strength low-alloy 

ASTM-A242 70 480(1) 50 345 • 29 200 11.5 6,5 11.7 0.284 7860 
Quenched and tempered aHoy 

ASTM-A514 120 825(1) 100 690 29 200 11.5 6.5 11.7 0.284 7860 
Stainless, (302) 

Cold-rolled 125 860(T) 75 520 28 190 10.6 9.6 17.3 0.286 7920 
Annealed 90 620(T) 40 275 28 190 10.6 9.6 17.3 0.286 7920 

Titanium alloy 
(6% AI, 4% V) 130 900(1) 120 825 16.5 114 6.2 5.3 9.5 0.161 4460 

Concrete 
Medium strength 4.0 28(C) 3.5 25 5.5 10.0 0.084 2320 
High strength 6.0 4O(C) 4.5 30 5.5· 10.0 0.084 2320 

Granite 35 240(C) 10 69 4.0 7.0 0.100 2770 
Glass, 98% silica 7 5O(Q 10 69 44.0 80.0 0.079 2190 
Melamine 6 41(T) 2.0 13.4 17.0 30.0 0.042 1162 
Nylon, molded 8 55(1) 0.3 2 45.0 81.0 0.040 1100 
Polystyrene 48(1') 0.45 40.0 72.0 O.03S 1050 
Rubbers 

Natural 2 14(1) 90.0 l62.0 0.033 910 
Neoprene 3.5 24(T) 0.045 1250 

Timber, air dry, parallel to grain 
Douglas fir, construction 

grade 7.2 50(C) 1.5 10.5 varies varies 0.019 525 
Eastern spruce 5.4 37(C) 1.3 9 1.7- 3- 0.016 440 
Southern pine,construction 

grade 7.3 5O(C) 1.2 8.3 3.0 5-:4 0.022 610 

The values given in !:he table are avenge mcclJaDica1 properties. Further verification may bt rICCCSSaI}' for fiDaI desi811 or analysis. For ductile 
maroials. !:he compressive strmgtb is lIOIIrl8Ily assumed 10 eqoallhe rensiIe streogth. Abbrrvii:aiMI: C. c:omprcssive·strength; T. 1l:8Si1e s:rength. F«-
an explanation of the IIIlIIIbm associart:d wilh the aIuroimuns, cast irons, 'and stt.eIs. see ASM Metals Refe:renc:e Book. latest ed, AmeriGan Society 
for Melals, Metals Parle. Ohio 44073 
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The purpose of this fourth edition is again to provide a simple, basic approach to the 
finite element method that can be understood by both undergraduate and graduate 
students without the usual prerequisites (such as structural analysis) .required by most 
available texts in this area. The book is written primarily as a 'basic learning tool for the 
undergraduate student in civil and mechanical engineering whose main interest is in 
stress analysis and heat transfer. Howeyer, the concepts are presented in sufficiently 
simple form so that the book serves as a valuable learning aid for students with other 
backgrounds, as well as for practicing engineers. The text is geared toward .those who 
want to apply the finite element method to solve practical physical problems. 

General principles,are presented for each topic, followed by traditional applica­
tions of these principles, which are in tum followed by computer applications where 
relevant. This approach is taken to· illustrate concepts used for computer analysis of 
large-scale problems. 

The book proceeds from basic to advanced topics and can be suitably used in a 
two-course sequence. Topics include basic treatments of (1) simple springs and bars, 
leading to two· and three-dimensional truss analysis; (2) beam bending, leading to 
plane frame and grid analysis and space frame analysis; (3) elementary plane stress/strain 
elements> leading to more advanced plane stress/strain elements; (4) axisymmetric 
stress; (5) isoparametric formulation of the finite element method; (6) three-dimensional 
stress; (7) plate bending; (8) heat transfer and fluid mass transport; (9) basic 
fluid mechanics; (10) t~ennal stress; and (11) time.dependent stress and heat transfer. 

Additional features include how to handle inclined or skewed supports, beam 
element with nodal hinge, beam element arbitrarily located in space, and the concept 
of substructure analysis. 



xii ~ Preface 

The direct approach, the principle of minimwn potential energy, and Galerkin's 
residual method are introduced at various stages, as required. to deve10p the equations 
needed for analysis. 

Appendices provide material on the following' tOpics; (A) basic matrix algebra 
used throughout the text, (B) solution methods for simultaneous equations, (C) basic 
theory of elasticity, (D) equivalent nodal forces, (E) the principle of virtual work, and 
(F) properties of structural steel and aluminum shapes. 

More than 90 examples apPear throughout the text. These example~ are solved 
"longhand" to illustrate the concepts. More than 450 end-of-chapter problems are 
provided to reinforc,e concepts. Answers to many problems are included in the back of 
the book. Those end-of-chapter problems to be solved using a computer program are 
marked with a computer symbol. 

New features of this edition inc1uCle additional information on modeling, inter­
preting results, and comparing finite element solutions with analytical solutions. In 
addition, general descriptions of and detailed examples to illustrate specific methods 
of weighted residuals (collocation, least squares) subdomain} and Galerkin's method) 
are included. The Timoshenko beam stiffness matrix has ~n added to the text, along 
with an example comparing the solution of the Timoshenko beam ~esults with the 
c1assic Euler-Bernoulli beam stiffness matrix results. Also, the h and p convergence 
methods and shear locking are described. Over 150 new problems for solution have 
been included, and additional design-type problems have been added to chapters 3) 4, 
5, 7, 11, and 12. New real world applications from industry have also been added. 
For convenience, taples of common structural steel and aluminum shapes have been 
added as an appendix. This edition deHberately leaves out consideration of special­
purpose computer programs and suggests that instructors choose a program they are 
familiar with. 

Following is an outline of suggested topics for a first course (approximately 44 
lectures, 50 minutes each) in which this textbook is used. ' 

Appendix A 
Appendix B 
Chapter 1 
Chapter 2 

Topic 

Chapter 3, Sections 3.1-3.11 
Exam I 
Chapter 4, Sections 4.1-4.6 
Chapter 5, Sections 5.1-5.3, 5.5 
Chapter 6 
Chapter 7 
Exam 2 
Chapter 9 
Chapter 10 
Chapter 11 
Chapter 131 Sections 13.1-13.7 
Exam 3 

Number of Lectures 

2 
3 
5 
1 
4 
4 
4 
3 
I 
2 
4 
3 
5 
1 
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This outline can be used in a one-semester course for undergraduate and graduate 
students in civil and mechanical engineering. (If a total stress analysis emphasis is 
desir::d, Chapter 13 can be replaced, for instance, with material from Chapters 8 and 
12, or parts of Chapters 15 and 16. The r~t of the text can be finished in a second 
semester course with additional material provided by the instructor. 

I express my deepest appreciation to the staff at Thomson Publishing Company, 
especially Bill Stenquist and Chris Carson, Publishers; Kamilah Reid Burrell and 
Hilda Gowans, Developmental Editors; and to Rose Kernan of RPK Editorial Services, 
for their assistance in producing this new ectition. 

I am grateful to Dr. Ted Belytschko for his excellent teaching of the finite ele-­
ment method, whi~h aided me in writing this text. I want to thank Dr. Joseph Rends 
for providing analytical solutions to structural dynamics problems for comparison to 
finite element solutions in Chapter 16.1. Also, I want to thank the many students who 
used the notes that developed into this text. I am especially grateful to Ron CenfeteHi, 
Barry Davignon, Konstantinos Kariotis, Koward Koswara, Hidajat Harintho. Hari 
Salemganesan, Joe Keswari, Yanping Lu, and Khailan Zhang for checking and solv­
ing problems in the first two editions of the text and for the suggestions of my students 
at the university on ways to make the topics in iNs book easier to understand. 

I thank my present students, Mark Blair and Mark Guard of th.e University of 
Wisconsin-Platteville (UWP) for contributing three-dimensional models from the finite 
elemen~ course as shown in Figures 11-1 a and 11-1 b, respectively. Thank you also to 
UWP graduate students, Angela Moe, David Walgrave, and Bruce Figi for con­
tributions of Figures 7-19, 7-23, and 7-24, respectively, and to graduate student 
William Gobeli for creating the results for Table 11-2 and for Figure 7-21. Also, 
special thanks to Andrew Heckman, an alum of UWP and Design Engineer at Sea­
graves Fire Apparatus for permission to use Figure 11-10 and to Mr. Yousif Omer. 
Structural Engineer at John Deere Dubuque Works for allowing pennission to use 
Figure 1-10. 

Thank you also to the reviewers of the fourth edition: Raghu· B. Agan'val, 
San Jose State University; H. N. Hashemi, Northeastern University; Anf Masud, 
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complete. 

Finally. very special thanks to my wife Diane for her many sacrifices during the 
development of this fourth edition. 
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temperature function 
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~ "\ spring or bar deformation 
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denotes a rectangular or a square matrix 
denotes a column matrix 
the underline of ~ variable denotes a matrix 
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Prolo9U~ 

The finite elent~t method' is a mnnerical method for solving problems of engineering 
and mathematical physics. Typical problem areas of interest in engineering and math­
ematical physics that are solvable by use of the finite element method include struc­
tural analysis) heat transfer, fluid flow, mass transport, and electromagnetic potential. 

For problems involving complicated geometries, loadings, and material proPer­
ties, it is generally not possible to obtain an3Jytical mathematical solutions. Analytical 
solutions are those given by a mathematical expression that yields the values of the 
desired ~known quantities at any location in a body (bere total structure or physical 
system of interest) and are thus valid for an infinite nwnber of locations in the body. 
These analytical solutions generally require the solution of ordinary O,f partial differ­
ential equations, which, because of the complicated gt;Ometries, lcadings, and material 
prcperties, are nct usually obtainable. Hence we need to rely on numerical methods, 
such as the finite element method, for acceptable solutions. The finite element fonnu­
lation of the problem results in a system of simultaneous algebraic equations for solu­
tion, rather than requiring the solution of differential equations. These numerical 
methods yield approximate values of the unknowns at discrete numbers of points in 
~e continuum. Hence this process of modeling a body by dividing it into an equiva­
lent system of smaller bodies or units (finite elements) interconnected at points com­
mon to two or more elements (nodal points or nodes) andlor boundary lines andlor 
surfaces is calIed discretization. In the finite element method, instead of solving the 
problem for the entire body in one operation, we fonnulate the equations for each 
:finite t::lement and combine them to obtain the solution 'of the whole body. 

Brieily, the solution·for structural problems typically refers to determining the 
displacemen~ at each node and the stresses within each element making up the struc­
ture that is SUbjected to applied loads. In nonstructural problems, the-nodal unknowns 
may, for instance, be temperatures or :fluid pressures due to thennal or fluid fluxes. 



Introduction 

This chapter first presents a brief history of the development of the finite element 
method. You will see from this historical account that the method has become a prac­
tical one for solving engineering problems only in the past 50 years (paral1eling the 
developments associated with the ~odem high-speed electronic digital computer). 
This historical account is followed by an introduction to matrix notation; then we 
describe the need for matrix methods (as made practical by the development of the 
modern digital computer) in fonnulating the equations for solution. This section dis­
cusses both the role of the digital computer in solving the large systems of simulta­
neous algebraic equations associated with comp1ex problems and the development of 
numerous computer programs based on the finite element method. Next, a general 
description of the steps involved in obtaining a solution to a problem is provided. 
This description includes discussion of the types of elements available for a finite 
element method solution. Various representative applications are then presented to 
illustrate the capacity of the method to solve problemsl such as those involving com­
plicated geometries, several different materials) and irregular loadings. Chapter 1 
also lists some of the advantages of the finite element method in solving problems of 
engineering and mathematical physics. Finally, we present numerous features of com­
puter programs based oli the finite element method. 

.... 1.1 Brief History 

This section. presents a brief history of the finite e1ement method as appliea to both 
structural and nonstructural areas of engineering and to mathematical physics. Refer­
ences cited here are intended to augment this short introduction to the historical 
background. 

The modem development of the finite element method began in the 19405 in the 
field of structural engineering with the work by Hrennikoff [1] in 1941 and McHenry 
[2] in 1943, who used a lattice of line (one-dimensional) elements (bars and beams) 
for the solution of stresses in continuous solids. In a paper published in 1943 but not 
widely recognized for many years, Courant {3] proposed setting up the solution of 
stresses in a variational fOIm. Then he introduced piecewise interpolation (or shape) 
functions over· triangular subregions making up the whole region as a method to 
obtain approximate numerical solutions. In 1947 Levy [4] developed the flexibility or 
force method, and in 1953 his work IS} suggested that.another method (the stiffness 
or displacement method) could be a promising alternative for use in analyzing stati­
cally redundant aircraft structures. However> his equations were cumbersome to 
solve by hand, and thus the method became popular only with the advent of the 
high-speed digital computer. 

In 1954 Argyris and Kelsey [6, 7] developed matrix structural analysis methods 
using energy principles. This development illustrated the important role that energy 
principles would play in the finite element method. 

The first treatment of two-dimensional elements was by Turner et aI. [8J in 1956. 
They derived stiffness matrices for truss elements, beam elements, and two-dimensional 
triangular and rectangular elements in plane stress and outlined the procedure 
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commonly known as the direct stiffness method for obtaining the total structure stiff­
ness matrix. Along with the development of the high-speed digital computer in the 
early 1950s, the work of Turner et al. (8) prompted further development of finite ele­
ment stiffness equations expressed in matrix notation. The phrase finite element was 
introduced by Clough [9} in 1960 when both triangular and rectangular elements 
were used for plane stress analysis. ' 

A fiat, rectangular-plate bending-element stiffness matrix was develope<;l by 
Melosh [10] in 1961. This was followed by deVelopment of the curved-shell bending­
element stiffness matrix for axisymmetric shells and pressure vessels by Grafton and 
Strome [II] in 1963. 

Extension of the finite element method to three-dimensional problems with the 
development of a tetrahedral stiffness matrix was done by Martin [12] in 1961; by 
Gallagher et al. [13} in 1962, and by Melosh [14] in 1963. Additional three-dimensional 
elements were studied by Argyris (15) in 1964. The special case of axisymmetric solids 
was considered by Clough and Rashid (16] and Wilson [17] in 1965. 

Most of the finite element work up, to the early 1960s dealt with small strains 
and small displacements) elastic material behavior, and static loadings. However, 
Jarge deflection and thermal analysis were considered by Turner et a1. [18] in 1960 
and material nonlinearities by Gallagher.et al. [13] in 1962, whereas buckling prob­
lems were initially treated by Gallagher and Padlog [19] in 1963. Zienkiewicz et aL 
[20J extended the method to visco-e1a~ticity problems in 1968. 

In 1965 Archer {2l J considered dynamic analysis in the development of the 
consistent-mass matrix, which is applicable to analysis of distributed-mass systems 
such as bars and beams in structural analysis. 

With Melosh's [I4] realization in 1963 that the finite element method could be 
set up in terms of a variational formulation, it began to be used to solve nonstructural 
applications. Field problems, such as determination of the torsion of a shaft, 
fluid How, and heat conduction, were solved by Zienkiewicz and Cheung [22] in 
1965, Martin {23J in 1968, and Wilson and Nickel [24J in 1966. 

Further extension of the method was made possible by the adaptation of weighted 
residual methods, first by Szabo and Lee (25} in 1969 to derive the previously known 
elasticity equations used in structural analysis and then by Zienkiewicz and Parekh [26J 
in 1970 for transient field problems. It was then recognized that when direct fonnula­
tions and variational formulations are difficult or not possible to use, the method of 
weighted residuals may at times be appropriate. For example, in 1977 Lyness et al. [27] 
applied the method of weighted residuals to the determination of magnetic field. 

In 1976 Belytschko [28,29] considered problems associated ,with Iarge-displacement 
nonlinear dynamic behavior, and improved numerical techniques. for solving the 
resulting systems of equations. For more OD' these topics, consult the text, by 
Belytschko, Liu, and Moran [58J. 

A relatively new field ota.pplication of the finite element method is that ofbioen~ 
gineering {30, 31]. This field is still troubled by such difficulties as nonlinear materials, 
geometric nonJinearities, and other complexities still being discovered. 

From the early 19508 to the present, enormous advances have been made in the 
application of the finite element method to solve complicated engineering problems. 
Engineers, applied mathematicians, and other scientists win undoubtedly continue to 
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develop new applications. For an extensive bibliography on the finite element method. 
consult the work of Kardestuncer [32]~ Clough [33}, or Noor 157]. 

Ii.. 1.2 Introduction to Matrix Notation 

Matrix methods are a necessary tool used in the finite element method for purposes of 
simplifying the fonnulation of the element stiffness equations;for purposes oflong­
hand solutions of various problems, and, most important, for use in programming 
the methods for high-speed electronic digital computers. Hence matrix notation repre­
sents a simple and easy-to-use notation for writing and solving sets of simultaneous 
algebraic equations. 

Appendix A discusses the significant matrix concepts used throughout the text. 
We will present here only a brief summary of the notation used in this text. 

A matrix is a rectangular array of quantities arranged in rows and columns that is 
often used as an aid in expressing and solving a system of algebraic equations. As examples 
of matrices that win be described in subsequent chapters, the' force components (Fl:n 
F1Y1 Fin F2x,F2y,F2:, -... , Fru;, Fny, Fnz) acting at the various nodes or points (1,2, ... ,n) 
on a structure and the corresponding set of nodal displacements (db, diy, d\z, 
d2x, d2y, d2z , ... ,dnx, d'llY' dnz) can both be expressed as-matrices: 

Fix db: 

Fly dly 

FI : .·db 

F'bc d2x 

{F}=f 
F2y 

{d} =4= 
d21 

(1.2.1) 
F2z d2z 

F/'IX dltX 
Fny dnjl 

Fnz dn:: 

The subscripts to the right of F and d identify the node and the direction of force or 
displacement, respectively_ For instance, Fix denotes the force at node I applied in 
the x direction. The matrices in Eqs. (1.2.1) are called column matrices and have a 
size of n x 1. The brace notation { } will be used throughout the text to 'denote a col­
umn matrix. The whole set of force or displacement values in the column matrix is 
simply represented by {F} or {d}. A more compact notation used throughout this 
text to represent any rectangular array is the underlining of the variable; that is, f 
and 4 denote general matrices (possibly column matrices or rectangular matrices­
the type will become clear in the context of the discussion assoCiated with the 
variable). 

The more general case of a known rectangular matrix will be indicated by use of 
the bracket notation [ J. For instance, the element and global structure stiffness 
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matrices [k] and [Kl, respectively, developed throughout the text for various element 
types (such as those in Figure I-Ion page 10),. are represented by square matrices 
given as 

[kll 
kl2 .-

k" ] 
[kJ =k = k;1 

k22 k2n 
(1.2.2) 

knl kll2 knn 

[ KII 
KI2 K,. ] 

and [K] 
K21 K22 K2n 

(1.2.3) K= . 

Knl Kn2 ... K1IlI 

where, in structural theory, the elements kij and Kij are often referred to as stiffness 
influence coefficients. 

You willleam that the global nodal forces E and the global nodal displacements 
4. are related throu~ use of the globaJ stiffness matrix K by 

E=K4. (1.2.4) 

Equation (1.2.4) is called the global stiffness equation and represents a set of simulta­
neous equations. It is the basic equation fonnulate4 in the stiffness or displacement 
method of analysis. Using the compact notation of underlining the'variables, as in 
Eq. (1.2.4), should not cause you any difficulties in determining which matrices are 
column or rectangular matriceS. 

To obtain a clearer understanding of elements Kij in Eq. (1.2.3), we use Eq. 
(1.2.1) and write out the expanded form of Eq. ,(1.2.4) as 

I Fb: I [KII KI2 ... Kin] I dl
x I Fly K21 K22 . .. K2n d1y 

.' . .' . .' . 
, Fnz [(", Knl .. - Knn dnz 

(1.2.5) 

Now assume a structure to be forced into adisplaced configuration defined by 
db 1,d1y = db = ... dn:;; = O. Then from Eq. (1.2.5), we have 

Fly = K2I"" ,Fnz Knl (1.2.6) 

Equations (1.2.6) contain all elements in the first column of K. In addition, they show 
that these elements, Kt I, K21,' ., KnI, are the values of the full set of nodal forces 
required to maintain the imposed displacement state. In a similar manner, the second 
column in K represents the values of forces required to maintain the displaced state 
dly = 1 and all other nooal displacement components equal to zero. We should now 
have a better understanding of the meaning of stiffness influence coefficients. 
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Subsequent chapters will discuss the element stiffness matrices If for various ele­
ment types, such as bars, beams, and plane stress. They wiU also cover the procedure 
for obtaining the global stiffness matrices K for various structures and for solving 
Eq. (1.2.4) for the unknown displacements in matrix d. 

Using matrix concepts and operations will become routine with practice; they 
wiIJ be valuable tools for solving small problems longhand. And. matrix methods are 
crucial to the use of the c;ligital computers necessary for solving complicated problems 
with their associated large number of simultaneous equations. 

A 1.3 Role of the Computer 

As we have said, until the early 1950s, matrix methods and the associated finite ele­
ment method were not readily adaptable for solving complicated problems. Even 
though the finite element method was being used to describe complicated structures, 
the resulting large number 'of algebraic equations associated with the finite element 
method of structural analysis made the method extremely difficult and impractical to 
use. tIowever, with 'the advent of the computer, the solution of thousands of equations 
in a matter of minutes became possible, 

The .first modern-day commercial computer appears to have been the Univac, 
IBM 701 which was developed in the 19505. This computer was built based on 
vacuum-tube technology. Along with the UNIVAC came the' punch-card technology 
whereby programs and data were created on punch cards. In the 1960s> transistor­
based technology replaced the vacuum-tube technology due to the transistor's reduced 
cost, weight, and power consumption and its higher reliability. From 1969 to the late 
1970s, integrated circuit-based technology was being developed, which greatly 
enhanced the processing speed of . computers, thus making it possible to solve 
larger finite elem~nt problems with increased degrees of freedom. From the late 
19708 into the 19808, large-scale integration as well as workstations that introduced a 
windows-type graphical interface appeared along with the computer mouse. The first 
computer mouse received a patent on November i 7) 1970. Personal computers had 
now become mass-market desktop computers. These developments came during the 
age of networked computing, which brought the Internet and the World Wide Web. 
In the 1990s the Windows operating system was released, making IBM and IBM­
compatible PCs more user friendly by integrating a graphical user interface into the 
software. 

The development of the computer resulted in the writing of computational pro­
grams. Numerous special-purpose and general-purpose programs have been written 
to handle various complicated structural (and nonstructural) problems. Programs 
such as [46-56} illustrate the elegance of the finite element method 'and reinforce 
understanding of it. 

In fact, finite element computer programs now can be solved on single-processor 
machines, such as a single desktop or laptop personal computer (PC) ot on a cluster of 
computer nodes. The pO,werful memories of the PC and the advances in solver pro­
grams have made it possible to solve problems with over a million unknowns .. 
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To use the computer, the analyst~ having defined the finite element model, inputs 
the information into the computer. This information may include the position of the 
element nodal coordinates, the manner in which elements are connected, the material 
properties of the elements, the applied loads, boundary conditions, or constraints, 
and the kind or analysis to be performed. The computer then uses this information 
to generate and solve the equations necessary to carry out the analysis. 

1: 1.4 General Steps of the Finite Element Method 

This section presents the general steps included in a finite element method formulation 
and solution to an engineering problem. We wilt use these steps as our guide in develop­
ing solutions for structural and nonstructural problems in subsequent 'chapters. 

For simplicity's sake, for the presentation of the steps to follow, we will consider 
only the structural problem. The nonstructural heat-transfer and fluid mechanics 
problems and their analogies to the structural problem are considered in Chapters 13 
and 14. 

Typically, for the structural stress~analysis problem, the engineer 'seeks to deter­
mine 'displacements and stresses throughout the structure, which is ip. equilibrium 
and is, subjected to applied loads. For many structures, it is difficult to.determine the 
distribution of defonnation using conventional methods, and thus the finite element 
method is necessarily used. 

There are two general direct approaches traditionally associated with the finite 
element method as applied to structural mechanics probl~ms. One approach, called 
the force, or flexibilitYJ method, uses internal forces as the unknowns of the problem. 
To obtain the governing equations, first the equilibrium equations are used. Then nec­
essary additional equations are found by introduCing compatibility equations. The 
result is a set of algebraic equations for detennining the redundant or unknown forces. 

The second approach, caned the displacement, or stiffness, method, assumes the 
displacements of the nodes as the unknowns of the problem. For instance, compatibil­
ity conditions requiring that elements connected at a common node, along a comrilon 
edge, or on a common surface before loading remain connected at that node, edge, or 
surface after deformation takes place are initially satisfied. Then the governing equa­
tions are expressed iil terms of nodal displacements using the equations of equilibrium 
and an applicable law relating forces to displacements. 

These two direct approaches result in different unknowns (forces or displace­
ments) in the analysis and different matrices associated with their fonnulations (fiexi­
bilities or stiffnesses). It has been shown [34] that, for computational purposes, the dis­
placement (or stiffness) method is more desirable because its fonnulation is simpler for 
most structural analysis problems. Furthermore, a vast majority of general-purpose 
finite element programs have incorporated the displacement fonnulation for solving 
structural problems. Consequently, only the displacement method ,will be used 
throughout this text. 

Another general method that can be used to develop the governing equations for 
both structur31 and nonstructural problems is the variational method. The variational 
method includes a number of principles. One of these principles, useQ extensively 
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throughout this text because it is relatively easy to comprehend and is often intro­
duced in basic mechanics courses, is the theorem of minimum potentia1 energy that 
applies to materials behaving in a linear-elastic manner, This theorem is explained 
and used in various sections of the text, such as Section 2.6 for the spring element, 
Section 3.10 for the bar element, Section 4.7 for the beam element, Section 6.2 for 
the constant-strain triangle plane stress and plane strain element, Section 9.1 for the 
axisymmetric element, Section 11.2 for the three-dimensional solid tetrahedral ele­
ment, and Section 12.2 'for the plate bending element. A functional analogous to that 
used in the theorem of minimum potential energy is then employed to develop the 
finite element equations for the non structural problem of heat transfer presented in 
Chapter 13. 

Another variational principle often used to derive the governing equations is the 
principle of virtual work. This principle applies more generally to materials that 
behave in a linear-elastic fashion, as well as those that behave in a nonlinear fashion. 
The principle of virtual work is described in Appem:tix E for those choosing to use it 
for developing the general governing finite element equations that can be applied spe­
cifically to bars, beams, and two- and three-dimensional solids in either static or 
dynamic systems. 

The .finite element method involves modeiing the structure using small interc.on­
neeted elements calledfinite elements. A displacement function is associated with each 
finite element. Every interconnected element is linked, dire9tly or indirectly, to every 
other element through common (or shared) interfaces, including nodes andlor bound­
ary lines andlor surfaces. By using known stress/strain properties for the material 
making up the structure, one can determine the behavior of a given node in terms of 
the properties of every other element in the structure. The total set of equations 
describing the behavior oreach node results in a series of algebraic equations best 
expressed in matrix notation. 

We now present the steps, along with explanations necessary at this time, used in 
the finite element method formuJation and solution of a structural problem. The pur­
pose of setting forth these general steps now is to expose you to the procedure gener­
ally followed in a finite elep1ent formulation of a problem. You will easily understand 
these steps when we illustrate them specifically for springs, bars, trusses, beams, p1ane 
frames, plane stress, axisymmetric stress, three-dimensional stress, plate bending, heat 
transfer, and fluid flow in subsequent chapters. We suggest that you review this section 
p~odically as we develop the specific element equations. 

Keep in mind that the analyst must make decisions regarding dividing the struc­
ture or continuum into finite elements and selecting the element type or types to be 
used in the analysis (step 1), the kinds of loads to be applied, and the types of bound­
ary conditions or supports to be applied. The other steps, 2-7, are carried out auto­
matically by a computer program. 

Step 1 Discretize and Select the Element Types 

Step 1 involves dividing the body into an equivalent system of finite elements with 
associated nodes and choosing the most appropriate element type to model most 
closely the actual physical behavior. The total number of elements used and their 
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variation in size and type within a given body are primarily matters of engineering 
judgment. The elements must be made small enough to give usable results and yet 
large enough to reduce computational effort. Small elements (and possibly higher­
order elements) are generally desirable where the results are changing rapidly, such 
as where changes in geometry occur; large elements can be used where results are rel­
atively constant. We will have more to say about discretization guidelines in later 
chapters, particularly in Chapter 7, where the concept becomes quite significant. The 
discretized body or mesh is often created with mesh-generation programs or prepro­
cessor programs available to the user. 

The choice of elements used in a finite element analysis depends on the physical 
makeup of the body under actual loading conditions and on how close to the actual 
behavior the analyst wants the results to be. Judgment concerning the appropriateness 
of one-, two-, or three-dimensional idealizations is necessary. Moreover, the choice 
of the most appropriate element for a particular problem is one of the major tasks 
that must be carried out by the designer/analyst. Elements that are commonly 
employed in practice-most of which are considered in this text-are shown in 
Figure 1-1. . 

The primary line elements [Figure l-l{a)] consist of bar (oUruss) and beam ele~ 
ments. They have a cross~sectional area but are usually represented "by line segments. 
In general, the cross-sectional area within the element can vary, but throughout this 
text it will be considered to be constant. These elements are often used to model 
trusses aQd frame structures (see Figure 1-2 on page 16, for instance). The simpJest 
line element (called a linear element) has two nodes, one at each end, although 
higher-order elements having three nodes [Figure 1-1 (a)] or more (called quadratiC, 
cubic, etc. elements) also exist. Chapter 10 includes discussion of higher-order line ele­
ments. The line elements are the simplest of elements to consider and will be discussed 
in Chapters 2 through 5 to illustrate many of the basic concepts of the finite element 
method. 

The basic two-dimensional {or plane) elements [Figure 1-I(b)J are loaded by 
forces in their own plane (plane stress or plane strain conditions)~ They are triangular 
or quadrilateral elements. The simplest two-dimensional elements have comer nodes 
only (linear elements) with straight sides or boundaries (Chapter 6), although there 
afe also higher-order elements, typically with midside nodes [Figure I-l(b)] (called 
quadratic elements) and curved sides (Chapters 8 and 10). The elements can have var­
iable thicknesses throughout or be constant. They are often used to model a wide 
range of engineering problems (see Figures 1-3 and 1-4 on pages 17 and 18). 

The most common three-dimensional elements [Figure I-l(c)] are tetrahedral 
~nd hexahedral (or brick) elements; they are used when it becomes necessary to per­

form a three-dimensional stress ana1ysis. The basic three-dimensional 'elements 
(Chapter II) have comer nodes only and straight sides, whereas higher-orderelements 
with midedge nodes (and possible midface nodes) have curved surfaces for their sides 
[Figme 1-1(c)]. 

The axisymmetric element [Figure 1-1(d)] is developed by rotating a triangle or 
quadrilateral about a futed axis located in the plane of the element through 360°. This 
element (described in Chapter 9) can be used when the geometry and loading of the 
problem are axisymmetric. 
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(a) Simple two-noded tine element (typically used to represent a bar or beam element) and the 
higher-order line element 

'--------x 

Triangulars Quadrilaterals 

(b) Simple two-dimensional elements with corner nodes (typically_ used to represent plane stress! 
strain) and higher-order two-dimensional elements with intermediate nodes along the sides 

~~4~ 
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Tetrahedrals 

8~'17 
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Regular hexahedral Irregular hexahedral 

- (c) Simple three-dimensional elements (typically used to represent three-dimensional stress state) 
and higher-order three-dimensional elements with intermediate nodes along edges 

u::!U, 
.... - -~-:..--:..-------- ..... 

Quadrilateral ring 

8 

Triangular ring 

(d) Simple axisymmetric triangular-and quadrilateral elements used for axisymmetric problems 

Figure 1-1 Various types of simple lowest-order finite elements with comer 
nodes only and higher-order elements with intermediate nodes 
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Step 2 Select a Displacement Function 

, Step 2 involves choosing a displacement function within each element. The function is 
defined within the element using the nodal values of the element. Linear, quadratic, 
and cubic polynomials are frequently used functions because they are simple to work 
with in finite element formulation, However, trigonometric series can also be used. 
For a two-dimensional element, the displacement function is a function of the coordi­
nates in its plane (say, the x-y plane). The functions are expressed in terms of the 
nodal unknowns (in the two-dimensional probl~m, in tenus of an x and a y compo­
nent), The same general displacement function can be used repeatedly for each ele­
ment. Hence the finite element method is one in which a continuous quantity, such 
as the displacement throughout the body, is approximated by a discrete model com­
posed of a set of piecewise-continuous functions defined within each finite domain or 
finite element. 

Step 3 Define the Strain! Displacement and Stress!Strain 
Relationships 

Strain/displacement and stres$lstrain,reiationships are necessary for deriving the equa­
tions for each finite element. In the case of one-dimensional deformation, say, in the .x 
directipn, we have strain ex related to displacement u by 

I 
du 

ex = dx (1.4.1) 

for small strains. In addition, the stresses must be related to the ,strains through the 
stress/strain law-generally called the constitutive law. The ability to define the mate­
rial behavior accurately is most important in obtaining acceptable results. The simplest 
of stress/strain laws, Hooke's law, which is often used in stress analysis, is given by 

CTx (1.4.2) 

where CTx = stress in the x direction and E modulus of elasticity. 

Step 4' Derive the Element Stiffness Matrix and Equations 

Initially, the development of element. stiffness matrices and element equations was 
based on the concept of stiffness influence coefficients, which presupposes a back­
ground in structural analysis. We-now present alternative methods used in this text 
that do not require this special background. 

Direct Equilibrium Method 

According to this method, the stiffness matrix and element equations relating nodal 
forces to nodal displacements are obtained usi'ng force equilibrium conditions for a 
basic element, along with force/deformation relationships. Because this method is 
most easily adaptable to line or one-dimensional elements, Chapters 2, 3, and 4 illus­
trate this method for spring, bar, an~ beam elements, respectively. 
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Work or Energy Methods 

To develop the stiffness matrix and equations for two- and three-dimensional elements, 
it is much easier to apply a work or energy method [351. The principle of virtual 
work (using virtual displacements), the principle of minimum potential energy, and 
Castigliano's theorem are tpethods frequently used for the purpose of derivation of 
element equations. 

The principle of virtual work outlined in Appendix E is applicable for any mate­
rial behavior, whereas the principle of minimum potential energy and Castigliano's 
theorem are applicable only to elastic materials. Furthermore, the principle of virtual 
work can be used even when a potential function does not exist. However, all three 
principles yield identical element equations for linear·elastic materials; thus which 
method to use for this kind of material in structural analysis is largely a matter of con­
venience and personal preference. We will present the principle of minimum potential 
energy-probably the best known of the three energy methods mentioned here-in 
detail in Chapters 2 and 3, where it will be used to derive the spring and bar element 
equations. We will further generalize the prin~ple and apply it to the beam element 
in Chapter 4 and to the plane stress/strain element in Chapter 6. Thereafter, the prin­
ciple is routinely referred to as the basis for d~riving all other stress-analysis stiffness 
matrices and element equations given in Chapters 8, 9} II) and 12. 

F or the purpose of .extending the finite element method outside the structural 
stress analysis field, a functiooaJl (a function of another function or a function that 
takes functions as its argument) analogous to the one to be used with the principle of 
minimum potential energy is quite useful in deriving the element stiffness matrix and 
equations (see Chapters 13 and 14 on heat transfer and fluid flow, respectively). For 
instance, letting 1t denote the functional and f(x,y) denote a function f of two vari­
ables x and y, we then have n = n(f(x,y)), where n is a function of the function f. 
A more general [onn of a functional depending on two independent variables u(x,y) 
and v(x,y), where independent variables are x and y in Cartesian coordinates, is 
given by: 

(1.4.3) 

Methods of Weighted Residuals 

The methods of weighted residuals are useful for developing the element equations; 
particularly popular is Galerkin's method. These methods yield the same results as 
the energy methods wherever the energy methods are applicable. They are especially 
useful when a functional such as potential energy is' not readily available. The 
weighted residual methods allow the fuiite element meth.Od to be applied directly to 
any differential equation. 

I Another definition of it functional is as fonows: A functional is an integral expression that implicit1y oon· 
tams differential equations that describe the problem. A typic:aI functional is of the form J(u) => 

J F(X,fi, fll)tb: where u(x),x, and F are real so that I(u) is also a real number. 
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Galerkin's method, along with the collocation, the least squares, and the subdo­
main weighted residual methods are introduced in Chapter 3. To illustrate each 
method) they win all be used to solve a one-dimensional bar probJem for which a 
known exact solution exists for comparison. As the more easily adapted residual 
method, Galerkin's method will also be used to derive the bar element equations 1n 
Chapter 3 and the beam element equations in Chapter 4 and to solve the combined 
heat-conductionlconvectionlmass transport problem in Chapter 13. For more infor­
mation oil the use of the methods of Weighted residuals, see Reference [36J; for addi­
tional applications to the finite element method, consult References [37] and [381. 

Using any of the methods just outlined will produce the equations to describe 
the behavior of an element. These equations are written conveniently in Qlatrix 
fonn as 

III 
kll kl2 kl3 kIll 

III 
k21 k22 k23 k2n 

k31 k32 k33 k3n 

k". knn 

(1.4.4) 

or in compact matrix form as 

if} = [k]{d} (1.4.5) 

where {f} is the vector of element nodal forces, [k] is the element stiffness matrix 
(normally square and symmetric), and {d} is the vector ofunkn.own element nodal 
degrees of freedom or generalized displacements, n. Here generall+ed displacements 
may include such quantities as actual displacements, slopes, or even curvatures. The 
matrices in Eq. (1.4.5) will be developed and described in detail in subsequent chapters 
for specific element types, such as those in Figure 1-1. 

Step 5 Assembl~ the Element Equations to Obtain the Global 
or Total Equations and Introduce Boundary Cpnditions 

Iil this step the individual element n6dai equilibrium equations g~rated in step 4 are 
assembled into the global nodal equilibrimn equations. Section 2.3 illustrates this C;OD& 

cept for a two-spring assemblage. Another more" direct method of superposition 
(calJed the direct stiffness method), whose basis is nodal force equilibrium, can be 
used to obtain the global equations for the whole structure. This direct method is illus­
trated in Section 2.4 for a spring assemblage. Implicit in the direct stiffness method is 
the concept of continuity, or compatibility, which requires that the structure remain 
together and that no tears occur anywhere within the structure. 

The final assembled or global equation written in matrix form is 

{F} fK]{d} (1.4.6) 
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where {F} is the vector of global nodal forces, [K] is the structure global or total stiff­
ness matrix, (for most problems, the global stiffness matrix is square and symmetric) 
and {d} is now the vector of known and unknown structure nodal degrees of freedom 
or generalized displacements. It can be shown that at this stage, the global stiffness 
matrix fR] is a singular matrix because its determinant is equal to zero. To remove 
this singularity problem, we must invoke certain boundary conditions (or constraints 
or supports) so that the structure remains in place instead of moving as a rigid body. 
Further details and methods of invoking boundary conditions are given in subsequent 
chapters. At this time it is sufficient to note that invoking boundary or support condi­
tions results in a modification of the global Eq. (1.4.6). We also emphasize that the 
applied known loads have been accounted for in the global force matrix {F}. 

Step 6 Solve for the Unknown Degrees of Freedom 
(or Generalized Displacements) 

Equation (1.4.6), modified to account for the boundary conditions, is a set of simulta­
neous algebraic equations that can be written in expanded matrix form as 

! ~I I [Ktl KI2 Kin] ! dl I }2 K21 Ku K2n d2 
.' ... ... ~ .. ... .. 
Fn Knl Kn2 .". Knn dn 

(1.4.7) 

where now n is the structure total number of unknown nodal degrees of freedom. 
These equations can "be solved for the ds by using an elimination method (such as 
Gauss's method) or an iterative method (such as the Gauss-Seidel method). These 
two methQds are discussed in Appendix B. The ds are called the primary unknowns, 
because they are the first quantities determined using the stiffness (or displacement) 
finite element method. 

Step 7 Solve for the Element Strains and Stresses 

For the structural stress-analysis problem, importa.nt secondary quantities of strain 
and stress (or moment and shear force) can be obtained because they can be directly 
expressed in terms of the displacements determined in step 6. Typical relationships 
between strain and displacement and between stress and strain-such as Eqs. (1.4.1) 
and (1.4.2) for one-dimensional stress given in step 3-can be used. 

Step 8 Interpret the Results 

The final goal is to interpret and analyze the results for use in the design/analysis pro· 
cess. Determination of locations in the structure where large deformations and large 
stresses occur is generally important in making design/analysis decisions. Pos~proces­
sor computer programs help the user to interpret the results by displaying them in 
graphical form. 
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A 1.5 Applications of the Finite Element Method 

The finite element method can be used to analyze both structural and nonstructural 
problems. Typical structural areas include 

1. Stress analysis, including truss and frame analysis, and stress 
concentration problems typicaJIy associated with holes, fillets, or other 
changes in geometry in a body 

2. Buckling 
3. Vibration analysis 

Nonstructural problems include 

1. Heat transfer 
2. Fluid flow, including seepage through porous media 
3. Distribution of electric or magnetic potential 

Finally, some biomechanical engineering problems (which may include stress 
analysis) typically include analyses of human spine, skull, hip joints, jaw/gum tooth 
implants, heart, and eye .. 

We now present some-typical applications of the finite element method. These 
applications will illustrate the variety, size, and complexity of problems that can be 
solved using the method and the typical discretiiation process and kinds of elements used. 

Figure 1-2 illustrates a control tower for a railroad. The tower is a three­
dimensional frame comprising a series of beam-type elements. The 48 elements are 
labeled by the circled numbers, whereas the 28 nodes are indicated by the uncircled 
numbers. Each node has three rotation and three displacement components associated 
with it. The rotations (8s) and displacements (ds) are called the degrees offreedom. 
Because of the loading conditions to which the tower structure is subjected) we have 
used a three-dimensional model. 

The finite element method used for this frame enables the designer/analyst 
quickly to obtain <iisplacements and stresses in the tower for typical load cases, as 
required by design codes. Before the development of the finite element method and 
the computer) even this relatively simple problem took many hours to solve. 

The next illustration of the application of the finite element method to problem 
solving is the detennination of displacements and stresses in an underground box cul­
vert subjected to ground shock loading from a bomb explosion. Figure. 1-3 shows'the 

, discretized model, which included a total of. 369 nodes, 40 one-dimensional bar or 
truss elements used to model the steel reinforcement in the box culvert, and 333 
plane strain two-dimensional triangular and rectangular elements used to model the 
surrounding soil and concrete box culvert. With an assumption of symmetry, only 
half of the box culvert need be analyzed. This problem requires the solution of nearly 
700 unknown nodal displacements. It illustrates that different kinds of elements (here 
bar and plane strain) can often be used in one finite element model. 

Another problem, that of the hydraulic cylinder rod end shown in Figure 1-4, 
was modeled by 120 nodes and 297 pJane strain triangular elements. Symmetry was 
also applied to the whole rod end so that only half of the rod end had to be analyzed, 
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Figure 1 -2 Discretized railroad control tower (28 nodes, 48 beam elements) with 
typical degrees offreedom shown at node 1, for example (By D. L Logant 

as shown. The purpose of this analysis was to locate areas of high stress concentration 
in the rod end. 

Figure 1-5 shows a chimney stack section that is four fonn heights high (or a 
total of 32 ft high). In this illustration, 584 beam elements were used to model the ver­
tical and horizontal stiffeners making up the formwork, and 252 fiat-plate elements 
were used to model the inner wooden form and the concrete shell. Because of the 
irregular loading pattern on the structure, a three-dimensional model was necessary. 
Displacements and stresses in the concrete were of prime concern in this problem. 
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-- Fixed --... - nodes along -.. --- this edge ---- x ------

Fixed nodes along bottom 

Figure 1-3 Discretized model of an underground box culvert (369 nodes, 40 bar 
elements, and 333 plane strain elements) [391 -

Figure 1-6 shows the ~ite element discretized model of a proposed steel 
die used in a plastic film-making process. The irregular geometry and associated 
potential stress concentrations necessitated use of the 1inite element method to obtain 
a reasonable solution. Here 240 axisymmetric elements were used to model the three­
dimensional die. 

Figure 1'-7 illustrates the use of a three-dimensitmal solid element to model a 
swing casting for a backhoe frame. The three-dimensional hexahedral elements are 
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'-Applied loads 

Figure 1-4 Two-dimensional analysis of a hydraulic cylinder rod end (120 nodes, 
297 plane strain triangular elements) 

Rigid rods 

Adjustable rod ======~~~ 
An.,gle ring 
Sling cable 

Whaler 
(beam 

elements) 

Derrick 

Concrete shell 
(plate elements) 

ur 
Concrete shell (plate elements) 

Inner form (plate elements) 

Vertical stiffener (beam elements) 

Figure 1-5 Finite element model of a chimney,stack section (end view rotated 45°) 
(584 beam and 252 flat-plate elements) (By D. L logan) 
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Figure 1-6 Model of a high-strength steel die (240 axisymmetric elements) used in 
the plastic film industry [40} 

necessary to model the irregularly shaped three-dimensional casting. Two-dimensional 
models certainly would not yield accurate engineering solutions to this problem. 

Figure 1-8 illustrates a two-dimensional heat-transfer model used to detennine 
the temperature distribution in earth subjected to a heat source~a buried pipeline 
transporting a hot gas. 

Figure 1-9 shows a three-dimensional finite element model of a pelvis bone with 
an implant, used to study stresses in the bone and the cement layer between bone and 
implant. 

Finally, Figure 1-10 shows a three-dimensional model of a 710G bucket, used 
to study stresses throughout the bucket. 

These illustrations su&:,aest the kinds of problems that can be solved by the finite 
element method. Additional guidelines concerning modeling techniques will be pro­
vided in Chapter 7 . 

.A 1.6 Advantages of the Finite Element Method 

As previously indicated, the finite element method has been applied to numerous 
problems, both structural and non structural. This method has a number of advan· 
tages that have made it very popular. They include the ability to 

1. Model irregularly shaped bodies quite easily 
2. Handle general load conditions without difficulty 
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Figure 1-7 Three-dimensional solid element model of a swing casting for a 
backhoe frame 

3. Mode~ bodies 'COmposed of several different materials because the 
element equations are evaluated individually 

4. Handle unlimited numbers and kinds of boundary conditions 
5. Vary the size of the elements to make it possible to use small elements 

where necessary 
6. Alter the finite element model relatively easily and cheaply 
'1. Include'dynamic effects 
8. Handle nonlinear behavior existing with large deformations and 

nonlinear materials 

The finite element method of structural analysis enables the designer to detect 
stress, vibration, and thermal problems during the design process and to evaluate design 
changes before the construction of a possible prototype. Thus confidence in the accept· 
ability of the prototype is enhanced. Moreover~ if used properly, the method can 
reduce the number of prototypes that need to be built. 

Even though the finite element method was initially used for structural analysis, 
it has since been adapted to many other disciplines in engineering and mathematical 
physics, such as fluid flow, heat transfer, electromagnetic potentials, soil mechanics, 
and acoustics [22-24~ 27, 42-44J. 
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Figure 1-8 Finite element model for a two-dimensional temperature distribution in 
the earth 

Figure .1-9 Finite element model of a 
pelvis bone with an implant (over 5000 
solid elements were used in the model) 
(@Thomas Hansen/Courtesy of 
Harrington Arthritis Research Center, 
Phoenix, Arizona) (41) 
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Taper Beams. The Loader Lift Arm 

.------- Parabolic Beam, The Loader"Guide Link 

Linear Beams. The Loader Power Link" 

The Bucket 

Li near Beams, The Lin Arm Cylinders 

The Loader Coupler 

Figure 1-10 Flnite:element model of a 710G bucket with 169,595 elements and 185,026 nodes used (including 78,566 thin shell 
linear quadrilateral elements for the bucket and coupler, 83,104 solid linear brick elements to model the bosses, and 212 beam 
elements to model lift arms, lift arm cylinders, and guide Iinks)(Courtesy of Yousif Omer. Structural Design Engineer, Construction 
and Forestry Division, John Deere Dubuque Works) 
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At. 1.7 Computer Programs for 
the Finite Element Method 

There are two gener~i1 computer methods of approach to the solution of problems by 
the finite element method. One is to use large commercial programs, many of which 
have been configured to run on personal computers (Pes); these general-purpose pro­
grams are designed to solve many types of problems. The other is to develop many 
small, special-purpose programs to solve specific problems. In this section, we will discuss 
the advantages and disadvantages of both methods. We wiil then list some of the 
available general-purpose programs and discuss some of.their standard capabilities. 

Some advantages of general-purpose programs: 

1. The input is well organized and is developed with user ease in mind. 
Users do not need special knowledge of computer software or 
hardware. Preprocessors are readily available to help create the finite 
element model. 

2. The programs are large systems that often can solve many types of 
problems of large or small size with the same input format. 

3. Many of the programs can be expanded by adding new mQ9ules for 
new kinds of problems or new technology. Thus they may be kept 
current with a minimum of effort. 

4. With the increased storage capacity and computational efficiency of 
pes j many general-purpose programs can now be run on PCs. 

S. Many of the commercially available programs have become very 
attractive in price and can solve a wide range of probJems [45, 56}. 

Some disadvantages of general-purpose programs: 

1. The initial cost of developing general-purpose programs is high. 
2. General-purpose programs are less efficient than special-purpose 

programs because the computer must make many checks for each 
problem, some of which would not be necessary if a special-purpose 
program were used. 

3. Many of the programs are proprietary. Hence the user has little access 
to the logic of the program. If a revisipn must be made, it often has to 
be done by the dev~lopers. 

Some advantages of special-purpose programs: 

1. The programs are usually relatively short, with low development costs. 
2. Small computers are able to run the programs. 
3. Additions can be made to the program quickly and at a low cost. 
4. The programs are efficient in solving the problems they were designed 

to solve. 

The major disadvantage of special-purpose programs is their inability to solve 
different classes of problems. Thus one must have as many programs as there are dif­
ferent classes of problems to be solved. 



24 A Introduction 

There are nwnerous vendors supporting finite element programs, and the inter­
ested user should carefully consult the vendor before purchasing any software. How­
ever, to give you an, idea about the various commercial personal computer programs 
now available for solving problems by the finite element method, we present a partial 
list of existing programs. 

1. Algor [46] 
2. Abaqus [47] 
3. ANSYS [48] 
4. COSMOSIM [49} 
S. GT-STRUDL [50] 
6. MARC [S11 
7. MSCINASTRAN !52] 
8. NISA [53j 
9. ProlMECHANICA [54] 

10. SAP2000 [551 
11. STARDYNE [56} 

Standard capabilities of many of the listed programs are provided in the preced­
ing references and in Reference [45}. These capabilities include infonnation on 

1. Element types available, such as beam, plane stress, and three-
dimensional solid 

2. Type of analysis available: such as static and dynamic 
3. Material behavior, such as linear-elastic and nonlinear 
4. Load types, such as concentrated, distributed, thermal, and displace­

ment (settlement) 
5. Data generation, such as automatic generation of nodes, elements, and 

restraints (most programs have preprocessors to generate the mesh for 
the model) 

6. Plotting, such as original and deformed geometry and stress and 
temperature contours (most programs have postprocessors to aid in 
interpreting results in graphical form) 

7., Displacement behavior, such as small and large displacement and buckling 
8. Selective output, such as at selected nodes, elements, and maximum or 

minimum values 

All programs include at least the bar} 'beam, plane stress, plate-bending, and three­
dimensional solid elements) and most now include heat-transfer analysis capabiiities. 

Complete capabilities of the programs aTe best obtained through program refer­
ence manuals and websites, such as References [46 ... 56J. 
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il Problems 

1.1 Define the terrnfinite element. 

1.2 What does r!isc~etizatwn mean in the finite element method? 

1.3 In what year did the modern development of the finite element method begin? 

1.4 In what year was the direct stiffness method introduced? 

1.5 Define the term matrix. 

1.6 What role did the computer play in the use of the finite element method? 

1.7 List and briefly describe the general steps of the finite element method. 

1.8 What is the displacement method? 

1.9 List four cornmon types of finite elements. 

1.10 Name three commonly used methods for deriving the element stiffness matrix and 
element equations. Briefly describe each method. 

1.11 To what does the tenn degrees a/freedom refer? 

1.12 List five typical areas of engineering where the finite element method is applied. 

1.13 List five advantages of the finite element method. 
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This chapter introduces some of the basic concepts~on which the direct stiffness 
method is founded. The linear spring is introduced first because it provides a simple 
yet generaUy instructive tool to illustrate the basic concepts. We begin with a general . 
definition of the stiffness matrix and then consider the derivation of the stiffness 
matrix for a linear-elastic spring element. We next illustrate how to as~mble the 
total stiffness matrix for a structure comprising an assemblage of spring elements by 
using elementary concepts of equilibrium an~ compatibility. We then show how the 
total stiffness matrix for an assemblage can be obtained by superimposing the stiffness 
matrice~ of the individual elements in a direct manner. The term direct stiffness 
method evolved in reference to this technique. 

After establishing the total structure stiffness matrix} we illustrate how to impose 
boundary conditions-both homogeneous and nonhomogeneous. A compJete solu­
tion including the nodal displacements and reactions is thus obtained. (The determina­
tion of internal forces is disCussed in Chapter 3 in connection with the bar element.) 

We then introduce the principle of minimum potential energy, apply it to derive 
the spring element equations, and use it to solve a spring assemblage problem. We will 
illustrate this principle for the simplest of elements (those with small numbe.ts of degrees 
of freedom) so that it will be a more readily understood concept when applied, ofneces­
sitYI to elements with large numbers of degrees of freedom in subsequent chapters. 

A 2.1 Definition of the Stiffness Matrix 

Familiarity with the stiffness matrix is essential to understanding the stiffness method. 
We define the stiffness matrix as follows: For an element, a stiffness matrix k is a matrix 
such that] = feJ, where k relates local-coordinate (i,y,z) nodal displacements 4 to 
local forces! of a single element. {Throughout this text, the underline notation denotes 
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Figure 2-1 Local (x,y,i) and global (x,y,z) coordinate systems 

a matrix, and the ~ symbol denotes quantities referred to a local-coordinate system set 
up to be convenient for the element as shown in Figure 2-1.) 

For a continuous medium or structure comprising a series of elements, a stiff­
ness matrix K relates global-coordinate (Xl Y, z) nodal displacements d to global 
forces f of the whole medium or structure. (Lowercase letters such as x) y, and z with­
out the A symbol denote global-coordinate variables.) 

A 2.2 Derivation of the Stiffness Matrix 
for a Spring Element 

Using the direct equilibrium approach, we will now derive the stiffness matrix for a 
one-dimensional linear spring-that is, a spring that obeys Hooke's law and resists 
forces only in the direction of the spring. Consider the linear spring element shown 
in Figure 2-2. Reference points 1 and 2 are located at the ends of the eie.ment. These 
reference points are called the nodes of the spring element. The local nodal forces are 
fix and fa for the spnng element associated with the local axis x. The local axis acts 
in the direction of the spring so that we can directly measure displacements and forces 
along the spring. The local nodal displacements are alx and d2:;c for the spring element. 
These nodal displacements are called the degrees of freedom 'at each node. Positive 
directions for the forces and displacements at each node are taken in the positive .i 
direction as shown from node 1 to node 2 in the figure. The symbol k is called the 
spring constant or stiffness of the spring. ' " . 

Analogies to actual spring constants arise in numerous engineering problems. 
In Chapter 3) we see that a prismatic uniaxial bar has a spring constant k = AE I L, 
where A represents the cross-sectional area of the bar, E is the modulus of elasticity, 
and L is the bar length. Similarly) in Chapter 5, we show'that a prismatic circular­
cross-section bar'in torsion bas a spring constant k'= JG/L, where J is the polar 
moment of inertia and G is the shear modulus of the material. For one-dimensional 
heat conduction (Chapter 13), k = AKxx I L, where Kxx is the thermal conductivity of 
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Figure 2-2 linear spring element with positive nodal displacement and force 
conventions 

the material, and fQr one-dimensional fluid flow through a porous medium 
(Chapter 14), k = AKxx/ L, where Kx.r: is the permeability coefficient of the material. 

We will then observe that the stiffness method can be applied to nonstructural 
problems, such as heat transfer, fluid flow, and electrical networks, as well as struc­
tural problems by simply applying the proper constitutive law (such as Hooke's law 
for structural problems; Fourier's Jaw for heat transfer) Darcy's law for fluid flow 
and Ohm's law for electrical networks) and a conservation principle such as nodal 
equilibrium or conservation of energy. . 

We now want to develop a relationship between nodal forces and noda1 dis­
placements for a spring element. This relationship will be the stiffness matrix. There­
fore, we want to relate the nodal force matrix to the nodal displacement matrix as 
follows: 

(2.2.1) 

where the element stiffness coefficients kif of the k matrix in Eq. (2.2.1) are to be 
determined. Recall from Eqs. (1.2.5) and (1.2.6) that icy represent the force Fi in the 
ith degree of freedom. due to a unit displacement dj in the jth degree of freedom 
while all other displacements are zero. That is) when we let dj = 1 and dIe = 0 for 
k ::f. j, force Fi = ky• 

We now use the general steps outlined in Sect jon 1.4 to derive the stiffness 
matrix for the spring element in this section (while keeping in mind that these same 
steps will be applicable later in the derivation of stiffness rpatrices of more general ele­
ments) and then to illustrate a complete solution of a spring assemblage in Section 2.3. 
Because our approach throughout this text is to derive various element stiffness matri­
ces and then to· illustrate how to solve engineering problems with the elements, step 1 
now involves only selecting the element type. 

Step 1 Select the Element Type 

Consider the linear spring element (which can be an element in a system of springs) 
subjected to resulting nodal tensile forces T (which may result from the action of 
adjacent springs) directed along the spring axial direction x as shown in Figure 2-3. 
so as to be in equilibriul[11. The local i axis is directed from node 1 to node 2. We rep­
resent the spring by labeling nodes at each end and by labeling the element number. 
The original distance between nodes before deformation is denoted by L. The material 
property (spring constant) of the element is k. 



2.2 Derivation of the Stiffness Matrix for a Spring Element ... 31 

2 T 
T _--0--' 

I~ 
,..-.4:>----... ,i 

Figure 2-3 Linear spring subjected to tensile forces 

Step 2 Select a Displacement Function 

We must choose in advance the mathematical function to represent the deformed 
shipe of the spring element under loading. Because it is difficult, if not impossible at 
times, to obtain a closed form or exact solution, we assume a solution shape or distri­
bution of displacement within the element by using an appropriate mathematical func-
tion. The most common functions used are polynomials. . 

Because the spring. element resists axial loading only with the local degrees of 
freedom for the element being displacements d!x and d2:;r along the x direction, we 
choose a displacem~nt function u to represent the axial displacement throughout the 
element. Here a linear displacement variation along the x axis of the spring is assumed 
[Figure 2-4(b)], because a linear function with specified endpoints has a unique path. 
Therefore> 

(2.2-2) 

In general, the total number of coefficients a is equal to the total number of degrees of 
freedom associated with the element. Here the ~otal number of degrees of freedom is 

L 

(a) 

Figure 2-4 (a) Spring element showing plots 
of (b) displacement function Ii and shape 
functions (c) N, and (d) N2 over domain of 
element 
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two-an axial displacement at each of the two nodes of the element (we present 
further discussion regarding the choice of displacement functions in Section 3.2). 
In matrix form, Eq. (2.2.2) becomes 

it = [1 xl { :~ } (2.2.3) 

We now want to express it as a function of the nodal displacements dlx and d2x. as this 
will allow us to apply the physical boundary conditions 'on nodal displacements 
directly as indicated in Step 3 and to then relate the nodal displacements to the 
nodal forces in Step 4. We achieve this by evaluating it at each node and solving for 
af and a2 from Eq. (2.2.2) as follows: 

u(O) = db: = al (2.2.4) 

Of, solving Eq. (2.2.5) for a2, 

d2x - d1x 
a2 =--L-

Upon substituting Eqs. (2.2.4) and (2.2.6) into Eq. (2.2.2), we have 

In matrix fonn, we express Eq. (2.2.7) as 

or 

Here X 
N1= 1-­

L 
and 

(2.2.5) 

(2.2.6) 

(2.2.7) 

(2.2.8) 

(2.2.9) 

(2.2.10) 

are called th.e shape junctions because the N/s express the shape of the assumed dis­
placement function over the domain (i coordinate) of the element when the ith 
element degree of freedom has unit value and all other degrees of freedom are zero. 
In this case, Nt and N2 are linear functions that have the properties thar'Nt = 1 at 
node I and NI = 0 at node 2, whereas N2 = 1 at node 2 and N2 == 0 at node 1. See 
Figure 2-4(c) and (d) for plots of these shape functions over the domain of the spring 
element. Also, NI + N2 = 1 for any axial coordinate along the bar. (Section 3.2 fur­
ther explores this important relationship.) In addition, the N/s are often called inter­
po/ation jrmctions because we are interpolating to find the value of a function between 
given nodal values. The interpolation function may be different from the actual func­
tion except at the endpoints or nodes, where the interpolation function and actual 
function must be equal to specified nodal values. 
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2 

Figure 2-5 Deformed spring 

Step 3 Define the Strain! Displacement and Stress/Strain 
Relationships 

The tensile forces Tproduce a total elongation (deformation) b of the spring. The typ­
ical total elongation of the spring is shown in Figure 2-5. Here d1x is a negative value 
because the direction of displacement is opposite the positive x direction, whereas db: is 
a positive value. 

The deformation of the spring is then represented by 

(2.2.11) 

From Eq. (2.2.11), we observe that the total deformation is the difference of the nodal 
displacements in the x direction. ..' . 

For a spring element, we can relate the force in the spring directly to the defor- '. 
mation. Therefore, the strainldisplacement relationship is not necessary here. . 

The stress/strain relationship can be expressed in terms of the force/deformation 
relationship instead' as 

T=kb (2.2.12) 

. Now. using Eq. (2.2.1 1) in Eq. (2.2.12), we obtain 

T k(db: - dlx ) (2.2.13) 

Step 4 Derive the Element Stiffness Matrix and Equations 

We now derive the spring element stiffness matrix. By the sign convention for nodal 
forces and equilibrium, we have 

J.x = -T i2x T 

Using Eqs. (2.2.13) and (2.2.l4)} we have 

T= -jjx = k{d2x - db;) 

T= j2x k(d2x - dlx ) 

Rewriting Eqs. (2.2.15)i we obtain 

fix = k(dlx d2x) 

i2x = k(d2x db:) 

Now expressing Eqs. (22.16) in a single matri~ equation yields 

(2.2.14) 

(2.2.15) 

(2.2.16) 

(2.2.17) 
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This relationship holds for the spring along the.i axis. From our basic definition of a 
stiffness matrix and application of Eq. (2.2.1) to Eq. (2.2.17), we obtain 

[ k -k] 
-k k 

(2.2.18) 

as the stiffness matrix for a linear spring element. Here k is caned the local stiffness 
matrix for the element. We observe from Eq. (2.2.18) that k is a symmetric (that }s) 
kij = kji ) square matrix (the number of rows equals the number of columns in If). 
Appendix A gives more description and numerical examples of symmetric and square 
matrices. 

Step 5 Assemble the Eleme~t Equations to Obtain 
the Global Equations and Introduce Boundary Conditions 

The global stiffness matrix and global force matrix are assembled using nodal 
force equilibrium equations, force/defonnation and compatibility equations from Sec­
tion 2.3, and the direct stiffness method described in Section 2.4. This step applies for 
s~ctures compoSed of more than one element such that 

N N 
K = [K] 2: If(e) and E={F}=2:ie) (2.2.19) 

e=l t'""l 

where If and! are now element stiffness and force matrices expressed in a global refer­
ence frame. (ThroughQut this text, the 2: sign used in this context does not imply a 
simple summation of element matrices but rather denotes that these element matrices 
must be assembled properly according to the direct stiffness method described in 
Section 2.4.) 

Step 6 Solve for the Nodal Displacements 

The displacements are' then determined by imposing boundary conditions) such as 
support conditions, and solving a system of equations, E = Kg, simultaneou.s1y. 

Step 7 Solve for the Element Forces 

Finally, the, element forces are determined by back-substitution, applied to each ele­
ment, into equations similar to Eqs. (2.2.16). 

~ 2.3 Example of a Spring Assemblage 

Structures such as trusses, building frames, and bridges comprise basic structural com­
ponents connected together to form the overall structures. To analyze these structures, 
we must deterrn4le the total structure stiffness matrix for an interconnected system of 
elements. Before considering the truss and frame, we will determine the total structure 
stiffness matrix for a spring assemblage by using the force/displacement matrix relation­
ships derived in Section 2.2 for the spring element, along with fundamental concepts 
of nodal equilibriUm and compatibility. Step 5 above will then .have been iUustrated. 
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Figure 2-6 Two-spring assemblage 

We will consider the specific example of the two-spring assemblage shown in 
Figure 2-6*. This example'is general enough to ,illustrate the direct equilibrium 
approach for obtainin'g the total stiffness matrix of the spring assemblage. Here we 
fix node 1 and apply axial forces for F3x at node 3 and Fa at node 2. The stiffnesses 
of spring elements 1 and 2 are kl and k2, respectively. The nodes of the assemblage 
have been numbered 1, 3, and 2 for further generalization because sequential number­
ing between elements generally does not occur in large problems. 

The x axis is the global axis of the assemblage. The local x axis of each element 
coincides with the global axis of the assemblage. 

For element I) using Eq. (2.2.17), we have 

{Jj ~ [-!: -~: J{ ~£ } (2.3.1) 

and for element 2) :we have 

{j:}= [-~: -~:]{~} (2.3.2) 

Furthermore, elements 1 and 2 must remain connected at common node 3 throughout 
the displacement. This is called the continuity' or compatihz1ity requirement. The com­
patibility requirement yields 

(2.3.3) 

where, throughout this text, the superscript in parentheses above d refers to the ele­
ment number to which they are related. RecaU that the subscripts to the right identify 
the node and the direction of displacement, respectively, and that dlx is the node 3 dis­
placement of the total or global spring asseJp.blage. 

, Free-body diagrams of each element and node (using the established sign con­
ventions for element nodal forces in Figure 2-2) are'shown in Figure 2-7. 

Based on the free-body diagrams of each node shown in Figure 2-7 and the fact 
that external forces must equal internal forces at each node, we. can write nodal equi .. 
librium equations at nodes 3, 2, and 1 as 

F3>= = It) + f3~) (2.3.4) 

F2x = f~) (2.3.5) 

(2.3.6) 

.. Throughout this text, element numbers. in figures are shown with circles around them. 
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Figure 2-7 Nodal forces consistent with element force sign convention 

where Fix results from the external applied reaction at the fixed support. 
Here Newton's third law, of equal but opposite forces, is applied in moving from 

a node to an element associated with the node. Using Eqs. (2.3.1)-(2.3.3) in Eqs. 
(2.3.4)-(2.3.6), we obtain 

F3x = (-k,dtx + k1d3x ) + (k2d3x - k2d1:c) 

Fa = -k2d3x + k2d2x 

Fix = kl d1x - kl d3x 

In matrix folll1, Eqs. (2.3.7) are expressed by 

{ 
F3x} _ [kl + k2 -k2 -kl] { d3x 

} 
F2:c - -k2 k2 0 d2:c 
. FIx -kl 0 kl dlx 

(2.3.7) 

(2.3.8) 

Rearranging Eq. (2.3.8) in numerically increasing order of the nodal degrees of free­
dom, we have 

{ ~~ } = [~' . ~2 =~~] {~~} 
F3x -k, -k2 kl + k2 d3x 

(2.3.9) 

Equation (2.3.9) is now written as the single matrix equation 

E=Krl (2.3.1O) 

{ 
FJ:X} {d1X} where f = Elx is called the global nodal force matrix, rl = dlx is called the 

F3x . d3x 
global nodal displacement matrix, and 

(2.3.11) 

is called the total or global or system stiffness matrix. 
In summary, to establish the stiffness equations and stiffness matrix, Eqs. (2.3.9) 

and (2.3.11), for a spring assemblage, we have used force/deformation relation­
ships Eqs. (2.3.1) and (2.3.2), 'compatibility relationship Eq. (2.3.3), and nodal force 
equilibrium Eqs. (2.3.4)-(2.3.6). We will consider the complete solution to this 
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example problem after considering a more practical method of assembling the total 
stiffness matrix in Section 2.4 and discussing the support boundary conditions in 
Section 2.5. ' 

.. 2.4 Assembling the Total Stiffness Matrix 
by Superposition (Direct Stiffness Method) 

. We win now consider a more convenient method for constructing the total stiffness 
matrix. This method is based on proper superpo$ition of the individual element stiff­
ness matrices making up a structure (also see References [1] and [2]). 

Referring to the two-spring assemblage of Section 2.3, the element stiffness 
matrices are given in Eqs. (2.3.1) and (2.3.2) as 

(2.4.1 ) 

Here the dec's written above the columns'.and next to the rows in the If's indicate the 
degrees of freedom associated with ,each element row and colwnn. 

The two element stiffness matricesJ Eqs. (2.4.1), are not associated with the same 
degreeS of freedom; that is, element 1 is associated with axial displacements at nodes 1 
and 3, whereas element 2 is associated with axial displacements at nodes 2 and 3. 
Therefore, the element stiffness matrices cannot be added together' (superimposed) in 
their present form. To superimpose the eiement matrices, we 'must expand them to 
the order (size) of the total structure (spring assemblage) stiffness matrix so that each. 
element stiffness matrix is associated with all the degrees of freedom of the structure. 
To expand each element stiffness matrix to the ~rder of the total stiffness matrix, we 
simply add rows and columns of zeros for those displacements not associated with 
that particular element. 

For element 1, we rewrite the stiffness matrix in expanded form. so that Eq. 
(2.3.1) becomes 

(2.4.2) 

where, from Eq. (2.4.2), we see that 4> and Ii;) are not associated with !f<1}. Simi­
larly, for element 2, we have " 

d~ d~] {~(2)"} { 112) } 
1 -1 ~ = )f;) 

-I t· a5,2) .1'(2) 
3.% J3:x: 

(2.4.3) 
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Now, considering force equilibrium at each node results in 

{ f~)} + {fJi)} = {~~} 
jj:~) jj~) F3x 

(2.4.4) 

where Eq. (2.4.4) is really Eqs_ (2.3.4)-(2.3.6) expressed in matrix form. Using Eqs. 
(2.4.2) and (2.4.3) in Eq. (2.4.4). we obtain 

[ 1 0 -I] { ill} [0 0 0] { d'2) } {F} 
kl 0 0 0 d~). + k2 0 I - I )~ == F~ . 

-1 0 1 i ') 0 -1 1 i2) F3x 
3x 3x 

(2.4.5) 

where, again} the superscripts on the d's indicate the element numbers. Simplifying 
Eq. (2.4.S) results in 

[ 
~l ~2 =~~] { ~~ } = {i~} 

-kl -k2 k\ + k2 d3x. F3x 

(2.4.6) 

Here the superscripts.indicating the element numbers associated with the nodal dis­
placements have been dropped because d~~ is really d1x., d~ is really db:, and, by 
Eq. (2.3.3), dj~ = d~;} = d)x, the node 3 displacement of the total assemblage. Equa­
tion (2.4.6), obtained through superposition, is identical to Eq. (2.3.9). 

The expanded element stiffness matrices in Eqs. (2.4:2) and (2.4.3) could have 
been added directly to obtain the total stiffness matrix of the structure, given in Eq. 
(2.4.6). This reliable method of directly assembling individual element stiffness matri­
ces to form the total structure stiffness'matrix and the total set of stiffness equations 
is called the direct stiffness method. It is the most important step in the finite element 
method. 

For this simple example, it is easy to expand the element stiffness matrices and 
then superimpose them to arrive at the total stiffness matrix. However, for problems 
involving a large number of degrees of freedom, it will become tedious to expand 
each element stiffness matrix to the order of the total stiffness matrix. To avoid this 
expansion of each element stiffness matrix, we suggest a direct, or short-cut, fonn of 
the direct stiffness method to obtain the total stiffness matrix. For the spring assem­
blage example, the rows and columns of each element stiffness matrix are labeled 
according to the degrees of freedom associated with them as follows: 

(2.4.7) 

K is then constructed simply by directly adding tenns associated with· degrees pffree­
dom in If(l) and If{2} into their corresponding identical degree-of-freedom locations in 
K as follows. The d,x row, d1x column tenn of K is contributed only by element 1, as 
only element 1 has degree of freedom dL,( [Eq. (2.4.7)1, that is, kl\ = kl _ The d3x row, 
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d3x column of K has contributions from both elements 1 and 2, as the d3:c degree of 
freedom is associated with both elements. Therefore, k33 = k, + k2_ Similar reasoning 
results in K as 

d\x d2>; d3x 

K = [~I ~2 =~:] ~: 
-k, -k2 kI + k2 d3x 

(2.4.8) 

Here elements in K are located on the basis that degrees of freedom are ordered in 
increasing node numerical order for the total structure. Section 2.5 addresses the com­
,plete solution to the two-spring assemblage in conjunction with discussion of the sup­
port boundary conditions. 

A 2.5 Boundary Conditions 

We must specify boundary (or support) conditions for structure models such as the 
spring assemblage of Figure 2-6, or K Will be singular; that is, the determinant of K 
will be zero, and its inverse will not exist. This means the structural system is unstable. 
Without our specifying adequate'kinematic constraints or support conditions, the 
structure will be free to move as a rigid body and not resist any applied loads. In gen­
eral, the number of boundary conditions necessary to make {K} nonsingular is equal 
to the number of possible rigid body modes. . 

Boundary conditions are of two general types. Homogeneous boundary 
conditions-the more common-occur at locations that are completely prevented 
from movement; nonhomogene.ous boundary conditions occur where finite nonzero 
values of displacement are specified, such as the settlement of a support. 

To illustrate the two general types of boundary conditions, let us consider 
Eq. (2.4.6), derived for the spring assemblage of Figure 2-6. which has a single rigid 
body mode in the direction of motion along the spring assemblage. We first consider 
the case of homogeneous boundary conditions. Hence all boundary conditions are 
such that the displacements are zero at certain nodes. Here we have dlx = 0 because 
node 1 is fixed. Therefore, Eq. (2.4.6) can be written as 

[ 
~I ~2 =~: 1 {d:} = {~~} 

-kt -k2 k, + k2 d3x F3x 

Equation (2.5.1), written in expanded form, becomes 

kl (0) + (O)d2>; :- k1d3x = FIx 

0(0) + kzd2>; - k2d3x = Fh 

-kl(O) - k2d2>; + (kl +kl)d3x = F3x 

where Fix is the unknown reaction and F2>; and F3x are known applied loads. 

(2.5.1 ) 

(2.5.2) 
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Writing the second and third of Eqs. (2.5.2) in matrix fo~ we have 

[ 
k2 -k2 ] { d2x } { F2x } 

-k2 kl + k2 d3,X = F3x 
(2.5.3) 

We have now effectively partitioned off the first column and row of K and the first 
row of 4 and f. to arrive at Eq. (2.5.3). 

For homogeneous boundary conditions) Eq. (2.5.3) could have been obtained 
directly by deleting the row and column ofEq. (2.5.1) corresponding to the zero­
displacement degrees of freedom. Here row 1 and column 1 are deleted because one 
is really multiplying column I of K by db = O. However, FIx is not necessarily zero 
and can be determined once d:a·and d3x are solved for. 

After solving Eq. (2.5.3) for d2x and d3x) we have 

{ d2x } [k2 -k2 ]-l{F2x}' [k+i ~1{F2x} 
dlx = -k2 kl + k2 F3x = J.. ~ . F3x (2.5.4) 

kt kl 

Now that d2x and d3x are known from Eq. (2.5.4), we substitute them in the first of 
Eqs. (2.5.2) to obtain the reaction FIx as 

(2.5.5) 

We can express the unknown nodal force at node 1 (also called the reaction) in terms 
of the applied nodal forces F:a and F3x by using Eq. (2.5A) for dll: substituted into 
Eq. (2.5.5). The result is ' 

(2.5.6) 

Therefore) for all homogeneous boundary conditions, we can delete the rows and col­
umns corresponding to the zero-displacement degrees of freedom from the original set 
of equations and then solve for the unknown displacements. This procedure is useful 
for hand calculations. (However) Appendix BA presents a more practical, cOmputer. 
assisted scheme for solving the system of simultaneous equations.) 

We now consider the case of nonhomogeneous boundary conditions. Hence 
some of the specified displacements are nonzero. For simplicity's sake, let d1x = 6, 
where d is a known displacement (Figure 2-8), in Eq. (2.4.6). We now have 

[ k, 
0 

-k, Jr} fix} 
-~l 

k2 -k2 d2x, = F2x (~.5.7) 

-k2 k\ + k2 d3x F3x 

j.~.~ 
CD CD 

,3 
)C 

II" F3z lz F2;r 

Figure 2-8 Two-spring assemblage with known displacement b at node 1 
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Equation (2.5.7) written in expanded fonn becomes 

kid + Odlx - k,d?,x = Fb 

Od + k2d2x - k2d3x = F2x 

-k\b k2d2x + (kl + k2)d3x = F3:x 

(2.5.8) 

where Fix is now a reaction from the support that has moved an amount b. Consider­
ing the second and third of Eqs. (2.5.8) because they have known right-side nodal 
forces F2x and F3x, we obtain 

0& + k2d2x - k2d3x = F2x 

-ktb - k2d2x + (k! + k2)d3x = F3x 

Transforming the known b terms to the right side of Eqs. (2.5.9) yields 

k2d2x k2d3x = F2x 

-k2d2x + (k\ + k2)d3x +k\b + F3x 

Rewriting Eqs. (2.5.10) in matrix form, we have 

[ 
k2 -k2 ] { d2x } { F2x } 

'-k2 k\ + k2 d3x = ktb + F3x 

(2.5.9) 

(2.5.10) 

(2.5.11) 

Therefore, when dealing with nonhomogeneous boundary conditions, we cannot 
initially delete row 1 and column 1 of Eq. (2.5.7), corresponding to the nonhomoge­
neous boundary condition, as indicated by ~e resulting Eq. (2.S.Ii) because we are 
multiplying each element by a'nonzero number. Had we done so, the k1b term in 
Eq. (2.5.11) would have been neglected> resulting in an error in the solution for the 
displacements. For nonhomogeneous ,boundary conditions, we must, in general, trans­
form the terms associated with the known displacements to the right-side force matrix 
before ,solving for the unknown nodal displacements. This was illustrated by trans­
forming the kl b term of the second of Eqs. (2.5.9) to the right side of the second of 
Eqs. (2.5.10). 

We could now solve for the displacements in Eq. (2.5.11) in a manner similar to 
that used to solve Eq. (2.5.3). However, we will not further pursue the solution of 
Eq. (2.5.~1) because no new information is t<? be gained. 

However~ on substituting the displacement back into Eq. (2.5.7), the reaction 
now becomes 

FIx klb - kl.d3x (2.5.12) 

which is different than Eq. (2.5.5) for Fix-

At this point, we summarize some properties of the stiffness matrix in Eq. (2.5.7) 
that are also applicable to the generalization of the finite element method. 

1. IS. is synnnetric, as is each of the element stiffness matrices. If you are 
familiar With structural mechanics, you will not .find this symmetry 
property surprising. It can tie proved by using the reciprocal laws 
described in such References as [3} and [4}. 
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2. IS: is singular, and thus no inverse exists until sufficient boundary 
conditions are jmposed to remove the singularity and prevent rigid 
body motion. 

3. The main diagonal tenns of K are always positive. Otherwise, a 
positive nodal force Fi could produce a negative displacement di-

a behavior contrary to the physical behavior of any actual structure. 

In general, specified support conditions are treated mathematically by partition­
ing the global equilibrium equations as follows: 

[f:~ ! f~] { ~; } = {~; } (2.5.13) 

where we let gl be the unconstrained or free displacements and·42 be the specified dis­
placements. From Eq. (2.5.13), we have 

and 

KII41 EI KJ242 
E:2 = K21g1 + Ku42 

(2.5.14) 

(2.5.15) 

where fl are the known nodal forces and E2 are the unknown nodal forces at the 
specified displacement nodes. £2 is found from Eq. (2.5.15) after 41 is determined 
from Eq. (2.5.14). In Eq. (2.5.14), we assume that Kll is no longer singular, thus 
allowing for the determination of 41. 

To illustrate the stiffness method for the solution of spring assemblages we now 
present the following examples. 

Example 2.1 

For the spring assemblage with arbitrarily numbered nodes shown in Figure 2-9, 
obtain (a) the global stiffness matrix, (b) the displacements of nodes 3 and 4, (c) the 
reaction forces at nodes 1 and 2, and (d) the fon:es in C".:lch spring. A force of 5000 Ib 
is applied at node 4 in the x direction. The spring constants are given in the figure. 
Nodes 1 an9 2 are fixed. 

kl 1000 lb/in. k1 ;: 2000 Ib/in. 

4 

k) = 3000 lb/in. 

2 

Figure 2-9 Spring assemblage for solution 

(a) We begin by making use of Eq. (2.2.18) to express each element stiffness 
matrix as fonows: 



I 
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1 3 3 4 

If{l) [ 1000 
-1000 

-1000] 1 
1000 3 

!f(2) [ 2000 
-2000 

-2000) 3 
2000 4 

4 2 (2.5.16) 

k(3) = [ 3000 
- -3000· 

-3000J 4 
3000 2 

where the numbers above the columns and next to each row indicate the nodal degrees 
of freedom associated with each 'element. For instance, element 1 is associated with 
degrees of freedom dt .: and d3x• AlsO', the local x axis coincides 'With the global x axis 
for each element. 

Using the concept of superposition (the direct stiffness method), we obtain the 
global stiffness matrix as 

K = 1£(1) + k(2) + 1£(3) 

'2 3 4 

[ ~O 0-- -1000 

o r or K- 0 3000 0 -3000 2 (2.5.l7) 
- - ....:1~0 0 1000+2000 -2000 3 

-3000 -:-2000 2000+ 3000 4 

(b) The global stiffness matrix, Eq. (2.5.17), relates global forges to global dis­
placements as fonows: 

I ~I [-:! + -! ==lltl 
F4x 0 - 3000 - 2000 SOOO ~x 

(2.5.I8} 

Applying the homogeneous boundary conditions db 0 and d2x = 0 to 
Eq. (2.5.18). substituting applied nodal forces) and partitioning the first two equations 
ofEq. (2.5.l8) (or deleting the first two rows of {F} and {4} and the first two rows 
and columns of IS. corresponding to the zero..cJisplacement boundary conditions), we 
obtain 

"{ O} [3000 -2000] { d3X
} 

5000 = - 2000 5000 dtx (2.5.19) 

Solving Eq. (2.5.19)) we obtain the global nodal displacements 

d 
10. 

3x = 11 lD. 
.:I. 15. 
U4X =Tf lD. (2.5.20) 

(c) To obtain the global nodal forces (which inClude the reactions at nodes 1 
and 2), we back-substitute Eqs. (2.5.20) and the boundary conditions db: = 0 and 
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d2x = 0 into Eq. (2.5.18). This substitution yields 

ex I [!ODD 
0 -1000 

o lfl F2x 0 3000 0 -3000 0 
(2.5.21) 

F3x - .:..1000 0 3000 -2000 W . 
F4x 0 -3000 -2000 5000 . 11 

M.u1tiplying matrices in Eq. (2.5.21) and simplifying, we obtain the forces at each 
node 

F = -10,000 Ib 
Ix Ii 

Fa = -45,000 Ib 
11 

F: = 55,000 Ib 
4x 11 

(2.5.22) 

From these results, we observe that the sum of the reactions Fix and Fa is equal in 
magnitude but opposite in direction to the applied force F4x' This result verifies equili­
brium of the whole sprirlg assemblage. 

(d) Next we use local element Eq. (2.2.17) to obtain the forces in each element 

Element 1 

{i:x } = [ 1000 -1000] { 0 } 
I" -1000 1000 ~ 

/3x 11 

(2.5.23) 

Simplifying Eq. (2.5.23), we obtain 

fiA = -10,000 Ib 
Ix 11 (2.5.24) 

A free-body diagram of spring element 1 is shown in Figure 2-10(a). The spring is 
subjected to tensile forces given by Eqs. (2.5.24). Also, fix is equal to the reaction 
force Fix given in Eq. (2.5.22). A free-body diagram of node 1 [Figure 2-10(b)] 
shows this result. 

CD 
10.000 "'--0--' -11- ,...-.0---, )0,000 

-11- Fu ---o-il1t 
(a) (b) 

Figure 2-10 (a) Free-body diagram of element 1 and (b) free-body diagram 
of node 1. 

Element 2 

{Ax} = [ 2000 -2000] {fl} 
hx -2000 2000 if (2.5.25) 
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Simplifying Eq. (2.5.24), we obtain 

i3x = -10,000 Ib 
11 

(2.5.26) 

A free-body diagram of spring element 2 is shown in Figure 2-11. The spring is sub­
jected to tensile forces given by Eqs. (2.5.26). 

10,000 __ oQ-f 

-11-
4 ,......,:r--- 10,000 -11-

Figure 2-11 Free-body diagram of element 2 

Element 3 

{~x } = [ 3000 -~OOOl {if } 
A-c - 3000 3000 0 

(2.5.27) 

Simplifying Eq. (2.5.27) yields 

;. = -45,000 Ib 
J2x 11 (2.5.28) 

45,000 __ 04 ..1 

-11-
2 

i7:r.-O--- F2JI, 

(b) 

Fjgure 2-12 , (a) Free-body diagram of element 3 and (b) free-body diagram 
of node 2 

A free-body diagram of spring element 3 is shown in Figure 2-12(a). The spring is 
subjected to compressive forces given by Eqs. (2.5.28). Also, i2x is equal to the reac­
tion force F2x given in Eq. (2.5.22). A free-body diagram of node 2 (Figure 2-12h) 
shows this result. • 

Example 2.2 

For the spring assemblage shown in Figure.2-13, obtain {a} the global stiffness 
matrix, (b) the displacements of nOdes 2-4, (c) the glol>al nodal forces, and (d) the 
local element forces. Node 1 is fixed while node 5 is given a fixed, known dispiac:e:plent 
t5 2tlO mm. The spring constants are all equal to k := 200 kN/m. 
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Figure 2-13 Spring assemblage for solution 

(a) We use Eq. (2.2.18) to express each element stiffness matrix as 

k(1) = k(2) = k(3) k(4) = [ 200 -200] 
- - - - -200 200 

(2.5.29) 

Again using superposition, we obtain the global stiffness matrix as 

200 -200 0 0 0 
-200 400 -200 0 0 

kN 
K= o . -200 400 -200 0 

0 '·0 -200 400 -200 
m 

(2.5.30) 

0 0 0 -200 200 

(b) The global stiffness matrix, Eq. (2.5.30), relates the global forces to the 
global displacements as follows: 

l i~1 -~: -~~ -2~0 ~ ~ ll~:1 
F3;c = ° -200 400 -200 0 d3:J; 
F4x 0 0 - 200 400 -200 t4x 
Fsx ° 0 0 -200 200 dsx 

(2.5.31) 

Applying the boundary conditions dlx = 0 and dsx 20 mm (= 0.02m» substi­
tuting known global forces Flx 0, F3x = 0, and F4J; = 0, and partitioning the first 
and fifth equations of Eq. (2.5.31) corresponding to these boundary conditions, we 
obtain 

{
OJ [-200 400 -200 0 0 ] I d: I o = ° -200 400 -200 0 d3:J; 
o 0 0 -200 400 -200 14x 

0.02m 

(2.5.32) 

We now rewrite Eq. (2.5.32), transposing the product of the appropriate stiffness 
coefficient (-200) multiplied by the known displacement (0.02m) to the left side. 

LL}= [-; ~: -:]{~} (2.5.33) 



I 
:1 
.~ 

2.5 Boundary Conditions .A 47 

Solving Eq. (2.5.33), we obtain 

d2x = 0.005 m d3x = 0.01 m d4x = 0.015 m (2.5.34) 

(c) The global nodal forces are obtained by back-substituting the boundary con­
dition displacements and Eqs. (2.5.34) into Eq. (2.5.31). This substitution yields 

Fl;x = (-200)(0.005) =.-1.0 kN 

F2x (400)(0.005) - (200)(0.01) = 0 

F3x = (-200)(0.005) + (400)(0.01) - (200)(0.015) = 0 

FJk = (-200)(0.01) + (400)(0.015) (200)(0.02) = 0 

Fsx = (-200)(0.015) + (200)(0.02) = 1.0 kN 

(2.5.35) 

The results of Eqs. (2.5.35) yield the reaction FIx opposite that of the nodal force FSJ,: 

required to displace node 5 by d 20.0 mm. This result verifies equilibrium of the 
whole spring assemblage. 

(d) Next, we make use of local element Eq. (2.2.17) to obtain the forces in each 
element. 

Element 1 

{~x} = [ 200 
f2x -200 

-200]{ 0 } 
200 0.005. 

(2.5.36) 

Simplifying Eq. (2.5.36) yields 

ilx = -1.0 kN i2x = 1.0 kN (2.5.37) 

Element 1 

r~} [200 hx = -200 
~200] {0.005} 

200 0.01 
(2.5.38) 

Simplifying Eq. (2.5.38) yields 

i2x=-lkN .hx = I kN (2.5.39) 

Element 3 

F" } 14x 
[ 200 
-200 

-200] {0.01 } 
200 0.015 

(2.5.40) 

Simplifying Eq. (2.5.40), we have 

,.hx = -I kN 14:1 = 1 kN (2.5.41) 
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Element 4 

{~4X} = [ 200 -200] {0.015 } 
15x - 200 200 0.02 

(2.5.42) 

Simplifying Eq. (2.5.42), we obtain 

hx = -1 kN !SX = 1 kN (2.5.43) 

You should draw free-body diagrams of eaeh node and element and use the results of 
Eqs. (2.5.35)-(2.5.43) to verify both node and element equilibria. • 

Finally, to review the major concepts presented in this chapter, we solve the fol-
lowing example problem. . 

Example 2.3 

(a) Using the ideas presented in Section 2.3 for the system of linear elastic springs 
shown in Figure 2-14, express· the boundary conditions, the compatibility or continu­
ity condition similar to Eq. (2:3.3), and the nodal equilibrium conditions similar to 
Eqs. (2.3.4)-(2.3.6). Then fonnulate the global stiffness matrix and equations for solu­
tion of the unknown global displacement and forces. The spring constants for the ele­
ments are k1• k2, and k3; P·is an applied force at node 2. 

(b) Using the direct stiffness method, .formulate the same global stiffness matrix 
and equation as in part (a). 

Figure 2-14 Spring assemblage for solution 

(a) The boundary conditions are 

d1x=0 t4x =0 

The compatibility condition at node 2 is 

d (l) - d(2) - d(3) - d 
2x- 2x- 2x- 2x 

(2.5.44) 

(2.5.45) 
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The nodal equilibrium conditions are 

(1) 
Fix =/tx 

p = tEl + f~} + 11;) 
(2.5.46) 

where the sign convention for positive element nodal forces given by Figure 2-2 was 
used in writing Eqs. (2.5.46). Figure 2-15 shows the element and nodal force free­
body diagrams. 

F3x 
o .. 
3 

Figure 2-15 Free-body diagrams of elements and nodes of spring asSemblage 
of Figure 2-14 

Using the local stiffness matrix Eq. (2.2.17) applied to each element, and com­
patibility condition Eq. (2~5.45), we obtain the total or global equilibrium equations as 

Flx = k,dlx - kld2x 

P = -kJdlx + kI d2x + k2d2x - k2d3x + k3d2x - k3t4x 

F3x = -kld2x + kZd3x 

F4:x = -k'jd'lx + k3t4% 

In matrix form, we express Eqs. (2.5.47) as 

(2.5.47) 

(2.5.48) 

Therefore, the global stiffness matrix is the square, symmetric matrix on the right side 
of Eq. (2.5:48). Making use of the boundary ·conditions, Eqs. (2.5.44), and then con­
sidering the second equation of Eqs. (2.5.41) or (2.5.48), we solve for du as 

d2x P . (2.5.49) 
k\ +k2 +k3 
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We could have obtained this same result by deleting rows 1, 3) and 4 in the E and 4. 
matrices and rows and columns 1, 3, and 4 in K, corresponding to zero displacement, 
as previously described in Section 2.4, and then solving for dl;,:. 

Using Eqs. (2.5.47), we now solve for the global forces as 

The forces given by Eqs. (2.5.50) can be interpreted as the global reactions in this 
example. The negative signs in front of these forces indicate that they are direCted to 
the left (opposite the x axis). 

(b) Using the direct stiffness method, we formulate the global stiffness matrix. 
First, using Eq. (2.2.18), we express each element stiffness matrix as 

d1x d2x du. d3x dl;,: dtx 

k(l} = [ kl -k1 ] k(2) [k2 -k2 ] k(3) = [ k3 -kJ ] (2.5.51) 
- -kl k\ - -k2 k2 - -k3 k3 

where the particular degrees of freedom associated with each element are listed in the 
columns above. each matrix. Using the direct stiffness method as outlined' in Section 
2A, we add terms from each element stiffness matrix into the appropriate correspond­
ing row and column in the global stiffness matrix to obtain 

dJ:r du. dlx d4:r 

K = [-~: kl ~Z~ + k3 -~2 -~3l 
- 0 -k2 k2 0.·. 

o -k3 0 k3 

"(2.5.52) 

We observe that each element stiffness matrix If has been added into the location in 
the global K corresponding to the identical degree of freedom associated with the 
element If. For instance, element 3 is associated with degrees of freedom dl;,: and d.t:r; 
hence its contributions to K are in the 2-2, 2-4, 4-2, and 4-4 locations of K" as indi-
cated in Eq. (2.5.52) by the k3 terms. . 

Having assembled the global K by the direct stiffness method, we then formulate 
the global equations in the usual manner by making use of the generalEq. (2.3.10), 
f Kd.. These equations have been previously obtained by Eq. (2.5.48) and therefore 
are not repeated. • 

Another method for handling imposed boundary conditions that aHows for 
either homogeneous (zero) or nonhomogeneous (nonzero) prescribed degrees of free­
dom is caned the penalty method. This method is easy 'to implement in a computer 
program. 

Consider the simple spring assemblage in Figure 2-16 subjected to applied 
forces Fix and F2x as shown. Assume the horizontal displacement at node I to be 
forced to be d1x = b. 
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x----o-.. 

Figure 2-16 Spring assemblage used to illustrate the penalty method 

We add another spring (often called a boundary element) with a large stiffness 
kb to the assemblage in"the direction of the nodal displacement d1x J as shown in 
Figure 2-17. This spring stiffness should have a magnitude about 106 times that of 
the largest kjj term. 

Figure 2-17 Spring assem blage with a boundary spring element added at node 1 

Now we add the force kbO in the direction of dtx and solve the problem in the usual 
manner as follows. 

The element stiffness matrlce;,s are 

(2.5.53) 

Assembling the element stiffness matrices using the direct stiffness method> we obtain 
the global stiffness matrix as 

[

kl +kb -kl 0 ] 
K -kl kl +k2 -k2 

o -k2 k2 

(2.5.54) 

Assembling the global E = K!l equations and invoking the boundary condition 
d3x = 0, we obtain 

{ FIX~kbO} = [kl_:~b kl-:~2 -~2] {~: } 
F3x 0 -k2 k2 d3:x = 0 

Solving the first and second of Eqs. (2.5.55), we obtain 

and 

d _ F2x - (k, + k2)d2x 
Ix - -kl. 

~2x = (kJ + kb)F2x + Flxkl + kbOkl 
kbkt + kbk2 + klk2 

(2.5.55) 

(2.5.56) 

(2.5.57) 
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Now as kb approaches infinity, Eq. (2.5.57) simplifies to 

d2x = F2'1; + Jkl 

kl +k2 

and Eq. (2.5.56) simplifies to 

These results match those obtained by setting dl.~ = J initially. 

(2.5.58) 

(2.5.59) 

In using the penalty method, a very large element stiffness should be parallel to a 
degree of freedom as is the case in the preceding example. If kb were inclined, or were 
placed within a structure, it would contribute to both diagonal and off-diagonal coef­
ficients in the global stiffness matrix K. This condition can lead to numerical djfficu1~ 
ties in solving the equations f == Kd.. To avoid this condition, we transform the dis­
placements at the inclined support to local ones as described in Section 3.9. 

Ii.. 2.6 Potential Energy Approach 
to Derive Spring Element Equations 

One of the aiternative methods often used to derive the element equations and the 
stiffness matrix for an element is based on the principle of minimum potential energy. 
(The use of this principle in structural mechanics is fully described in Reference [4].) 
This method has the advantage of being more general than the method given in 
Section 2.2, which involves nodal and element equilibrium equations along with the 
stress/strain law for the element. Thus the principle of minimum potential energy is 
more adaptable to the determination of element equations for complicated elements 
(those with large numbers of degrees offreedom) such as the plane stress/strain element, 
the axisymmetric stress element, the plate bending element, and the three-dimensional 
solid stress element. 

Again, we state that the principle of Virtual work (Appendix E) is applicable for 
any material behavior, whereas the principle of minimum potential energy is 
applicable only for e~astic materials. However, both principles yield the same element 
eQ.uations for linear-elastic materials, which are the only kind considered in this text 
Moreover) the principle of minimum potential energy, being included in the general 
category of variational methods (as is the principle of virtual work), leadS to other var­
iational functions (or functionals) similar to potential energy that can be formulated 
for other classes of problems, primarily of the non structural type. These other pro~ 
iems are generally classified as field problems and include, among others, torsion of a 
bar, heat transfer (Chapter 13), fl~d flow (Chapter 14), and elec1;ric potential. 

Still other classes of problems, for which a variational"fonnulation is not clearly 
definable, can be formulated by weighted residual methods. We will describe Galerkin's 
method in Section 3.12. along with collocation. least squares, and the subdomain 
weighted residual methods in Section 3.13. In Section 3.13, we will also demonstrate 
these methods by sQiving a one-dimensional bar problem using each of the four re­
sidual methods and comparing each result to an exact solution. (For more informa­
tion on weighted residual methods, also consult References r 5-7].) 
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Here we present the principle of minimum potential energy as used to derive the 
spring element equations. We will illustrate this concept by applying it to the simplest 
of elements in hopes that the reader will then be more comfortable when applying it to 
handle more complicated element types in subsequent chapters. 

The total potential energy 1T.p of a structure is expressed in terms of displace­
ments. In the finite element formulation, these will generally be nodal displacements 
such that 1Cp = 1T.p (dt,d2"" ~dll)' When 1tp is minimized with respect to these displace­
ments. equilibrium equations result. For the spring element, we will show that the 
same nodal equilibrium equations k4 = j r~ult as previously derived in Section 2.2. 

We first state the principle of minimum potential energy as fonows: 

Of all the geometrically possible shapes that a body can assume, the true 
one, corresponding to the satisfaction ot" stable equilibrium of. the body, is 
identified by a minimum"value of the total potential energy. 

To explain this principle, we must first explain the concepts of potential energy 
and ofa stationary value of a function. Wf:? will now discuss these two concepts. 

Total potential energy is defined as the sum of the internal strain energy U and the 
potential energy of the external forces 0; that is, 

'lEp = U+O (2.6.1) 

Strain energy is the capacity of internal forces (or stresses) to do work through defor­
mations (strains) in the structure; Q is the capacity of forces such as body forces, sur­
face traction forces, and applied nodal forces to do work through deformation of the 
structure. 

Recall thafa linear spring Qas force related to deformation by F = kx, where k 
is the spring constant and x is the deformation of the spring (Figure 2-18). 

The differential internal work (or strain energy) dU in the spring for a small 
change in length of the spring is the internal force multiplied by the change in dis­
placement through which the force moves, given by 

Now we express F as 

dU;= F dx 

F=kx 

(2.6.2) 

(2.6.3) 

Using Eq. (2.6.3) iIi Eq. (2.6.2), we find that the differential strain energy becomes 

dU = kx dx (2.6.4) 

F 

~--------------------------~X 

Figure 2-18 Force/deformation curve for linear spring 
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The total strain energy is then given by 

U J: kxdx 

Upon explicit integration of Eq. (2.6.5), we obtain 

U=4 kx2 

Using Eq. (2.6.3) in Eq. (2.6.6)) we have 

U = Hkx)x = !Fx 

(2.6.5) 

(2.6.6) 

(2.6.7) 

Equation (2.6.7) indicates that the strain energy is the area under the force/deformation 
curve. 

The potential energy of the external force, being opposite in sign from the 
external work expression because the potential energy of the, external force is lost 
when the work is done by the external force, is given by 

O=-Fx (2.6.8) 

Therefore, substituting Eqs. (2.6.6) and (2.6.8) into (2.6.1), yields the total potential 
energy as 

1lp = !kx2 Fx (2.6.9) 

The conCept of a stationary value of a function G (used in the definition of the 
principle of minimum potential energy) is shown in Figure 2-19. Here G is expressed 
as a function of the variable x. The stationary value can be a maximum, a minimum, 

. or a neutral point of G(x). To find a value of x yielding a stationary value of G(x), we 
use differential calculus to differentiate G with respect to oX and set the expression 
equal to zero, as fonows: 

dG =0 
dx 

(2.6.10) 

An analogous process will subsequently be used to replace G with '1Cp and x with 
discrete values (nodal displacements) di• With an understanding of variational calculus 
(see, Reference [8]), we could use the first variation of ~p (denoted by t51lJh where t5 

denotes arbitrary change or variation) to minimize '1Cp • However, we will avoid the 
details of variational calculus and show that we can really use the familiar differential 
calculus to perform the minimization of 1t.p- To apply the principle of minimum 

G 

Maximum 

Neutral 

Minimum 

~-------------------------------.. z 

Figure 2-19 Stationary values of a function 
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t Adm;";bl'~; __ function. • + 8Il 

~_-,u2 

ActUal displacement function. Ii 

L 

(a) 

Inadmissible slope discontinuity 

Inadrnissjbte-does not satisfy 
right end boundary condition 

L 

2 

Figure 2-20 (a) Actual and admissible displacement functions and (b) inadmissible 
displacement functions 

potential energy-that is, ta minimize ttp-we take the varia,tion of 1!p, which is a 
function of nodal displacements di defined in general as 

Ottp attp ~ Onp 
Ottp = ad adr + ad"Qd2 + ... + ad adn 

I 2 n . 
{2.6.l1} 

The principle states that equilibrium exists when the dt define a structure state such 
that Mtp = 0 (change in potential energy = 0) for arbitrary admissible variations in 
displacement Mt from the equilibrium state. An admissible variation is one in which 
the displacement field still satisfies the boundary conditions and interelement continu­
ity. Figure 2-20(a) shows the hypothetical actual axial displacement and an admissible 
one for a spring with specified boundary displacements "1 and U2. Figure 2-20(b) 
shows inadmissible functions due to slope discontinuity between endpoints 1 and 2 
and due to failure to satisfy the right end boundary condition ofu(L) = ti2- Here au 
represents the variation in U. In the general finite element Cannulation, au would be 
replaced by ad;. This implies that any of the odj might be nonzero. Hence, to satisfy 
Mtp = 0: all coefficients associated with the "d~ must be zero independently. Thus, 

~ a~ 
2 = 0 (i = 1,2,3,. .. ,n) or !1{d} = 0 (2.6.12) 
adj. U 
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where n equations must be solved for the n values of di that define the static equili­
brium state of the structure. Equation (2.6.12) shows that for OUf purposes throughout 
this text) we can interpret the variation of "'p as a compact notation equivalent to dif­
ferentiation of np with respect to the unknown nodal displacements for which np is 
expressed. For linear-elastic materials in 'equilibrium, the fact that 1lp is a minimum 
is shown, for instance, in Reference (4}. 

Before .discussing the fonnulation of the spring element equations, we now 
illustrate the concept of the principle of minimum potential energy by analyzing a 
sin'gle--degree-of-freedom spring subjected to an applied force, as given in Example '2.4. 
In this example, we will show that the eqUilibrium position of the spring corresponds 
to the minimum potential energy. 

Exampie2.4 

For the linear-elastic spring subjected to a force of 1000 Ib shown in Figure 2-21, 
evaluate the potential energy for various displacement values an4 show that the mini­
mum potential energy also corresponds to the equilibrium position of the spring. 

F:::: 1000 Ib 

J 
F 

Ie = 500 Ib/m. 
J: 

~-----_.r 

Figure 2-21 Spring subjected to force; load/displacement curve 

We evaluate the total potential energy as 

1lp = U +0 

where U = ~ (kx)x and n = -Fx 

We now illustrate the minimization of 7r.p through standard mathematics. Taking 
the variation of 1lp with respect to x, Of, equivalently, taking the derivative of np with 
respect to x (as np is a function of only one displ~cement x) ... as in Eqs. (2.6.11) and 
(2.6.12), we have 

. onp 
onp = ax Ox= 0 

or, because Ox is arbitrary and might not be zero, 

onp=o 
ax 
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Using our previous expression for 1r.P' we obtain 

or 

a'lCp . 
- = 500x-lOoo = 0 ox 

x= 2.00 in. 

This value for x is then back-substituted into 1!p to yield 

1tp = 250(2)2 - 1000(2) = -1000 lb-in. 

which corresponds to the minimum potential energy obtained in Table 2-·1 by the fol­
lowing searching technique. Here U = ! (kx)x is the strain energy or the area under 
the load/displacement curve shown in Figure 2-21, and 0. = -Fx is the potential 
energy of load F. F Of. the given values of F and k, we then have 

'lCp = t(500)X2 - 1000x = 250x2 - looOx 

We now search for the minimmn value of 1tp for various values of spring deformation 
x. The results are shown in Table 2-1. A plot of 1r.p versus x is shown in Figure 2-22, 
where we observe that 1!p has a minimum value at x = 2.00 in. This deformed position 
also corresponds to the equilibrium position because (onp/ox) = 500(2) - 1000 = O • 

• 
We now derive the spring element equations and stiffness matrix using the prin- . 

cipJe of minimum potential energy. Consider the linear spring subjected to nodal 
forces shown in Figure 2-23. Using Eq, (2.6.9) reveals that the total ~tential energy is 

(2.6.13) 

where dlx - dlx is the deformation of the spring in Eq. (2.6.9). The first tenn on the 
right in Eq. (2.6.13) is the strain energy in the spnng. Simplifying Eq. (2.6.13), we 
obtain 

TabJe 2-1 Total potential energy for 
various spring deformations 

Defonnation 
x, in. 

-4.00 
-3.00 
-2.00 
-1.00 

0.00 
1.00 
2.00 
3.00 
4.00 
5.00 

Total Potential Energy 
1!pt Ib-in. 

8000 
5250 
3000 
1250 

o 
-750 

-1000 
-750 

o 
1250 

(2.6.14) 
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8000 

6000 

4000 

2000 

-_....J4--'--_ ..... 2---J,~1r-'--..L.--'---#--.L--- .x. in. 

Figure 2-22 Variation of potential energy with spring deformation 

k 
t, 2 

L 

Figure 2-23 linear spring subjected to nodal forces 

The minimization 6f TCp with respect to each nodal displacement requires taking 
partial derivatives of np with respect to each nodal dispJacement such that 

onp l' A A ~ 
--- = '2 k (-2d2x +2db) -/rx = 0 
adb: 

Onp 1 A ~ A 

ada = '2k(2d2x - 2dbJ - f2x = 0 

Simplifying Eqs. (2.6.l5), we have 

k{ -d2x + dtx) = iix 
k(d2x - dlx ) = fa 

In matrix fonn, we express Eq. (2.6.16) as 

[ k -kJ{~lx} = {~x} 
,-k k d2x flx 

(2.6.15) 

(2.6.16) 

(2.6.17) 

Because {i} = [k]{d}, we have the stiffness matrix for the spring element obtained 
from Eq. (2.6.17): . 

[kI = [ k -kj 
-k k 

(2.6.18) 
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As expected, Eq. (2.6.18) is identical to the stiffness matrix obtained in Section 2.2, 
Eq. (2.2.18). 

We considered the equilibrium of a single spring element by minimizing the total. 
potential energy with respect to the nodal displacements (see Example 2.4). We also 
developed the finite element spring element equations by minimizing the total potential 
energy with respect to the nodal displacements. We now show that the total potential 
energy of an entire structure (here an assemblage of spring elements) can be minimized 
with respect to each nodal degree of freedom and that this minimization .esuIts in the 
same finite element equations used for the solution as those obtained by the direct 
stiffness method. 

Example 2.S 

Obtain the total potential energy of the spring assemblage (Figure 2-24) for Example 
2.1 and find its minimum value. The procedure of assembling element equations can 
then be seen to be obtained from the minimization of the total potential energy. 

Using Eq. (2.6.10) for each 'element of the spring assemblage) we find that the 
total potential energy is given by 

~ (e) 1 k (.7 d)2 r(1)d r(l)d 
1Cp = L..-; 1Cp = i 1 ulx Ix - Jlx Ix - J)x 3x 

e=l 
1 . 2 (2) (2) 

+:2k2(t4x - dJx) - f3x d3x - h.x d4x 

1 . . 2 (3) (3) 
+ 2k3{ti2x - tL.x) - f 4x d4x f2x d2x 

Upon minimizing tcp with respect to each noda1,Qispla~ement) we obtain 

G1Cp (I) 
-;--d = -kld3:x + k1d1x - Irx ,=-...9 
U Ix ' 

G1C
p = k3d'b; k3t:4x - f~} = 0 

Cdb; 

01Cp (I) (2) 
od

3x 
= kl d3x - kl db. - k2d4x + k2d3x - Isx - Isx = 0 

G1Cp Al) A3} 
Dt4x = k2t4x - k2dJx - k3d'b; + k3d4x - 14'x - 14'>: = 0, 

(2.6.19) 

(2.6.20) 
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In matrix fOIm, Eqs. (2.6.20) become 

Using nodal force equi~brium similar to Eqs. (2.3.4)-{2.3.6), we have 

R;) = FIx 

IE) Ph 

h~) + h~) = F3x 

r(2) + rl3) _ r:" 
J4x 14x - .c4,r 

(2.6.21) 

(2.6.22) 

Using Eqs. (2.6.22) in (2.6.21) and substituting numerical values for kl,k2> and k3, we 
obtain . 

[ 

1000'· 0 -1000 0 lldl:~l o 3000 0 - 3000 d2x 

-1000 0 3000 -2000 d3x 

o - 3000 - 2000 5000 t4x 

(2.6.23) 

Equation (2.6.23) is identical to Eq. (2.S.l8), which was obtained through the direct 
stiffness method. The assembled Eqs", (2.6.23) are then seen to be obtained from the 
minimization of the total potential energy. When we apply the boundary conditions 
and substitute Flx = 0 and F4x = 5000 Ib into Eq. (2.6.23). the solution is identical 
to that of Example 2.1. • 
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A Problems 

2.1 a. Obtain the global stiffness matrix IS. of the assemblage shown in Figure P2-1 by 
superimposing the stiffness matrices of the individual springs. Here kl' k2• and ks 
are the stiffnesses oithe springs as shown. 

b. If nodes 1 and 2 are fixed and a force P acts on node 4 in the positive x direction, 
find an expression for the displacements of nodes 3 and 4. 

c. Determine the reaction forces at nodes 1 and 2. 
(Hint: Do this problem by writing the nodal equilibrium equations and then making 
use of the force/displacement relationships for each element as done in the first part of 
Section 2.4. Then solve the problem by the direct stiffness method.) 

,-<y---..... x 

Figure P2-1 

2.2 For the spring assemblage shown in Figure P2-2, detennine the displacement at node 
2 and the forces in each spring element. Also detennine the force F3: Given: Node 3 
displaces an amount g = "l in. in the positive x direction because of the force F3 and 
kl = k2 500 lbfm. 

Figure P2-2 

2.3 a. For the spring assemblage shown in Figure P2-3, obtain the global stiffness matrix 
by direct superposition. 

b. If nodes 1 and 5 are fixed and a force P is applied at node 3, determine the nodal 
displacements. 

c. Determine the reactions at the fixed nodes 1 and 5. 

Figure P2-3 
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2.4 Solve Problem 2.3 with P = 0 (no force applied at node 3) and with node 5 given a 
fixed, known displacement of 0 as shown in Figure P2-4. 

Figure P2-4 

2.5 For the spring assemblage shown in Figure P2-5, obtain the global stiffness matrix 
by the direct stiffness method. Let k{l) = 1 kip/in., k(2) = 2 kip/in., k(3) 3 kip/in., 
k(4) = 4 kip/in., and k(5) = 5 kip/in. 

3-X 

Figure P 2-5 

2.6 For the spring assemblage in figure P2-5~ apply a concentrated force of 2 kips at 
node 2 in the positive x direction and determine the displacements at nodes 2 and 4. 

2.7 Instead of assuming a tension element as in Figure P2-3, now assume a compression 
element. That is, apply compressive forces to the spring element and derive the stiff­
ness matrix. 

2.8-2:16 For the spring assemblages shown in Figures P2-8-P2-16, determine the noda1 dis­
placements; the forces in each element, and the reactions .. Use the direct stiffness 
method for all problems. 

~ k;.S~I;:i: 1c:5~I~in~ 
~ v v v-r- v V v-r---
Figure P 2-8 

k= 1000 Ib/in. 

4 

Figure P2-9 

~~;;Ic =500 Ib/in: 

Figure P2-10 

4000 Ib 



~s~ 
8 = 20mm 

Figure P2-11 

Figure P2-12 

~
' 20kN/m 20kN/m 5kN 20kN/m ~OkN/m 

1 '2~ S 
'/ 

Figure P2-13 

Figure P2-14 

, 
/. I 500kN/m 1 kN 

\,..f---oQ--+--

2 500 kN/m 

\,..I----<:>--+--
lkN 

Figure P2-1S 

k = 100 Ib/in. 

Figure P2-16 
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2.17 Use the principle of minimum potential energy developed in Section 2.6 to solve the 
spring problems shown in Figure P2-17. That is, plot the total potential energy for 
variations,in the displacement afthe free end of-the spring to determine the minimwn 
potential energy~ Observe that the displacement that yields the minimum potential 
energy also yields the stable equilibrium position. 
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1000 Ib 

Ie. := 2000 Ib/in. k =: 500 Ib/i11. 
1000 Ib 

(a) (b) 

k == 2000 N/mm Jc = 4OON/mm 

400 kg 100 kg 

(c) (d) 

Figure P2-17 

2.18 Reverse the direction of the load in Example 2.4 and recalculate the total potential 
energy. Then use this value to obtain the eqUllibrilll"U value of displacement. 

2.19 The nonlinear spring in Figure P2-19 has the force/deformation relationship f = kJ2
• 

Express the total potential energy of the spring~ and use this potential energy to obtain 
the equilibrium value of displacement. 

500 Ib 

Figure P2-19 

2.20-2.21 Solve Problems 2.10 and 2.15 by the pOtential energy approach (see Example'2.S). 



Introduction 

Having set forth the foundation on which the direct stiffness method is based, we will 
now derive the stiffness matrix for a linear-elastic bar (or truss) eiement using the gen­
eral steps outlined in Chapter 1. We will include the introduction of both a local COOf­

dinate system, chosen with the element in mind" and a global or reference coordinate 
system, chosen to be convenient (for numerical purposes) With r~spect to the overall 
structure. We win also discuss the transformation of a vector from the local coordi­
nate system to the global coordinate system, using the concept of transformation ma­
trices to express the stiffness matrix of an arbitrarily oriented bar element in terms of 
the global system. We will solve three example plane truss problems (see Figure 3-1 
for a typical railroad trestle plane truss) to illustrate the procedure of establishing the 
total stiffness matrix and equations for solution of a structure. 

Next we extend the stiffness method to include space trusses. We will develop 
the transformation matrix: in three-dimensional space and analyze two space trusses. 
Then we describe the concept of symmetry and its use to reduce the size of a problem 
and facilitate its solution. We will use an example truss problem to illustrate the con­
cept and then describe how to handle inclined, or skewed, supports. 

We will then use the. principle of minimum potential energy and apply it to 
rederive the bar element equations. We then compare a finite element solution to an 
exact solution for a bar subjected to a linear varying distributed load. We will intro­
duce Galerkin's residual method and then apply it to derive the bar element equations. 
Finally, we will introduce other common residual methods-collocation, subdomain, 
and least squares to merely expose you. to these other methods. We illustrate' these 
methods by solving a problem of a bar subjected to a linear varying load. 
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Figure 3-1 A typical railroad trestle plane truss. (By Daryl L Logan) 

.. 3.1 Derivation of the Stiffness Matrix 
for a Bar Element in local Coordinates 

We will now consider the derivation of the stiffness matrix for the linear-e1astic, constant 
cross--sec'tional area (prismatic) bar element shown in Figure 3-2. The derivation here 
will be directly applicable to the -solution of pin-connected trusses. The bar is subjected 
to tensile forces T directed along the local axis of the bar and applied at nodes 1 and 2. 

Y t = ex (forceJlength) 

T 

T~~ ______ ~ __________________ -.x 

Figure 3-2 Bar subjected to tensile forces Ti positive nodal displacements and forces 
are all in the local x direction 
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Here we have introduced two coordinate ~stems: a-local one (i,j) with i directed along 
the length of the bar and a global one (x,y) assumed here to be best suited with respect 
to the total structure. Proper selection of global coordinate systems is best demonstrated 
through solution of two- and three-<limensional truss problems as illustrated in Sections 
3.6 and 3.7. Both systems will be used extensively throughout this text. 

The bar element is assumed to have constant cross-sectional area A, modulus of 
elasticity E, and initial Jength L. The nodal degrees of freedom are local axial displace­
ments (longitudinal displacements directed along the length of the bar) represented by 
dlx and d2;r at the ends of the element as shown in Figure 3-2. 

From Hooke's law [Eq. (a)} and the strain/displacement relationship [Eq. (b) or 
Eq. (1.4.1 )}, we write 

(a) 

(b) 

From force equilibrium, we have 

AO";r = T = Constant (c) 

for a bar with loads applied only at the ends. (We will consider distributed loading in 
Section 3.10.) Using Eq. (b) in Eq. (a) and then Eq. (a) in Eq. (c) and differentiating 
with respect to oX, we obtain the differential equation governing the linear-elastic bar 
behavior as 

d ( d(1) 
di AE di =0 (d) 

where u is the axial displacement function along the element in the x direction and 
A and E are written as though they were functions of x in the general form of the dif­
ferential equation, even though A and E will be assumed constant over the wh~Ie 
length of the bar in our derivations to follow. 

The following assumptions are used in deriving the bar element stiffness matrix: 

1. The bar cannotwStain shear force or bending moment, that is, 
hy = O,hy = 0, m1 = 0 and m2 = O. 

2. Any effect of transverse displacement is ignored. 
3. Hooke's law applies; that is, axial streSs O"x is related to axial strain e~ 

by O"x = Eex ' 

4. No intermediate applied Ioa~. 

The steps previously outlineq in Chapter 1 are now used to derive the stiff­
ness matrix for the bar element and then to illustrate a complete solution for a bar 
assemblage. ' 

Step 1 Select the Element Type 

R~resent the bar by labeling nodes at each end and in general by labeling the element 
number (Figure 3-2). 
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Step 2 Select a Displacement Function 

Assume a linear displacement variation along the x axis of the bar because a linear 
function with specified endpoints has a unique path. These specified endpoints are 
the nodal values (itx and dlx. (Further discussion regarding the choice of displacement 
functions is provided in -Section 3.2 and References [1-3].) Then 

(3.1.1 ) 

with the total number of coefficients ai always equal to the total number of degrees of 
freedom associated with the element. Here the total number of degrees of freedom is 
two-axial displacements at each of the two nodes, of the element. Using the same 
procedure as in Section 2.2 for the spring element, we express Eq. (3.Ll) as 

. _ (d2x -dl;r:). +d u- --L- x l.x (3.1.2) 

The reason we convert the -displacement function from the fonn of Eq. (3.l.1) to Eq. 
(3.1.2) is that it allows us to express the strain in terms of the n09,al displacements 
using ,the strainldispla:cement relationship given by Eq. (3.1.5) and to then relate the 
nodal forces to the nodal displacements in step 4. '-

In matrix fonn, Eq. (3.1.2) becomes 

u = IN, N21{~:} (3.1.3) 
with shape functions given by 

Nt = 1 (3.1.4) 

These shape functions are identica1 to tQose obtained for the spring element, in Section 
2.2. The behavior of and some properties of these shape functions were described in 
Section 2.2.' The linear displacement function ii (Eq. (3.1.2)), plotted over the length 
of the bar element, is shown in Figure 3-3. The bar is shown with·the same orienta-
tion as in Figure 3-2. . 

y 

~------~----------------~X 

Figure 3-3 Displacement Ii plotted over the length of the element 
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Step 3 Define the Strain/ Displacement and Stress/ Strain 
Relationships 

The strain/displacement relationship is 

du d2x -d1x 
ex = dx=--L- (3.1.5) 

where Eqs. (3.1.3) and (3.1.4) have been used to obtain Eq. (3.tS), and the stress! 
strain relationship is 

(3.1.6) 

Step 4 Derive the Element Stiffness Matrix and EquatiQns 

The element stiffness matrix is derived as follows. From elementary mechanics, we 
have 

T=Ao-x 

Now, using Eqs. (3.1.5) and (3.1.6) in Eq. (3.1.7), we obtain 

T = AE e" ~ ,1,.) 
Also, by the nodal force sign convention of Figure 3-2, 

Ax=-T 
When we substitute Eq. (3.1.8), Eq. (3.1.9) becomes 

- AE· ~ 
fix = y(db: - d2x) 

Similarly, 

Of, by Eq. (3.1.8), Eq. (3.1.11) becomes 

h -AE ~ .. 
f2x = -(d2x - db:) L -

Expressing Eqs. (3.1.10) and (3.1.12) together in matrix fonn, we have , 
" 

{Jj=Aff[_: -:]U~} 
Now, becausej = ki, we have, from Eq. (3.1.13). 

h = AE [ 1 -1 J 
k L -1 1_ 

(3.1.7) 

(3.1.8) 

(3.1.9) 

(3.1.10) 

(3.l:il) 

(3.1.12) 

(3.1.13) 
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Equation (3.1.14) represents the stiffness matrix for a bar element in local coordinates. 
In Eq. (3.1.14), AE/L for a bar element is analogous to the spring constant k for a 
spring element. 

Step 5 Assemble Element Equations to Obtain 
Global or Total Equations 

Assemble the global stiffness and force matrices-and global equations using the direct 
stiffness method described in Chapter 2 (see Section 3.6 for an example truss). This 
step applies for structures composed of more than one element such that (again) 

N N 

K = [K} = L g(e) and E {F} = LIe) (3.1.15) 
e=1 ' e=1 

where now all local element stiffness matrices k must be transformed to global element 
stiffness matrices g (unless the local axes coincide with the global axes) before the 
direct stiffness method is applied as indicated by Eq. (3.1.15). (This concept of coordi­
nate and stiffness matrix·transformations is described in Sections 3.3 and 3.4.) 

Step 6 Solve for the Nodal Displacements 

Detenriine the displacements by imposing boundary conditions and simultaneously 
solving a system of equations, E = K!!.. 

Step 7 Solve for the Element Forces 

Finally, detennine the strains and stresses in each element by back-substitution of the 
displacements into equations similar to Eqs. (3.1.5) and (3.l.6). 

We will now illustrate a solution for a one-dimensional bar problem. 

Example 3.1 

For the three-bar assembJage shown in Figure 3-4; detennine (a) the global stiffness 
matrix, (b) the displacements of nodes 2 and 3, and (c) the reaCtions at nodes 1 and 
4. A force of 3000 Ib is applied in the x direction at node 2. The length of ~ch element 
is 30 in. Let E = 30 X 106 psi and A = 1 in2 for elements 1 and 2, and let 
E"= 15 x 106 psi and A 2 in2 for element 3. Nodes 1 and 4- are fixed. 

3000 Ib 

CD 2 j (j) 3 CD 4 
~--~--~--~~~--~---Q~----.x 

1--30 in.--t-- 30 in.-+-30 in.­

~--------....;- 90 in. ------Iv. 

Figure 3-4 Three-bar _assemblage 
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(a) Using Eq. (3.1.14), we find that the element stiffness matrices are 

2(1) 

2 3(2) 

k(l) = k(2) = (1)(30 x 10
6

) [ 1 -1] = 106 [ 1 -1] Ib 
- - 30 -1 1 -I 1 in. (3.1.16) 

3 4 

k{3} = (2)(1~; 10
6

) [_~ -~] = 106 [_~ -~] ~. 

where. again, the numbers above the matrices in Eqs. (3.1.16) indicate the displace. 
ments associated with each matrix. Assembling the element stiffness matrices by the 
direct stiffness method, we obtain the global stiffness matrix'as 

dl:x db: d3x d4:c 

K = 106 
[ -: 

-1 0 

~l ~b 1 + 1 -1 
(3.1.17) 

- 0 -1 1 + 1 -1 m. 
0 0 -1 1 

(b) Equation (3.1.17) relates global nodal force$ to global nodal displacements as 
follows: 

(3.1.18) 

Invoking the boundary conditions, we have 

db: =0 (3.1.19) 

Using the boundary conditions) substituting known applied global forces into Eq. 
(3.1.18), and partitioning equations 1 and 4 ofEq. (3.1.18), we solve equations 2 and 
3 ofEq. (3.1.18) to obtain 

{ 300()} = 106,[ 2 -1] {db:} 
o -1 2. d3:x. 

(3.1.20) 

Solving Eq. (3.1.20) simultaneously for the diSplacements yields 

db; = 0.002 in.' d3x = O.Otll in. , (3.1.21) 
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(c) Back-substituting Eqs. (3.1.19) and (3.1.21) into Eq. (3.1.18), we obtain the global 
no~ forces, which include the reactions at nodes 1 and 4, as follows: 

FIx 106 (d1x d2x) = 106(0 - 0.002) = -2000 lb 

F2x 106 ( -dtx + 2d2x - d3x) = 106[0 + 2(0.002) - 0.001].= 30001b 

F3x = 106( -d2x + 2d3x - t4;1:) = 106[-0.002 + 2(0.001) - 0] 0 
(3.1.22) 

F4x = l06( -d3x + d4x) = 106(-0.001 + 0) = -1000 Ib 

The results of Eqs. (3.1.22) show that the swn of the reactions Fix and F4x is equal in 
magnitude but opposite in direction to the applied nodal force of 3000 Ib at node 2. 
Equilibrium of the bar assemblage is thus verified. Furthermore, Eqs. (3.1.22) show 
that F'J,x = 3000 lb and F3x = 0 are merely the applied nodal forces at nodes 2 and 3, 
respectively, which further enhances the validity· of our so1ution. • 

... 3.2 Selectipg Approximation Functions 
for Displact;ments 

Consider the following guidelines) as they relate to the one-dimensional bar element, 
when selecting a displacement function. (Further discussion regarding selection of 
displacement functions and other kinds of approximation functions (such as 
temperature functions) will be provided in Chapter 4 for the beam element, in Chapter 6 
for the constant-strain triangular element, in Chapter 8 for the linear-strain trian­
gular element, in Chapter 9 for the' axisymmetric element, in Chapter 10 for the 
three-noded bar e1ement and the rectangular plane element, in Chapter 11 for the 
three-dimensional 'stress element, in Chapter 12 for the plate bending element, and 
in Chapter 13 for the heat transfer problem. More information is also provided in 
References {1-31. 

1. Common approximation functions are usually polynomials such as the 
simplest one that gives the linear variation of disp1acement given by 
Eq. (3.l.i) or equiva1ently by Eq. (3.1.3), where the function is 
expressed in terms of the shape functions. 

2. The approximation function should be continuous within the bar 
element. The simpJe linear function for it of Eq. (3.1.1) certainly is 
continuous within the element. Therefore, the linear function yields 
continuous values of u Within the element and prevents openings, 
overlaps) and jumps because of the continuous and smooth variation 
in'u (Figure 3.,.-5). 

3. The approximating function should provide interelement continuity 
for all degrees of freedom a~ each , node for discrete line elements and 
along common boundary lines and surfaces for two- and three­
dimensional elements. For the bar element, we must ensure that nodes 



3.2 Selecting Approximation Functions for Displacements .. 73 

J~ 
J~)~ ____ ~ __ ~~ ___ GD=2~ __ ~ __ ~i 

1 L 

Figure 3-5 lnterelement continuity of a two-bar structure 

common to two or more elements remain common to these elements 
upon deformation and thus prevent overlaps or voids between 
elemep.ts. For example, consider the two-bar structure shown in 
Figure 3-5. For the two-bar structure) the linear function for 14 [Eq. 
(3.1.2)] within each element will ensure tha~ elements 1 and 2 remain 
connected; the displacement at node 2 for element 1 will equal 
the displacement at the "same node 2 for element 2; that is, J~ d~. 
Tnis rule was also illustrated by Eq. (2.3.3). The linear function is then 
called a conforming, or compatible,,!unction for the bar element 
because it ensures the satisfaction both of continuity between adjacent­
elements and of continuity within the element. 

In general) the symbol em is used to describe the continuity of a 
piecewise field (such as axial displacement), where the superscript m 
indicates the degree of derivative that is interelement continuous. A 
field is then CO continuous if the function itself is interelement 
continuous. For instance, for the field variable being the axial 
displacement illustrated in Figure 3-5, the displacement is continuous 
across the common node 2. Hence the displacement field is said to be 
CO continuous. Bar elements, plane elements (see Chapter 7), and 
solid elements (Chapter 11) are CO elements in that they enforce 
displacement continuity across the common boundarie,~. 

If the function has both its field variable and its first derivative 
continuous <!cross the common boundary, then the field variable is 
said to be C l continuous. We will later see that the beam and plate 
elements ~re C1 .;:ontinuous: That is, they enforce both displacement 
and slope continuity across common boundaries. 

4. The approximation function should allow for rigid-body displacement 
, and for a state of constant strain within the element. The one­

dimensional displacement function [Eq. (3.1.1)} satisfies these criteria 
because the al tenD allows for rigid-body motion (constant motion of 
the body without straining) and the a2i term allows for constant 
strain because Ex = du/di 02 is a constant. (This state of constant 
strain in the element can, in fact, occur if elements ate chosen small 
enough.) The simple polynomial Eq. (3.1.1) satisfying this fourth 
guideline is then said to "be complete for the bar element. 
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;:: Exact solution 
C> 

~ t---------'--------:~ Number of elements 
<tI 

"a 

5 
Convergence to 
exact solution 

Figure 3-6 Convergence to the exact solution for displacement as the number 
of elements of a finite element solution is increased 

This idea of completeness also means in general that the lower­
order term cannot be omitted in favor of the higher-order term. For 
the simple linear function, this means al cannot be omitted while 
keeping a2x. Completeness of a function is a necessary condition for 
convergence to the exact answer, for instance, for displacements and 
stresses (Figure 3-6) (see Reference (31). Figure 3-6 illustrates 
monotonic convergence toward an exact solution for displacement as 

. the number of elements in a finite element solution is increased. 
Monotonic convergence is then the process in which successive 
approximation solutions (finite element solutions) approach the exact 
solution consistently without changing sign or direction. 

The idea that the interpolation (approximation) function must allow for a rigid­
body displacement means that the function must be capable of yielding a constant 
value (say, at), because such a value can, in fact, occur. Therefore, we must consider 
the case 

(3.2.1 ) 

For it = al requires nodal displacements {fIx = (he to obtain a rigid~b~dy displace­
ment. Therefore 

Using Eq. (3.2.2) in Eq. (3.1.3), we have 

u = N1d1x + N2d2x = (NI + N2}al 

From Eqs. (3.2.1) and (3.2.3), we then have 

u = ai = (NJ +N2)al 

Therefore, by Eq. (3.2.4), we obtain 

(3.2.2) 

(3.2.3) 

(3.2.4) 

(3.2.5) 

Thus Eq. (3.2.5) shows that the displacement interpolation functions must add to 
unity at every point within the element so that u will yield a constant value when a 
rigid-body displacement occurs. 
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A 3.3 Transformation of Vectors 
in Two Dimensions 

In many problems it is c<;>nvenient to introduce both local and global (or referencsJ( 
coordinates. Local coordinates are always chosen to represent the individual elem?nt 
conveniently. Global coordinates are chosen to be convenient for the whole structure. 

Given the nodal displacement of an element, represented by the vector din 
Figure 3-7, we want to relate the components of this vector in one coordinate system 
to components in another. For general purposes, we "Yill assume in this section that d 
is not coincident with either the local or the global axis. In this case, we want to re­
late global displacement components to local ones. In so doing, we will develop a 
transformation matrix that will subsequently be used to develop the global stiffness 
matrix for a bar element. We define the angle () to be positive when measured coun· 
terclockwise from x to x. We can express vector displacement d in both global and 
local coordinates by 

(3.3.1 ) 

where i and j are unit vectors in the x and y global directions and i and j are unit vec­
tors in the x and y local directions. We will now relate i and j to i and j through use of 
Figure 3-8. 

y 

d 

i 

16:::.. __ ---I __ .L------_ :r 

Figure 3-7 General displacement vector d 

y 

i 

~---~----~------x 

Figure 3-8 Relationship between local and global unit vectors 
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Using Figure 3-8 and vector addition, we obtain 

a+b=i 

Also, from the law of cosines, 

la! = Iii cos 0 

and because i is, by definition, a unit vector, its magnitude is given by 

Therefore, we obtain 

Similarly, 

IiI 
la! = 1 cosO 

Ibl = t sinO 

Now a is in the i direction and b is in the -j direction. Therefore, 

(3.3.2) 

(3.3.3) 

(3.3.4) 

(3.3.5) 

(3.3.6) 

a = lali = (cosB)i (3.3.7) 

and b = Ibl( -j) = (sinO)(-j) (3.3.8) 

Using Eqs. (3.3.7) and (3.3.8) in Eq. (3.3.2) yields 

i == cosoi sin oj 

Similarly, from Figure 3-8, we obtain 

a' +b' =j 

a' = cose) 

bl = sinBi 

Using Eqs. (3.3.11) and (3.3.12) in Eq. (3.3.l0), we h~ve 

j = sinBl +.cose) 

Now, using Eqs. (3.3.9) and (3.3.13) in Eq. (3.3.1), we have 

dx( cos fJi sin e) + dye sin ei + cos oj) = dxi + dyJ 
Combining like coefficients ofi and j in Eq. (3.3.14), we obtain 

dx cos (j + dy sin 8 = dx 

and -dx sin 8 + dy cos (j = dy 

In matrix fonn, Eqs. (3.3.15) are written as 

U;} = [-~ ~]{~l 
where C = cosO and S = sinO, 

(3.3.9) 

(3.3.10) 

(3.3.11) 

(3.3.12) 

(3.3.13) 

(3.3.14) 

(3.3.15) 

(3.3.16) 

Equation (3.3.i6) relates the global displacement 4 to the locatdisplacement d. 
The matrix 

(3.3.17) 
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y 

8 

"'------'---'-----x 
d~ 

Figure 3-9 Relationship between local and global displacements 

is called the transformation (or rotation) matTix. For an additional description of this 
matrix. see Appendix A. It will be used il1 Section 3.4 to develop the global stiffness 
matrix for an arbitrarily oriented bar element and to transfonn global nodal displace~ 
ments and forces to local ones. 

Now, for the case of dy = 0, we have, from Eq. (3.3.1), 

dxi + dyj = dxi (3.3.18) 

Figure 3-9 shows ax expressed in terms 'of global x and y components. Using trigo-
nometry and Figure 3-9, we then obtain the magnitude of dx as . 

dx = Cdx + Sdy (3.3.19) 

Equation (3.3.19) is equivalent to'equation 1 ofEg. (3.3.16). 

Example 3.2 

The global nodal displacements at node 2 have been determined to be ch.x = 0.1 in. 
and d2y = 0.2 in. for the bar element shown in F.igure 3-10. Determine the local x dig.. 
placement at node 2. . 

y 

I=igure 3-10 Bar element 

Using Eq. (3.3.19), we obtain 

d2x = (cos 60°) (0.1) + (sin 60°)(0.2) = 0.223 in. • 
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:1: 3.4 Global Stiffness Matrix 

We will now use the transfonnation relationship Eq. (3.3.16) to obtain the global stiff­
ness matrix for a bar element. We need the global stiffness matrix of each element to 
assemble the total global stiffness matrix of the structure. We have shown in Eq. 
(3.1.13) that for a bar element in the local coordinate system, 

{~x } = AE [_ 1 -1 ] { ~IX } 
f2x L I 1 d2x 

or i =kJ. 

(3.4.1) 

(3.4.2) 

We now want to relate the global element nodal forces f to the global nodal displace­
ments 4 for a bar element arbitrarily oriented with resPect to the global axes as was 
shown in Figure 3-2. This relationship will yield the global stiffness matrix If of the el­
ement. That is, we want to find a matrix If such that 

[
fix I (dlX I 7~ If~: 
hy d2y 

(3.43) 

or, in simplified matrix form, Eq. (3.4.3) becomes 

[= Ifrl (3.4.4) 

We observe from Eq, (3.4.3) that a total of four components of force and four of dis­
placement arise when global coordinates are used. However, a total of two compo­
nents ,of force and two of displacement appear for the local-coordinate representation 
of a spring or a bar, as shown by Eq. (3.4.1). By using relationships between local 
and global force components and between local and global displacement components, 
we win be able to obtain the gJobaLstiffness matrix. We know from transformation re­
lationship Eq. (3.3.15) that 

d1x = db cos B + d1y sin B 

d2x = d2x cos {) + d2}' sin () 

In matrix form, Eqs. (3.4.5) can be written as 

(

d1Xl 
{ 
~b } = [C S 0 0] , dl)l 

d2x 0 0 C S d2x 
d2y 

or as 

where T* = [C S 0 sO] 
- 0 0 C 

(3.4.5) 

(3.4.6) 

(3.4.7) 

(3.4.8) 
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Similarly, because forces transfonn in the same manner as displacements, we have 

Using Eq. (3.4.8), we can write Eq. (3.4.9) as 

j I·[ 

Now, substituting Eq. (3.4.7) into Eq. (3.4.2), we obtain 

J=!I*rJ. 

and using Eq. (3.4.10) in Eq. (3.4.1 1) yields 

I-[ = !I*4 

(3.4.9) 

(3.4.10) 

(3.4.11} 

(3.4.12) 

However, to write the final expression relating global nodal forces to global nodal dis­
placements for an element, we must invert I* in Eq. (3.4..12). This is not ~~ately 
possible because I* is not a-square matrix. Therefore, we must expand 4,/, and If 
to? the order that is consistent with the use of global coordinates even ihougilAy and 
hy are zero. Using Eq. (3.3.16) for each nodal displacement; we thus obtain 

rx ) [C S 0 0 1 rx ) dty _ -S COO d jy 
(3.4.13) d2x - 0 0 C S d2x 

li
2y 

0 0 -S C dzy 

or 4= Ttl (3.4.14) 

[-~ 
S 0 

!l where C 0 
(3.4.15) T= - 0 0 C 

0 0 -s 
Similarly, we can write 

j=I[ (3.4.16) 

because forces are like dispJac:ements-both are vectors. Also, k must be expanded to 
a 4 x 4 matrix. Therefore, Eq. (3.4.1) in expanded form becomes 

Iltx) [1 0 -1 °llliIX) ~Y AE _ 0 0 0 0 ~ty 
f2x L 1 0 1 0 db; 

h 0 0 0 0 A iiy d2y 

(3.4.17) 
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In Eq. (3.~.17), ~cause~y an9J2Y are zero, rows of zeros corresponding to the row 
numbersfiy andf2y appear in k. Now, using Eqs. (3.4.14) and (3.4.16) in Eq. (3.4.2), 
we obtain 

I[=krd . (3.4.18) 

Equation (3.4.18) is Eq. (3.4.l2) expanded. Premultiplying both sides of Eq. (3.4.18) 
by X-I, we have 

(3.4.19) 

where I-I is the inverse of I. However, it can be shown (see Problem 3.28) that 

X-I = r T (3.4.20) 

where IT is the transpose of I. The property of square matrices such as r given 
by Eg. (3.4.20) defines I to be an orthogonal matrix. For more about orthogonal ma­
trices, see Appendix A. The transformation matrix r between rectangular coordinate 
frames is orthogonal. This property of r. is used throughout this text. Substituting 
Eg. (3.4.20) into Eq. (3.4.19), we obtain 

[ = r Tkr4 (3.4.21) 

Equating Eqs. (3.4A) and (3.4.21), we obtain the global stiffness matrix for an.element 
as 

(3.4.22) 

Substituting Eg. (3.4.15) for I and the expanded fonn of k given in Eq. (3.4.17) into 
Eq. (3.4.22), we obtain Ii: given in explicit fonn by 

" "'., ' 

If = ~ [C> ~: =~; =~~l (3.4.23) 

Symmetry S2 

Now, because the trial displacement function Eq. (3 .. 1.1) was assumed piecewise-
continuous e1ement by element, the stiffness matrix for each element can be summed 
by using the direct stiffness method to obtain . 

N 

I:k(e) =K (3.4.24) 
e=l 

where K is the total stiffness matrix and N is the total number of eJements. Similarly, 
each element global nodal force matrix can be summed such that 

(3.4.25) 

K now relates the global nodal forces f.. to the global nodal displacements 4. for the 
whole structure by 

E=Krl (3.4.26) 
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. Example 3.3 

For the bar element shown in Figure 3-11, evaluate the global stiffness matrix with 
respect to the x-y coordinate system. Let the bar's cross-sectional area equal 2 in.2, 

length equal 60 in., and modulus of elasticity equal 30 x 106 psi. The angle the bar 
makes with the x axis is 300. 

y 

~~--~------__ ~_x 

Figure 3-11 Bar element for stiffness matrix 
evaluation 

. 
To evaluate the global stiffness matrix ff for a bar, we use Eq. (3.4.23) with angle 

8 defined to be positive when measured counterclockwise from x to x. Therefore, 

8= 30° C = oos30° = J3 
2 

S = sin 30° = ~ 

3 J3 -3 -J3 
4 "4 "4" -4-

1 -J3 -1 
k = (2)(30 x 106

) 4 -4- "4 lb 
- 60 

3 J3 in. 

4 4 

Symmetry 4 

Simplifying Eq. (3.4.27), we.have 

[

0.75 0.433 -0.75 0433] 
1£ = 106 0.25 -0.433 =0~25 lb 

0.75 0.433 in. 
Symmetry 0-25 

(3.4.27) 

(3.4.28) 

• 
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.6. 3.5 Computation of Stress for a Bar 
in the x-y Plane 

We will now consider the determination of the stress in a bar element. For a bar, the 
local forces are related to ,tile local displacements by Eq. (3.1.13) or Eq. (3.4.17). 
This equation is repeated here for convenience. 

{t}=~[-: -:J{t} (3.5.1) 

The usual definition of axial tensile stress is axial force divided by CToss·sectional area. 
Therefore, axial stress is 

U=J2x 
A 

(3.5.2) 

where J2x is used because it is the axial force that pulls on the bar as shown in 
Figure 3-12. By Eq. (3.5.1), 

. J2x=AE[_1 Il{~lX} (3.5.3) 
'- L d2x 

Therefore, combining Eqs. (3.5.2) and (3.5.3) yields 

Q'=I[-l 114 
Now, using Eq. (3.4.7), we obtain 

2'=I[-l 1]X·4 

Equation (3.5.5) can be expressed in simpler form as 

q= Q'g 
where, when we use Eq. (3.4.8), 

" I [-1 11 [ ~ ~ ~ ~ ] 
y 

2 

i21 
'L 

~~--------------------.x 
J~ 

Figure 3-12 Basic bar element with positive nodal forces 

(3.5.4) 

(3.5.5) 

(3.5.6) 

(3.5.7) 
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After multiplying the matrices in Eq. (3.5.7), we have .. 

Q' =f[-C -S C SJ (3.5.8) 

Example 3.4 

For the bar shown in Figure 3-13, determine the axial stress. Let A =.4 X 10-4 m2, 

E = 210 GPa, and L = 2 m, and let the angle between x and x be 600. Assume the 
global displacements have been previously detennined to be d1x = 0.25 mm, dly ~ 
0.0, d2x = 0.50 mm, ~d dzy = 0.75 mm. 

y 

2 

Figure 3-13 Bar element for stress evaluation 

We can use Eq. (3.5.6) to evaluate the axial stress. Therefore; we first calculate 
{;' from Eq. (3.5.8) as . 

C' = 210 X 10
6 

kN/m2 [-1 -v'3 ! 0] 
- 2 m 2 2 2 2 (3.5.9) 

where we have·used C cos600 =! and S = sin60° = v'3/2 in Eq. (3,5.9). Now'g i&.. 
given by 

d. = I ~ I = I ~:fo : ::~: : I 
. dzy 0.75 X 10-3 m 

(3.5.10) 

Using Eqs. (3.5.9) and (3.5.10) in Eq.(3.5.6), we obtain the bar axial stress as 

1
0.

251 210 x 10
6 

[-1 -v'3 ! v'3] 0.0 X 10-3 
(Ix 2 2 .2 2· 0.50 

0.75 

= 81.32 x 403 kN/m2 = 81.32 MPa • 
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.&'l 3.6 Solution of a Plane Truss 

We win now illustrate the use of equations developed in Sections 3.4 and 3.5, along 
with the direct stiffness method of assembling the total stiffness matrix. and equations, 
to solve the following plane truss example problems_ A plane truss is a structure com­
posed of bar elements that all lie in a common plane and are co'!nected by Fictionless 
pins. The plane truss also must have loads acting only in tbe common plane and all 
loads must be applied at the nodes or joints. 

Example 3.5 

For th~ plane truss composed of the three elements shown in Figure 3-14 subjected to 
a downward force of 10,000 lb applied at node I, determine the x and y displacements 
at node 1 and the stresses in each element. Let E 30 x 106 psi and A = 2 in.2 for all 
elements. The lengths of the elements are shown in the figure. 

2 3 

~-----IOfi----~ 
10,000 Ib 

Figure 3-14 Plane truss 

First, we determine the global stiffness matrices for each element by using 
Eq. (3.4.23). This requires determination of the angle 0 between the global x axis 
and the local x axis for each element. In this example, the direction of the x axis 
for each element is taken in the direction from node 1 to the other node. The node 
numbering is arbitrary for each element. However, once the direction is chosen, the 
angle (J is then established as positive when measured counterclockwise from positive 
x to x. For element 1-, the local x axis is directed from node 1 to node 2; therefore, 
fll) 90°, For element 2,> the local x axis is directed from node 1 to node 3 and 
()(2) 45°. For element 3, the local x axis is directed from node 1 to node 4 and 
0(3) 0°. It is convenient to construct Table 3-1 to aid in determining each element 
stiffness matrix. 

There are a tota1 of eight nodal components of displacement, or degrees of free­
dom, for the truss' before boundary constraints are imposed. Thus the order of the 
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Table 3-1 Data for the truss of Figure 3-14 

Element {f' C S CS 

1 90" 0 1 0 0 

2 45° .Ji12 .,fi/2 I 
2 

3 0° 0 0 0 

total stiffness matrix must be 8 x 8. We could then expand the If matrix for each ele­
ment to the order 8 x 8 by adding rows and columns of zeros as explained in ,the first 
part of Section 2.4. Alternatively, we could label the rows and columns of each element 
stiffness matrix according to the displacement components associated with it as 
explained in the latter part of Section 2.4. Using this latter approach, we construct 
the total stiffness matrix K simply by adding terms from the individual element stiff­
ness matrices into their corresponding locations in K. This approach will be used here 
and throughout this text. 

For element 1, using Eq. (3.4.23), along with Table 3-1 for the direction cosines, 
we obtain 

db: dly d2:t d2p 

[ ~ 
0 0 

-!] 1f(1}= 
(30 x 106)(2) 1 0 

120 0 0 
-1 0 1 . 

(3.6.1) 

Similarly, for element 2, we have 

dlx dly d3x dly 

[ 0.5 0.5 -0.5 -0.5] 
k(2) = (30 x 106)(2) 0.5 0.5 -0.5 -0.5 

- 120 x J2 -0.5 -0.5 0.5 0.5 
-0.5 -0.5 0.5 0.5 

(3.6.2) 

and for element 3, we have 

dlx dip c4x iky 

(30 x 10')(2) [ ~ 
0 -1 

~] If(3) 0 0 
120 -1 0 I 

0 0 0 

(3.6.3) 

The common factor of 30 x 106 x 2/120 (= 500,000) can be taken from each of Eqs. 
(3.6.1)-(3.6.3). After adding terms from the individual element stiffness'matrices into 
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their corresponding locations in K, we obtain the tota~ stiffness matrix as 

d(x dly d2x d2y d3x d3J1 d4x 14y 

r L3~ 
0.354 0 0 -0.354 -0.354 -1 0 

0.354 1.354 0 -1 -0.354 -0.354 0 0 

K = (500,000) l_L~ 
0 0 0 0 0 0 0 

-1 0 1 0 0 0 0 (3.6.4) 
-0.354 0 -0 0.354 0.354 0 0 

-0.354 -0.354 0 0 0.354 0.354 0 0 
-1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

The global K matrix, Eq. (3.6.4), relates the global forces to the global displacements. 
We thus write the total structure stiffness equations, accounting for the applied force 
at node 1 and the boundary constraints at nodes 2-4 as follows: 

0 1.354 0.354 0 0 -0.354 -0.354 -1 0 
-10,000 0.354 1.354 0 -1 -0.354 -0.354 0 0 

F1.x. 0 0 0 0 0 0 0 0 
F2y 

(500,000) 
0 -1 0 1 0 0 0 0 

F3x -0.354 -0.354 0 0 0.354 0.354 0 0 

F3y "':0.354 -0.354 0 0 0.354 0.354 0 0 

F4x -1 0 0 0 0 0 1 I) 

F4y 0 0 0 0 0 0 0 0 

d!;e 
dty 

d1.x.=O 

x 
d2y =0 

(3.6.5) 
d3x =0 
d3y=0 

"tL.x = 0 

tL.y = 0 

We could now use the partitioning scheme described in the first part of Section 2.5 
to obtain the equations used to determine unknown displacements d1x and diy-that 
is, partition the first two equations from the third through the eighth in Eq. (3.6.5). 
Alternatively, we could eliminate rows and cohmms in the total stiffness matrix corre­
sponding to zero displacements as previously described in the hitter part of Section 
2.5. Here we win use the latter approach; that is, we eliminate rows and column 3-8 
in Eq. (3.6.5) because those rows and columns correspond to zero displacements. 
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(Remember, this direct approach must be modified for nonhomogeneous boundary 
conditions as was indicated in Section 2.5.) We then obtain 

{ 0 } = (500\000) [1.354 0.354] { db: } (3.6.6) 
-10,000 0.354 1.354 dly 

Equation (3.6.6) can now be solved for the displacements by multiplying both sides of 
the matrix equation by the inverse of the 2 x 2 stiffness matrix or by solving the 
two equations simultaneously. Using either procedure for solution yields the 
displacements - .... ' 

dlx = 0.414 X 10-2 in. dly = -1.59 X 10-2 in. 

The minus sign in the dly result indicates that the displacement component in the 
y direction at node 1 is in the direction opposite that of the positive y direction 
based on the assumed global coordinates, that is, a downward displacement occurs 
at node L 

Using Eq. (3.5.6) and Table 3-1, we determine the stres~ in each element as 
follows: 

(I) = 30 X 10
6 

[0 -1 
(J 120 

30 X 106 [~J2 
120J2 2 

= 1471 psi 

(

dl:t = 0.414 x 10-
2

\ 

o 1] dlr = - 1.59 X 10-
2 

= 3965 psi 
d2.x 0 

. d2y =0 

(

db = 0.414 x 10-
2

\ -J2 J2 J2] "dty = -1.59 x 10-2 

2 2 2 d3x = 0 

d3r =0 

(3) = 30 X 10
6 
[-1 

u 120 
o 1 0] dly -1.59 X 10-

2 = -1035 psi 
c4x =0 (

db 0.414 x 10-
2

\ 

d.4y = 0 . 

We now verify our results by examining force equilibrium at node 1; that is, summing 
forces in the global x and y directions, we obtain 

(1471 psi)(2 in2
) ~ (1035 psi)(2 in2

) = 0 

(3965 psi)(2 in2) + (1471 psi)(2 in2) V; -10,000 0 • 
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Example 3.6 

For the two-bar truss shown in Figure 3-15, determine the displacement in the y 
direction'ofnode 1 and the axial force in each element. A force of P = 1000 kN is ap-­
plied at node I in the positive y direction while node 1 settles an amount 0 = 50 mm 
in the negative x direction. Let E = 210 GPa and A = 6.00 X 10-4 m2 for each ele­
ment. The lengths of the elements are shown in the figure. 

T 
2 

3m 

1, 
-t-___ <i>,.;;;.2 _--:;.Y ___ ~_---.._ P = 1000 kN 

t I- 4m-----.Ioi 

Figure 3-15 Two-bar truss 

We begin by using Eq. (3.4.23) to determine each element stiffness matrix. 

Element 1 

3 
cos Om = 5 0.60 sm' f)(I) = ~ 0 80 

5 -

k
(l) = (6.0 x 10-4 m2 )(210 x 106kN/ml) [0.36~:: =~:~ =~::] 

\ (3.6.7) 
- 5 m \ 0.36 0.48 

SyrnmetIy 0.64 

Simplifying Eq, (3.6.7), we obtain 

d1x d1y d2x -

'[0.36 0.48 -0.36 
g(l) = (25,200) 0.64 -OA8 

0.36 
Symmetry 

Element 2 

cos O(2) = 0.0 sinfP) = 1.0 

d2y 

-0.48] 
-0.64 

0.48 
0.64 

(3.6.8) 
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k(l) ;::: (6.0 x 10-4)(210 x 106) [0 ~ ~ -~l 
- 4 0 0 (3.6.9) 

Symmetry 1 

d1x d1y d3x d3y 

!{1.) = (25,200) 
[

0 0 0 0 I 1.25 0 -1.25 

Symmetry 
0 

~.25 
(3.6.10) 

where} for computational simplicity, Eq. (3.6.10) is written with the same factor 
(25,200) in front of the matrix as Eq. (3.6.8). Superimposing the element stiffness ma­
trices, Eqs. (3.6.8) and (3.6.10), we obtain the global K matrix and relate the global 
forces to global displacements by 

FIx 0.36 0.48 -0.36 -0.48 0 0 d]:]; 

Fty 1.89 -0.48 .... O~M, 0 -1.25 dly 

F2x 
= (25,200) 

0.36 0.48 0 0 d2:x 
(3.6.11 ) 

Flp 0.64- 0 0 d2y 

F3x 0 0 d3x 
F3y Synunetry 1.25 d3y 

We can again partition equations with known displacements and then -simultaneously 
solve those associated with unknown displacements. To do this partitioning, we con­
sider the boundary conditions given by 

db = {) d2x = 0 d2y = 0 d3x = 0 d3y 0 (3.6.12) 

Therefore, using Eqs. (3.6.12), we partition equation 2 from equations 1, 3, 4, 5, and 6 
ofEq. (3.6.11) and are left with 

P = 25,200(0.48{) + 1.89d1y ) (3.6.13) 

where Fly = P and d lx {) were subsqtuted into Eq. (3.6.13). Expressing Eq. (3.6.13) 
in terms of P and d allows these two influences on dly to be clearly separated. Solving 
Eq. (3.6.13) for dl~, we have 

dry = 0.00OO21P - 0.2540 (3.6.14) 

Now, substituting the numerical values P = 1000 kN and 0 -0.05 minto Eq. 
(3.6.14), we obtain . 

dly = 0.0337 m (3.6.15) 

where the positive value'indicates horizontal displacement to the left. 
The loCal element forces are obtained by using Eq. (3.4.11). We then have the 

following. . 
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Element 1 

0.80 . 0 0] {~:; = ~~3~7} 
J 0 (3.6.16) o 0.60 0.80 Ulx = 
d2y=0 

Perfonning the matrix triple product in Eq. (3.6.16) yields 

fix -76.6 kN jlx = 76.6 kN 

Element 2 

{ 

dlx = -0.05 } 

{Jj = (31,500)[ _: -: m ~ ~ ~l ~::: ~.0337 
. d3y =0 

perfo.nning the matrix triple product in Eq. (3.6.18) we obtain 

fix = 1061. kN Ax = -1061 kN , 

(3.6.17) 

(3.6.18) 

(3.6.19) 

Verification of the computations by checking that equilibrium is satisfied at node 1 is 
left to your discretion. . • 

Example 3.7 

To illustrate how we can combine spring and bar elements in one structure, we now 
solve the two-bar truss supported by a spring shown in Figure 3-16. Both bars have 
E 210 GPa and A = 5.0 x 1O-4 m2• Bar one.has a length of 5 m and bar two a 
length of 10 m. The spring stiffness is k = 2000 kN/m. 

25kN 

10m 

® k=2000kJ':I/m 

4 

Figure 3-16 Two-bar truss with spring support 

We begin by using Eq. (3.4.23) to detennine each element stiffness matrix. 
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Element 1 

0(1) = 1350, COSe<I) = -Vi/2) sinlP> = Vij2 

'k(l) = (5.0 x 1O-4 m2)(21O x 106 kN/m2) -O.S 0.5 0.5 -0.5 

[ 

0.5 -0.5 -0.5 0.5] 

5 0 05 (3.6.20) - m - .5 '. 0.5 -0.5 
. 0.5 -0.5 -0.5 0.5 

Simplifying Eq. (3.6.20). we obtain 

k(l) = 105 x lOs [-~. -~ 
- -I 

1 -1 

Element 2 

e<2) = 180°, cos 0(2) = -1.0, 

-1 

1 

-1 

k(') = (5 " lO-4 m')(2JO x Jo-kN/m') [ ~ 
- 10m -1 

0 

Simplifying Eq. (3.6.22), we obtain 

1£(2) = !O5 x IOS[ _! 
0 -I 

0 0 
0 

0 0 

EI~ment3 

-~] -1 
1 

sinf12) 0 

0 -1 

0 0 
0 
0 0 

i] 
rj3) = 2700

) cos f;(3) = 0, sin 0(':') = 1.0 

~] 

(3.6.21) 

(3.6.22) 

(3.6.23) 

Using Eq. (3.4.23) but"replacing AEIL with the spring constant k, we obtain the stiff­
ness matrix of the spring as 

1£(')=.Wx l~[~ j ~ -~] (3.6.24) 

Applying the boundary conditions, we have 

d2,x = d2y d3,x = d3y = t4c = d4y = 0 (3.6.25) 
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Using the boundary conditions in Eq. (3.6.25), the reduced assembled global equa­
tions are given by: 

{FIx = 0 } _ lOS [ 210 -105] {db} 
Fly = -25kN - -105 125 dly 

(3.6.26) 

Solving Eq. (3.6.26) for the global displacements, we obtain 

db = -1.724 x 10-3 m dly = -3.448 X 10-3 m (3.6.27) 

We can obtain the stresses in the bar elements by using Eq. (3.5.6) as 

qll) = 210 x l~mMN/m2 [0.707 -0.707 -0707 0.7071{ =~::~~ :~=:} 

Simplifying, we obtain 

0-(1} = 51.2 MPa d"') 

Similarly, we obtain the stress in element two as .. 

ql2) = 210 x 11~~/m2 [1.0 0 -1.0 Ol{=~:~:~~ :~~} 
Simplifying, we obtain 

0-(2) = - 36.2 MPa (C) • 

" 3.7 Transformation Matrix and Stiffness Matrix 
for a Bar in Three~Dimensional Space 

WewiU now derive the transfonnation matrix necessary to obtain the general stiffness 
matrix of a bar element arbitrarily oriented in three-dimensional space as shown in 
Figure 3-11.. Let the coordinates of node 1 be, taken as XI, Yt, and Zl; and let tho~ 
of node 2 be taken as Xl, Y2, and Z2. Also, let OX, 0Y' and IJz be the angles measured 
from the global x,y, and z axes,. respectively, to the local i: axis. Here i is directed 
along the element from node 1 to node 2. We must now determine 'I'll ,such that 
d. = 'I. d.. We begin the derivation of T.''' by considering the vector d = d expressed 
in three dimensions as 

(3.7.1) 

where l j, and k are unit vectors associated with the local i, y, and i axes, respectiveJy> 
and i, j, and k are unit v~tors associated with the global x,y, and z axes. Taking the 
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y 

d 

Figure 3-17 Bar in three-dimensicnal space 

dot product ofEq. (3.7.1) with i, we have 

J.y: + 0 + 0 = dx(i " i) + dy(i . j) + d:(i • k) (3.7.2) 

and, by definition of the dot product, 

~ " X2 -Xl C 
I"I=-L-= x 

: • Y2 - Yl 
."J=-L- Cy (3.7.3) 

i . k Z2 Zl = C~ 
L ~ 

where L = [(Xl _XI)2 + (Y2 - yJ2 + (Z2 - ZI)2JI/2. 

and Cx = cosfJx Cy = cosBy Cz = cosfJ: (3.7.4) 

Here eX) Cy , and Cz are the projections off on i,j, and k, respective'ly. Therefore, 
using Eqs. (3.7.3) in Eq. (3.7.2), we have 

(3.75) 

For a vector in space directed along the.x axis, Eq. (3.7.5) gives the components of 
that vector in the global x,y, and z directions. Now. using Eq. (3.7.5), we can write 
d. = T* d in explicit form as 

dl.'C 

U~} = [~x 
dly 

Cy C: 0 0 

~J d1: (3.i6) 
0 0 Cx: Cy d2r 

d2y 

d2z 
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[ 
Cx Cy C.z: 0 0 0 ] 
o 0 0 ex Cy Cz 

where (3.7.7) 

is the transformation matrix, which enables the local displacement matrix d to be 
expressed in tenns of displacement components in the global coordinate system. 

We showed in Section 3.4 that the global stiffness matrix (the stiffness matrix for 
a bar element referred to global axes) is given in general by If ='I T 1s.T. This equation 
will now be used to express the general fonn of the stiffness matrix of a bar arbitrarily 
oriented in space. In general, we must expand the transformation matrix in a manner 
analogous to that done in expanding I* to I in Section 3.4. However, the same result 
will be obtained here by simply using I*, defined by Eq. (3.7.7), in place of T.. Then If 
is obtained by llSing the equation !f = (I*) T1s.I* as fonows: 

ex 0 
Cy 0 

Cz 0 ~E [_! -!] [~x. Cy Cz 0 0 

~J Is. = 
0 Cx 0 0 Cx Cy 

(3.7.8) 

0 Cy 

0 Cz 

Simplifyi~g Eq. (3.7.8), we obtain the explicit form of Is. as 

C2 
x CxCy CxCz -C; -CxCy -CxCz 

C2 
y CyC: -CxCy -c.; -CyC: 

/f= 
AE C2 -CxCz -CyC: -C; z 

C2 CxC,' CxC.z: x 

(3.7.9) 

C2 
~ 

CyC: 
Symmetry 

You should verify Eq. (3.7.9). First, expand I* to a 6 x 6 square matrix in a manner 
similar to that done in Section 3.4 for the two-dimensional ca~. Then' expand 1s. to a 
6 x 6 matrix by adding appropriate rows and columns of zeros (for the dz terms) to 
Eq. (3.4.17). Finally> perform the matrix triple product If = ITkI (see Problem 3.44). 

Equation (3.7.9) is the basic form of the stiffness matrix for a bar element arbi­
trarily oriented in three-dimensional space. We will now analyze a simple space truss 
to illustrate the concepts developed in this section. We will show that the direct stiff­
ness method provides a simple procedure fOI solving space truss problems. 

ExampJe3.8 

Analyze the space truss shown in Figure 3-18. The truss is composed of four nodes, 
whose coordinates (in inches) are shown in the figure, and three elements, whose cross­
sectional areas are given in the figure. The modulus ~f elasticity E = 1:2 x 106 psi for 
all elements. A load of 1000 Ib is applied at node 1 in the negative z direction. Nodes 
2-4 are supported by ball-and-socket joints and thus constrained from movement in 
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(0, o. -4$) 

Figure 3-18 Space truss 

A(I) = 0.302 inl 

A el} == 0.729 in1 
Af3) = 0.181 in2 

Roller preventing I y displacement 

(12,0 •. 0) 

1000 Ib 

the x,y, and z directions. Node I is constrained from movement in the y direction by 
the roller shown in Figure 3-18. 

Using Eq. (3.7.9)~ we will now determine the stiffness matrices of the three ele­
ments in Figure 3-18. To simplify the numerical calculations, we first express Is for 
each element, given by Eq. (3.7.9). in the form 

k = AE LJ.l.:-)J 
- L [-J: JJ 

where J is a 3 x 3 sub~atrix defined by 

[ 

C2 CxCy CxCz 1 
J = CyCX C; CyC~ 

C:;,Cx CzCy C; 
Therefore, determining J will sufficiently descrIbe Is. 

E.ement 3 

The direction cosines of element 3 are given, in general, by 

Y4-Yl 
CY=VJ') 

Z4 -z, 
Cz =VJ') 

(3.7.10) 

(3.7.11) 

(3.7.12) 
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where the notation Xi) Yi. and Zi is used to denote the coordinates of each node, and 
L(e) denotes the element length. From the coordinate information given in Figure 
3-18, we obtain the length and the direction cosines as 

-72.0 ex ;::: -- =.-0.833 
86.5 

Cy=O 
-4&-0 

Cz = 86.5 = -0.550 

Using the results of Eqs. (3.7.13) in Eq. (3.7.l1) yields 

and, from Eq. (3.7-10), 

Element 1 

[

0.69 ° 0.46] 

J= ° ° ° 
0.46 ° 0.30 

Similarly, for element 1, we obtain 

L(I) = 80.5 in. 

C.;c = -0.89 Cy = 0.45 Cz = 0 

and 

Element 2 

Finally, for el~ent 2, we obtain 
L(2) = 108 in. 

Cx = -0.667 Cy = 0.33 Cz; = 0.667 

[ 

0.45 
-0.22 
-0.45 

-0.22 
0.11 
0.22 

-0.45] 
0.22 
0.45 

(3.7.13) 

(3.7.14) 

(3.7.15) 

(3:7.16) 
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dlxdtydlz d3xd3yd3: 

k(2) = (0.729)(1.2 x 106
) [ ___ 4 ___ : ___ -=4 __ ] 

-' 108 -J: J 
and (3.7.17) 

Using the zero-displacement boundary conditions d1y = 0, d2x = d2y = d2z = 0, d3x = 
d3y = d3z = 0, and ~x = 14, = d4z = 0, we can cancel the corresponding rows and 
columns of each element stiffness matrix. After canceling appropriate rows and col­
umns in Eqs. (3.7.I5)-(3~7.17) and then superimposing the resulting element stiffness 
matrices, we have the total stiffness matrix for the truss as 

dl:;c d1z 

K = [ 9000 -2450] 
- -2450 4450 

(3.7.18) 

The global stiffness equations are then expressed by 

{ 
0 } [9000 -2450] { db } 

-1000 = -2450 4450 d1z 
(3.7.19) 

Solving Eq. (3.7.19) for the displacements, we obtain 

d1x = -0.072 in. 

d1z = -0.264 in. 
(3.7.20) 

where the minus signs in the displacements indicate these displacements to be in the 
negative x and z directions. 

We will now determine the stress in each element The stresses are determined by 
using Eq. (3.5.6) expanded to three dimensions. Thus, for an element with nodes j and 
j, Eq. (3.5.6) expanded to three dimensions becomes 

(3.7.21) 

Derive Eq. (3.7.21) in a manner' similar to that used to derive Eq. (35.6) 'see Problem 
3.45, for instance}. For element 3, using Eqs. (3.7.13) for the direction cosines, along 
with the proper length and modulus of elasticity, we obtain the stress as 

-0.072 
o 

~(3) = 1.28~~~06 IO.83 0 0.55 -0.83 0 -0.55} -~.264 
o 
o 

(3.7.22) 
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Simplifying Eq. (3.7.22), we find that the result is 

a{3) = -2850 psi 

where the negative sign in the answer indicates a compressive stress. The stresses in the 
other elements can be determined in a manner similar to that used for element 3. For 
brevity's sake, we will not show the calculations but will merely list these stresses: 

a(t) = -945 psi a(2) = 1440 psi • 

Example 3.9 

Analyze the space truss shown in Figure 3-19. The truss is composed of four nodes} 
whose coordinates (in meters) are shown in the figure, and three elements, whose 
cross-sectional areas are all 10 x 10-4 m2, The modulus of elasticity E = 210 GPa 
for all the elements. A load of 20 kN is applied at node 1 in the global x-direction. 
Nodes 2-4 are pin supported and thus constrained from movement in the x, y, and z 
directions. . 

y 
(0,0,0) 

x 
(14,6,0) 

<D 
4 

® 

20kN 

(12.-3.-7) 

Figure 3-19 Space truss 

First calculate the element lengths using the distanCe formula and coordinates 
given in' Figure 3-19 as 

L(1) = [(0 12)2 + (0 - (_3))2 + (0 - (_4))2}1/2 = 13m 

L(2) = [(12 -12)2 + (-3 + 3)2 + (-7 + 4)2} 1/2 = 3m 

L(3) = [(14 - 12)2 + (6 + 3)2 + (0 +4)2}1/2 = lO.05m 

For convenience, set up a table of direction cosines, where the Jocai x axis is taken 
from node 1 to 2, from 1 to 3 and from I to 4 for elements 1, 2, and 3, respectively. 
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Element Number 

I 
2 
3 

-12/13 
o 

2/10.05 

3/13 
o 

9/10.05 

4113 
-1 

4/10.05 

Now set up a table of products of direction cosines as indicated by the definition of J 
defined by Eq. (3.7.11) as 

Element Number 

1 
2 
3 

0.852 
o 
0.040 

-0.213 
o 
0.178 

-0.284 
o 
0.079 

Using Eq. (3.7.11), we express J. for each element as 

0.053 
o 
0.802 

-0.011 
o 
0.356 

0.095 
1 
0.158 

[ 

0.852 -0.213 -0.284] [0 0 0] [0.040 0.178 0.079] 
'. J(I} = -0.213 0.053 0.071 ;}2) = 0 0 0 J.(3) = 0.128 0.802 0.356 

-0.284 0.071 .0.095 0 0 I 0.079 0.356 0.158 
(3.7.23) 

The boundary conditions are given by 

d2x = d2y = d2z = 0, d3x = d3y = d3z = 0, £4x £4y = d4z = 0 (3.7.24) 

Using the stiffness matrix expressed in terms of J. in the fonn of Eq. (3.7.10), we ob­
tain each stiffness matrix as 

k(l} AE [-lt~J--=-J.~l~l k(2) AE [_~~)-L~~~~] k(3) = AE [-)~~1.:-J2~1 
- 13 _.&(1): a(l} - 3 -J.(2): am - 10.05 -J.(3}: 1:P) 

(3.7.25) 
Applying the boundary conditions and canceling appropriate rows and columns asso­
ciated with each zero displacement boundary condition in Eqs. (3.7.25) and then 
superimposing the resulting element stiffness matrices, we have the total stiffness ma-
trix for the truss as . 

[ 

69.519 1.327 -13.985] 
K.= 210 x 103 1.327 83.879 40.885 kN/m 

-13.985 40.885 356.363 
(3.7.26) 

The global stiffness equations are then expressed by 

{ 2~.kl'f} =210x lol [ 6~:~~~ 8~:!;; -!~:~!~] {~~;} 
o -13.985 40.885 356.363 d1: 

(3.7.27) 
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Solving for the displacements, we obtain 

dtx = 1.383 x 10-3 m 

dly -5.119 x 10-5 m 

d l : = 6.015 x 10-5 m 

We now detennine the element stresses using Eq. (3.7.21) as 

(3.7.28) 

-5.119 x 10-5 

a(l) = 210 x 10
6 

12/13 -3/13 -4/13 -12/13 3/13 

[ 

1.383 x 10-
3

) 

4/13 J 6.01r 10-' 

Simplifying Eq. (3.7.29),. we obtain upon converting to MPa units 

0'(1) = 20.51 MPa 

The stress in the other elements can be found in a simi1ar manner as 

0-<2) = 4.21 MPa 0-<3) = -S.29MPa 

(3.7.29) 

(3.7.30) 

(3.7.31) 

The "negative sign in Eg. (3.7.31) indicates a compressive stress in element 3. • 

J{ 3.8 Use of Symmetry in Structure li: 
Different types of symmetry may exist in a structure. These include reflective or mir­
rOf> skew, axial, and cyclic. Here we introduce the most common type of symmetry. 
reflective symmetry. Axial symmetry occu.:is when a solid of revolution is generated 
by rotating a plane shape about an axis in the plane. These axisymmetric bodies are 
common, and hence their analysis is considered in Chapter 9. 

In many instances, we can use reflective symmetry to facilitate the solution 
of a problem. Reftectil'e symmetry .medns correspondence in size,. shape. and position 
of loads; material pr~perties; and boundary conditions that are on opposite sides of a 
. dividing line or plane. The use of symmetry allows us to consider a reduced problem 
instead of the actual problem. Thus, the order of the total stiffness matrix and total 
set of stiffness equations can be reduced. Longhand solution time i~ then reduced, 
and computer solution time for large-scale problems is substantially decreased. 
Example 3.10 will be used to ilJustrate reflective symmetry. Additional examples 
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of the use of symmetry are presented in Chapter 4 for beams and in Chapter 7 for 
plane problems. 

Example 3.10 

Solve the plane truss problem shown in Figure 3-20. The truss is composed of eight 
elements and five nodes as shoWD. A vertical load of 2P is applied at node 4. Nodes 
1 and 5 are pin supports. Bar elements 1,2, 7, and 8 have axial stiffnesses of ViAE, 
and bars 3-6 have axial stiffness of AE. Here again, A and E represent the cross­
sectional area and modulus of elasticity of a bar. 

In this problem, we will use a plane of symmetry. The vertical plane perpendic­
ular to the plane truss passing through nodes 2, 4, and 3 is the plane of reflective sym­
metry because identical geometry, material, loading, and boundary conditions occur at 
the corresponding locations on.opposite sides of this plane. For loads such as 2P, 
occurring in the plane of symmetry, half of the total load must be applied to the 
reduced structure. For elements occurring in the plane of symmetry, half of the 
cross-sectional ar~a must be used in,the reduced structure. Furthermore, for nodes 
in the plane of symmetry, the displacement components normal to the plane of sym­
metry must be set to zero in the reduced structure; that is, we set d2x, = 0, d3x = 0, and 
ri4x = O. Figure 3-21 shows the reduced structure to be used to analyze the plane truss 
of Figure 3-20. 

T 
L 

t 
L 

1 

~L-,--~.I-.. -L--! 
2 

2P 

CD 0 
r---~--~--~---45 

4 

o 
3 

Figure 3-20 Plane truss Figure 3-21 Truss of Figure 3-20 
reduced by symmetry 

We begin the solution of the problem by determining the angles 8 for each bar 
element. For instance~ for element 1, assuming ~ to be directed from node 1 to node 2, 
we obtain fi.1) = 45°. Table 3-2 is used in determining each element stiffness matrix. 

There ~ a total of eight nodal components of displacement for the truss before 
boundalj1'constralnts are imposed. Therefore, K must be of order 8 x 8. For element I, 
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Table 3-2 Data for the truss of Figure 3-21 

Element (f C S C1 S2 CS 

1 45° v'i/2 .Ji12 1/2 1/2 1/2 
2 3150 .ji/2 -v'i/2 1/2 1/2 -1/2 
3 0" 1 0 I 0 0 
4 90" 0 0 0 
5 90° 0 0 0 

using Eq. (3.4.23) along with Table 3-2 for the direction cosines, we obtain 

db dry d2x d2y 

If(l) = v::: [J -I =f ==-:2:] 
-t -2 2 

Similarly, for elements 2-5, we obtain 

d1x d1y d3x. d3y 

kl2l = vUE [-1 
I 

=1] 

-2 
I 
:2 

- I ! -2 2 
t 1 
:2 -2 

(3.8.1) 

(3.8.2) 

(3.8.3) 

(3.8.4) 

(3.8.5) 



3.9 Inclined, or Skewed, Supports ~ 103 

where, in Eqs. (3.8.1 )-(3.8.5), the column labels indicate the degrees of freedom associ­
ated with each element. Also, because elements 4 and Slie in the plane of symmetry, 
half of their original areas have been used in Eqs. (3.8.4) and (3.8.S). 

We will limit the solution to determining the displacement components. There­
fore, considering the boundary constraints that result in zero-displacement comp<>-7 
nents, we can immediately obtain the reduced set of equations by eliminating rows 
and columns in each element stiffness matrix corresponding to a zero-displacement 
component. That is, b~cause d, x = 0 and d1y = 0 (owing to the pin support at node 
1 in Figure 3-21) and d2x =- O,d3x = 0, ana t4x = 0 (owing to the symmetry condi­
tion), we can cancel rows and columns corresponding to these displacement compo­
nents in each element stiffness matrix before assembling the total stiffness matrix. 
The resulting set of stiffness equations is 

ALE [~ t =1] {~:;},= { ~} 
-2 -2 1 d~ -p 

On solving Eq. (3.8.6) for the displacements, we obtain 

-PL -PL -2PL 
d2y = AE d3y =- AE' t4y = AE 

(3.8.6) 

(3.8.7) 

• 
The ideas presented regarding the use of symmetry should be used sparingly and 

cautiously in problems of vibration and buckling. For instance, a structure such as a 
simply supported beam has symmetry about its center but has antisymmetric vibration 
modes as well as symmetric vibration modes. This will be shown in Chapter 16. If only 
half the beam were modeled using reflective symmetry conditions, the support condi­
tions would permit only the symmetric vibration modes. 

I 3.9 Inclined, or Skewed, Supports 

In the preceding sections) the supports were oriented such that the resulting boundary 
conditions 'on the displacements were in the global directions. 

y 

~----____ --______ --__ -.x 

Figure 3""'22 Plane truss with incfined 
boundary conditions at node 3 
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However; if a support is inclined, or skewed, at an angle r:J. from the global x axis, as 
shown at node 3 in the plane truss of Figure 3-22, the resulting boundary conditions 
on the displacements are not in the global x-y directions but are in the local x'-y1 
directions. We will now describe two methods used to handle inclined supports. 

In the first method, to account for inclined boundary conditions, we must per­
form a transformation of the global displacements at node 3 only into the local 
nodal coordinate system xl_y', while keeping all other displacements in the x-y global 
system. We can then enforce the zero-displacement boundary condition d~y in the 
force/displacement equations and, finally, solve the equations in the usual manner. 

The transformation used is analogous to that for transforming a vector from 
local to global coordinates. For the plane truss, we use Eq. (3.3.16) applied to node 
3 as follows: 

{ 
d~x} = ( c~s r:J. sin r:J. ] { d3x } 
d3y -sm ex cos ex d3y 

Rewriting Eq. (3.9.l), we have 

where 

We now write the transformation for the entire nodal displacement vector as 

{d~} = [Td{d} 

or {d} = [T1IT{d'} 

where the transformation matrix for the entire truss is the 6 x 6 matrix 

[ 

[I] [01 [0] ] 
[Td = [OJ [I] [OJ 

[0] [OJ [t3J 

(3.9.1) 

(3.9.2) 

(3.9.3) 

(3.9.4) 

(3.9.5) 

(3.9.6) 

Each submatrix in Eq. (3.9.6) (the identit.r ".matrix [I), th~ null matrix [01, and matrix 
[t3} bas the same 2 x 2 order} that order 1D general bemg equal to the number of 
degrees of freedom at each node. 
. To obtain tbe desired displacement vector with global displacement componenftS 
at nodes 1 and 2 and local displacement components at node 3, we use Eq. (3.9.5) to 
obtain 

db d{x 
dly 

[[n [OJ [OJ ] 
d{)' 

d2x, d' 
= [OJ [1] [0] 2x (3.9.7) 

d2y [0] [0] [t3J
T d2y 

d3x d3x 
d3y d~y 
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In Eq. (3.9.7), we observe that only the node 3 global components are transformed, as 
indicated by the placement s>f the [t3f matrix. We denote the square matrix in Eq. 
(3.9.7) by [Td T. In general, we place a 2 x 2 [tj matrix in [Til wherever the transfor­
mation from global to local displacements is needed (where skewed supports exist). 

Upon cOnsidering Eqs. (3.9.5) and (3.9.6), we observe that only node 3 compo­
nents of {d} are really transformed to local (skewed) axes components. This transfor­
mation is indeed necessary whenever the. local axes x'-y' fixity directions are known. 

Furthennore, the global force vector can also be transformed by using the same 
transfonnation as for {dT 

{I'} = [Td{/} 

In global coordinates, we then have 

{I} = [K}{d} 

Premultiplying Eq. (3.9.9) by [Til, we have 

[TJ]{J} = [T1][K]{d} 

For the truss in Fi~ 3::-22, the left side ofEq. (3.9.l0) is 

iix fix 

[11] [01 101] 
ii, IIY 

[0] [1] [0) hx Ilx 

[0] [0] [t~l 12y h y 

i3x If" 
f3y I{y 

where the fact that local forces transform similarly to Eq. (3.9.2) as 

{J{} = [13]{h} 

(3.9.8) 

(3.9.9) 

(3.9.10) 

(3.9.11) 

(3.9.12) 

has been used in Eq. (3.9.11). From Eq. (3.9.11), we see that only the node 3 compo-­
nents of {f} have been transformed to the local axes components, as desired. 

Using Eq. (3.9.5) in Eq. (3.9.10), we have 

[T1]{/} [Td[K][TdT{d'} (3.9.13) 

Using Eq. (3.9.11), we find that the form of Eq. (3.9.13) becomes 

Fix d1x 

Fly dty 
Fa = ITt}rK1[TJ]T 

d2x 

~y d2y 
(3.9 . .14) 

Fj;r: d3x 
Fjy d3y 

as dlx = d:x , dty diy, d'b; = ti1, and d2y = tIl, from Eq. (3.9.7). Equation (3.9.14) is 
the desired fonn that allows all known global and inclined boundary conditions to 
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be enforced. The global forces now result in the left side ofEq. (3.9.14). To solve Eq. 
(3.9.14), first perform the matrix triple product [TJ](KJ[Tr] T. Then invoke the follow· 
ing boundary conditions (for the truss in Figure 3-22): 

db = 0 (3.9.15) 

Then substitute the kn~wn value of the applied force F"b: along with F2y = 0 and 
F;x = 0 into Eq. (3.9.14). Finally, partition the equations with known displacements­
here equations I, 2, and 6 ofEq. (3.9.14)-and then ,simultaneously solve those asso-
ciated with the unknown displacements db, d2y, and d~.x:' ' 

After solving for the displacements, return to Eq. (3.9.14) to obtain the global 
reactions FIx and Fly and the inclined roller reaction F£,. 

Example 3.11 

For the plane truss shown in Figure 3-23, det~rmine the displacements and reactions. 
Let E = 210 GPa, A = 6.00 X 10-4 m2 for elements 1 and 2, and A = 6J2 X 10-4 m2 

for element 3. . 
We'begin by using Eq. (3.4.23) to determine each element stiffness matrix: 

CD 
1m y Q) 

Ol--.......iL----_X 

Figure 3-23 Plane truss with inclined support . 

Element 1 

sinO = 1 

k(l) = (6.0 x 10-4 mZ)(210 x 109 N/m2) 
- 1m 

(3.9.16) 
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Element 2 

Element 3 

cos 8 = 1 

.Ji 
cos()=-

2 

sin8= 0 

. () .Ji sm = 

d3y 

-0.5] -0.5 
0.5 
0.5 

(3.9.17) 

(3.9.18) 

Using the direct stiffness method on Eqs. (3.9.19)-(3.9.18), we obtain the g!o'bal K 
matrix as 

0.5 0.5 0 0 -0.5 -0.5 
1.5 0 -1 -0.5 -0.5 

K 1260 x lOs N/m 1 0 -1 0 (3.9.19) 
1 0 0 

1.5 0.5 
Symmetry 0.5 

Next we obtain the transformatiori matrix II using Eq. (3.9.6) to transform the global 
displacements at node 3 into local nodal coordinates x'-y'. In using Eq. (3.9.6), the 
angle Ct is 45° . 

.1 0 0 0 0 0 

0 1 0 0 0 0 

[Tr]= 
0 0 1 0 0 0 (3.9.20) 
0 0 0 0 0 

0 0 0 0 0./2 0./2 
0 0 0 0 -0./2 ..fi/2 
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Next we use Eq. (3.9.14) (in general, we would use Eq. (3.9.13)) to express the 
assembled equations. First define IS: = ltf~.lr and evaluate in steps as follows: 

0.5 0.5 0 0 -0.5 -0.5 

0.5 1.5 0 -1 -0.5 -0.5 

LK = 1260 x 105 0 0 1 0 -1 0 
(3.9.21) 

0 -1 0 1 0 0 

-0.707 -0.707 -0.707 0 1.414 0.707 

0 0 0.707 0 -0.707 0 

and 
dlx dly d2x d2y djx d:,y 

0.5 0.5 0 0 -0.707 0 , 
0.5 1.5 0 -1 -0.707 0 

TIKlt = 1260 x 105 Nj.m 0 0 1 0 -0.707 0.707 

0 -1 0 1 0 0 
-0.707 -0.707 -0.707 0 1.500 -0.500 

0 0 0.707 .0 -O.Soo 0.500 

(3.9.22) 

Applying the boundary conditions, dl.'( = dly = d2y = d)y = 0, to Eq. (3.9.22), we 
obtain 

{ F2x = 1000 kN } (f [ 1 
F3x = 0 = (126 x 1 kN/m) -0.707 

-0.707] {d2x } 

1.50 d3x 
(3.9.23) 

SolVing Eq. (3.9.23) for the displacements yields 

d2x = 11.91 X 10-3 m (3.9.24) 

d~x = 5.613 X 10-3 m 

Postmultiplying the known displacement vector times Eq. (3.9.22) (see Eq. (3.9.14), we 
obtain the reactions as 

FIx = -500kN 

Fly = -5OOkN 

F2y =0 

F;y = 707 kN 

(3.9.25) 

The free-body diagram of the truss with the reactions is shown in Figure 3-24. You 
can easily verify that the truss is in equilibrium. • 

In the second method used to handle skewed boundary conditions, we use a 
boundary element of large stiffness to constrain the desired displacement. This is the 
method used in some computer programs [9]. 



-, 

3.10 Potential Energy Approach to Derive Bar Element Equations A 109 

2 
1000 leN - ...... r------""""'-

707 kN 

I _ 500 leN 

SOOIeN 

Figure 3-24 Free-body diagram of the truss of Figure 3-23 

Boundary elements are used to specify nonzero displacements and rotations ,to 
nodes. They are also used to evaluate reactions at rigid and flexible supports. Bound­
ary elements are two-node elements. The line defined by the two nodes specifies the 
direction along which the force reaction is evaluated or the displacement is specified. 
In the case of moment reaction, the line specifies the axis abou't which the moment is 
evaluated and the rotation is specified. 

We consider boundary elements that are used to obtain reaction forces (rigid 
boundary 'elements) or specify translational displacements (displacement boUndary ele­
ments) as truss elements with, only one nonzero translational stiffness. Boundary ele­
ments used to either evaluate reaction moments or specify rotations behave like 
beam elements with only one nonzero stiffness corresponding to the rotational 
stiffness about the specified axis. 

The elastic boundary elements are used to model flexible supports and to calcu­
late reactions at skewed or inclined boundaries. Consult Reference [9] for more details 
about using boundary elements. 

A 3.10 Potential Energy Approach to Derive 
Bar Element Equations 

We now present the principle of minimum potential energy to derive the bar element 
equations. Recall from Section 2.6 that the total potential energy 1l.p was defined as the 
sum of the internal strain energy U and the potential energy of the external forces 0: 

1l.p= u+n (3.10.1) 

To evaluate the strain energy for a bar, we consider only the work done by the 
internal forces during deformation. Because we are dealing with a one-dimensional 
bar, the internal force·doing work is given in Figure 3-25 as CTx(Ay)(Az), due only 
to normal stress CTx. The displacement of the x face of the element is dX(£x); the dis­
placement of the x + Ax face is Ax(ex + dex ). The change in displacement is then 
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Figure 3-25 Internal force in a one-dimensional bar 

dx dex) where dex is the differential change in strain occurring over length Ax. The dif­
ferential internal work (or strain energy) dU is the internal force multiplied by the dis- . 
placement through which the force moves, given by 

dU = ux (dy)(.6.z)(.6.x)dex (3.10.2) 

Rearranging and letting the volume of the element approach zero, we obtain, from 
Eq. (3.l0.2), 

(3.1O.3) 

For the whole bar, we then have 

(3.10.4) 

Now, for a linear-elastic (Hooke's law) material as shown in Figme 3-26, we see that 
Ux = Eex• Hence substituting this relationship into Eq. (3.1O.4), integrating with re­
spect to ex, and then·resubstituting Ux for Es;x, we have 

U ~JJI uxexdV (3.10.5) 

v 

as the expression for the strain energy for one-dimensional stress. 
The potential energy of the external forces, being opposite In sign from the ex­

ternal work expression because the potentiai energy of external forces is lost when the 

E Figure 3-26 linear-elastic (Hooke's law) 
material 
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work is done by the external forces, is given by 

(3.10.6) 

where the first, secon~ and third tenns on the right side ofEq. (3.10.6) represent the p0.­

tential energy of (I) body forces Xb, typically from the self-weight of the bar (in units of 
force per unit volume) moving through displacement function ii, (2) surface loading or 
traction Tx, typically from distributed loading acting along' the surface of the element 
(in units of force per unit surface area) moving through displacements Us, where Us are 
the displacements occurring over surface S11 and (3) nodal concentrated forces fix 
moving through nodal displacements du. The forces Xb, Tx. and fix are considered to 
act in the local x direction of the bar as shown in Figure 3-27. In Eqs. (3.10.5) and 
(3.1 0.6), V is the volume of the body and S, is the part of the suri'iice S on which sur­
face loading acts. For a bar element with two nodes and one degree of freedom per 
node, M = 2. 

We are now ready to describe t.be finite element formulation of the bar element 
equations by using the principle of minimum potential energy. 

The finite element process seeks a minimum in the potential energy within the._ 
constraint of an assumed displacement pattern within each element. The greater the 
number of degrees of freedom associated with the element (usually meaning increasing 
the number of nodes), the more closely will the solution approximate the true one 
and ensure complete equilibrium (provided the true displacement can, in the limit, 
be approximated). An approximate finite element solution found by using the stiffness 
method will always provide an approximate value of potential energy greater than or 
equal to the correct one. This method also results in a structure behavior that is pre­
dicted to be physically stiffer than, or at best to have the same stiffness as, the actual 
one. This is explained by the fact that the structure model is allowed to displace only 
into shapes defined by the tcons of the assumed displacement field within each element 
of the structure. The correct shape is usually only approximated by the assumed field, 
although the correct shape can he the same as the assumed field. The assumed field 
effectively constrains the structure from deforming in its natural manner. This con­
straint effect stiffens the predicted behavior of the structure. 

, Apply the" following steps when using the principle of minimum potential energy 
to derive the finite element equations .. 

1. Formulate an expression for the total potential energy. 
2. Assume the displacement pattern to vary with a finite set of 

undetermined parameters (here these are the nodal displacements dix), 

which are substituted into the expression for total potential energy. 
3. Obtain a set of simultaneQus equations minimizing the total potential 

energy with respect to these nodal parameters. These resulting 
equations represent the element equations. . 

The resulting equations are the.approximate (or possibly exact} equilibrium 
equations whose solution for the nodal parameters seeks to minimize the potential 
energy when back-substituted into the potential energy expression. The preceding 
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i 

Figure 3-27 General forces acting on 
a one-dimensional bar 

three steps will now be followed to derive the bar elemept equations and stiffness 
matrix. 

Consider the bar element of length L, with constant crossasectional area A, 
shown in Figure 3-27. Using Eqs. (3.10.5) and (3.10.6), we find that the total potential 
energy, Eq. (3.10.1), becomes 

II ustdS - JII uXbdV (3.10.7) 

SI Y 

because A is a constant and variables (Ix and ex at most vary with i. 
From Eqs. (3.1.3) and (3.1.4), we have the axial displacement function expressed 

in terms of the shape functions and nodal displacements by 

12 = [N]{d} Us = [Ns]{d} (3.10.8) 

where fN] = [l-~ f] (3.10.9) 

fNs] is the shape function matrix evaluated over the surface that the distributed sur­
face traction acts and 

{d) = { z: } (3.iO.lO) 

Then, using the strain/displacement relationship ex dil/ dx, we can write the axial 
strain as 

[ I 1]. 
{ex }= -I L {d} (3.10.11) 

or (3.10.12) 
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where we define 

[B} = [-± ±] 
The axial stress/strain relationship is given by 

{q.T} [D]{ex} 

where [D}=[EJ 

(3.10.13) 

(3.10.14) 

(3.10.15) 

for the one-dimensional stress/strain relationship and E is the modulus of elasticity. 
Now, by Eq. (3.10.12), we can express Eq. (3.10.14) as 

(3.10.16) 

Using Eq. (3.10,7) expressed in matrix notation form, we have the total potential 
energy given by 

1tp = 4 J: {qx} T {ex} dx-{d} T {P}- JJ{us} T {Ty} dS-J J j{u} r'{Xb} dV (3.10.17) 
SI v 

where {P} now represents the concentrated nodal loads and where in general both 
!lx and !x are colwnn matrices. For proper matrix multiplication, we must place the 
transpose on {q,l.}. Similarly, {ill and {Tx} in general are column matrices,' so for 
proper matrix multiplication, {u} is transposed in Eq. (3.10.17). 

Using Eqs. (3.10.8). (3.10.12), and (3.10.16) in Eq. (3.10.17), we obtain 

1tp = ~ J: {d} T[BJTfDf[B}{d} dx - {d} T {P} 

- IJ{d}T[Ns]T{t.;}dS- JJJ{d}T[N]T{ib}dV 
(3.10.18) 

~ v 

In Eq- (3.10.18), np is seen to be a func~ion of {d}; that is, 1tp = 1tp(d1x,{h,:). Ho~­
ever, tB} and [D], Eqs. (3.10.l3) and (3.10.15), and the nodal degrees of freedom d1x 

and d2x are not functions of x. Therefore, integrating Eq_ (3.10.18) with respect to i 
yields 

where 

1tp = ~L {d}T[BIT[D]T[B]{d} _ {d}T{/} 

{j} {P}+ IJ[Ns]T{tl"}dS + JJJ[N]T{Xb}dV 
SI v 

(3.10.19) 

(3.10.20) 

From Eq. (3.1 0.20), we observe three separate types of load contributions from 
concentrated nodal forces, surface tractions, and body forces, respectively. We define 
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these surface tractions and body-force matrices as 

{is} = II (NS]T{t}dS (3.l0.20a) 

s, 

{j~} = III [N]T{Xb}dV (3.l0.20b) 

Y 

The expression for {j} given by Eq. (3.10.20) then describes how certain loads 
can be considered to best advantage. 

Loads calculated by Eqs. (3JO.20a) and (3.10.20b) are caned consistent because 
they are based on the same shape functions [N] used to calculate the element stiffness 
matrix. The loads calculated by Eq. (3.l0.20a) and (3.1O.20b) are also statically equiv­
alent to the original loading; that is, both {is} and {,iE,} and the ori~nal loads yield the 
same resultant force and same moment about an arbitrarily chosen point. 

The minimization of 1lp with tespect to each nodal displacement requires that 

(3.10.21). 

Now we explicitly evaluate 7t.p given by Eq. (3.l0J9) to apply Eq. (3.10.21). We defin~ 
the fonowing for convenience: 

{U*} = {d}T[Bf(D]T[B]{d} (3.10.22) 

Using Eqs. (3.10.10). (3.10.13), and (3.10.15) in Eq. (3.IO.22) yields 

(3JO.23) 

Simplifying Eq. (3.10.23), we obtain 

(3.10.24) 

Also, the explicit expression for {ti} T {j} is 

(3.10.25) 

Therefore, using Eqs. (3.10.24) and (3.10.25) in Eq. (3.10.19) and then applying Eqs. 
(3.10.21), we obtain 

(3.10.26) 
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and 01!p AL [E A ~]-
iJd'b: =2 L2 (-2d1x + 2d'b:) ...:. hx = 0 

In matrix form, we express Eqs. (3.10.26) as 

air! = AE [ 1 -1 ] { ~IX } _ {~x } = { 0 } 
iJ{ d} L -1 1 d'b: 12x 0 

(3.10.27) 

or, because {j} = I},]{d}, we have the stiffness matrix for the bar element obtained 
from Eq. (3.10.27) as 

(ie} = AE [ 1 -1 ] 
L -1 1 

(3.10.28) 

As expected} Eq. (3.10.28) is identical to the stiffness matrix obtained in Section 3.1. 
Finally) instead of the cumbersome process of explicitly evaluating 1Cp , we can 

use the matrix differentiation as given by Eq. (2.6.12) and apply it directly to Eq. 
(3.l0.l9) to obtain 

01C! = AL[Bf[D][B]{d} _ {j} = 0 
o{d} 

(3.10.29) 

where [Df = (D] has been used in writing Eq. (3.10.29). The result of the evaluation 
of AL[Bf[DJ[Bl is then equal to fk] given by Eq. (3.10.28). Throughout this text> we 
will use this matrix differentiation concept (also see Appendix A), which greatly sim­
plifies the task of evaluating ["}. 

To illustrate the use ofEq. (3.10.20a) to evaluate the equivalent nodal loads for a 
bar subjected to axial loading traction Tx , we now solve Example 3.12. 

Example 3.12 

A bar of length L is subjected to a linearly distributed axial loading that varies from 
zero at nOde 1 to a maximum at node 2 (Figure 3-28). Determine the energy equiva­
lent nodal loads. 

~ 
11~~:f 

, _ . L -

Figure 3-28 Element subjected to linearly varying axial load 
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Using Eq. (3.l0.20a) and shape functions from Eq. (3.10.9), we solve for the 
energy equivalent nodal forces of the distributed loading as follows: 

{lo} {~:} = !f [Nj T {t,} dS J: II ; I I {ex} dx (3.10.30) 

ICX2 
- Ci3lL 

2 3L 
- Cx3 

() 

= IC~21 
CL2 

-3-

(3.10.31) 

where the integration was carried out over the length of the bar, because.Tx"is in units 
of forcellength. 

Note that the total load is the area under the load distribution given by 

F ~(L)(CL) = CL
2 

. (3.10.32) 

Therefore, comparing Eq. (3.10.31) with (3.10.32), we find that the equivalent nodal 
loads for a linearly varying load are . 

~ '1 
fix '3 F = one-third of the total load 

(3.10.33) . 

f2:x = ~ F = two-thirds of the total load 

In summary. for the simple two-noded bar element subjected to a linearly varying 
load (triangular loading» place one-third of the total load at the node where the dis­
tributed loading begins (zero end of the load) and two-thirds of the total load at the 

. node where" the peak value of the distributed load ends. • 

We now illustrate (Example 3.13) a complete solution for a bar subjected to a 
surface traction loading. 

Example 3.13 

For the rod loaded axially as shown in Figure 3-29, detennine the axial displacement 
and axial stress. Let $ = 30 X 106 psi. A = 2 in.2, and L = 60 il). Use (a) one and (b) 
two elements in the finite element solutions. (In Section l.ll one-, two-, four-, and 
eight-element solutions will be presente4 from the computer program Algor [9}. 
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T~ :; -lOx Ib/in. 

Figure 3-29 Rod subjected to triangular 
load distribution 

f--1-----60 in.----~ r-x 

(a) One-element solution (Figure 3-30). 

-600 

Figure 3-30 One-element model 

From Eq. (3.l0.20a), the distributed load matrix is evaluated as follows: 

(3.10.34) 

where Tx is a line load in units of pounds per inch andjo = Eo as;f = g. TherefQre, 
using Eq. (3.1.4) fo~ [N] in Eq. (3.10.34), we obtain 

{F,} 1: f fI }{-lOX}dx (3.10.35) 

or {~:} = ! _l~::;:of' l=! ~:;:: l=! ~::;::: I 
or FIx = -6000 lb Fa = -12,000 lb (3.10.36) 

Using Eq. (3.10.33), we could have determined the same forces at nodes 1 and 2-that 
is, one-third of the total load is at node 1 and two-thirds of the total load is at node 2. 
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Using Eq. (3.10.28), we find that the stiffness matrix is given by 

k(l} = 106 [ 1 -1] 
-1 1 

The element equations are then 

10
6 
[_: -!] {d~x } = {R1x --~~OOO} 

Solving Eq. 1 ofEq. (3.10.37), we obtain 

dl;c = -0.006 in. 

The stress is obtained from Eq. (3.IO.l4) as 

{ax} [D]{e~J 

= E[B]{d} 

=EH iH~:} 
=E(d1x~dIX) 

= 30 X 106 (0 + !OO6) 
= 3000 psi (T) 

(b) Two-element solution (Figure 3-31). 

-600 

Figure 3-31 Two-element model 

(3.10.37) 

(3.10.38) 

(3.10.39) 

We first obtain-the element forces. For element 2, we divide the load into a uni­
form part and a triangular part. For the uniform ~ half the total uniform load is 
placed at each node associated with the element. Therefore" the total uniform part is 

(30 in.)( -300 IbJin.) = -9000 Ib 

and_using Eq. (3.10.33) for the 1:r'iaflgular part of the load, we have, for element 2, 

{J[;)} {-~(9000) + (45OO)]} {-6000 Ib} 
Ii;) = -~(9000) + (4500)J = -7500 lb 

{3.l0.40) 
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For e1ement 1, the total force is from the triangle-shaped distributed load only and is 
given by 

!(30 in.)(:-300 Ib/in.) = -45001b 

On the basis ofEq. (3.10.33), this load is separated into nodal forces as shown: 

{ ft~)} = {t(-4500)} = {-15001b} 
Ii!) i< -4500) -3000 Ib 

The final nodal force matrix is then 

{
FIX} { -1500 } 
F2.x = -6000 - 3000 

F3,x R3x - 7500 

The element stiffness matrices are now 

122 

2 3 2 3 

k(l) g(2) = :~ [_; -~l = (2 x 106),[ _; ,-~] 
The assembled global stiffness matrix is 

Ii = (2 X )06) [-0; -~ _~] Ib 
-1 1 in. 

The assembled global equations ,are then 

(2x 106)[_! -~ -~] {~~ } = { =!: } 
o -1 1 d3x = 0 R3x - 7500 

(3.10.41) 

(3.10.42) 

(3.10.43) 

(3.10.44) 

(3.10.45) 

where the boundary condition d3x = 0 has been substituted into Eq. (3.1O.45). Now, 
solving equations 1 and 2 ofEq. (3.10.45-), we obtain 

dl;r = -0.006 in. 

d2x = -0.00525 in. 

The element stresses are as follows: 

Element 1 

[ 
1 I] { dtx = -0.006 } 

(1x = E - 30 30 d2.x = -0.00525 

= 750 psi (T) 

(3.10.46) 

(3.10.47) 
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Element 2 

(.1x = E[-2. 2.] {d2x = -0.00525} 
30 30 d3x = 0 

5250 psi (T) 

A. 3.11 Comparison of Finite Element Solution 
to Exact Solution for Bar 

(3.10.48) 

• 

We will now compare the finite element solutions for Example 3.13 using one, two, 
four, and eight elements to model. the bar element and the exact solution. The exact 
solution for displacement is obtained by solving the equation 

1 1x 

u=- P(x)dx 
AE 0 

where, using the following free-body diagram, 

~-lOX Ibfin. 

I ~P(x) 
'x 

we have P{x) = !x(10x) 5x2 1b 

Therefore, substituting Eq. (3.1 1.2) into Eq. (3.11.1), we have 

u - 5rdx 1 IX 
AE 0 

5x3 

= 3AE+ C1 

Now, applying the boundary condition at x = L, we obtain 

SL3 
u(L)=O 3AE+C1 

or 

(3.11.1) 

(3.1 1.2) 

(3.l1.3) 

(3.11.4) 

Substituting Eq. (3.11.4) into Eq. (3.11.3) makes the fina) expression-for displacement 

5 (3 L 3) 
U= 3AE x (3.1 1.5) 
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~ .= 
.S 
i: 
u 
E 
8 
a:t 

~ a 

0 

-O.OOt 

-0.002 

-0.003 

-0.004 

-0.005 

A One element 
'> Two elements 
~ Four elements 
.6. Eight dements 

"- Exact solution 
It 2.n8(10-a~ - 0.006 

-0.006 
0 20 '- 40 60 

Axial coordinate in inches 

Figure 3-32 Comparison of exact and finite element solutions for axial displacement 
(along length of bar) 

Substituting A == 2 in.2, E = 30 X 106 psi, and L 60 in, into Eq. (3.11.5), we obtain 

u = 2.778 x 1O-8.x3 - 0.006 (3.11.6) 

The exact solution for axial stress is obtained by solving the equation 

P(x) 5x2 
2' 

o-(x) == A = 2 in2 == 2.5x pSI (3.1 L7) 

Figure 3-32 shows a plot of Eq. (3.11.6) along with the finite element solutions 
(part of which were obtained in Example 3.13). Some conclusions from these results 
follow. 

1. The finite element solutions match the exact solution at the node 
points. The 'reason why these nodal vaiues are correct is that the 
element nodal forces were calculated on the basis of being energy~ 
equivalent to the distributed load b~ on the assumed linear 
displacement field within each element. (For uniform cross-sectional 
bars and beams, the nodal degrees of freedom are exact. In general, 
computed nodal degrees of freedom are not exact:) , 

2. Although the node values for displacement match the exact solution} 
the values at locations between the nodes are poor using few elements 
(see one- and two-element solutions) because we used a linear 
displacement function within each element, whereas the exact solution) 
Eq. (3.11.6), is a cubic function. However, because we use increasing 
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cOile element 
o Two elements 

7 ... Four elements 
~ • Eight elements 
Ii 6 
~ o 

J:! .: 

.S 4 
'" 
~ 3r~-&~~~~~~~~~-'~~~~&-~~~-&~ 

Exact solution 
a(x):::: 2.5.1'2 

O~O~~~~~--2~O----~------~~----~----~W 

,Axial coordinate in inches 

Figure 3-33 Comparison of exact and finite element solutions for axial stress (along 
length of bar) 

numbers of elements, the finite element solution converges to the exact 
solution (see the four- and eight-element solutions in Figure 3-32). 

:t The stress is derived from the slope of. the displacement -CUlVe as 
(J = Ee = E(dujdx). Therefore~ by the fl..nite element solution, because 
u is a linear function in each element, axial stress is constant in each 
element. It then takes even more elements to model the first derivative 
of the displacement function Of, equivalently, the axial stress. This is 
shown in Figure 3-33, where the best results occur for the eight-
element solution. / /: 

4. The best approximation of the stress occurs at the midpoint of the 
element, not at the nodes (Figure 3-33). This is because the derivative 
of displacement is better predicted between the nodes than at the 
nodes. 

S. The stress is not continuoUs across element boundaries. Therefore, 
equilibnum is not satisfied across element boundaries. Also, equilib­
rium within each element is, in general, not satisfied. this is shown in 
Figure 3-34 for element 1 in the two-element solution and element 1 
in the eight-element solution [in the eight-element solution the forces 
are obtained from the Algor computer code [9]J. As the number of 
elements used increases, the discontinuity in the stress decreases across 
element boundaries, and the approximation of equilibrium improves. 

Finally, in Figure 3-35, we show the convergence of axial stress at the .fixed end 
(x = L) as the number of elements increases. 
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CD 

~
OOlb/in. 

1500 lb 1500 Ib 

~~----------------------~ 30 in. 

Ca) Two-element solution 

--
7Slb/in. ........ 

--.--..--
--------

4500 Ib 
15~ Ib j,..;::::!lft:=:::::=:=-., 1500 lb 
~-. ----------~~ 

2811b 
~ 

93.16 Ib ~ 93.76 Ib 
1.S in. 

93.76Jb ~ 93.76 Ib 

(b) Eight-elemcnt solulion 

Figure 3-34 Free-body diagram of element 1 in both two- and eight-element 
models, showing that equilibrium is not satisfied 

2 

2 4 6 
Number of elements 

Figure 3-35 Axial stress at fixed end as number of elements increases 
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However, if we formulate the problem in a customary general way, as described 
in detail in Chapter 4 for beams subjected to distributed loading, we can obtain the 
exact st!ess distribution with any ,of the models used. That is, letting! k4 -10> 
where 10 is the initial nodal replacement force system of the distribute'!.. !oad on 
each element, we subtract .the initial replacement force system from the kd result. 
This yields the nodal forces in each element. For example, considering element 1 of 
the two-element model, we have [see also Eqs. (3.10.33) and (3.10.41)] 

• {-15001b} 
fo = -3000 lb -

Using 1 kJ. -10' we obtain 

j = 2(30 ~ 106
) [ 'I -1] { -0.006 in. } _ { -1500 Ib } 

- (30 In.) -1 1 -0.00525 in. -3000 Ib 

{ 
-1500 * 15oo} = { 0 } 

1500 + 3000 4500 

as the actual nodal forces. Drawing a free-body diagram of e1ement I, we have 

~~/m 
o ---tIo-1 4500 lb 

30 in. 

LFx ~ 0: - !(300 Ibjin.)(30 in.) + 4500 lb = 0 

For other kinds of elements (other than beams), 'this adjustment is ignored in practice. 
The adjustment is less important for plane and solid elements than for beams. Also, 
these adjustments are more difficult to formulate for an element of general shape. 

:l 3.12 Galerkin's Residual Method and Its Use 
to Derive the- One-Dimensional Bar 
Element Equations 

General Formulation 

We developed the bar finite element equations by the direct method in'Section 3.1 and 
by the potential energy method (one of a number of variational methods) in Section 
3.10. In fields other than structural/so1id mecha~-ics, it is quite probable that a varia­
tional principle) analogous to the principle ofmimmUID potential energy, for instance, 
may not be known or even exist. In some flow problems in fluid mechanics and in 
mass transport problems (Chapter 13), we often have only the differential equation 
and boundary conditions available. However, the finite element method can still be 
applied. 
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The methods of weighted residuals applied directly to the differential equa­
tion can be used to develop the finite element equations. In this section, we describe 
Galerkin's residual method in general and then apply it to the bar element. This devel­
opment provides the basis for later applications of Galerkin's method to the beam 
element in Chapter 4 and to the nonstructural heat-transfer element (specifically, the 
one-dimensional combined conduction, convection, and mass transport element 
described in Chapter 13). Because of the mass transport pheno~ena) the variational 
formulation is not known (or certainly is'difficult to obtain), so Galerkin's method 
is necessarily applied to develop the finite element equations. 

There are a number of other residual methods. Among them are coUocation, 
least squares~ and subdomain as described in Section 3.13. (For more on these meth­
ods, see Reference [5].) 

In weighted residual methods, a trial or approximate function is chosen to ap­
proximate the independent variable, such as a disp1acement or a temperature, in a 
problem defined by a differential equation. This trial function will not, in general, sat­
isfy the governing differential equation. Thus substituting the trial function into the dif­
ferential equation results in a residual over the whole region of the problem as follows: 

I J J R dV = minimum (3.12.1) 
p 

In the residual method) we require that a weighted value of the residual be a min­
imum over the whole region. The weighting functions allow the weighted integral of 
residuals to go to zero. If we denote the weighting function by W, the general form 
of the weighted residual integral is 

(3.12.2) 

Using Galerkin's method, we choose the interpolation function, such as Eq. 
(3.1.3), in terms of Ni shape functions for the independent variable in the differential 
~quation. In general, this substitution yields the residual R =F O. By the Galerkin crite­
rion, the shape functions N; are chosen to play the role of the weighting functions W. 
Thus for each i) we haye 

(i = 1,2, ... ,n) (3.12.3) 

Equation (3.12.3) results in a total of n equations. Equation (3.l2.3) applies to poin~ 
within the region of a body without reference to boundary conditions such as specified 
applied loads or displacements. To obtain boundary conditions, we.apply integration 
by parts to Eq. (3.12.3), which yields integrals applicable for the region and its 
boundary. 

Bar Element Formulation 

We now illustrate Galerkin's method to formulate the bar element stiffness equations. 
We begin with the basic differential equation, without distributed load, derived in 
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Section 3.1 as 

(3.12.4) 

where constants A and E are now assumed. The residual R is now defined to be Eq. 
(3.12.4). Applying Galerkin's criterion [Eq. (3.12.3)] to Eq. (3.12.4), we have 

(i = 1,2) (3.12.5) 

We now apply integration by parts to Eq. (3.12.5). Integration by parts is given in 
general by 

I udv=uv- Jvdu 

where u and v are simply variables in the general equation. Letting 

N 1. 'dNid~ 
U= i uu= dx x 

dv = :x (AE~!) dx v = AE~! 
(3.12.7) 

in Eq. (3.12.5) and integrating by parts according to Eq. (3.12.6), we find that Eq. 
(3.12.5) becomes 

(
N.AE dU) lL _ JL AEdft. dNi d- = 0 

I d~ d- d~ x . x 0 0 x x 
(3.12.8) 

where the integration by parts introduces the boundary conditions. 
Recall that, because Ii. = [N]{d}, we have, 

du dNt ~ 'dN2 ~ 
dx = dx db: + dx d2x (3.12.9) 

or, when Eqs. (3.L4) are used for Nt = 1 - ijL and N2 = xjL, 

~;= H ±l{t} (3.12.10) 

Using Eq. (3.12.10) in Eq . .{3.12.8),we then express Eq. (3.12.8) as 

AEJL~i [_.!. '!']dX{ ~b:} = (NiAEd~) [L 
o dx L L d1,x, dx 0 

(i 1,2) (3.12.11) 

Equation (3.12.11) is really two equations'(one for Ni Nt and one for Ni = N2). 
First, using the weighting function Ni = Nt, we have 

AEIL rm..1 [-.!. !]dX{ ~b:} = (NIAEd~) IL . 
() dx L L chr . dx 0 

(3.12.12) 
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Substituting for dNt/di, we obtain 

(3.12.13) 

whereiix = AE(dujdi) because Nt = 1 at x = 0 and Nl = 0 at x = L. Evaluating 
Eq. (3.12.13) yields 

(3.12.14) 

Similarly, using Nj = N2> we obtain 

(3.12.15) 

Simplifying Eq. (3.12.15) yields 

(3.12.16) 

where fa = AE(duj dx) because N2 = ] at x = Land N2 = 0 at x = O~ Equations 
(3.12.14) and (3.12.16) are then seen to be the same as Eqs. (3.1.13) and (3.10.27) 
derived, respectively, by the direct and the variational method. 

~ 3.13 Other Residual Methods and Their 
Application .to a One-Dimensional Bar 
Problem 

As indicated in Section 3.12 when descnoing Galerkin's residual method,.weighted re­
sidual methods are based on assuming an approximate. solution to the governing dif­
ferential equation for the given problem. The assumed or trial solution is typically a 
displacement or a temperature function that must be made to satisfy the initial and 
boundary conditions of the problem. This trial solution will not, in geaeral, satisfy 
the governing differential equation. ThUs, substituting the trial function into the differ­
ential equation will result in some residuals or errors. Each residual method requires 
the error to vanish over some chosen intervals or at some chosen points. To demon­
strate this concept, we will solve the problem of a rod subjected to a triangular load 
distribution as shown in Figure 3-29 (see Section 3.10) for which we also have an 
exact solution for the axial displacement given by Eq. (3.11.5) in Section 3.11. We 
will illustrate four common weighted residual methods: collocation., suhdOmain, least 
squares, and Galerkin 's' method 

It is important to note that the primary intent in this section is to introduce you . 
to the general concepts of these other weighted' residual methods through a simple 
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\~\\)firo., 

--
~6()i" P(x) 

I- x -I 
(a) (b) 

Figure 3-36 (a) ROd subjected to triangular load distribution and (b) free-body 
diagram of section of rod 

example. You should note that we will assume a displacement solution that will in gen­
eral yield an approximate solution (in our example the assumed displacement function 
yields an exact solution) over the whole domain of the problem (the rod previously 
solved in Section 13.10). As you have seen already for the spring and bar elements, 
we have assumed a linear function over each spring or bar element, and then combined 
the element solutions as was illustrated in Section 3JO for the same rod solved in this 
section. It is common .practice to use the simple linear function in each element of 
a finite element model, with an increasing number of elements used to model the 
rod yielding a closer and closer approximation to the actual displacement as seen in 
Figure 3-32. ' 

For clarity's sake, Figure 3-36(a) shows the problem we are solving, along with 
a free-body diagram of a section of the rod with the internal axial force P( x) shown in 
Figure 3-36(b). 

The governing differentia1 equation for the axial displacement, u, is given by 

(AE:) -P(x) = 0 (3.13.1) 

where the internal axial force is P(x) = sil. The boundary condition is u(x == L) = O. 
The method of weighted residuals requires us to assume an approximation func­

tion for the displacement. This approximate solution must satisfy the boundary con­
dition of the problem. Here 'we assume the following function: 

(3.13.2) 

where' Cb C2 and C3 are unknown coefficients.. Equation (3.1-3.2) also satisfies the 
boundary condition given by u(x = L) = O. ' 

Substituting Eq. (3.13.2) for u into the governing differential equation, Eq. 
(3.13. t), results in theTollowing error function, R: ' 

(3.13.3) 

We now illustrate how to solve the governing differential equation by the four 
weighted residual methods. 
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Collocation Method 

The collocation method requires that the error or residual function, R, be forced to 
zero at as many points as there are unknown coefficients. Equation (3.13.2) has three 
unknown coefficients. Therefore, we will make the error function equal zero at three 
points along the rod. We choose the error function to go to zero at x = 0, x = L/3, 
and x = 2L/3 as follows: 

R(c, x = 0) = 0 = AE[CI +2C2(-L) + 3C3(-L)21 0 

R(e, x = L/3) = 0 = AE[cJ + 2C2( -2L/3) + 3C3( -2L/3)2J - 5(L/3)2 = 0 (3.13.4) 

R(e, x = 2L/3) = 0 = AE[el + 2C2( -L/3) + 3C3{ -L/3}2] 5(2L/3)2 = 0 

The three linear equations, Eq. (3.13.4), can now be solved for the unknown 
coefficients, Cl) e1 and C3. The result is 

Cl = 5L2/(AE) C2 = 5L/(AE) c) = 5j(3AE) (3.13.5) 

Substituting the numerical values, A = 2, E = 30 x 106) and L = 60 into Eq. 
(3.13.5), we obtain the c's as: 

Cl = 3 X 10-4, C2 = 5 x to-6, .• C3 = 2.778 X 10-8 (3.13.6) 

Substituting the numerical values for the coefficients given in Eq. (3.13.6) into 
Eq. (3.13.2), we obtain the final expression for the axial displacement as 

u(x) = 3 x 1O-4 (x - L) + 5 x 1O-6(x - L)2 + 2.n8 x to-s{x - L)3 (3.l3.7) 

Because we have chosen a cubic displacement function, Eq. (3.13.2), and the exact 
solution, Eq. (3.11.6), is also cubic, the collocation method yields the identical solution 
as the exact solution. The plot of the solution is shown in Figure 3-32 on page 121. 

Subdomain Method 

The subdomain method requires that the integral of the error or residual function over 
some selected subintervals be set to' zero. The number of subintervals selected must 
equal the number of unknown coefficients. Because we have three unknown coefficients 
in the roo example, we must make the number of subintervals equal to three. We choose 
the'sUbintervals from 0 to Lj3~ from L/3 to 2L/3, and from 2L/3 to L as follows: 

~ ~ , 

J Rdx = 0 J {AE[CI + 2C2(X - L) + 3c)(x - L)2) - Sx2}dx 
o 0 

ll/3 ll/3 

J Rdx = 0 = J {AE[cl + 2c2(X - L) + 3C3(X - L)2] - Sx2}dx (3.13.8) 

LI3 LI3 

L L 

J Rdx = 0 = J {AE[el + 2C1(X - L) + 3C3(X - L)2] - Sx2}dx 

ll/3 ll/3 

where we have used Eq. (3.13.3) for R in Eqs. (3.13.8). 
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Integration of Eqs. (3.13.8) results in three simultaneous linear equations that 
can be solved for the coefficients Ch '2 and C3. Using the numerical values for A, E, 
and L as previously done, the three coefficients are numerically identical to those 
given bYEq. (3.13.6). The resulting axial displacement is then identical to Eq. (3.13.7). 

least Squares Method 

The least squares method requires the integral over the length of the rod of the error 
function squared to be minimized with respect to each of the unknown coefficients in 
the assumed solution, based on the following: 

a (! ~ dx) = 0 i = 1,2, ... N (for N unknown coefficitDts) 

or equivalently to 

L 

J
RORdx 0 

OCj 
o 

(3.l3.9) 

(3.13.10) 

Because we have three unknown coefficients in the approximate solution, we will 
perfonn the integration three times according to Eq. (3.13.10) with three resulting 
equations as follows: 

L 

I{AE[CI + 2C2(X L)+ 3c3(X-L)1]-Sr}AEdx=O 
o 
L 

J{AE[Cl + 2C2(X-L) + 3C3(X L)2] 5r}AE2{x-L)dx=O· 

o 
L 

J {AE[CI + 2C2(X - L) + 3C3(X - L)2J - 5r}AID(x - L)2 dx = 0 

o 

(3.13.11) 

In the first, second, and third of Eqs. (3.13.11), respectively. we have used the 
following partial derivatives: 

oR 
AE, 

oR -;- = AE2(x - L), 
Ve2 

oR 2 
-=AE3(x-L} 
OC3 

(3.13.12) 

Integration of Eqs. (3.13.11) yields three linear equations that are solved for the 
three coefflcients. The numerical values of. the coefficients again are identical to those 
of Eq. (3.13.6). Hence, the solution is identical to the exact solution. 
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Galerkin's Method 

Galerkin's method requires the error to be orthogonal] to some weighting functions 
Wi as given previously by Eq. (3.l2.2). For the rod example, this integral becomes 

I 1,2, ... ,N (3.13.13) 

The weighting functions are chosen to be a part of the approximate solution. Be· 
cause we have three unknown constants in the approximate solution, we need to gen­
erate ~ree equations. Recall that the assumed solution is the cubic given by Eq. 
(3.13.2); therefore, we select the weighting functions to be 

(3.13.14) 

Using the weighting functions from Eq. (3.13.14) successively in Eq. (3:13.13), 
we generate the foHowing three equations: 

L 

J{AE[CI + 
o 
L 

L) + 3C3(X - LlJ - 5~}(x - L) dx 0 

J{AEle} + 2C2(X - L) + 3C3(X L)2J - s.x2}(x - L)2 dx = 0 

o 
·L 

J{AE[Ct + 2Cl(X - L) + 3C3(X - L)2] - s.x2}(x L)3 dx = 0 

o 

(3.13.15) 

Integration of Eqs. (3.13.15) results in three linear equations that can be solved 
for the unknown coefficients. The numerical values are the same as those given by Eq. 
(3.13.6). Hence, the solution is identical to the exact solution. 

. In conclusion. because we assumed the approximate solution in the form of a 
'cubic in x and the exact solution is also a cubic in x, all residual methods have yielded 
the exact solution. The purpose of this section has still reen met to illustrate the four 
common residual methods to obtain an approximate (or exact in this example) solu­
tion to a known .differential equation. The exact solution is shown by Eq. (3.1 I .6) 
and in Figure 3-32 in Section 3.11. 

1 The use of the word orthogonal in this context is a generali2ation of its use with respect to vectors. Here 
the ordinary scalar product is replaced by an integral in Sq. (3.13.13). In Eq. (3.13.13), the ftmctions 
u(x) = R $Jld ti(x) = Wi are said to be orthogonal on the interval 0 ::; x ::; L if .tL u{x)v(x) dx equals O. 



132 A 3 Development of Truss Equations 

:l References 

[1] Turner, M. J., Clough, R. W., Martin, H. c., and Topp, L. J., "Stiffness and Deflection 
Analysis of Complex Structures," Journal of the Aeronautical Sciences, Vol. 23, No.9, 
Sept. 1956, pp. 805-824. 

[2J Martin, H. C., "Plane Elasticity Problems and the Direct Stiffness Method," The Trend in 
Engineering, Vol. 13, Jan. 1961, pp. 5-19. 

[3} Melosh, R. J., "Basis for Derivation of Matrices for the Direct Stiffness Method," Journal 
of the American Institute of Aeronautics and Astronautics, Vol. I, No.7, July 1963, pp. 
1631-1637. 

f4] aden, J. T., and Ripperger, E. A., Mechanics of Elastic Structures, 2nd ed., McGraw·HiU, 
New York, 1981. 

{5] Finlayson, B. A., The Method of Weighted Residuals and Variational Principles, Academic 
Press, New York, 1972. , 

'[6] Zienkiewicz, O. C., The Finite Element Method, 3rd ed., McGraw-Hill, London, 1977. 
[7} Cook, R. D., Malkus, D. S., Plesha, M. E., and Witt, R. J., Concepts'and Applications of 

Finite Element Analysis, 4th ed., Wiley, New York, 2002. 
[8J Forray, M. J'I Variatumal Calculus in Science and Engineering, McGraw-HilI, New York, 

1968. 
[9] Linear Stress and Dynamics Reference Division, Docutech On-Line Documentation, Algor 

Interactive Systems, Pittsburgh, PA. 

A Problems 

3.1 3. Compute the total stiffness matrix K of the assemblage'shown in Figure P3-1 by 
superimposing the stiffness matrices of the individual bars. Note that If:. should be in 
tenns of A),A2,A3,E),E2tE3,LI, L", and L3. Here A,E, and L are generic S}illl­

boIs used for cross-sectional area, modulus. of elasticity, and length, respectively. 

·~~,.E'.~ 
Figure P3-1 

b. Now let Al = A2 = A3 = A,E, = E2 = E3 = E, and LI =L2 = L3 = L. If nodes 
1 and 4 are fixed and a force P acts at node 3 in ,the positive x direction, find ex­
pressions for the displacement of nodes 2 and 3 in tenns pf A, E, L, and P. 

c. Now let A = I in2, E = 10 X 106 psi, L = 10 in., and P = 1000 lb. 
i. Determine the numerical values of the displacements of nodes 2 and 3. 
ii. D~tennine the numerical values of the reactions at nodes I and 4. 

iii. Detennine the stresses in elements 1-3. 

3.2-3.11 For the bar assemblages shown in Figures P3-2-P3-11, determine the nodal dis­
placements, the forces in each element, and the reactions. Use the direct stiffness 
method for these problems. 



I' 2 3 
0- o. 

1m 1m 

Figure P3-2 

(i) 2 8000 Ib <Y 
20 in. 50 in. 

Figure P3-3 

<Y 
(i) 

30 in. 30 

Figure P3-4 

E,.A 2 £1. A 3 

30 in. 30 in. -----i 
Figure P3-5 

, 
/ 

2 .... 
E2 ,A 

I £1' A 2 8000 Ib 

50 in. 

Rigid bar -----
2", 

E;!.A 

30 in. 

Figure P3-6 

Figure P3-7 

Aluminum 3 

1m 

Figure P3-8 

Problems 

5k.N £:= 210GPa 
A = 4 )( 10-4 m2 

£ = 3O'x lot' psi 
A = 2.0 in1 

£ = 30 X 106 psi 
A = 4.0 in1 

15.000Ib £1 = 30 x 1(1' psi 

3 

4 

/ 

20kN 

£2 15 x \(1' psi 
A 5 in2 

EI 30 X 106 psi 
E1 10 x 106 psi 
A = 2 in~ 

E = 15 x 10" psi 
A = 3 in2 

Ie :: 5000 lb/in.~ 

Est:::; 200GPa 
AS( = 4 X 10-4 m1 

E.J = 70 GPa 
A .. == 2 X 10-4 m1 

A 133 
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I CD 10 kN 2 

2m 2m 

Figure P3-9 

@ 
CD 2 8k.N 

2m 2m 

Figure P3-1 0 

2 ® 

I CD 2 ® 30kN 

3m 

2 
@ 
3m 

Figure P3-11 

3 

4 

5 

E = 210GPa 
A = 4 X 10- 4 m2 

I) = 2Smm 

E = 70GPa 
A = 2 x 10-4 m2 

k 2000 kN/m 

£ 210CiPa 
A = 3 X 10-4 m2 

3.12 Solve for the axial displacement and stress in the tapered bar shown in Figure P3-12 
using one and then two constant-area elements. Evaluate the area at the center of 
each element length. Use that area for each element. Let Ao = 2 in2} L = 20 in., 
E = 10 X 106 psi, and P = 1000 .lb. Compare your finite element sol~tions with the 
exact solution. 

P ...... -~-.... 

~14--------L---------~ 1 

Figure P3-12 

3.13 Detennine the stiffness matrix for the bar element with end nodes and midlength node 
shown in Figure P3-13. Let axial displacement u = a, + a2X + a3i'. (This is a higher­
order element in that strain now varies linearly through the element) 

r x,U 

o~--------~o~---------o 
I 3 2 

L 
Figure P3-13 
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3.14 Consider the following displacement function for the two-noded bar element: 

Is this a valid displacement function? Discuss why or why not. 

3.15 For each of the bar elements shown in Figure P3-1S, evaluate the global x-y stiffness 
matrix. 

y 

2 

E 30 X l<rpsi 
A = 3 in2 

L ... 20 in. 

'¥----'------_x 

y 

(a) 

E = 210GPa 
A = 4 X -10- 4 ml 

L=3m 

k---,-----'---_x 
I· 

(c:) 

Figure P3-1S 

2 

2 

E = IS x I06psi 
A = I in2 

L = 15 in. 

\)-----'-----_x 

(b) 

y 

E = 70GPa 
A ::: 2 X 10- 4 m2 

L' t m 

t===:::;:::=======:::J 2 
2ff 

x 

(d) 

3.16 For the bar elements shown in Figure P3-16, the global displacements have been de­
termined to be dlx = 0.5 in., dIy = 0.0, d2;c = 0.25 in., and d2y 0.75 in. Determine 
the local x displacements at each end of the bars. Let E = 12 X 106 psi, A = 0.5 in2, 

and L 60 in. for each element. 
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y y 

30" 
J.,-----.-----..... x 

(a) 

(b) 

Figure P3-16 

3.17 For the bar elements shown in Figure P3-17, the global displacements have been de~ 
termined to be db; = 0.0, d1y = 2.5 mIn) dlx = 5.0 mm, and di,y = 3.0 mm. Detennine 
the 16cal x displacements at the ends of each bar. Let.E = 210 OPal A = 10 X 10-4 

rn2 , and L = 3 m for each element. 

i 

\ y 

u-----1..-_--..... X k---......------..... x 

(a) 

(b) 

Figure P3-17 

3.18 Using the method of Section 3.5, determine the axial stress in each of the bar elements 
shown in Figure P3-1S. 



y 
2 

~ ____________ :r 

(a) 

y 

E = 30 x 10" psi 
A = 2 in2 

L = 60 in. 
db = 0 dry == 0 
d'b = 0.01 in. dly = 0.02 in. 

E = 210 GPa 
2 A = 3 X 10-4 m2 

L=-3m 
db = 0.25 mm d., = 0.0 
db. = 1.00 mm dz., = 0.0 

~ __ ~ __________ ~,X 

(b) 

Figure P3-18 
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3.19 3. Assemble the stiffness matrix for the assemblage shown .~ Figure P3-19 by super­
imposing the stiffness matrices of the springs. Here k is the stiffness of each spring. 

b. Find the x and y components of deflection of node 1. . 

y 

2 

Figure P3-19 

y"--4r----- X 

10Ib 
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3.20 For the plane truss structure shown in Figure P3-20, detennine the displacement of 
node 2 using the stiffness method. Also detennine the stress in element 1. Let A = 5 
in2, E = 1 X 106 psi, and L = 100 in. 

I" 
L -I· L -I 

1/ II/, 

10 kip 4 3 

2 

CD L 

UCJ_J{f_--,-4_5~411b 
Figure P3-20 Figure P3-21 

3.21 Find the horizontal and vertical displacements of node 1 for the truss shown in Figure 
P3-21,. Assume AE is the same for each element. 

3.22 For the truss shown in Figure P3-22 solve for the horizontal and vertical components 
of displacement at node 1 and detennine the stress in each element. Also verify force 
equilibrium at node 1. All elements have AI 1 in.2 and E = 10 X 106 psi. Let L = 
100 in. 

2 

CD 

1000 Jb Figure P3-22 

eof--=--I--~O----lOOO Ib 

4 
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3.23 'For the truss shown in Figure P3-23, solve for the horizontal and vertical components 
of displacement at node 1. Also detennine the stress in element I. Let A = I in2, 

E = 10.0 X 106 psi, and L = 100 in. ' 

I 
12.000 tb --+-

I- L---t 

Figure P3-23 

I' 

/. 

J 

4 ® 

Q) 

® 

CD 
20 it 

Figure P3-24 

"[~ = 1000 Ib 

@ 'T 
@ 

IS ft 

21 
P = 1000 Ib 

3.24 Detennine the nodal displacements and the element forces for the truss shown in 
Figure P3-24. Assmne all elements have the same AE. 

3.25 Now remove the element connecting nodes 2 and 4 in Figure P3-24. Then determine 
the nodal displacements and element forces. 

3.26 Now remove both cross eiements in Figure'P3-24. Can you determine the nodal dis-­
placements? If not) why? 

3.27 Determine the displacement components at 'node 3 and the element forces for the 
plane truss shown in Figure P3-27. Let A = 3 in2 and E = 30 x· 106 psi for all ele­
ments. Verify force equilibrium at node 3. 

5 kip 

10 
ki CD I P ill 

I 
I 
I 
I 

· !--30ft+30ft-' I 

1 Figure P3-27 
40 fr 

21 
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3.28 Show that for the transformation matrix I of Eq. {3.4.l5), IT r- I and hence 
Eq. (3.4.21) is indeed correct, thus also illustrating that! = ITkI is the expression 
for the global stiffness matrix for an element. 

3.29-3.30 For the plane trusses shown in Figures P3-29 and P3-30, determine the horizontal 
and vertical displacements of node 1 and the stresses in each element. All elements 
have E 210 GPa and A = 4.0 X 10-4 m2• 

• 2 

3 • 

3m CO 
Q) 3m 

4Sb 

10 kN "'IIIIIf-__ -o-_~----®;;.3-__{ 
3m 

4 

20kN 

Figure P3-29 

5m 

4 

Figure P3-30 

3.31 Remove element 1 from Figure P3-30 and solve the problem. Compare the displace­
ments and stresses to the results for Problem 3.30. 

3.32 ~or the plane truss shown in Figure P3-32, detennine the nodal displacements, the 
element forces and stresses, and the support reactions. All elements have E = 70 GPa 
and A = 3.0 X 10-4 m2• Verify force equilibrium at nodes 2 and 4. Use synunetry in 
your model. 

~ 50 kN fOOkN 50 kN 
@ 4 6 

2 

Q) ® 
CO ® 3m 

® 3 

3m 3m 
~ 

Figure P3-32 

3.33 For the plane trusses supported by the spring at node I in Figure P3-33 (a) and (b), 
determine the nodal displacements and the stresses in each element. Let E = 210 GPa 
and A = 50 X 10-4 m2 for both truss elements. 
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2 3 

• 2 
lOOW 

5m 5m 
50kN <D ® 

3 60" 
\ 

10m 

k = 2000 kN/m 

4 

Figure PS-33(a) Figure PS-S3(b) 

® 
4~--------~--------~ 

8 ft 

Figure PS-34 

3.34 For the plane ~s shown in Figure P3-34, node 2 settles an amount d 0.05 in. 
Determine the forces and stresses in each element due to this settlement. Let E = 
30 X 106 psi and A = 2 in2 for each element. 

3.35 For the symmetric plane truss shown in Figure P3-35, detennine (a) the deflection of 
node 1 and (b) the stress in element 1. AE / L for element 3 is twice AE / L for the ,?ther 

2 - 6 
Figure P3-35 

o 
,""1""--------"-----% 

P == 2000 Jb 
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elements. Let AEj L 1061bjin. Then let A = I in2 , L ~ 10 in., and E = 10 x 106 psi 
to obtain numerical results. 

3.36-3.37 For the space truss elements shown in Figures P3-36 and P3-37, the global displace­
ments at node 1 have been determined to be d1x = 0.1 in.) d1y = 0.2 in., and db = 
0.15 in. Determine the displacement along the local .i axis at node 1 of the elements. 
The coordinates, in inches, are shown in the figures. 

y i 

2 ~20.1O. 6) 

I 
I 
I 
I 
I 
I 
I 

(0.0,0) I 
" I 

Figure P3-36 

, I 
" I , I 

", I 
" I 

" I 
" I 

~ 

y 

(0, 0.0) r-.------- x 
"-

"-

Figure P3-37 

"­, , 
'1'-, 

I , 
I "-

I , 
I 

I 
\ (10. -20.30) 

i 

3.38-3.39 For the space truss elements shown in F,igures P3-38 and P3-39, the global dis­
placements at node 2 have been determined to be d2x = 5 rnm, d2y 10 mm, and 

y 

(0,0,0).>.\"'--___ ......... ___ x 

'\ 
\. 

"-
\. 

Figure P3-38 

\. 
\. 

\ 
'\ 

\. . ,I 
\f 

y 

(5.4, -I) 

r----~~----.x 

(2,0.2) 

Figure P3-39 
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d2:: = 15 mm. Determine the displacement along the local x axis at node 2 of the 
elements. The coordinates, in meters, are shown.in the figures. 

3.40-3.41 For the space trusses shown in Figures P3-40 and P3-41, determine the nodal dis­
placements and the stresses in each element Let E = 210 GPa and A = 10 X 10-4 m2 

for all elements. Verify force equilibrium at node 1. The coordinates of ea~h node, in 
meters, are shown in the figure. AlI supports are ball-and-socket joints. 

Figure P3-40 

• 2 (0,0.0) 

Figure P3-41 

y 

Q) 

(0.4,0) 

CO 
@ 1(4,4.3) 

@ 

10 kN 

(4. O. 3) 

y 

4 

(14.1),0) 

20 kN (in the x direction) 

3.42 For the space truss subjected to a lOO()"lb load in the x direction, as shown in Figure 
P3-42, detenD.ine the displacement of node 5. Also determine the stresses in each ele­
ment. Let A = 4 in2 and E = 30 x 106 psi for all elements. The coordinates of each 
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node~ in inches, are shown in the figure. Nodes 1-4 are supported by ball-and-socket 
joints (fixed supports). 

1000lb 

(-72.36,0) 

I 2 
(_ n. - 36, 0) ~\. 't'k-.------------:'~I"'r' (0. - 36, 0) 

Figure P3-42 

3 
( - 144. - 72, 0) • 

Figure P3-43 

(0,0, 144) 4 

I 
I 

I 
I 

(1)/ 
I 

I 
I 

3.43 For the space truss subjected to the 4000-1b load acting as shown in Figure P3-43, 
detennine the displacement of node 4. Also detennine the stresses in each element. Let 
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A 6 in2 and E = 30 x 106 psi for all elements. The coordinates of each node, in 
inches, are shown in the figure. Nodes 1-3 are supported by baH-and-socket joints 
(fixed supports). 

3.44 Verify Eq. (3.7.9) for Ii by first expanding ro, given by Eq. (3.7.7), to a 6 x 6 square 
matrix in a manner similar to that done in Section 3.4 for the two-dimensional 
caSe. Then expand k to a 6 x 6 matrix by adding appropriate rows and columns 
of zeros (for the dz terms) to Eq. (3.4.l7). Finally, perfomi the matrix triple product 
If '[Tkr. ' 

3.45 Derive Eq. (3.7.21) for stress in space truss elements by a process similar to that used 
to depve Eq. (3.5.6) for stress in a plane truss element. 

3.46 For the truss shown in Figure P3-46, use symmetry to determine the displacements 
of the nodes and the stresses in each element. All elements have E = 30 X 106 psi. 
Elements 1,2,4, and 5 have A = 10 in2 and element 3 has A = 20 in2. 

<D 0 t 
0) 6 ft 

0 2 0 4~ 
1--8 fa 8 fl--01 

20,000 lb 

Figure P3-46 

3.47 All elements of the structure in Figure P3-47 have the same AE except element 1, 
which has an axial stiffness of 2AE. Find the displacements of the nodes and the 
stresses in elements 2, 3, and 4 by using symmetry. Check equilibrium at node 4. You 
might want to use the results obtained from the stiffness matrix of Problem 3.24. 

t>' 
p 

CD 
p 

(2) P 
3 

4 Sf 
(9 tV "® IS ft 

0) 0) 

J @ 

® @ 6 _x 

i----20ft , I. 20ft~ 
Figure P3-47 
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3.48 For the roof truss shown in Figure P3-48, use symmetry to determine the displace­
ments of the nodes and the stresses in each element. All elements have E = 210 GPa 
and A 10 x 10-4 m2• 

0
2 

CD 

Figure P3-48 

20 kN 

t 
4rn 

3.49-3.51 For the plane trusses with inclined supports shown in Figures P3-49-P3-51, solve 
for the nodal displacements and element stresses in the bars. Let A = 2 in2

, 

E = 30 x 106 psi, and L = 30 in. for each truss. 

Figure P3-49 

3 

Figure P3-50 Figure P3-S1 

3.52' Use the principle of minimum potential energy developed in Section 3.10 to solve 
the bar problems shown in Figure P3-S2. That is, plot the tota] potential energy for 
variations in the displacement of the free end of the bar to determine the minimum 
potential energy. Observe that the displacement that yields the minimwn potential 
energy also yields the stable equilibrium position. Use displacement increments of 
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0.002 in., beginning with x = -0.004. Let E = 30 X 106 psi and A 2 in2 for the 
bars. 

+ 20.000 Ib 

Ko in. %tt=======::::::::r-41-- 10,000 Ib 
~ 50 in. 

:\: 

(a) (b) 

Figure P3-S2 

353 Derive the stiffness matrix for the nonprismatic bar shown in Figure P3-53 using the 
principle of minimum potential energy. Let E be constant. 

A(x) = Ao + Ao i ] 
~~x~--I_ 

I~'-------L-------Ij 
Figure P3-53 

3.54 For the bar subjected to the linear varying axial load shown in FigUre P3-54} deter­
mine the nodal displacements and axial stress distribution using (a), two equal-length 
elements and (b) four equal-length elements. Let A = 2 in.2 and E 30 x 106 psi. 
Compare the finite element solution with an exact solution. 

----1 
_---- I[ --_-- I 

~_/_/--- /' T. = 10, Mn. ! 
-~------ ~ ---, 

x I 
60 in. 

Figure P3-S4 

3.S5 For the bar subjected to the uniform line load in the axial direction shown in Figure 
P3-55, determine the nodal displacements and axial stress distribution using (a) two 
equal-length elements and (b) rour equal-length elements. Compare the finite element 
results with an exact solution. Let A = 2 in2 and E ='30 x 106 psi. 

3.:56 For the bar fixed at both ends and subjected to the unifonnly distributed loading 
shown in FigUre P3-56> determine the displacement at the middle of the bar and the l 

stress in the bar. Let A = 2 in2 and E = 30 X 106 psi. 
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/: T. "" 100 Ib/in. 

-~~-~ 

1--30in·-1-30in.- "/ 

Figure P3-55 Figure P3-56 

3.57 For the bar hanging under its own weight shown in Figure P3-57\ determine the 
nodal displacements using (a) two equal-length elements and (b) four equal-length 
elements. Let A = 2 in2, E = 30 X 106 PSil and weight density Pili = 0.283 Ib/in3• 

(Hint: The internal force is a function of x. Use the potential energy approach.) 

60 in. Figure P3-57 

1 
3.5S Determine the energy equivalent nodal forces for the axial distributed loading shown 

acting on the bar elements in Figure P3-58. 

T., = 5J? kN/m 

~ 1~2 
10 in. 400 

(a) (b) 

Figure P3-58 

3.59 Solve problem 3.55 for the axial dbplacement in the bar using collocation, sub­
domain, least squares, and Galerkin's methods. Choose a quadratic polynomial 
u(x) = CIX + c2:x? in each method. Compare these weighted residual method solutions 
to the exact solution. 

3.60 For the tapered bar shown with cross sectional areas A I 2 in.2 and A2 = 1 in.2 at 
each end, use the collocation, subdomain, least squares, and Galerkin's methods to 
obtain the displacement in the bar. Compare these weighted residual solutions to the 
exact solution. Choose a cubic polynomial u(x) CIX + C2x2 + C3X>' 
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p= 1000 Ib 

E= lOx 106 psi 

/1---- L:: 20 in. ----"1 

Figure P3-60 

3.61 For the bar shown in Figure P 3-61 subjected to the linear varying axial load, deter­
mine the displacements and stresses using (a) one and then two finite element models 
and (b) the collocation, subdomain, least squares, and Galerkin's methods assuming a 
cubic polynomial of the fOIm u(x) = CtX + c2x? + c3.x3. 

AE=2x ref leN 
~----------------~ /t-r------3.0 m-----..;0l 

Figure P3-61 

3.62-3.67 Use a computer program to solve the truss design problems shown in Figures P3. 
62-3.67. Determine the single most critical cross·sectional area based on maximum 
allowable yield strength or buckling strength (based on either Euler's or JohnsoJt-s 
fonnula as relevant) using a factor of safety (FS) listed next to each truss. Recommend 
a common structural shape and size for each truss. List the largest three nodal dis­
placements and their locations. Also include a plot of the deflected shape of the truss 
and a principal stress plot. 

F=20kip 

l 
10' 

J.. 

4000 Ib 16,000 Ib 

1-
-IIo-t'---'25' ~18.J ;. 

Figure P3-62 Derrick truss (FS = 4.0) Figure P3-63 Truss bridge (FS = 3.0) 
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Figure P3-64 Tower (FS = 2.5) 

Figure P3-66 Howe scissors roof truss (FS == 2.0) 

FigLlre P3-65 Boxcar lift (FS = 3.0) 

8 ft 8ft 

Figure P3-67 Stadium roof truss 
(FS == 3.0) 



Introduction 

We ,begin this chapter by developjng the stiffness matrix for the bending of a beam 
element, the most common of all structural elements as evidenced by its prominence 
in buildings. bridges, towers} and many other structures. The beam element is con­
sidered to be straight and to have constant crosS-sectional area. We will first derive 
the beam element stiffness matrix by using the principles developed for simple 
beam theory. 

We will then present simple examples to illustrate the assemblage of beam 
element stiffness matrices and the solution of beam problems by the direct stiffness 
method presented in Chapter 2. The solution of a beam problem illustrates that the 
degrees of freedom associated with a node are a transverse displacement and a rota­
tion. We will include the nodal shear forces and bendil)g moments and the resulting 
shear force and bending moment diagrams as part of the total solution. 

Next, we will discuss procedures for handling distributed loading~ because 
beams and frames are often subjected to distributed loading as well as concentrated 
nodal loading. We will follow the discussion with solutions of beams SUbjected to dis­
tributed loading and compare a finite element solution to an exact solution for a beam 
subjected to a distributed loading. 

We will then develop the beam element stiffness matrix for a beam element with 
a nodal binge and illustrate the solution of a beam with an internal hinge. 

To further acquaint you with the potential energy approach for developing 
stiffness matrices and equations, we will again develop the beam bending element 
equations using this approach. We hope to increase your confidence in this approach. 
It will be used throughout much of this text to develop stiffness matrices and equations 
for more complex elements, such as two-dimensional (plane) stress, axisymmetric, and 
thrre-dimensional stress. ' 

Finally, the Galerkin residual method is applied to derive the beam element 
equations. 

.-, 
d' 

, " 
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The concepts presented in this chapter are prerequisite to understanding the 
concepts for frame analysis presented in Chapter 5. 

A. 4.1 Beam Stiffness 

In this section, we will derive the stiffness matrix for a simple beam element. A beam is 
a long) slender structural member generally subjected to transverse loading that produces 
significant bending effects as opposed to twisting or axial effects. This bending deforma­
tion is measured as a transverse displacement and a rotation. Hence, the degrees of 
freedom considered per node are a transverse displacement and a rotation (as opposed 
to only an axial displacement for the bar element of Chapter 3). 

Consider the beam element shown in Figure 4-1. The beam is of length L with 
axial local coordinate x and transverse local coordinate y. The local transverse nodal 
displacements are given by diy's and the rotations by ¢/s. The local nodal forces are 
given by jiy's and the bending moments by m/s as shown. We initially neglect all 
axial effects. 

At all nodes, the following sign conven~ons are used: 

1. Moments are positive in the counterclockwise direction. 
2. Rotations are positive in the counterclockwise direction. 
3. Forces are positive in the positive y direction. 
4. Displacements are positive in the positive y direction. 

Figure 4-2 indicates the sign conventions used in simple beam theory for positive 
shear forces V and bending moments m. 

~----------------L----------------~ 

111.fls, 127' Jl7 

Figure 4-1 Beam element with positive nodal displacements, rotations, forces, and 
moments 

~C? 0 
1""'--" - --L-=-~·I 
V 

Figure 4-2 Seam theory sign conventions for shear forces and bending moments 
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y,v 

(a) Undeformed beam under load w{i) (b) Deformed beam due to applied loading 

MC10IvM+
dM 

V dx V+dV 

(c) Differential beam element 

Figure 4-3 Beam under distributed load 

Beam Stiffness Matrix Based on Euler-Bernouli Beam Theory 
(Considering Bending Deformations Only) 

The differential equation governing elementary linear-elastic beam behavior [1] (called 
the Euler-Bernoulli beam as derived by Euler and Bernoulli) is based on plane cross 
sections perpendicular to the longitudinal centroidal axis of the beam before bending 
occurs remaining plane and perpendicular to the longitudinal axis after bend­
ing Occurs. This is illustrated in Figure 4-3, where a plane through vertical line a-c 
(Figure 4-3(a)) is perpendicular to the longitudinal x axis before bending, and this 
same plane through d-c (rotating through angle i in Figure 4-3(b)) remains perpen­
dicular to the bent x axis after bending. This occurs in practice only when a pure cou­
ple or constant moment exists in the beam. However it is a reasonable assumption 
that yields equations that qUite accurately predict beam behavior for most practical 
beams. 

The differential equation is derived as follows. Consider the beam shown in 
Figure 4-3 subjected to a distributed loading w(x) (forcejlength). From force and 
moment equilibrium of a differential element of the beam) shown in Figure 4-3(c), 
we have 

rFy = 0: V - (V + dV) - w(x) dx = 0 

Or, simplifying Eq. (4.l.1a), we obtain 

-wdx-dV=O or 
dV 

w=--
dx 

'f..M2 = 0: -V dx+dM + W(i)dX(d:) 0 or V=dM 
di 

(4. I. la) 

(4. 1. Ib) 

(4.1.1c) 

'{he final form of Eq. (4.1.1c), relating the shear force to the bending moment, is 
. obtained by dividing the left equation by dx and then taking the limit of the equation 
as di approaches O. The w(i) tenn then disappears. . 
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crtJJ v(.t) 

p 

I----X---..-; 

(a) Portion of dcllected curve ofbeam (b) Radius of de.flected curve at v(x) 

Figure 4-4 Deflected curve of beam 

Also, the curvature K of the beam is related to the moment by 

1 M 
K=- -

P EI 
(4.Lld) 

where p is the radius of the deflected curve shown in Figure 4-4b, v is the transverse 
displacement function in the y direction (see Figure 4-4a), E is the modulus of elastic­
ity, and I is the principal moment of inertia about the i axis (where the i axis is per­
pendicnlar to the x and y axes). 

The curvature for small slopes ~ = dfJjdi is given by 

d26 
K =.dx1 

Using Eq. (4. 1. Ie) in (4.1.1d), we obtain 

(4. 1. Ie) 

d 2fj M 
di2 = EI (4. 1. If} 

Solving Eq. (4.1.1f) for M and substituting this result into (4.1.lc) and (4.1.1b), 
we obtain 

:;2 ( EI ::~) = -w(i) 

For constant EI and onJy nodal forces and moments, Eq. (4.1.1g) becomes 

d4f; 
EI di4 = 0 

(4.l.lg) 

(4.1.1h) 

We win now roHow the steps outlined in Chapter 1 to develop the stiffness 
matrix and equations for a beam element and then to illustrate complete solutions 
for beams. 

Step 1 Select the Element Type 

Represent the beam by labeling nodes at each end and in general by labeling the ele­
ment number (Figure 4-1). 
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Step 2 Select a Displacement Function 

Assume the transverse displacement variation through the element length to be 

v(x) ~ alx3 + a2~ + a3x + 04 (4.1.2) 

The complete cubic displacement function Eq. (4.1.2) is appropriate because there are 
four total degrees of freedom (a transverse displacement diy and a small rotation ii 
at each node). The cubic function also satisfies the basic beam differential equation­
furthe,:r justifying its selection. In addition, the cubic function also satisfies the condi­
tions of displacement and slope continuity at nodes shared by two elements. 

Using the same procedure as described in Section 2.2, we express vas a function 
of the nodal degrees of freedom dIy, d2y, til' and ti2 as follows: 

v(O) = dly = a4 

d~~) = ¢l = aj 
(4.1.3) 

vel) = d2y = aiL) + a2L2 + a3L +a4 . 

diJ(L) ~ 2 
di =;2 = 3a1L +2a2L+a'J, 

where ~ = dfJ/di for the assumed small rotation i. Solving Eqs. (4.1.3) for al through 
a4 in· teons of the nodal degrees of freedom and substituting into Eq. (4.1.2), 
we. have 

+ [- :2 (d1y - d2y) - ±(2¢1 + il)] i 2 + iIi + (fty 

In matrix form, we express Eq. (4.1.4) as 

v= [N]{d} 

where 

and where 

and N, = 13 (2x3 
- 3ilL + L 3

) 

. N3 = ~3 (_2i3 +3x2L) 

N2 = ..!.. (.£3 L - 2i2 L 2 + xL 3) V . 

N4 = ~3 (x3L _PL2
) 

(4.1.4) 

(4.1.5) 

(4.1.6a). 

(4.l.6b) 

(4.1.7) 

Nt, N2, N3, and N4 are called the shape functions for a beam element. These cubic 
shape (or interpolation) functions are known as Hermite cubic interpolation (or cubic 
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spline) functions. For the beam element, Nt 1 when evaluated at node 1 and Nl = 0 
when evaluated at node 2. Because N2 is associated with ~l' we have, from the second 
of Eqs. (4.1.7), (dN2/di) = 1 when evaluated at node 1. Shape functions N3 and N4 
have analogous results for node 2. 

Step 3 Define the Strain/Displacement 
and Stress/Strain Relationships 

Assume the following axial strain/displacement relationship to be valid: 

( ~ A) du 
ex X,Y = di (4.1.8) 

where u is the axial displacement function. From the deformed configuration of 
the beam shown in Figure 4-5, we relate the axial displacement to the transverse dis­
placement by 

(4.1.9) 

where we should recall from elementary beam theory [1] the basic assumption 
that crpss sections of the beam (such as cross section ABeD) that are planar before 
bending deformation remain planar after deformation and, in general, rotate through 
a sma1l angle (dv/di). Using Eq. (4.1.9) in Eq. (4.1.8), we obtain 

D 
I.-------------~ 

I 
\I A 

l}-i~ ..:.:: = :::..-_ --+-c--~' rl 
I 

I 
I 

I 
I 

I 

,,..J... .... 

B 

di 

(a) 

.... -
(b) 

(e) 

Figure 4-5 Beam segment (a) before deformation and (b) after deformation; 
(c) angle of rotation of cross section ABeD 

(4.1.10) 
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From elementary beam theory, the bending moment and shear force are related to the 
transverse displacement function. Because we will use these relationships in the deriva­
tion of the beam element stiffness matrix, we now present them as 

'd'),~ d3-

m(x) = E1 di~ V = EI di~ (4.tH) 

Step 4 Derive the Element Stiffness Matrix and Equations 

First, derive the element stiffness matrix and equation.s using a direct equilibrium 
approach. We now relate the nodal and beam theory sign conventions for shear forces 
and bending moments (Figures 4--1 and 4-2), along with Eqs. (4.1.4) and (4.1.11), 
to obtain 

• - d3v(O.) EI ~ • • ~ 
It)' = V = E1 di

3 
= V (12d1y + 6L¢, - 12d2y + 6L~2) 

~ • d2fJ(O) E1 - '), • ~ 2 A 

ml = -m = -E1 di2 = V (6Ld1y + 4L tPl - 6Ld2y + 2L tP2) 
(4.1.12) 

hy = - V _EJd;~;) = ~~ (-l2d" 6141 + 12dzy - 6L~2) 
A • d2fJ(L) EI'· 2 • • 2 • 

m2 = m = EI di2 = L3 (6Ldl ), + 2L ,p, - 6Ld2y + 4L ¢2) , 

where the minus signs in the second and third of Eqs. (4.1.12) are the result of oppo­
site nodal and beam theory positive bending moment conventions at node I and 
opposite nodal and beam theory positive shear force cODventions at node 2as seen 
by comparing Figures 4-1 and 4--2. Equations (4.1.12) relate the nodal forces to the 
nodal displacements. In. matrix form, Eqs. (4-1.12) become 

t I [12 

6L -12 

6L 1 ry I ";1 = E1 6L 4L2 -6L 2L2 ¢II 
!, L3 -12 -6L 12 -6L d2), 2)' 

m2 6L 2L2 -6L 4L2 ¢2 

(4.1.13) 

where the stiffness matrix is then 

[ 12 
6L -12 

6L 1 k:=EI 6L 4L2 -6L 2L2 

- V -12 -6L 12 -6L 
6L 2L2 -6L 4L2 

(4.1.14) 

Equation (4.1.13) indicates that k relates transverse forces and bending moments to 
transverse displacements and rotations, whereas axial effects have been neglected. 

In tAe beam element stiffness matrix (Eq. (4:1.14) derived in this section, it is 
assumed that the beam is long and slender; that is, the length, L, to depth, h, dimen­
sion ratio of the beam is large. In this case, the deflection due to bending that is pre­
dicted,by using the stiffness matrix from Eq. (4.1.14) is quite adequate. However, 
for short, deep beams the transverse shear deformation can be significant and can 



158 ... 4 Development of Beam Equations 

have the same order of magnitude contribution to the total deformation of the beam. 
This is seen by the expressions for the bending and shear contributions to the deflec­
tion of a beam, where the bending contribution is of order (L/h)3, whereas the shear 
contribution is only of order (L/h). A general rule for rectangular cross-section 
beams, is that for a length at least eigh~ times the depth, the transverse shear deflection 
is less than five percent of the bending deflection [4]. Castigliano's method for finding 
beam and frame deflections is a convenient way to include the effects of the transverse 
shear term as shown in [4J. The derivation of the stiffness matrix for a beam including 
the transverse shear deformation contribution is given in a number of references [5-8]. 
The inclusion of the shear deformation in beam theory with application to vibration 
problems was developed by Timoshenko and is known as the Timoshenko beam [9-10]. 

Beam Stiffness Matrix Based on TImoshenko Beam Theory 
(Including Transverse Shear Deformation) 

The shear deformation beam theory is derived as follows. Instead of plane sections 
remain'jng plane after bending occurs as shown previously in Figure 4-5, the 
shear deformation (deformation due to the shear force V) is now included. Referring 
to Figure 4-6, we observe a section of a beam of differential length di: with the cross 
section assumed to remain plane but no longer perpendicular to the neutral axis 

-(2) 

A(I) ¢7. 

~
v,.(1)92 
di 

-----
Element 1 

(b) 

(a) 

Element 2 

~(l)=$,.(2) 

Figure 4--6 (a) Element of limoshenko beam showing shear deformation. Cross 
sections are no longer perpendicular to the neutral axis line. (b) Two beam elements 
meeting at node 2 
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(x axis) due to the inclusion of the shear force resulting jn a rotation term indicated by 
[3. The total deflectioD of the beam at a point x now consists of two parts, one caused 
by bending and one by shear force) so that the slope of the deflected curve at point i is 
now gi~en by 

:~ = ~(x) + pes:) 
where fotation due to bending moment and due to transverse shear force are given, re-
spectively; by ¢; (x) andft(x). ' 

We aSSti.me as usual that the linear deflection and angular deflection (slope) are 
small. 

The relation between bending mom~nt and bending deformation (curvature) 
is now 

M(x) = EI d~~X) (4.1. 1 5b) 

and the relation between the shear force and shear deformation (rotation due to shear) 
(shear strain) is given by 

(4. 1. 1 5c) 

, The difference in dvjdx and ~ represents the shear strain YyA= [3) of the beam as 
dil 4 

Yy: = dx - ¢J' (4.1.lSd) 

Now consider the differential element in Figure 4-3c and Eqs. (4.1.1b) and (4.1.1c) 
obtained from summing transverse forces and then summing bending moments. 
We now substitute Eq. (4.1.15c) for V and Eq. (4.1.1Sb) for Minto Eqs. (4.1.1b) 
and (4.1.1c) along with [3 from Eq. (4.l.1Sa) to obtain the two governing differential 
equations as 

(4.1.15e) 

(4.1.15f) 

To derive "the stiffness matrix for the beam element including transverse shear 
deformation, we assume the transverse displacement to be given by the cubic function 

. in Eq. (4.1.2). In a manner sirnilarto (8), we choose transverse shear strain" consistent 
with the cubic polynomial for v(x), such that" is a constant given by 

y =c (4.t.1Sg) 

Using the cubic displacement function for V, the slope relation given by Eq. (4.1.15a), 
and the shear strain Eq. (4.1J5g), along with the bending moment-curvature relation) 
Eq. (4.1.1Sb) and the shear force-shear strain relation Eq. (4.1.l5c), in the bending 
moment-shear force relation Eq. (4.1.1c), we obtain 

c = 6a1g (4.1.l5h) 

where g = El jksAG and ksA is the shear area. Shear areas} As vary with cross­
section shapes. For instance, for a rectangular shape As is taken as 5/6 times the 
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cross section A, for a solid circular cross section it is taken as 0.9 times the cross 
section, for a wide-flange cross section it is taken as the thickness of the web times 
the full depth of the wide:..flange, and for thin-walled cross sections it is taken as two 
times the product of the thickness of the wall times the depth of the cross section. 

Using Eqs. (4.1.2) (4.1.15a), (4.l.lSg), and (4.I.15h) allow ~ to be expressed as 
a polynomial in x as follows: 

.¢ a3 + 2a2x+ (3r + 6g)al (4.1.15i) 

Using Eqs. (4_1.2) and (4.1.15i), we can now express the coefficients al through 
a4 in terms of the nodal displacements dly and d2y and rotations ¢1 and ~2 of the 
beam at the ends x = 0 and.x ~ L as previously done to obtain Eq. (4J.4) when shear 
defonnation was neglected.. The expressions for a1 through a4 are then. given as follows: 

2d,y + 141 - 2.d2Y + L¢2 
at 

L(V + 12g) 

_ -3LlI1y (2L2 + 6g}J, + 3Ld2y + (-V + 6g)Jz 
a2 - L(V + 12g) 

_ -12glI1Y + ([3 + 6gL)Jl + 12gdly - 6gI42 
a3 - L(V + 12g) 

lti .. ': lIly 

Substituting these a's into Eq. (4.1.2), we obtain 

v = 2ily + 141 - 2.d2Y + LJ2 .r 
-L(V + 12g) 

-3Ld ly (2L2 + 6g)Jl + 3Ld2y + (-V + 6g)j2 r 
L(V+ 12g) 

-UglIly + (V + 6gL)JI + 12gd2y 6gLJ2 ~ II 
L(V + 12g) X+ Iy 

(4.1.15j) 

(4.1.15k) 

In a manner similar to step 4 used to derive the stiffness- matrix for the beam element 
without shear deformation included, we have 

• ~ 6E'7 = EI(l2.dly + 641 - 12d2y-+ 6L~2) 
hy = V(O) la! LCV + 12g) 

EI{6Ldly + (4L2 + 12g)~t 6LlI2y + (2L2 ml = -m(O) = -2E[a2 
L(D + 12g) 

r _ VeL) = EI( -lUI}' - 6LJl + 12d2y - 6L¢2) 
J2y L(V + 12g) 

(4.1.151) 

where again the min us signs in the second and third of Eqs. (4.1.151) are the result of 
opposite nodal and beam.theory positive moment conventions at node I and opposite 
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nodal and beam theory positive shear force conventions at node 2, as seen by compar­
ing Figures 4-2 and 4-7. In matrix form Eqs (4.1.151) become 

!~ ) = El [~~ (4L2~ 12g) =~~ (2£1

6

: 129)] !~:) 
hy L(V + 12g) -12 -6L 12 -6L d2J' 

m2 6L (2L2 - 129) -6L (4L2 + 12g) J2 
(4.lJ5m) 

where the stiffness matrix including both bending and shear deformation is then 
given by 

k = EI [~~ (4£1~ 12g) =~~ (2£16:119)] 
- L(£2 + 12g) 12 -6L 12 -6L 

6L (2L2 - 12g) -6L (4L2 + 12g) 

(4.1.15n) 

. In Eq. (4.1.15n) remember that 9 represents the transverse shear term, and if we set 
9 = 0, we obtain Eq. (4.1.14) for the beam stiffness matrix, neglecting transverse 
shear deformation. To more easily see the effect of the shear correction factor, we de­
fine the nondimensional shear correction term as rp = 12El J(ksAGL2

) = 129/ L2 and 
rewrite the stiffness matrix as 

k = El [~~ (4:~)L2 =~~ (2 ~~)L2]. 
- D(1 + 91) -12 -6L 12 -6L 

6L (2 - 91)V -6L (4 + rp)V 

(4.1. 150) 

Most commercial computer programs, such as [II], will include the shear defor­
mation by having you input the shear area, As = ksA. 

1: 4.2 Example of Assemblage 
of Beam Stiffness Matrices 

Step 5 Assemble the Element Equations to Obtain the Global 
Equations and Introduce Boundary Conditions 

Consider the beam in Figure 4-7 as an example to illustrate the procedure for assem­
blage of beam element stiffne:ss matrices. Assume EI to be constant throughout the 
beam. A force of 1000 Ib and a moment of 1000 lb-ft are applied to the beam at mid­
length. The left end is a fixed support and the right end is a pin support. 

First, we discretize the beam into two elements with nodes 1"':3 as shown. We in­
clude a nod!! at midIength because applied force and moment exist at midlengtb and, 
at this time, loads are assumed to be applied only at nodes. (Another procedure for' 
handling loads applied on elements will be discussed in Section 4.4.) 
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y 

hi 
1000 Ib-ft 

/'#---x CD 3 

:z.t----- L ----.1---- L --r-t 

1000 Ib 

Figure 4-7 Fixed hinged beam subjected to a force and a moment 

Using Eq. (4.1.14), we find that the global stiffness matrices for the two elements 
are now given by 

d1y q,1 d2y 1>2 

[ 12 
6L -12 

6L 1 k(l) =El 6L 4L2 -6L 2L2 (4.2.1 ) 
- _L3 -12 -6L 12 -6L 

6L 2L2/ -6L 4L2 

d2y (12 d3y' (13 

[ 12 
6L -12 

6L 1 and k(2} = El 6L 4L2 -6L 2L2 (4.2.2) 
- L3 -12 -6L 12 -6L 

6L 2L2 -6L 4L2 

where the degrees of freedom associated with each beam element are indicated by the 
usual labels above the columns in each e1ement stiffness matrix. Here the local coordi­
nate axes for each element coincide With the global x and y axes of the whole beam. 
Consequently, the local and global stiffness matrices ate identical, so hats n are not 
needed in Eqs. (4.1.1) and (4.2.2). 

The total stiffness matrix can now be assembled for the beam by using the direct 
stiffness method. When the total (global) stiffness matrix has. been assembled, the 
external global nodal forces are related to the global nodal displacements. 'Through di­
rect superposition and Eqs. (4.2.1) and (4.2.2), the governing equations for the beam 
are thus given by 

Fly 12 6L -12 6L 0 0 dly 

MI 6L 4L2 -6L 2L2 0 0 ,pi 
Fiy El -12 -6L 12+ 12 -6L+6L -12 6L d'}.y 
M2 = LJ 6L 2L2 -6L+6L4L2"+4£2 -6L 21}" (12 (4.2.3) 

Fsy 0 0 -12 -6L 12 -6L d3y 

M3 0 0 6'-' 2Ll -6L 4V ;3 
Now considering the boundary conditions, or constraints, of the fixed sq,pport at node 
1 an.d the hinge (pinned) suppOrt at node 3, we have 

(11=0 dly = 0 d3y = 0 . (4.2.4) 
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On considering the third, fourth, and sixth equations of Eqs. (4.2.3) corresponding to 
the rows with unknown degrees of freedom and.using Eqs. (4.2.4), we obtain 

{ 

-1000 } [ 24 0 6L ] { d", } 
1000 == ~; 0 8L2 2L2 ¢>2 
o 6L 2£2 4L2 tP3 

(4.2.5) 

where 6 y = -1000 lb, M2 ~ 1000 Ib-ft, and M3 = 0 have been substituted into the 
reduced set of equations. We could now solve Eq. (4.2.5) simultaneously for the un­
known nodal displacement d2y and the unknown nodal rotations t/>2 and ¢3- We 
leave the final solution for you to obtain. Section 4.3 provides complete solutions to 
beam problems. 

A 4.3 Examples of Beam Analysis 
Using the Direct Stiffness Method 

We will now perform complete solutions for beams with various boundary supports 
and loads to illustrate further the use of the equations developed in Section 4.1. 

Example 4.1 

Using the direct stiffness method, solve the problem of the propped cantilever beam 
subjected to end load P in Figure 4-8. The beam is assumed to have constant El 
and length 21.-. It is supported by a roller at midlength and is built in at the right end. 

Figure 4-8 Propped cantilever beam 

We have discretized the beam and established global coordinate axes as shown 
in Figure 4-8. We will determine the nodal displacements and rotations, the reactions, 
and the complete shear force and bending moment diagrams. 

Using Eq. (4.1.14) for each element, along with superposition, we obtain the 
structure total stiffness matrix by the same method as described in Section 4.2 for 
obtaining the stiffness matrix in Eq. (4.2.3). The K is 

d1y tP] d2y "'2 d3y t/>'j 
12 6L -12 6L 0 0 

4L2 -6L 2L2 0 0 

Symmetry 

12+12 -6L+6L -12 6£ 
4L2 + 4L2 -6L 2L2 

12 -6L 

(4.3.1) 
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The governing equations for the beam are then given by 

Fly 12 6L -12 6L 0 0 dly 

MI 6L 4L2 -6L 2L2 0 0 tPl 
F2y E1 -12 -6L 24 _ 0 -12 6L d2y 

M2 = L3 6L 2L2 0 . 8L2 -6L 2L2 th. 
(4.3.2) 

F3y 0 0 -12 -6L 12 -6L d3y 

M3 0 0 6L 2L2 -6L 4L2 ;3 
On applying the boundary conditions 

d2y =0 d3y = 0 rP3 = 0 (4.3.3) 

and partitioning the equations associated with unknown displacements [the first, 
second, and fourth equations of Eqs. (4.3.2)] from those equations associated with 
known displacements in the usual manner, we obtain the final set of equations for a 
longhand solution as 

rn=~[:~ ~ (4.3.4) 

where Fly -P, MI = O,"and M2 = 0 have been used in Eq. (4.3.4). We will now 
solve Eq. (4.3.4) for the nodal displacement and Doda1 slopes. We obtain the trans­
verse displacement -at node 1 as 

7PV 
dly = -12El 

where the minus sign indicates that the displacement of node 1 is downward . 
. The slopes are 

PV 
<P2 = 4EI 

where the positive signs indicate coUnterclockwise rotations at nodes 1 and 2. 

(4.3.5) 

(4.3.6) 

We will now determine the global nodal forces. To do. this, we substitute 
the known global nodal displacements and rotations, Eqs. (4.3.5) and (4.3.6») into 
Eq. (4.3.2). The resulting equations are 

7PL3 

Fly 12 6L -12 6L 0 0 
-12£1 

M, 6L 4L2 -6L 2L2 0 0 
3PL2 

F2y EI -12 -6L 24 0 -12 6L 
4EI 

M2 =L3 6L 2L2 0 8L2 -6L 2L2 0 (4.3.7). 

Fly 0 0 -12 -6L 12 -6L 
PL2 

M3 0 0 6L 2L2 -6L 4L2 ' 
0' 
0 
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Multiplying the matrices on the right-hand side ofEq. (4.3.7), we obtain the global 
nodal forces and moments as 

Mt=O 

M2 = 0 F3y = - ~p M3 = ! PL 
(4.3.8) 

The results of Eqs. (4.3.8) can be interpreted as follows: The value of Fly = -P is the 
applied force at node 1, as it must be. The values of Fly, 6 y , and M) are the reactions 
from the supports as felt by the beam. The moments M) and M2 are zero 'because no 
applied or reactive moments are present on the beam at node 1 or node 2. 

It is generally necessary to detennine the local nodal forces associated with 
each element of a large structure to petform a stress analysis of the entire structure. 
We will thus consider the forces in element 1 of this example to illustrate this concept 
(element 2 can be treated similarly). Using Eqs. (4.3.5) and (4.3.6) in thei = kd equa-
tion for element 1 [also see Eq. (4.1.13)], we have -

7PL3 r I [12 
6L -12 

6L 1 
-12E1 

3P/} 
"}I =E1 6L 4L2 -6L 2L2 

4E1 (4.3.9) 
J; L3 -12 -6L 12 -6L 2y 

0 m2 6L 2L2 -6L 4L2 
PL2 

4EI 

where, again, because the local coordinate axes of the element coincide with the global 
axes of the whole beam, we have used the relationships 4 = 4 and 'Ii = k (that is, the 
local nodal displacements are also the global nodal displacements, and so forth). 
Equation (4.3.9) yields . 

fty =-p (4.3.10) 

A free-body diagram of element 1, shown in Figure 4-9(a), should help you to 
understand the results of Eqs. (4.3.10). The figure ,shows a nodal transverse 
force of negative P at node 1 and of positive P and negative moment PL at node 2. 
These value~ are consistent with the results given by Eqs. (4.3.10). For complete­
ness, the free-Body diagram of element 2 is shown in Figure 4-9{b). We can easily 
veri~'y the element nodal forces by writing an equation similar to. Eq. (4;3.9). 

(1), §JL t~ 0 3: J 

J C5 l V~ L 1 PL 2 

(a) (b) 

Figure 4-9 Free-body diagrams showing forces and moments on (a) element 1 and 
(b) element 2 
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~t.-L ~ f· L 

3 2 !f 

2. p 
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Figure 4-10 Nodal forces and moment on the beam 

~ 

l 21 I:' L L 

-p 

Figure 4-11 Shear force diagram for the beam of Figure 4-10 

PL Ml . 

~T I 21 3 
I 
1 
I 

-PL 

Figure 4-12 Bending moment diagram for the beam of Figure 4-10 

From the results of Eqs. (4.3.8), the nodal forces and moments for the whole beam are 
shown on the beam in Figure 4-10. Using the beam sign conventions established in 
Section 4.1, we obtain the shear force V and bending moment M diagrams shown 
in Figures 4-11 and 4-12. '. 

In genera1, for complex beam structures, we will use the element local forces to 
detennine the shear force and bending moment diagrams for each element. We can 
then use these values for design purposes. Chapter 5 will further discuss this concept 
as used in computer codes. 

Ex~mple4.2 

Detennine the nodal displacements and rotations> global nodal forces, and element 
forces for the beam shown in Figure 4-13. We have discretized the beam as indicated 
by the node numbering. The beam is fixed at nodes 1 and 5 and has a roller support 
at node 3. Vertical loads of 10,000 lb each are applied at 'nodes 2 and 4. Let E = 

30 X 106 psi and I = 500 in4 throughout the beam. 
We must have consistent units; therefore, the 10-ft lengths in Figure 4-13 will be 

converted to 120 in. during the solution. Using Eq. (4.1.10), along with superposition 
of the four beam element stiffness matrices> we obtain the global stiffness matrix 
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Figure 4-1.3 Beam example 

and the global equations as given in Eq. (4.3.1 I). Here toe lengths of each element are 
the same. Thus) we can factor an L out of the superimposed stiffness matrix. 

dly ;1 d2y ~2 dJy ~3 d4). ;4 ds!· ~5 
12 6L -12 6L 0 0 0 0 0 0 d1y 

6L 4Ll -6L 21) 0 0 (} 0 () 0 ;1 
-12 -6L 12+12 -6L+6L -12 6L 0 0 0 d2J' 

6L 2L2 -6L+61 4L2+4L2 -6L 2L2 0 (} 0 h 
0 0 -12 -6L 12+ 12 -6L+6L -12 6L 0 0 d)' 
0 0 6L 2L2 -6L+6L 4L2 +4L2 -6L 2£2 0 () ;3 
0 0 0 -12 -6L 12+ i2 -6L+6L -12 6L t4y 

0 0 (} 0 6L 2L2 -6L + 6L '-4L2 + 4L 2 -6L 2L2 ;4 
0 0 0 0 0 0 -12 -6L 12 -6L J;y 
0 0 () 9 0 6L 2L2 -6L 4L1 ;s 

(4.3.11) 

For a longhand solution, we reduce Eq. (4.3.11) in the usual manner by applica-
tion of the boundary conditions 

d1y ::. ¢1 = d3y =: dsy = 4;5 = 0 
The resulting equation is 

rlO'~1 
24 0 6L 0 0 [:: I o EI 0 8L2 2L2 0 0 

o =- 6L 2L2 8L2 -6L 2L2 (4.3.12) 
-10,000 V 0 0 -6£2 24 0 d4y 

0 0 0 2L2 0 8L2 
1/14 

The rotations (slopes) at nodes 2-4 are equal to zero because of symmetry in loading, 
geometry, and material properties about a plane perpendicular to the beam length 
and passing through node 3. Therefore, 4;2 = ;3 = 4;4 = 0, and we can further reduce 
Eq. (4.3.12) to 

{ 
-10,000} = El l"24 0] {dZY } 

-10,000 L3 0 24 d,y 
(4.3.13) 

Solving for the displacements using L = 120 in., E = 30 X 106 psi, and 1 = 500 in.4 in 
Eq. (4.3.13), we obtain 

d2y = c4y = -0.048 in. 

as expected because of symmetry. 

(4.3.14) 
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As observed from the solution of this problem, the greater the static redundancy 
(degrees of static indeterminacy or number of unknown forces and moments that 
cannot be determined by equations of statics), the smaller the kinematic redundancy 
(unknown nodal degrees of freedom, such as displacements or slopes)-hence. the 
fewer the number of unknown degrees of freedom to be solved for. Moreover, 
the use of symmetry, when applicahJe, reduces the number of unknown degrees of 
freedom even further. We can now back-substitute the results from Eq. (4.3.14), 
along with the numerical values for E,l, and L. into Eq. (4.3.12) to determine the 
global nodal forces as 

Fl.v = 5000 Ib M, 25,000 Ib-ft 

F2y = IO,OOOlb 

F3y = 10,000 lb 

F4y = 10,000 Ib 

Fs, 50001b 

M 2 =0 

M j ° 
M4 =O 

Ms -25,000 Ib-ft 

(4.3.15) 

Once again, the global nodal forces (and moments) at the support nodes (nodes 1, 3, 
and 5) can be interpreted as the rcacti"on forces, and the global nodal forces at nodes 
2 and 4 are the applied nodal forces. 

However, for large structures we must obtain the local element shear force and 
bending moment at each node end of the element because these values are used in 
the design/analysis process. We will again illustrate this concept for tlie element con­
necting nodes I and 2 in Figure 4-13. Using the local equations for this element~ for 
which all nodal displacements have now been determined, we' obtain 

l
it

y

) [l2 ~l =£1 6L 
r V -12 
ily 

m2 6L 

6L -12 
4L2 -6L 

-6L 12 
2L2 -6L 

Simplifying Eq. (4.3.16), we have 

I t)=I~::~ftl nl2 25,OOOIb-ft 

(4.3.16) 

(4.3.]7) 

If you wish~ you can draw a free-body diagram to confirm the eqUilibrium of the 
element. • 

Finally> you should note that because of reflective symmetry about a vertical 
plane passing through node 3, we could have initially considered one-half of this 
beam and used the following model. The fixed support at node 3 is due to the 
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slope being zero at node 3 because of the symmetry in the loading and support 
conditions. 

Example 4.3 

Determine the nodal displacements and rotations and the global and element forces 
for the beam shown in Figure 4-14. We have discretized the beam as shown by the 
node numbering. The beam is fixed at node 1, has a roller support at node 2, and 
has an elastic spring support at node 3. A downward vertical force of P = 50 kN is 
applied at node 3. Let E = 210 GPa and I = 2 X 10-4 m4 throughout the beam, and 
let k = 200 kN/m: 

k = 200kNjm 

4 

Figure 4-14 Beam example 

Using Eq. (4.1.14) for each beam element and Eq. (2.2.18) for the spring element 
as well as the direct stiffness method, we obtain the structure stiffness matri~ as 

d,y tPt dly "2 d3y tP3 t4y 

12 6L -12 6L 0 0 0 
4L2 -6L 2L2 0 0 0 

24 0 -12 6L 0 

K=EJ 
8L2 -6L 1£2 0 (4.3.l8a) 

- L3 kV 
-6L kV 

12+ EI - EI 
4L2 0 

kV 
Symmetry El 
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where the spring stiffness matrix ks given below by Eq. (4.3.18b) has been directly 
added into the global stiffness matrix corresponding to its degrees of freedom at 
nodes 3 and 4. 

(4.3.l8b) 

It is easier to solve the problem using the general variables, later making numerical 
substitutions into the final displacement expressions. The governing equations for the 
beam are then given by 

F1J, 12 6L -12 6L 0 0 0 dl .... 

Ml 4L2 -6L 2L2 0 0 0 ?l 
F2) 

EI 
24 0 .-12 6L 0 d2.v 

M2 L3 8L2 -6L 2L2 0 tP2 (4.3.19) 

F3!, 12+k' -6L -k' d3y 

M3 4L2 0 tP3 
F~." Symmetry k' d4y 

where k' = kL3/(El) is used to simplify the notation. We now apply the boundary 
conditions 

(4.3.20) 

We delete the first three equations and the seventh equation (corresponding to 
the boundary conditions given by Eq. (4.3.20)) of Eqs. (4.3.'19). The rem~iniIlg three 
equations are 

{ 

0 } [8L
2 

_p =El -6L 
o 2L2 

-6L 
12+kl 

-6L 
(4.3.21) 

Solving Eqs. (4.3.21) simultaneously for the displacement at node 3 and the rotations 
at nodes 2 and 3, we obtain 

7PV ( I) 3PV ( 1 ) 
d3y = - El 12 + 7k~ tP2 = - £1 12 + 7k' 

9PV ( 1 ) 
?3 =.:.. E1 12+7kl 

(4.3.22) 

The influence of the spring stiffness on the displacements is easily seen in Eq. (4.3.22). 
Solving for the numerical displacements using P = 50 kN, L =:3 m, E 210 GPa 
(= 210 x 106 kNjm2), I = 2 X }O-4 m\ and k' = 0.129 in Eq. (4.3.22), we obtain 

d . = -7(50 kN)(3 m)3 ( 1 ) = -0.0174 m ( 
3) (210 X 106 kN/m2)(2 X 10-4 m4) 12 + 7(0.129) 4.3..23) 

Similar substitutions into Eq. (4.3.26) yield 

th = -0.00249 rad' '3 = -0.00747 rad (4.3.24) 
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We now back-substitute the results from Eqs. (4.3.23) and (4.3.24), along with numer­
ical values for P, E,l, L, and k', into Eq. (4.3.19) to obtain the global nodal forces as 

Fly = -69.9 kN Ml = -69.7 kN'm 

F2y= 116.4 kN M2=0.OkN·m (4.3.25) 

F3y=-50.0kN M3=0.OkN·m 

F or the beam~spring· structure, an additional global force F4y is determined at the base 
of the spring as follO\vs: 

F4y = -d3yk = (0.0174)200 = 3.5 kN (4.3.26) 

Thi~ force provides the additional global y force for equilibrium of the structure. 

69.9 kN 50 kN 

~.~~~. m--"-3 m ~i~3 m ----lj~ 
116.4 kN 

Figure 4-15 Fre~body diagram of 
beam of Figure 4-14 

A free-body diagram, including the forces and moments from Eqs. (4.3.25) and 
(4.3.26) acting on the beam, is shown in Figure 4-15. • 

ExampJe4.4 

Determine the displacement and rotation under the force and moment located at the 
center of the beam shown in Figure 4-16. The beam has been discretized into the 
two elements shown in Figure 4-16. The beam is fixed at each end. A downward 
force of 10 kN and an applied moment of 20 kN-m . act at the center of the beam. 
Let E = 210 GPa and 1 = 4 X 10-4 m4 throughout the beam length. 

lOkN 

~~--~~~ __ ~29~---~-m--~~ 
20lcN-m 

Figure 4-16 Fixed-fixed beam subjea~ to applied force and moment 

Using Eq. (4.1.14) for each beam element with L = 3 m, we obtain the element 
stiffness matrices as follows: 

d1y tPt d2y 

[

12 6L -12 

k(l) = El 4Ll -6L 
- L3 12 

Symmetry 

tP2 

6L ] 2L2 

-6L 
4L2 

6L ] 2L2 
-6L 

4L2. 

(4.3.27) 



172 4. 4 Development of Beam Equations 

The boundary conditions are given by 

dl)' = tP! = d~v = ~3 0 (4.3.28) 

The global forces are F2y = -10,000 Nand M2 = 20,000 N-m. 
Applying the global forces and boundaty conditions, Eq. (4.3.28), and assem­

bling the global stiffness matrix using the direct stiffness method and Eqs. (4.3.27), 
we obtain the global equations as: 

{ 
-lO,OOO} 

20,000 
(210 x 1()9)(4 x 10-4

) [24 0] {d2y } 

33 0 8(32
) ~2 

Solving Eq. (4.~.29) for the displacement and rotation, we obtain 

d2,)' = -1.339 x.lO-4 m and tP2 = 8.928 x 10-5 rad 

(43.29) 

(4.3.30) 

Using the local equations for each element, we obtain the local nodal forces and 
moments for element one as follows: 

( 

(1)) ~y . 12 

m~1) ,= (210 x 10
9
)(4 x 10-

4
) [ 6(3} 

.(1) 3~ -12 
J2y 

(I) 6(3) m2 

Simplifying Eq. (4.3.31), we have 

6(3) ._ -12 
4(32) -6(3) 

-6(3) , 12 
2(32) -6(3) 

J~;)11-1.333~ x 10-') 
4(32) 8.928 x 10-5 

(4.3.31) 

1;;) 1O~000 N) mil) = 12,500 N-m, J;~) = -10,000 N, m~l) = 17,500 N-m 

(4.3.32) 

Similarly, for element two the local nodal forces and moments are 

h~) = 0, m~2) ~ 2500 N-m, Ii:) = 0, m~2) -2500 N-m (4.3.33) 

Using the results from Eqs . .(4.3.32) and (4.3.33), we show the local forces and 
moments acting on each element in Figure 4-16 as follows: 

Using the results from Eqs. (4.3.32) and (4.3.33), or Figure 4-17, we ob­
tain the shear force and ben.ding moment diagrams for each element as shown in 
Figure 4-18. 

12.500 N-m 17,500 N-m 2500 N-m 2S00N-m 

1:-'r-) --=p cr ~ 
lO,COON 1O.000N o o 

Figure 4-17 Nodal forces and moments acting on each element of Figure 4-15 
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1~1 
V,N 

+ 
0 

(a) 

CD 17.500 Q) 
M,N-m 

M~=l + 

-12.500 

(b) 

Figure 4-18 Shear force (a) and bending moment (b) diagrams for each element 

• 
Example 4.5 

To illustrate the.effects of shear deformation along with the usual bending defor­
mation) we now solve the simple beam shown in Figure 4-19. We win use the beam 
stiffness matrix given by Eq. (4.1.150) that includes both the bending and shear defor­
mation contributions for deformation in the x-y plane. The beam is simply supported 
with a concentrated load of 10,000 N applied at mid-spah. We let.material properties 
be E = 207 GPa and G = 80 GPa. The beam width and height are b = 25 mm and 
h = 50 mm, respectively. 

L 71 ~h 
~200mm -:L ~, I 

figure 4-19 Simple beam subjected to concentrated load at center of span 

We will use symmetry to simplify the solution. Therefore, only one half of the 
beam will be considered with the slope at the center forced to be zero. Also, one half 
of the concentrated load is then used. The model with symmetry enforced is shown 
in Figure 4-20. 

The finite element model will consist of only one beam element. Using 
Eq. (4.1.156) for·the Timoshenko beam element stiffness matrix, we obtain the global 
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p 

2" 

2 Figure 4-20 Beam with symmetry enforced 
)r---------"-"I'/ 

r-- 200 mm --i. 
equations as 

EI 6L 

[ 

12 

D(l +qJ) -12 
6L 

(4.3.34) 

Note that the boundary conditions given by d ly 0 and ,p2 = 0 have been included in 
Eq. (4.3.34). 

Using the second and third equations ofEq. (4.3.34) whose rows are associated 
with th~ two unknowns, ;1 and d2y, we obtain 

-PV(4 + qJ) -PL2 

d2y = 24EI and,pl = 4EI (4.3.35) 

As the beam is rectangular in cross section, the moment of inertia is 

1= bh3j12 

Substituting the numerical values for band h, we obtain I as 

1= 0.26 X 10-6 m4 

The shear correction factor is given by 

12EI 
tp= k;rAGV 

and ks for a rectangular cross section is given by ks = 5/6. 
Substituting numerical values for E,I, G,L, and ks, we-obtain 

12 x 207 x 109 x 0.26 X 10-6 

rp = 5/6 x 0.025 x 0.05 x 80 x 10~ X 0.22 = 0.1938 

Substituting for P = 10,000 N, L = 0.2 m, and qJ = 0.1938 into Eq. (4.3.35), we 
obtain the displacement at the mid-span as 

d2y = - 2.597 X 10-4 m (4.3.36) 

If we 'let I = the whole length of the beam) then 1 = 2L and we can substitute L = 1/2 
into Eq. (4.3.35) to obtain the displacement in terms of the whole length .of the beam as 

-PP(4+ (1) 
d2y 192E] (4.3.37) 
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For long slender beams with I about 10 or more times the beam depth, h, the transverse 
shear correction term f/J is small and can be neglected. Therefore, Eq. (4.3.37) becomes 

-pp 
d2y = 48El (4.3.38) 

Equation (4.3.38) is the classical beam deflection formula for a simply supported beam 
subjected to a concentrated load at mid-span. 

Using Eq.'(4.3.38), the deflection is obtained as 

d2y = 2.474 X 10-4 m (4.3.39) 

Comparing the deflections obtained using the shear-correction factor with the deflec­
tion predicted using 'the beam-bending contribution only> we obtain 

fJ"f 2.597 - 2.474 0 4 fJ"f d' 
10 change = 2.474 x 10 = .9710 tfference 

.. 4.4 Distributed loading 

Beam members can support distributed loading as wen as concentrated nodal 
loading, Therefore, we must be able to account for distributed loading. Consider the 
fixed-fixed beam sUbjected to a uniformly distributed loading w shown in Figure 4-21. 
The reactions, determined from structural analysis theory [21, are shown in Figure 4-22. 
These reactions are called fixed-end reactions. In general, fixed--end reactions are 
those reactions at the ends of an element if the ends of the element are assumed to 
be fixed-that is, if displacements and rotations are pr~vented. (Those of you who' 
are unfamiliar with the analysis of indeterminate structures should assume these reac-

, tions as given and proceed with the rest of the discussion; we will develop these results 
in a subsequent presentation of the work-equivalence method.) Therefore, guided by 
the results from structural analysis for the case of a uniformly distributed load, we re­
place the load by concentrated nodal forces and moments tending to have the same 

K'(Ib/ft) 

Figure 4-21 Fixed-fixed beam subjected to a uniformly distributed load 

Figure 4-22 Fixed-end reactions for the beam of Figure 4-20 
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1 t I 1 4 

L 

(a) 
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wL 

~tf 

we we 
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2 2 

5 

(c) 

wL 

i ifiLl 

12 
L 

(b) 

3 

Figure 4-23 (a) Beam with a distributed load, (b) the equivalent nodal force system. 
and (c) the enlarged beam (for clarity's sake) with equivalent nodal force system when 
node 5 is added to the midspan -

effect cn the beam as the actual distributed load. Figure 4-23 illustrates this idea for a 
beam. We have replaced the unifonnly distributed load by a statically equivalent force 
system consisting of a concentrated nodal force and moment at each end of the mem­
ber carrying the distributed load. That is) both the statically equivalent concentrated 
nodal forces and moments arid the original distributed load have the same resultant 
force and same moment about an arbitrarily chosen point. These statically equivalent 
forces are always of opposite sign from the fixed·end reactions. If we want to analyze 
the behavior of loaded member 2-3 in better detail, we can place a node at midspan 
and use the same procedure just described for each of the two elements representing 
the horizontal member. That~s> to detenrune the maximum deflection and maximum 
moment in the "beam span, a node 5 is needed at midspan of beam segment 2-3, and 
work-equivalent forces and moments are applied to each element (from node 2 to 
node 5 and from node 5 to node 3) shown in Figure 4-23 (c). 

Work-Equivalence Method 

We can use the work-equivalence method to replace a distributed load by a set of 
discrete loads. This method is based on the concept that the work of the distributed 
load w(x) in going through the displacement field v(x) is equal to the work done by 
nodal loads hy and m; in going through nodal displacements diJ' and ~i for arbitrary 
nodal displacements. To illustrate the method, we consider the example shown in 
Figure 4-24. The work due to the distributed load is given by 

Wdistributcd = r w(i)6(i)di (4.4.1) 
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il>,dry 

m!.~l 

/4---- L ----'"'I 

(b) 

Figure 4-24 (a) Beam element subjected to a general load and (b} the statically 
equivalent nodal force system 

where v(i) is the transverse displacement given by Eq. (4.1.4). The work due to the 
discrete nodal forces is given by 

Wdiscre!¢ mI~1 + m2~2 + ~J,dlF + h/ll.!" (4.4.2) 

We can then determine the nodal moments and forces ml, m2,liy , and hy used to 
replace the distributed load by using the concept of work equivalence-that is} by set· 
ting Wctistributed == Wdiscretc for arbitrary displacements ~I 1 ~2' diy, and d2)" 

Example of loa'd Replacement 

To illustrate more clearly the concept of work eq~ivalence, we will now consider a 
beam subjected to a specified distributed load. Consider the uniformly loaded beam 
. shown in Figure 4-2S(a). The support conditions are not shown because they are .not 
relevant to the replacement scheme. By letting U'dismte = %istribuled and by assuming 
arbitrary ¢1>~2)J.I)I, and d1y, we will find equivalent nodal forces ml,m2,liy , andhr 
Figure 4-2S{b) shows the nodal forces and moments directions as positive based on 
Figure 4-1. 

w 

.t I L '. ~'J" ~I>ml 1 i 

@,J~ 
, 2 li22, j2 

,. L -I j. L .\ 
(a) (b) 

Figure 4-25· (a) Beam subjected to a uniformly distributed loading and"(b) the 
equivalent nodal forces to be determined 

Using Eqs. (4.4.1) and (4.4.2) for U'distributed = U'discrcte, we have 

LL w(x)v(.i) d.i = ml~1 + m2~2 + j;,.d,y + J;/J'2.V ( 4.4.3) 

where m1~1 and m2~2. are the work due to .c~ncentraJe~ nodal moments moving 
through their respective nodal rotations and fiyd}y and f 2yd2y are the work due to the 
nodal forces moving through nodal displacements. Evaluating the left~hand side of 
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Eq. (4.4.3) by substituting w(x) -wand vex) from ~q. (4.1.4), we obtain the work 
due to the distributed load as 

(4.4.4) 

Now using Eqs. (4.4.3} and (4.4.4) for arbitrary nodal displacements, we let ~I = 1, 
~2 = 0, d1y = 0, and d2y = 0 and then obtain . 

(4.4.5) 

(4.4.6) 

Finally, letting all nodal displacements equal zero. except first d1y and then d2y, we 
obtain 

• Lw . '. Lw 
hy(l) = -T+Lw-Lw=-:-T 

. Lw Lw 
hy (l) = T - Lw = 

(4.4.7) , 

We can conclude that, in general, for any given load function wei), we can mul­
tiply by v(i) and then integrate according to Eq. (4.4.3) to obtain the concentrated 
nodal forces (and/or moments) used to replace the distributed load. Moreover, 
we can obtain the load replacement by using the concept of fixed-end reactions 
from structural analysis theory. Tables of fixed-end reactions have been generated 
for numerous load cases and can be found in texts on structural analysis such as Ref­
erence [2]. A table of equivalent nodal forces has been generated in Appendix D of 
this text, guided by the fact that fixed-end reaction forces are of opposite sign from 
those obtained by the work equivalence method. 

Hence, if a concentrated load is applied other than at the natural intersection of 
two elements, we can use the concept of equivalent nodal forces to replace the concen­
trated load by nodal concentrated values acting at the beam ends1 instead of creating 
a node on the beam at the location where the load is applied. We provide examples 
of this procedure for handling concentrated loads on elements in beam Example 4.7 
and in plane frame Example 5.3. ' 

General Formulation 

In general, we can account for distributed loads or concentrated loads acting on beam 
elements by starting with the following fonnulation application for a general 
structure: 

f=K!l-fo (4.4.8) 
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where E.. are the concentrated nodal forces and Eo are called the equivalent nodal forces, 
now expressed in terms of global-coordinate components, which are of such magnitude 
that they yield the same displacements at the nodes as would the distributed load. Using 
the table in Appendix D of equivalent nodal forces ~ expressed in terms of 10ca1-
coordinate components, we can express fo in tenns of global-coordinate components. 

Recall from Section 3.10 the derivation of the element equations by the principle 
of minimum potential energy. Starting with Eqs. (3.10.19) and (3.10.20), the minimi~ 
zation of the total potential energy resulted in the same form of equation as 
Eq. (4.4.8) where fo now represents the same work-equivalent force replacement sys~ 
tern as given by Eq. (3.10.20a) for surface traction replacement. Also, f = f [f from 
Eq. (3.10.20)1 represents the global nodal concentrated forces. Because we now as~ 
sume that concentrated nodal forces are not present (E = 0), as we are solving beam 
problems with distributed loading only in this section, we can write Eq. (4.4.8) as 

f(J = Krl (4.4.9) 

On solving for d in Eq. (4.4.9) and then substituting the global displacements d and 
equivalent nodal forces £ into Eq. (4.4.8)~ we obtain the actual global nodal forces 
J!. For example, using the definition of~ and Eqs: (4.4.5)-(4.4.7) (or using load case 
4 in Appendix D) for a uniformly distributed load w acting over a one-element beam, 
webave 

-wL 
2 

-WL2 

£= 
12 (4.4.10) 
-wL 

2 
WL2 

U-
. This concept can be applied on a local basis to obtain the local nodal forces j in 

individual elements of structures by applying Eq. (4.4.8) locally as -

j kJ -10 (4.4.11) 

where 10 are the equivalent local nodal forces. 
Examples 4.6-4.8 illustrate the method of equivalent nodal forces for solv­

ing beams subjected to distributed and concentrated loadings. We will use global­
coordinate notation in Examples 4.6-4.8-treating the beam as a general structure 
rather than as an element. 

Example 4.6 

For the cantilever beam subjected to the unifonn load w in Figure 4-26, solve for the 
right-end vertical displacement and rotation and then for the nodal forces. Assume the 
beam to have constant E1 throughout its length. 
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(a) (b) 

Figure 4-26 (a) Cantilever beam subjected to a uniformly distributed load and 
(b) the work equivalent nodal force system 

We begin by discretizing the beam. Here only one element will be used to repre­
sent ,the whole beam. Next, the distributed load is replaced by its work-equivalent 
nodal forces as shown in Figure 4-26(b). The work-equivalent nodal forces are those 
that result from the unifoITIlly distributed load acting over the whole beam given by 
Eq. (4.4.10). (Or see appropriate load case 4 in Appendix D.) Using Eq. (4.4.9) and 
the beam element stiffness matrix. and realizing k = 5 as the local x axis is coincident 
with the global x axis, we obtain 

F1y -
wL 

[12 6L -12 

U Jr'} MI 
wV 

EI 4V -6V 2L2 ';1 12 (4.4.12) 
12 -6L d2J1 -wL 

4L2 ¢>2 2 
wLJ. 

where we have applied the work equivalent nodal forces and moments from Figure 
4-26(b). 

Applying the boundary conditions dly = 0 and ¢>l = 0 to Eqs (4.4.12) and then 
partitioning off the third and fourth equations of Eq. (4.4.12), we obtain 

El [ 12 
£3 -6L2 { 

WL} -6L dzy -2 
4V ] { ¢>2 } = wV 

, 12 

Solving Eq . .(4.4.13) for the displacements, we obtain 

d~ L 2L2 3L ~ 

{
-WL} 

C6,} = 6EI b 6 1 wL' 

Simplifying Eq. (4.4.14a), we obtain the displacement and rotation as 

(4.4.l3) 

(4.4.14a) 

(4.4.l4b) 
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The negative signs in the answers indicate that d2y is downward and ;2 is clockwise. 
In this case, the method of replacing the distributed load by discrete concentrated 
loads. gives exact solutions for the displacement and rotation as could be obtained 
by classical methods, such as double integration [IJ. This is expected, as the work­
equivalence method ensures that the nodal displacement and rotation from the :finite 
element method match those from an exact solution. 

We will now illustrate the procedure for obtaining the globl:tl nodal forces. 
For convenience, we :first define the product K!!. to be f(e), where E(I!) are called the 
effective global nodal forces. On using Eq. (4.4.14) for 4, we then have 

r~) I [12 
0 

6L 
-12 6L I 0 

Mf"l =£1 6L 4L2 -6L 2L2 -WL4 

FS") V -12 -6L 12 -6L 8EI 21 

Mi"l 6L 2L2 -6L 4L2 -WL3 

6£1 

(4.4.15) 

Simplifying Eq. (4.4.15), we obtain 

wL 
""2 rl

;) I 5wL2 
'M}") _ 12 

p,(t) - -wL 2y 
-2-

Mi") 
WLl 

(4.4.16) 

12 

We then use Eqs. (4.4.10) and (4.4.16) in Eq. (4.4.8) (E.. = k.4 -~) to obtain the cor­
rect global nodal forces as 

wL -wL 
""2 -2-

=ftl I~l= 
5wL2 -WL2 

12 (4.4.17) 
F2y -wL -wL 
M2 -2-

WL2 WL2 

12 U' 

In Eq. (4.4.17), Fly is the vertical force reaction and MI is the moment reaction 
as applied 'by the clamped support at node 1. The results for displacement 'given by 
Eq. (4A.14b) and the global nodal forces given by Eq. (4.4.17) are sufficient to com­
plete the solution of the cantilever beam problem. 
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Figure 4-26 (c) Free-body diagram and equations of equilibrium for beam of 
Figure 4-(26)a. 

A free-body diagram of the beam using the reactions from Eq. (4.4.17) verifies 
both force and moment equilibrium as shown in Figure 4-26(c). • 

The nodal force and moment reactions obtained by Eq. (4.4.17) illustrate the 
importance of using Eq. (4.4.8) to obtain the correct global nodal forces and 
moments. By subtracting the work-equivalent force matrix, Eo from the product of 
K. times 4, we obtain the correct reactions at node 1 as can be verified by simple 
static equilibrium equations. This verification validates the general method as 
follows: 

1. Replace the distributed load by its work-equivalent as shown in Figure 
4-26(b) to identify the nodal force and moment used in the solution. 

2. Assemble the global force and stiffness matrices and global equations 
illustrated by Eq. (4.4.12). 

3. Apply the boundary conditions to reduce the set of equations as done 
in previous problems and illustrated by Eq. (4.4.13) where the original 
four equations have been reduced to two equations to be solved for 
the unknown displacement and rotation. 

4. Solve for the unknown displacement and rotation given by 
Eq. (4.4.14a) and Eq. (4.4.14b). 

5. Use Eq. (4.4.8) as illustrated by Eq. (4.4.17) to obtain the final correct 
global nodal forces and moments. Those forces and moments at 
supports, such as the left end of the cantilever in Figure 4-26(a), will 
be the reactions. 

We will solve the following example to illustrate the procedure for handling con­
centrated loads acting on beam elementS at locations other than nodes. 

Example 4.7 

For the cantilever beam subjected to the concentrated load P in Figure 4-27, solve 
for the right-end vertical displacement and rotation and the nodal forces, including 
reactions, by replacing the concentrated load with equivalent nodal forces acting at 
each end of the beam. Assume EI constant throughout the beam. 

We begin by discretizing the beam. Here only one element is used with 
nodes at each end of the beam. We then replace the concentrated load as shown in 
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~ 
L 

l
P 

L ~:~ @~ '2 '2 L 

PL~ PL -8" 8" 
(a) (b) 

Figure 4-27 (a) Cantilever beam subjected to a concentrated load and (b) the 
equivalent nodal force replacement system. 

Figure 4-27(b) by using appropriate loading case 1 in Appendix D. Using Eq. 
(4.4.9) and the beam element stiffness matrix Eq. (4.1.14), we obtain 

~q~:L ~1;]{~}={+} (4.4.18) 

where we have applied the nodal forces from Figure 4-27(b) and the bound­
ary conditions dIp = 0 and rP1 = 0 to reduce the number of matrix equations 
for the usual longhand solution. Solving Eq. (4.4.18) for the displacements) we 
obtain 

(4.4.19) 

Simplifying Eq. (4.4.19), we obtain the displacement and rotation as 

{ d
2y

} = I ~~~311 
~2 _PL2 r\ 

8E1 

(4.4.20) 

To obtain the unknown nodal forces, we begin by evaluating the effective nodal forces 
lee) =K4 as 

r')! -12 

6L 1 _sLJ 
ly 12 6L 

Mie
) El 6L 4L2 -6L 2L2 

(4.4.21) Fj;l = L' [-12 -6L 12 -6L 48El 
M{e) 6L 2L2 -6L 4L2 _PL2 

2 8El J 
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Simplifying Eq. (4.4.21), we obtain 
P 
'2 

3PL 
-8-

-P 
T 
PL 
T 

(4.4.22) 

Then using Eq. (4:4.22) and the equivalent nodal forces from Figure 4-27(b) in 
Eq. (4.4.8), we obtain the correct nodal forces as 

I ~;l = F2y 

M2 

P -p 

'2 2 
3PL 
-8-

-p 
T 
PL 
T 

-PL 
-8-

-p 

PL 
T 

(4.4.23) 

We can see from Eq. (4.4.23) that Fly is equivalent to the vertical reaction force and 
MI is the reaction moment as applied by the clamped support at node 1. 

Again, the reactions obtained by E,q. (4.4.23) can be verified to be correct by 
using static equilibrium equa~iGns to validate once more the correctness of the general 
formulation and procedures summarized in the steps given after Example 4.6. • 

To illustrate the proc¢ure for handling concentrated nodal.forces and distributed 
loads acting simultaneously on beam elements, we will solve the fonowing example. 

Example 4.8 

For the cantilever beam subjected to the concentrated free~end load P and the 
uniformly distributed load w acting over the whole beam as shown in Figure 4-28, 
determine t~e free-end displaCements and the nodal forces. 

r 
wL 

-tf+~ w d)2 
~ I I I i I I I 

L L wL2 -1'2 1'2 
(a) (b) 

Figure 4-28 (a) Cantilever beam subjected to a concentrated load and a distributed 
load and (b) the equivalent nodal force replacement system 
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Once again, the beam is modeled using one element with nodes 1 and 2) and the 
distributed load is replaced as shown in Figure 4-28(b) using appropriate loading case 
4 in Appendix D. Using the beam element stiffness Eq. (4.1.14), we obtain 

{
-WL _p} 

EI [12 -6LJ {d2Y} 2 
L' -6L 4L' {>, = ~~' (4.4.24) 

where we have applied the nodal forces from Figure 4-28(b) and the boundary condi­
tions dl }' ~ 0 and ¢J1 = 0 to reduce the number of matrix equations for the usual long­
hand solution. Solving Eq. (4.4.24) for the displacements, we obtain 

{ 
d2y } = 8EI - 3El 1 l-WL4 PLl) 
¢J2 -wL3 PL2 

6EI - 2El ) 

Next; we obtain the effective nodal forces using [(e) = Kr!. as 

1 
p,(e) ) Iy. 12 6L 

Mie
) = E1 [ 6L 4L2 

Fie) V -12 -6L 2y 
MJ") 6L 2L2 

Simplifying Eq. (4.4.26), we obtain 

-12 
-'-6L 

12 
-6L 

6L 1 2L2 

-6L 
4L2 

p+
wL 
2 

PL 5wL2 
+ 12 

_p_wL 
2 

wV 
12 

o 
o 

-WL4 PL' 
8El - 3E1 

-wL~ PL2 

'. 6EI -.2E1 

(4.4.25) 

(4.4.26) 

(4.4.27) 

FinaUy, SUbtracting the equivalent nodal force matrix [see Figure 4-27(b)} from the 
effective force matrix, of Eq. (4.4.27), we obtain the correct nodal forces as 

p wL -wL 
+- -2-2 I P+wL, I !~l= 

PL 5wL2 -wV 
+ 12 12 ' PL+ wL 

(4.4.28) 
F2y wL -wL 

= 2 
-p-- -P 

·M2 2 -2-
, 0 

WL2 wI} 

12 12 
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From Eq. (4A.28), we see that Fly is equivalent to the vertical reaction force, Ml is 
the reaction moment at node 1, and F2y is equal to the applied downward force 
P at node 2. {Remember that only the equivalent nodal force matrix is subtracted, 
not the original concentrated load matrix. This is based on the general formulation, 
Eq. (4.4.8).j • 

To generalize the work-equivalent method, we apply it to a beam with more 
than one element as shown in the following Example 4.9. 

Example 4.9 
( 

For the fixed-fixed beam subjected to the linear varying distributed loading acting 
over the whole beam shown in Figure 4-29(a) determine the displacement and rota­
tion at the center and the reactions. 

The beam is now mod~led using two elements with nodes 1, 2, and 3 and the dis­
tributed load is replaced as shown iil Figure 4-29 (b) using the appropriate load cases 
4 and 5 in Appendix D. Note that load case 5 is used for element one as it has only the 
linear varying distributed load acting on it with a high end value of wJ2 as shown·in 
Figure ~29 (a), while both load cases 4 and 5 are used for element two as the distrib­
uted load is divided into'a uniform part with magnitude w/2 and a linear varying part 
with magnitude at the high end of the load equal to wj2 also. 

~' ~r:L 9~ ,e;L 
~ -7wL2 

(a) 

-3wL 9 ~L' 
40, 60 

CD 1 

1-9 ~ ~:, ~ -I;;L 
2 15 3 

(bl 

Figure 4",:,29 (a) Fixed-fixed beam subjected to linear varying line load and (b) the 
equivalent nodal force replacement system 

Using the beam element stiffness Eq. (4.1.14) for each element, we obtain 

[ 12 
6L -12 

6L 1 [ 12 

6L -12 6L 

k(I)=EI 6L 4£2 -6L 2£2 . k(2) = EI 6L ,4L2 -6L 2L2 
- L3 -12 -6L 12 -6L - V -12 -6L 12 -6L 

6L 2L2 -6L 4L2 6L 2L2 -6L 4L2 
(4.4.28) 

, The boundary conditions are dly 0, tPl = 0, d3y = 0, and tP3 = O. Using the 
direct stiffness method and Eqs. (4.4.28) to assemble the global stiffness matrix, and 
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applying the boundary conditions, we obtain 

{ 
F~ } = { -;L } = EI [24 0] = { d2y 

} 
M2 -WL2 D 0 8L2 tP 

20 2 

Solving Eq. (4.4.29) for the displacement and slope, we obtain 

-wL4 ' -w£3 
d2y = 48El tP2 = 240El 

Next, we obtain the effective nodtil forces using E(e) = Krl. as 

F,(If) 
Iy 12 6L -12 6L 0 

Mie} 6L 4L2 -6L 2£1- 0 
F.(~) El -12 -6L 24 0 -12 2y 

= L3 M(If) 6L 2£2 0 8L2 -6L 
2 

p!;e} 0 0 -12 -6L 12 
3y 

'MJe) - 0 0 6L 2L2 -6L 

Solving for the effective forces in Eq. (4.4.31), we obtain 

F,(:) _ 9wL· 
11 - 40 

de) _ -wL 
I'2y -

pet) _llwL 
3y -4i) 

M("') _ 7wL2 
1-60 

MJ,e) = -WL2 
2 . 30 

M
( .. ) _,-2wV 
3 ---IS 

0 
0 
6L 
2L2 

-6L 
4L2 

(4.4.29) 

(4.4.30) 

o 
o 

-wL4 

48El 
-WL3 

, 240El 
o 
o 

(4.4.31) 

(4.4.32) 

Finally, using Eq. (4.4.8) we subtract the equivalent nodal force matrix based on the. 
equivalent load replacement shown in Figure 4-29(b) from the effective force matrix 
given by-the results in Eq. (4.4.32), to obtain the correct nodal forces and moments as 

9wL -3wL 
40 40 
7wL2 -wL2 

Fl1 60- 60-
MI -wL -wL 
F2y 

-2- -2-

M2 :-wL2 -wL2 

F3y 30 30 
M) llwL -:17wL 

40 4() 
-2wL2 wL2 
-IS- Is 

12wL 

40 
8wL2 

60-
o 
o 

28wL 
40 

-3wL2 

15 

(4.4.33) 
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We used symbol L to represent one-half the length of the beam. If we replace L with 
the actual length I = 2L, we obtain the reactions for case 5 in Appendix D, thus veri­
fying the correctness of our result. 

In summary, for any structure in which an equivalent nodal force replacement is 
made, the actual nodal forces acting on the structure are detennined by first evaluat-

. ing the effective nodal forces f(e) for the structure and then subtracting the equivalent 
nodal forces ED for the structure, as indicated in Eq. (4.4.8). Similarly, for any element 
of a structure in which equivalent nodal force replacement is made, the actual local 
nodal forces actin~ on the element afe determined by first evaluating the effective 
local nodal forces .re) for the element and then subtracting the equivalent local nodal 
forces/o associated only with the element, as indicated in Eq. (4.4:11). We provide 
other examples of this procedure in plane frame Examples 5.2 and 5.3. • 

~ 4.5 Comparison of the Finite Element Solution 
to the Exact Solution for a Beam 

We will now compare the firiite element ~olution to the exact classical beam theory so­
lution for the cantilever beam shown in Figure 4-30 subjected to a uniformly distrib­
uted load. Both one- and two-element finite element solutions will be presented and 
compared to the exact solution obtained by the direct double-integration method .. 
Let E = 30 x 10'- psi, 1 = 100 in4, L = 100 in., and unifonn load w = 201b/in. 

F I------I::--;roo\l--L-I --LI--L-I --1..I--lJ w= 20 lbrm. 

x L=100in. 

Figure 4-30 Cantilever beam subjected to uniformly distributed load 

To obtain the solution from classical 'beam theory, we use the double,integration 
method [1]. Therefore, we begin with the moment-<:urvature equation 

Ii M(x) ( ) Y =-g] 4.5.1 

where the double prime superscript indicates differentiation with respect to x and Mis 
expressed as a function. of x .by using a section of the beam as shown: 

11 I 1$ wf' . x 2 M 

wL Y 

~ 0: Vex) = wL-wx 

~M2 = 0: M(x) -wL
2 

+ wLx- (wx) (i) (4.5.2) 
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Using Eq. (4.5.2) in Eq. (4.5.1), we have 

1 (-WL2 WX2) 
/I=EI -2-+ wLx -T (4.5.3) 

On integrating Eq. (4.5.3) with respect to x, we obtain an expression for the slope of 
the beam as 

I ~ (-
WL2X WLx2 w.x3) C 

y = EI -2-+-2--6 + I (4.5.4) 

Integrating Eq.'(45A) with respect to x, we obtain the deflection expression for the 
beam as 

1 (_WL2
X

2 wLx3 WX4) 
y= El -4-' -+-6--14 +C)x+C2 (45.5) 

Applying the boundary conditions y = 0 and y' = 0 at x = 0, we obtain 

yl (0) = 0 = C1 yeO) = 0 = C2 (4.5.6) 

Using Eq. (4.5.6) in Eqs. (4.5.4) and (4.5.5), the final beam theory solution expressions 
for y' and y are then 

I 1 (-Wx3 wLx? WL2X) 
y = EI -6-+~--2- (4.5.7) 

and (4.5.8) 

The one-element finite element solution for slope and displacement-is given in variable 
form by Eqs. (4.4.l4b). Using"the numerical values of this problem in Eqs. (4.4.l4b), 
we obtain the slope and displacement at the free end (node 2) as 

• -WL3 -(20 Ibjin.}{100 inl 
~2 = 6El = 6(30 x 106 psi)(lOO in.4) -0.00111 rad 

d _ -WL4 _ -(20 Ibjin.)(lOO in.)' 
21 - 8EI - 8(30 x 106 psi)(lOO in.4) -0.0833 in. 

(4.5.9) 

The 'slope and stisplacement given by Eq. (4.5.9) identically match the beam theory 
values, as Eqs. (4.5.7) and (4.5.8) evaluated at x = L are identical to the variable 
form of the p.nite element solution given by Eqs. (4.4.14b). The reasOn why thes~ 
nodal values from the finite element solution are correct is that the element 
nodal forces were calculated on the basis of being energy or work equivalent to the 
distributed load based on the assumed cubic displacement field within each beam 
element. 

Values of displacement and slope at other locations along the beam for the finite 
element solution are obtained by using the assumed cubic displacement function 
(Eq. (4.1.4)] as 

(4.5.10) 
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where the boundary conditions Cl1y ~I = 0 have been.used in Eq. (45.10). Using the 
numerical values in Eq. (4.5.10), we obtain the displacement at the midlength of the 
beam as 

vex 50 in.) 1. 3 {-2(50 in/ + 3(50 in.)\lOO in.)J( -0.0833 in.) 
(100 In.) 

+ I, 3 [(50 in/(100 in.) (50 in./(100 i~.)2l 
(100 In.) 

x (-0.00111 rad) = -0.0278 in. (4.5.11) 

Using the beam theory fEq. (4.5.8)], the deflection is 

y(x 50 in.) 20lb/in. 
30 x 106 psi(lOO jn.4

) 

[
-(50 inl (100 in.)(50 inl (100 ini(50 inlj 

x 24 + 6 - 4 

= -0.0295 in. (4.5.12) 

We conclude that the beam theory solution for midlength displacement. 
y = -0.0295 in., is greater than the finite element solution for displacement, 
v = -0.0278 in. In general) the displacements evaluated using the cubic function for 
v are lower as predicted by the finite element method ·than by the beam theory except 
at the nodes. This is always true for beams subjected to some form of distributed 
load that are modeled using the cubic displacement function. The exception to this result 
is at the nodes, where the beam theory and finite element results are identical because of 
the work-equivalence concept used to replace the distributed load by work-equivalent 
discrete loads at the nodes. 

The beam theory solution predicts a quartic (fourth-order) polynomial expres­
sion for y [Eq. (4.5.5)] for a beam subjected to uniformly distributed loading) while 
the finite element solution vex) assumes a cubic displacement behavior· in each beam 
element under ali load conditions. The finite element solution predicts a stiffer struc­
ture than the actual one. This is expected, as the finite element model forces the 
beam into specIfic modes of displacement and effectively yields a stiffer model than 
the actual structure. However, as more and .more elements are used in the model) the 
finite element solution converges to the beam theory solution. 

For the special case of a beam subjected to only nodal concentrated loads) the 
beam theory predicts a cubic di.splacement beh~Vior. as the moment is a linear func­
tion and is integrated twice to obtain the resUlting cubic displacement function. A sim­
ple verification of this cubic displacement behavior wou1d be to solve the cantilevered 
beam subjected to an end load. In this special case, the finite element solution for dis­
placement matches the beam theory solution for all locations along the beam length, 
as both functions y(x) and v(x) are then cubic functions. 

Monotonic convergence. of the sOIUtiO.D of a particular problem is discussed in 
Reference {3J, and proof that compatible and complete displacement functions (as 
described in Section 3.2) used in the displacement formulation of the finite element 
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method yield an upper bound on the true stiffness, hence a lower bound on the dis­
placement of the problem, is discussed in Reference [3}. 

Under uniformly distributed loading. the beam theory solution predicts a qua­
dratic moment and a 1inear shear force in the beam. However, the finite element 
solution using the cubic displacement function predicts a linear bending moment and 
a constant shear force within each beam element used in the modeL 

We will now determine the bending moment and shear force in the present prob-­
lem based on the finite element method. The bending mo~ent is given by 

M = Elv" = El
d2(/i!l)'= EI(d

2
/i) d 

dx'l dx2 -

as tj is not a function of x. Or in terms of the gradient matrix B we have 

M = EIll!!. 

where 

d2N [( 6 12x) ( 4 6X) (6 llx) ( 2 6X\] lJ.= a;. = - L2+V . -I+ L2 L2-V -Z+ L2) 

(4.5.13) 

(4.5.14) 

(4.5.15) 

The shape functions give~ by Eq. (4.1.7) are used to obtain Eq. (4.5.15) for the!l 
matrix. For the single-elem~CSolution, the bending moment is then eva:luated by sub­
stituting Eq. (4.5.15) for!l into Eq. (4.5.i4) and multiplying II by g to obtain 

. . 
[( 6 12x) 4 (4 6X) 4 ( 6 12x) A (2 6X) A] 

M= El - Ll +v db:+ -r+ L2 tPl + L2 -v d21:+ -I+ V- tP2' 

(4.5.16) 

Evaluating the moment at the wall, oX = O. with dl.X = JI = 0, and it2x and J2 given by 
Eq. (4.4.14) in Eq. (4.5.16), we have 

lOwL2 . 
M(x = 0) = -~ = -83,3331b--m. (4.5.17) 

Using Eq. (4.5.16) to evaluate the moment at oX = 50 in., we have 

M(x = 50 in.) -33,333 lb-in. (4.5.18) 

Evaluating the moment at x = 100 in. by using Eq: (4.5.16) again, we obtain 

M(x = 100 ~.) = 16,6671b-in. (4.5.19) 

The beam theory solution using Eq. (4.5.2) predicts 

M(x=O) 
_wL2 

- i 00,000 lb-in. (4.5.20) 

M(x = 50 in.) = -25,000 Ib-in. 

and M(x = 100 in.) = 0 

Figure 4-31 (a)-(c) show the plots of the displacement variation, bending moment 
variation, and shear force variation through' the beam length for the beam theory 
and the one-element finite element solutions. Again> the finite element solution for dis­
placement matches the beam theory solution at the nodes but predicts smaller 
displacements (less deflection) at other locations along the beam length. 
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v(x) 
(in.) 

SO iD. , 100 in. 
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"'"- ~ = == = = = = = :8:8~~~:: 

M(x) 
(lbo-in.) 

Beamtbeory 
[Sq. (4.5.8)] 
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-0.0833 in. 
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-100.000 

Jl(x) 
(Ib) 
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:;"'--33,333 

~ Beam theory [Eq. (4S.2)} 
Finite element (one element) 

, (b) 

(c) 

Figure 4-31 Comparison of beam theory and finite element results for a cantilever 
beam subjected to a uniformly distributed load: (a) displacement diagrams, 
(b) bending moment diagrams, and (c) shear force diagrams 

The bending moment is derived by taking two derivatives on the displa.cep1cnt 
function. It then takes more elements to model the second derivative of the displace­
ment function. Therefore, the finite element solution does not predi1;t the bending 
moment as well as it does the displacement. For th.e uniformly loaded beam~ the' finite 
element model predicts a linear bending moment vatiation as ~own in Figure 
4-3i(b). The best approximation for bending moment appears at the midpoint of 
the element. . 
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Figure 4-32 Beam discretized into two 
elements and work-equivalent load 
replacement for ea,ch element 

The shear force is derived by taking three derivatives on the displacement function. 
For the uniformly loaded beam, the resulting shear force shown in Figure 4-31{c) is a 
constant throughout the'single-element model. Again, the best approximation for shear 
force is at the 'midpoint of the element. 

It should be noted that if we use Eq. (4.4.1 I}, that is, f = k4 -10, and subtract 
off the fo matrix, we also 'obtain the correct nodal forces and moments in each 
elemenf For instance, from the one·element finite element solution we have for the 
bending moment at node 1 

(I) = EI [_6L(-WL4
) 2Ll(-WL1'I] _ (_WL2) = WL2 

m1 V gEl + 6El ) 12 

and at node 2 

To improve the finite element-solution we need to' use more elements in the model 
(refine the mesh) or use a higher-order element, such as a fifth-order approximation 
for, the displacement function~ that is, v{x) = at + a2x + a3x2 + {4X3 + QSX4 + a6xs, 
with three nodes (with an extra nOde at the middle of the element). ' 

We now present the two-element finite element solution for the cantilever beam 
subjected to a uniformly distributed load. Figure 4-32 shows the oeam discretized 
into two elements of equaJ length and the work-equivalent load replacement for each 
element. Using the beam element stiffness matrix [Eq. (4J.l3)1~ we obtain the element 
stiffness matrices as follows: 

1 2 
2 3 

[ 12 
61 -12 

6ll E1 ?l 4/2 -6/ 212 (4.5.21) 
lsY> =k(2) 

-12 -6/ 12 -61 
61 2[2 -61 41l 

where 1 = 50 in. is the length of each element and the numbers above the columns in­
dicate the degrees of freedom associated with each element. 

Applying the boundary conditions dIp = 0 and ~I = 0 to reduce the number of 
equations for a norma110nghand solution~ we obtain the global equations for solution as 

[ 

24 

El 0 

P '-12 
61 

o -12 
8[2 -61 

-6/ 12 
212 -61 

61 II a21

') I-WI j' 2Jl ~2 _ 0 
-6/ d - -w112 

4[2';: wPjl2 

(4.5.22) 
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Solving Eq. (4.5.22) for the displacements and slopes, we obtain 
• -17w14 ~ - 2wl4 

A :-7wP • -4w13 

dz,\ = 24El d3y = ifo2 = . 6El ¢J3 = (4.5.23) 

Substituting the numerical values w = 20 Ibjin., 1= 50 in., E 30 x ]06 psi, and 
1= 100 in.4 into Eq. (4.5.23), we obtafn 

d21 = -0.02951 in. d3y = -0.0833 in. ~2 -9.722 x 10-4 rad 

~3 = -'-11.11 X 10-4 rad 

The two·element solution yields nodal displacements that match the beam theory 
results exactly [see Eqs. (4.5.9) and (4.5.l2)}. A plot of the two-element displacement 
throughout the length of the beam would be a cubic displacement within each dement. 
Within element I, the plot would start at a displacement oro at node 1 and finish at a 
displacement of -0.0295 at node 2. A cubic function would connect these values. Sim­
ilarly, within element 2, the plot would start at a displacement of -0.0295 and finish 
at a displacement of -0.0833 in. at node 2 [see Figure 4-31 (a)}. A cubic function 
would again connect theSe values. 

.. 4.6 Beam Element with Nodal Hinge 

In some beams an internal hinge may be present. In general, this internal hinge causes 
a discontinuity in the slope of the deflection curve at the hinge. 

j $,. .;. O. in general il :;:. 0, in general 

"'l> ~1 ml"'O ';'1 =0 ;"'"'2 Hinge 

·19 =p i 
L t2 L Hinge 

Ily,dlJ ./21' i11.J h"dI1 h"i12, 

(a) (b) 

Figure 4-33 Beam element with (a) hinge at right end and (b) hinge at left end 

. Also) the bending moment is zero at the hinge. We could construct other types of ~n· 
nections that release other generalized end forces; that is, connections can be des?gned 
to make the shear force or axial force zero at the connection. These special conditions 
can be treated by starting with the generalized unreleased beam stiffness matrix 
[Eq (4.1.14)J and eliminating the known zero force or moment. This yields a modified 
stiffness matrix with the desired force or moment equal to zero and the corresponding 
displacement or slope eliminated. 

We now consider. the most Common cases of a beam element with a nodal binge 
at the right end or left end, as shown in FigUre 4-33. For the beam element with a 
hinge at its right end, the moment m2 is zero and we partition the k matrix 
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[Eq. (4.1-14)J to eliminate the degree of freedom J2 (whi~h is not zero, in general) asso­
ciated with m2 = 0 as follows: 

k=EI 6L 4L2 -6L: 2i} 

[ 

12 6L -12: 6L 1 
- L3 -12 -6L 12' -6L (4.6.1) 

-6i ---iii---6L;---4V 
We conde~e out the degree of freedom ¢2 a~sociated with m2 = O. Partitioning 

allows us to condense out the degree of freedom tP2 associated with m2 = O. That is, 
Eq. (4.6.1) is partitioned as shown below: 

k = [~~~iL~~21l (4.6.2) 
- K21: K12 

Ix3:1xl 

The condensed stiffness matrix is then found by using the eqUationj = k4 partitioned 
as~~ -

where 
{

illY} 
41 = ~1 

d2y 

Equations (4.6.3) in expanded fonn are 

b K1l41 + Kr,A2 

b = K214, + K12fi2 
Solving for 42 in the second of Eqs. (4.6.5), we obtain 

42 = Kn' (lz - K2141) 

Substituting Eq·. (4.6.6) into the first of Eqs. (4.6.5), we obtain 

It = (KII - K12Kni K21)41. + KI2Knlb 
Combining the second term on the right side ofEq. (4.6.7) with It, we obtain 

(4.6.3) 

(4.6.4) 

(4.6.5) 

(4.6.6) 

(4.6.7) 

!c = K.:!ll (4.6.8) 

where the condensed stiffness matrix is 

K.: = KIl - KI2Knl K21 (4.6.9) 

and the condensed force matrix· is 

!c (4.6.10) 
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Substituting the partitioned parts of k from Eq. (4.6.1) into Eq. (4.6.9), 
we obtain the condensed stiffness matrix as 

K.c == [Kill - [K12][K22rl [K2tl 

6L 
4L2 

-6L 
=~] _ El { ;~ } _1 [6L 2L2 -6L1 

L3 4L2 
12 -6L 

= 3EI [~ t =~] L3 , 
-1 -L 1 

(4.6.11) 

and the element equations (force/displacement equations) with the hinge at node 2 are 

{ ~,} _ 3El [ 1 
ml' -- L 
~ L3 

h., -1 -~ =~]{ 1} (4.6.12) 

The generalized rotation ~2 has been eliminated from the equation and will not be 
calculated using this scheme. However, J2 is not zero in general. We can expand 
Eq. (4.6.12) to include J2 by adding zeros in the fourth row and column of the k 
matrix to maintain m2 = O} as follows: . 

!~l h." m2 

L -1 
L2 -L 

-L 1 
o 0 

(4.6.13) 

For the beam element with a hinge at its left end, the moment ml is zero, and we 
partition the k matrix [Eq. (4.1.14)} to eliminate the'zero moment';'l and its corre­
sponding rotation Jl to obtain 

{ 1, } = 3:'1 [ -t ~ l -f, J{ t 1 (4.6.14) 

The expanded form of Eq. (4.6.14) including ¢l is 

! ~ I = 3EI [~ ~ - ~ 
hy L3 -1 0 1 

';'2 L O-L 

(4.6.15) 

Example 4.10 

Determine the displacement and rotation at node 2 and the element forces for the uni­
form. beam with an internal hinge at node, 2 shown in Figure 4-34. Let E1 be a 
constant. 



4.6 Beam Element with Nodal Hinge A 191 

p 

1/1 CD cl@Hm§l~ 3 Figure 4-34 Beam with intemal hinge 

I-.-----a _____ ~b 
, :% 

We can assume the hinge is part of element 1. Therefore, using Eq. (4.6.13), thl;. 
stiffness matrix of element 1 is 

(4.6.16) 

The stiffness matrix of element 2 is obtained from Eq. (4.1.14) as 
d2y 92 d3}' ~ 

kf.2} = EI [~ !!2 =!~ ~2l 
- b3 -12 -6b 12 -6b 

6b '2b2 -6b 4b2 

(4.6.17) 

Superimposing Eqs. (4.6.16) and (4.6.17) and applying the boundary conditions 

dly = 0, ' tPl = 0, d3y = 0, tP3 = 0 

we obtain the total stiffness matrix and total set of equations as 

(4.6.18) 

Solving Eq. (4.6.18), 'We obtain 

-a3b3p 
d2y = 3(b1 + a 3)EI 

a1b2p 
tP2 = 2(b1 + a3)EI 

(4.6.19) 

The value th. is actually that associated with element 2-that is, 92 in Eq. (4.6.19) 
is actually tP12). The value of 92 at the right end of element 1 (9~1») is; in g~neral, not 
equal to 9~). If we had chosen to asswne the binge to be part of element 2, then'we 
would have used Sq. (4.1.14) for the stiffness matrix of element 1 and Eq. (4.6.15) for 
the stiffness matrix of el~ent 2. This would have enabled us to obtain ;~l), which is 
different from tP~2) 
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Using Eq. (4.6J2) for element I, we obtain the element forces as 

{ ~y} 3EI [1 ~ 
ml =-3 a a, 

A a 
hy -1 -a 

Simplifying Eq. (4.6.20), we obtain the forces as 

• b3p 
J;, = b3 + a3 

ab3p 
ml = b3 +a3 

• b~P 
hy = - b3 +a3 

(4.6.20) 

(4.6.21) 

Using Eq. (4.6.17) and the results from Eq. (4.6.19), we obtain the element'2 forces as 

1
1;, I [12 6b -12 6b 1 
m2 E1 6b 4bz -6b 2b2 

./;y = b3 -12 -6b 12 -6b 

m3 6b 2hz -6b 4b2 

3(b:! +a3)EI 

'a3b2P 

Simplifying Eq .• (~.6.22» we obtain.the element forces as 

• a3p 
hy = - ,,3 +a3 ' 

mz :::;;0 

• a3p 
hy ='b~ + a3 

balp 
m3=--­

b3 +a3 

(4.6.22) 

• 
It should be noted that another way to solve the nodal hinge of Example 4.10 

would be to assume a nodal hinge at the right end of element one and at the len 
end of element two. Hence, we would use the three-equation stiffness matrix of 
Eq. (4.6.12) for the left element and the three-equation stiffness matrix of 
Eq. (4.6.14) for the right element. This results in the binge rotation being condensed 
out of the global equations. You can verify that we get the same result for the dis­
placement as given by Eq. (4.6.19). However, we must then go back to Eq. (4.6.6) 
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using it separately for each element to obtain the rotation at node two for each 
element. We leave this verification to your discretion. 

10 4.7 Potential Energy Approach 
to Derive Beam Element Equations 

We will now derive the beam element equations using the principle of minimum 
potential energy. The procedure is similar to that used in Section 3,10 in deriving the 
bar element equations. Again, oUr primary purpose in applying the principle of mini­
mum potential energy is to enhance your understanding of the principle, It will be 
used routinely in subsequent chapters to develop element stiffness equations. We use 
the same notation here as in Section 3.10. " 

The total potential energy for a beam is 

1Cp = U + n (4.7.1) 

where the general one-dimensional expression for the strain ene~gy U for a beam is 
given by '. 

(4.7.2) 

and for a single beam element subjt<;ted to both ,distributed and concentrated nodal 
loads, the potential energy of forces is given by 

J 
2 :2 

n= - J ,Tyf;dS- LP/ydjy - Lmi~j 
SI ;=1 i=1 

(4.7.3) 

where body forces are now neglected. The tenns on the right-hand side orEg. (4.7.3) 
represent the potential energy of (1) transverse surface loading Ty (in units of force 
per unit surface area. acting over surface Sl and moving through displacements.:over 
which t y act); (2) Doda! concentrated force PiY,. moving through displacements diy; 

and (3) moments mrmoving through rotations "j. Again, ii is the transverse displace­
ment function for the beam element of length L shown in Figure 4-35. 

P,/) 

Figure 4-35 Beam element subjected to surface loading and concentrated nodal 
forces 
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Consider the beam element to have constant cross-sectional area A. The differ­
ential volume for the beam element can then be expressed as 

dV = dA dx (4.7.4) 

and the differential area over which the surface loading acts is 

dS = bdi (4.7.5) 
where b is the constant width. Using Eqs. (4.7.4) and (4.7.5) in Eqs. (4.7.1)-(4.7.3), the 
total potential energy becomes 

IJJ 
1 JL A ~ " A A 11:,= 2(JxexdAdx- 0 bTyvdx- f/~:Ay+m;tPi) 

~ A 

(4.7.6) 

Substituting Eq. (4.L4) for v into the strain/displacement relationship Eq. (4.1.10), 
repeated here for convenience as 

A d2(; 
ex = -y di2 

we express the strain in terms of nodal displacei:nents and rotations as 

{ } 
= _ ~ [l2i 6L 6,iL - 4L2 -12X + 6L 6,iL ~ 2L2] {d}A 

ex y L3 Ll V 

or {e;1;} = -y[B]{d} 

where we define 

[BJ = [l2iL~ 6£ 6iL -4L2 -12X+6L 6.iL D~ 2L2] 

The stress/strain relationship is given by 

{O'x} [DHsx} 

where {p] = [E] 

(4.7.7) 

(4.7.8) 

(4.7.9) 

(4.7.10) 

(4.7.11) 

(4.7.12) 

and E is the modulus of elasticity. Using Eq. (4.7.9) in Eq. (4.7.11), we obtain 

(4.7.l3) 

Next, fPe total potential energy Eq. (4.7.6) is expressed in matrix notation as 

IIJ 
1 T JL "T A" 

1I:p= 2{O'X} {e..}dAdx- 0 bTy[v] dx-{d}T{p} (4.7.14) 
i A 

Using Eqs. (4.1.5). (4.7.9), (4.7.12), and (4.7.13), and defining w = bTp as the line 
~oad (load per unit length) in the y direction, we express the total potential energy, 
Eq. (4.7.14), in matrix form as 

1tp ~ J:~ {d}T[Bf[B]{d}dx- J:W{d}T[N( dx - {d}T{p} (4.7.15) 

where we have used the definition of the moment of inertia 

(4.7.16) 
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to obtain the first tenn on the right-hand side ofEq. (4.7.15). In Eq. (4.7.15), 1€p is now 
expressed as a function of {d}. 

Differentiating 1€p in Eq. (4.7.15) with respect to dIy, ~l' d2y, and ~ and equating 
each term to zero to minimize 1'Cp , we obtain four element equations, which are written 
in matrix fonn as 

(4.7.17) 

The derivation of the four element equations is left as an exercise (see Problem 4.45). 
Representing the nodal force matrix as the sum of those nodal forces resulting from 
distributed loading and concentrated loading, we have 

{i} = l:[Nfwdi + {F} (4.7.18) 

Using Eq. (4.7.18), the four element equations given by explicitly evaluating 
Eq. (4.7.17) are then identical to Eq. (4.1.13). The integral term on the right side of 
Eq. (4.7.18) also represents the work-equivalent replacement of a distributed load by 
nodal concentrated loads. For instance, letting w(xL= -w (constant), substituting 
shape functions from Eq. (4.1.7) into the integral, and then perfoiming the integration 
result in the same nodal equivalent loads as given by Eqs. (4.4.5)-(4.4.7). 

Because {j} = [k]{d}, we have, from Eq. (4.7.17), 

[k] = EI J:[B([B]di (4.7.19) 

Using Eq. (4.7.1O) in Eq. (4:7.19) and integrating, [le} is evaluated in explicit form as 

[ie] = EI [12 ~~2 =~~ ~~2l () 
V 12 -6L 4.7.20 

Symmetry 4L 2 

Equation (4.7.20) represents the local stiffness matrix for a beam elemeni. As 
expected, Eq. (4.7.20) is identical to Eq. (4.1.14) developed previously. 

Ii. 4.8 Galerkin's ,Method for Deriving 
Beam Element Equations 

We will now illustrate Galerkin's method to formulate .the beam element stifTne~s 
equations. We begin with the basic differential Eq. (4.1.1h) with transverse loading w 
now jncluded; that is, 

d4fj 
EJ dX4 + w = 0 (4.8.1) 

We now define the residual·R to be Eq. (4.8.1). Applying Galerkin's criterion [Eq. 
(3.12.3)} to Eq. (4.8.1), we have 

(i 1,2,3,4) (4.8.2) 

where the shape functions N; are defined by Eqs. (4.1.7) 
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We now apply integration by parts twice to the (irst term in Eq. (4.8.2) to yield 

r EI(v,i.ili)Nidi: = r EI(v,x;;)(Nj,jx)di + EI[N,(il'iii) - (Ni,x)(v,xx)J; (4.8.3) 

where the notation of the comma followed by the subscript i indicates differentiation 
with respect to i. Again, integration by parts introduces the boundary conditions. 

Because v = [N]{d} as given by Eq. (4.1.5), we have· 

A •• = [12i - 6L 6iL - 4L2*-12X + 6L 6i:L - 2V] {d} 
V'XX L3 L3 L3 L3 (4.8.4) 

or, using Eq. (4.7.10), 

. (4.8.5) 

Substituting Eq. (4.8.5) into Eq. (4.8.3), and then Eq. (4.8.3) into Eq. (4.8.2), we obtain 

r (Ni,jj)EI[B] di{d} + r Njwdi + [N; V - (N,.,;)ml!; = 0 . (i = 1,2,3,4) 

(4.8.6) 

where Eqs. (4,.1.11) have been used in the boundary tenns. Equation (4.8.6) is really 
four equations (one each for N j = N 1,N2,N3, and N4). Instead of directly evaluating 
Eq. (4.8.6) for each Nil as was done in Section 3.12, we can express the four equations 
of Eq. (4.8.6) in matrix form as 

f[B]TE1[B]di{d} = r -[Nf" wdi+ ([Nf,jm - [NJTV)I~ (4.8.7) 

where we have used the relationship [N],x."C" = [B1 in Eq. (4.8.7). 
Observe that the integral term on the left side of Eq. (4.8.7) is identical to 

the stiffness matrix previously given by Eq. (4.7.19) and that the first term on·the 
right side of Eq. (4.8.7) represents the equivalent nodal forces due to distributed 
loading [also given in Eq. (4.7.18)]. The two terms in parentheses· on the right 
side of Eq. (4.8.7) are the same as the concentrated force matrix {P} of Eq. (4.7.18). 
We explain this by evaluating [N],x and [N], where [N] is defined by Eq. (4.1.6), at 
the ends of the element as follows: 

[N]'ilo = [0 0 0] 

[N]lo = [1 0 0 OJ 

[N]'iIL = [0 0 0 1] 

[NJIL = [0 0 1.. OJ 

Therefore, when we use Eqs. (4.8.8) in Eq. (4.8.7), the following terms resu1t: 

These nodal shear forces and moments are illustrated in Figure 4-36. 

(4.8.8) 
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r- Io' 

I I I ~. ~O)q I 
L 

~(O) VeL) 

Figure 4-36 Beam element with shear forces, moments, and a distributed load 

Figure 4-37 Shear forces and moments acting on adjacent elements meeting 
at a node 

Note that when element matrices are assembled, two shear forces and two 
moments from adjacent elements contribute to the concentrated force and concen­
trated moment at the node common to the adjacent elements as shown in Figure 4-37. 
These concentrated shear forCes V(O) - V(L) and moments m(L) - m(O) are often 
z~ro; that is, V(O) = V(L) and m{L) = m(O) occur except when a concentrated 
nodal force or moment exists at the node. In the actual com.putations, we handle 
the expressions given by Eq. (4.8.9) by including them as concentrated nodal values 
making up the matrix {Pl. 
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A Problems 

4.1 Use Eqs. (4.1.7) to plot the shape functions Nl and N3 and the derivatives (dNz/dx) 
and (dN4 /dx), which represent the shapes (variations) of the slopes ~1 and ¢2 over the 
length of the beam element. 

4.2 Derive the element stiffness matrix for the beam element in Figure 4- I if the rota­
tional degrees of freedom are assumed positive clockwise instead of counterclockwise. 
Compare the two different nodal sign conventions and discuss. Compare the resulting 
stiffness matrix to Eq. (4.1.14). 

Solve all problems using the finite element stiffness metho~. 

4.3 For the beam" shown in Figure P4-3, determine the rotation at pin support A and the 
rotation and displacement under the load P. Determine the reactions. Draw the shear 
force and bending moment diagrams. Let EI be constant throughout the beam. 

r-~ 
~ 

'i: ~=1B J L 

"I B 
Figure P4-3 Figure P4-4 

4.4 For the cantilever beam subjected to the free-end load P shown in Figure P4--4, 
determine the maximum deflection and the reactions. Let. EI be constant throughout 
the beam. 

4.5-4.11 For the beams shown in Figures P4-S-P4-11, determine the displacements and the 
slopes at the nodes. the forces in each element, and the reactions. Also, draw the shear 
force and bending moment diagrams. 

r-----------......... * E = 30 X 106 psi 
1= 100 in'" 

Figure P4-S 



E == 30 x l(f psi 
I lOOin4 
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~Ir---I ----;3f ~ 
~ FO.sin.gap 

~20ft I, 2Oft~ 
(Compare answers with P4-5.) 

Figure P4-6 

Skip 

3 
21 

Sft 
Sft 

Figure P4-7 

3 E = 210QPa 
I '" 4 x IO-~ m4 20 kN· m 

'lI-o---3 m---+--- 3 m--......v.1.' 

Figure P4-8 

£ = mOPa 
I = I 'x 10-4 m' ' 

Figure P4-9 

f
kiP 

~
1 - E =: 29 x to' psi 

_~===::;::;:====='::::::I2 I "" 200 in'" 
20 fl 

k = 1000 Ib/m. 

,3 ' 

Figure P4-10 



206 ... 4 Development of Beam Equations 

Figure P4-11 

E = 70GPa 
1=2 X IOM4 m4 

4.12 For the fixed-fixed beam subjected to the uniform load w shown in Figure P4-12, 
determine the midspan deflection and the reactions. Draw the shear force and bending 
moment diagrams. The middle section of the beam has a bending stiffness of 2EI; the 
other sections have bending stiffnesses of E1. 

~ ll * rlll:g~. A_: : =-8 
L---l t--- L 
3 ~~--J 3 . 

Figure P4-12 

4.13 Determine the midspan deflection and the reactions and draw the shear force and 
bending moment diagrams for the fixedMfixed beam subjected to uniformly distnbuttd 
load w shown in Figure P4-13. Assume EI constant throughout the beam. Compate 
your answers with the classical solution (that is, with the appropriate equivalent joint 
forces given in Appendix D). 

IV 
w 

~----L ----.r/: 

Figure P4-13 Figure P4-14 

4.14 Determine the midspan deflection and the reactions and draw the shear force and 
bending moment diagrams for the simply supported beam SUbjected to the uni­
fonnly distributed load w shown in Figure P4-14. Assume E1 constant throughout 
the beam. 

4.15 For the beam loaded·as shown in Figure 'P4-15, determine the free-end deflection and 
the reactions and draw the shear force and bending moment diagrams. Assume E1 
constant throughout the beam. 
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w 

A <141=rrrII 
I_ L -/ 

Figure P4-15 Figure P4-16 

4.16 Using the concept of work equivalence, determine the nodal forces and moments 
-(called equivalent nodal forces) used to replace the linearly varying distributed load 
shown in Figure P4-16. 

4.17 For the beam shown in Figure 4-17, detennine the displacement and slope at the 
center and the reactions. The load is symmetrical with respect to the center of the 
beam. Assume El constant throughout the beam. 

w 

~~ rogureP4-17 

4.18 For the beam subjected to the linearly varying line load w shown in Figure P4-18, 
detennine the right-end rotation and the reactions. Assume El constant throughout 
the beam. 

/} ~ w Figur. P4-18 

A~ 

4.19-4.24 For the beams s~own in Figures P4-19-P4-24, determine the nodal displac~ents 
and slopes, the forces in each element, and the reactions. 

8 kN/m 
E"" 70GPa 
I = 3 x' 10- 4 m4 

Figure P4-19 
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10 kN/m 

Figure P4-20 

Figure P4-21 

I I Ii 
15ft-l 

E = 210GPa 
1 = 4 X 10-4 m~ 

E :: 29 x lif psi 
I:: 200in4 

4000 'b/ll 

E = 29 x lot' psi 
. 1= 150in4 

'~J 

Figure P4-22 

Figure P4-23 

5000 N/m 

Figure P4-24 

E 1.6 x lot' psi 
I:: l00in4 

E::::: 210GPa 
1=2 )( 10-4 m4 
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4.25-31 F or the beams shown in Figures P4-25-P4-30, detennine the maximum deflection 
and maximum bending stress. Let E = 200 GPa or 30 x 106 psi for all beams as 
appropriate for the rest of the units in the problem. Let c be the half -depth of each beam. 

• 40 31 

. w= lOkN/m 30kN/m 

1--4m -1--4 m--l I, 10m .1. 20m ·1 21 

c= O.25m, 1= 100)( lO"'-6 m4 c = O.25m. I = 500(10-6) m4 

Figure P4-25 Figure P4-26 

1S lc 2kip/ft 

~ ~J"+~ AJI' B niiQiic £D 
~15 ft-:-15 ft=t=== 30

1
ft --I 

25kN/m 

AI !M11l!e 
~10m--·.j..ooII·-5m--l 

, c = 10 in.,! = 500 in.4 

Figure P4-27 Figure P4-28 

IOOkN 

!---lOft -~'I-' -10 ft --l 

IOkN/m 

AI 11111111 !J: 
! • 1; m .\. 6

2
7 .1 

c= 10 in .• 1 =400 in.4 c = O.3Om, J = 700 x fer m4 

Figure P4-29 Figure P4-30 

For the beam design'problems shown in Figures P4-31 through P4-36, determine the size 
of beam to SIlpport the loads shown, based on requirements listed next to each beam . 

Design a beam of ASTM A36 steel with allowable bending stress of 160 MPa to 
support the load shown in Figure P4-3L Assume a standard wide Hange beam from 
Appendix F or some other source can be used. 

w=30kN/m 

l .~ ~ 
I· 4m -I' 4m ·1 

Figure P4-31 
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S 4.32 Select a standard steel pipe from Appendix F to support the load shown. The allow­
able bending stress must not exceed 24 ksi> and the allowable deflection must not 
exceed Lj360 of any span. . 

5OO1b Soolb 5001b 

1 t ! 
A 7JJT 7JJT 7Jb 
r-- 6ft '1- 6ft ·1- 6ft4 

Figure P4-32 

»4.33 Select a rectangular structural tube from Appendix F to support the loads shown for 
the beam in Figure P4-33. The allowable bending stress should not exceed 24 ksi. 

rOo 
7JJT 

6ft-··..,...!.- 6ft4 

Figure' P4-33 

4.34 Select a standard W section from Appendix F or some other source to support the 
loads shown for the beam in Figure P4-34. The bending stress must not exceed 
160MPa. . 

20kNJrn 

Figure P4-34 

~ 4.35 For the beam shown in Figure P4-35, determine a suitable sized W section from 
Appendix F or from another suitable source such that the bending stress does not 
exceed 150 MPa and the maximum deflection does not exceed L/360 of any span. 

'T T 17~ 2.5 m 25m! 

A 
i41----lom 

Figure P4-3S 
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• 4.36 For the stepped shaft shown in Figure P4-36, determine a solid circular cross section 
for each section shown such that the bending stress does not exceed 160 MPa and the 
maximum deflection does not exceed L/360 of the span. 

Figure P4-36 

4.37 For the beam shown in Figure P4-37 subjected to the concentrated load P and dis­
tributed load w, determine the midspan displacement and the reactions. Let E1 be 
constant throughout the beaJ'!l. 

r-'=r=l' !P !P 
I ,I L L L I ! 1=2(1 I 3 "3 3 I 1 L L 

Figure P4-37 Figure P4-38 

4.38 For the beam shown in Figure P4-38 subjected to the two concentrated loads P, 
determine the deflection at the midspan. Use the equivalent load replacement method. 
Let El be constant throughout the beam. 

4.39 For the beam shown in Figure P4-39 subjected to the concentrated load P and the 
linearly varying line load w, determine the free-end de1;lection and rotation and the 
reactions. Use the equivalent load replacement method. Let El be constant through­
out the beam., 

Figure P4-39 Figure P4-40 

4.40-42 For the beams shown in Figures P4--4O-P4-42, with internal hinge, determine the 
deflection at the hinge. Let E = 210 GPa and 1=2 X 10-4 m4. 
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P = 5 kN 

Ir-----Hi
_
Dge 

'>..a,Ir-! ----, 

I ~ 
1-2 m_a+ot-. -2 m-I 

Figure P4-41 Figure P4-42 

4.43 Derive the stiffness matrix for a beam element with a nodal linkage-that is, the shear 
is 0 at node i, but the usual shear and moment resistance are present at node j (see 
Figure P4-43). 

~f m 

" (F--;;) L. = 0 L ~ Figure P4-43 

4.44 Develop the stiffness matrix for a fictitious pure shear panel eiement (Figure P4-44) in 
terms of the shear modulus, G the shear web area, A w, and the length, L. Notice the 
Y and v are the shear force and transverse displacement at each node, respectively. 
. ~-~ 

Given 1) 7: = G'1' 2) Y = 'tAw, 3) Y, + Y2 = 0, 4) Y =--x;-

rOt ri'-----------lL ly FigureP4-44 

Positive node force 
, sign convention 

Element in equilibrium 
(neglect moments) 

4.45 ExplipitIy evalu~te, 1lp of Eq. (4.7.15); then differentiate 1lp with respect to diy, ~ll d2y, 

and ~2 and set each of these equations to zero (that is, minimize IIp) to obtain the four 
element eqUations for the beam element. Then express these equations in matrix form. 

4.46 Determine the free-end deflection for the tapered beam shown in Figure,P4-46. Here 
I{x) = 10(1 + nx/ L) where 10 is the moment of inertia at x = O. Compare the exact 
beam theory solution with a two-element finite element solution.for n = 2. 

M w(.r) 

lEro----r' L-----I"~ fi~I[LiI1-~"' 
Figure P4-46 Figure P4-47 
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4.47 Derive the equations for the beam element on an elastic foundation (Figure P4-47) 
using the principle of minimum potential energy. 'Here kf is the subgrade spring 
constant per unit length. The potential energy of the beam is 

1lp = r~EI(VII)2dx+ rk~2dx IL wvdx 

4.48 Derive the equations for the beam element on an elastic foundation (see Figure 
P4-47) using Galerkin's method. The basic differential equation for the beam on 
an elastic foundation is 

4.49-76 _Solve problems 4.5-4.11, 4.19-4.36, and 4.40-4.42 using a suitable computer 
• program. 

4.77 • F,or the beam shown, use a computer program to detenrune the deflection at the 
mid-span using four beam elements, making the shear a~ zero and then making 
the shear area equal 5/6 times the -cross-sectional area (b times h). Then make the 
beam have decreasing spans of 200 mIn, 100 mm, and 50 mm with zero shear area 
and then 5j6 times the cross-sectional area. Compare the answers. Based on your 
program answers, can you conclude whether your program includes the effects of 
transverse shear deformation? 

I-- b=25nun. 

F;gure P4-77 

4.78 For the beam shown in Figure P4-77, use a longhand solution to solve the problem. 
Compare answers using the ·beam stiffness matrix, Eq. (4.1.14), without transverse 
shear deformation effects and then Eq. (4.1.150), which includes the transverse 
shear effects. 



Introduction 

Many structures) such as buildings (Figure 5-1) and bridges, are composed of frames 
and/or grids. This chapter develops the equations and methods for solution of plane 
frames and grids. 

, First, we will develop the stiffness matrix for a beam element arbitrarily oriented 
in a plane. We will then include the axial nodal disPlacement degree of freedom in the 
local, beam element stiffness matrix. Then we will. combine these results to develop the 
stiffness matrix, including axial defonnation effects, for an arbitrarily'oriented beam 
element, thus making it possible to analyze plane frames. Specific examples of plane 
frame analysis follow. We will then consider frames with inclined or skewed supports. 

Next, we will develop the grid el~ment stiffness matrix. We will present' the 
solution of a grid deck system to illustrate the application of the grid equations. We 
will then develop the stiffness matrix for a beam element arbitrarily oriented in 
space. We will also consider the concept of substructure analysis. 

... '5.1 TwO-OimensionaJ Arbitrarily Oriented 
Beam Element 

We can derive the stiffness matrix for an arbitrarily oriented beam element. as shown 
in Figure 5-2, in a manner similar to that used' for the bar element in Chapter 3. The 
local axes x and yare located along the .beam element and transverse to the beam 
element, <respectively, and the global axes x and yare located to be convenient for 

, the total structure. 
Recall that we can relate local displacements to global displacements by using 

Eq. (3.3.16), repeated here for convenience as 

{~:} = [-~ ~l {~:} (5.1.1) 
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Figure 5-1 The Arizona Cardinal Football Stadium under construction-a rigid 
building frame (Courtesy Ed Yack) . 

y 

Figure 5-2 Arbitrarily oriented beam 
element 

x 

'Using the second equation of Eqs. (5.1.1) for the beam element> we relate tocal nodal 
degrees of freedom to global degrees of freedom by 

dJx r'l [-s c 

0 0 0 

~l 
dly 

¢l 0 0 1 0 0 ¢} 
(5.1.2) 

(f2y = 0 0 0 -s C d2x 

~ 0 0 0 0 0 d2y ¢2 
;2 

where, for a beam element, we define 

[-s C 0 0 0 

~l T= 0 0 I 0 0 
(5.1.3) - 0 0 0 -s c 

0 0 0 0 0 
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as the transformation. matrix. The axial effects are not yet included. Equation (5.1 .2) 
indicates that rotation is invariant with respect to either coordinate system. For 
example, ~1 = 91' and moment "'1 = m, can be considered to be a vector pointing 
norma1 to the x-y plane or to the x-y plane by the usual right-hand rule. From either 
viewpoint, the moment is in the i = z direction. Therefore, moment is unaffected as 
the element changes orientation in ·the x-y plane. . 

Substituting Eq. (5.1.3) for I and Eq. (4.1.14) for k into Eq. (3.4.22), 
If rTkr, we obtain the global element stiffness matrix as 

dIx dly 91 d2:Jr, d2y 92 
12S2 -12SC -6LS -12S2 12SC -6LS 

12C2 6LC l2SC -12C2 6LC 

k=EI 4L2 6LS -6LC 2L2 
(5.1.4) - L3 12S2 -12SC 6LS 

12Ci -6LC 
Symmetry 4L2 

where, again, C = cos 0 and S = sin O. It is not necessary here to expand r. given l;>y 
Eq. (5.1.3) to make it a square matrix to be able to use Eq. (3.4.22). Because 
Eq. (3.4.22) is a generally applicable equation, the matrices used must merely be of 
the correct order for matrix multiplication (see Appendix A for more on matrix multi­
plication). The stiffness matrix Eq. (5.1.4) is the global element stiffness matrix for a 
beam element that includes shear and bending resistance., Local axial effects are not 
yet !:Deluded. The transformation from local to global stiffness by mUltiplying matrices 
ITlfl, as done in Eq. (5.1.4J, is usually done on the computer. 

We will now include the axi:ll effects in the eleMent, as shown in Figure 5-3. 
The element now has three degrees o(freedom per node (djx,diY, Ji)' For axial effects, 
we recall from Eq. (3.1.13), 

{~x} = AE [. 1 -1] {'~IX} 
fa L. -1 1 d2x 

(5.1.5) 

y A., 
:J. 

j 1f)l 

h:! 
(J 

X 

hL ml 

Figure 5-3 local forces acting on a beam element 
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Combining the axial effects of Eq. (5.L5) with the shear and principal bending 
moment effects of Eq. (4. L 13), we have) in local coordinates, 

where 

and) therefore, 

Ci 
o 
o 

-C, 
0. 
0. 

CI. 
o 

k= 0 
-CJ 

o 
o 

o 0. 

12C2 6C2L 
6C2L 4C2L2 

0. 0. 
-12C2 -6C2L 

6C2L 2C2L2 

AE 
Cl=­

L 

0. 0. 

and 

12C2 6C2L 
6CzL. 4C2L2 
0. . 0. 

-12C2 -6C2L 
6C2L 2C2L2 

-C1 

0. 
o 
CI 

o 
0. 

0. 

- 12C2 

- 6C2L 
o 
12C2 

-6C2L 

0. 
-12C2 

0. 
6CzL 
2C2L2 

0. 
-6C2L 

4C2L2 

-CI 
o 
0. 

Cl 
o 
0. 

- 6C2L 

o 
6C2L 
2C2L2 

0. o 
12C2 

-6C2L 

.... 6C2L 

4C2L2 

(5.1.6) 

(5.1.7) 

(5.1.8) 

The k matrix in Eq. (5.1.8) now has three degrees of freedom per node and n~w 
, includes axial effects (in the ~ction), as well as shear force effects (in the y difec.. 
tion) and principal bending'moment effects (about the i = z axis). Using Eqs. (5.1.1) 
and (5.1.2), we now relate the local to the global displacements by 

db C S 0. 0. 0. 0 .db;' 
dly -s C, 0 0. 0 0 dly 

~l 0 0 0. 0 0 - til 

db: 0 0. 0 C' S o db: 
(5.1.9) 

dly 0 0. 0. -S C 0. d2y 

J2 0. 0 0. 0. 0 th. 

where T. h~ now beeU expanded to include local'axiaJ deformation effects as 

C S 0 0. 0. 0. 

-S C 0. 0. 0 0.' 

X= 
0. 0. 1 0. D- o. 

(5.1.10) 
0. 0 0 C S 0 

0. 0 0. -s C 0. 
0 0. 0 0_ 0 

Substituting X from Eq. (5.1.10) and k from Eq. (5.1.8) into Eq. (3.4.22), we obtain 
the general transformed g~obal stiffnes~ matrix for a b.eam element that includes axial 
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force, shear force, and bending moment effects as fonows: 

!s 
E 
IX 

AC2+ ~: S2 ( A-~:)CS '-~s L' -(AC2+~ S2) ( 121) - A-V CS -~s 
L 

AS'2+~: C,. ~c 
L -(A-~:)CS - ( AS2 + ~: C2

) ~C 
L 

41 ~S 
L 

-~C 
L 

2J 

AC2+~: S2 (A-~:)CS ~S 
L 

AS" 121 C2 +v -~c 
L 

Symmetry 41 

(5.1.11) 

The analysis of a rigid plane frame can be undertaken by applying stiffness matrix 
Eq. (5.1.11). A rigjd plane frame is defined here as a series of beam elements rigidly con­
nected 10 each other; that is, the' original angles made between elements at their joints 
remain unchanged after the deformation due to applied 10ads or applied displacements. 

Furthermore, moments are transmitted from one ,element to another. at the 
joints. Hence, moment continuity exists at the rigid joints. ,In addition. the element 
centroids, as wen as the applied' loads, lie in a common plane (x-y plane). From Eq. 
(5.1.11), we observe that the element stiffnesses ofa frame are functions of E, A, 
L, 1, and the angle of orientation 8 of the element with respect to the gIobal-coordinate 
axes. It should be noted that computer programs often refer to the frame element as a 
beam element, with the understanding that the program is using the stiffness matrix in 
Eq. (5.1.11) for plane frame analysis. 

A 5.2 Rigid Plane Frame Examples I 
To illustrate the use of the equations developed in Section 5.1, we will now perform 
complete solutions for the 'following rigid plane frames. 

Example 5.1 

As the first example of rigid plane frame anaJysis) solve the simple "bent" shown in 
Figure 5-4. 

The frame is fixed at nodes I and 4 and subjected to a positive horizontal force 
of 10,000 lb applied at node 2 and to a positive moment of 5000 Ib-in. applied at 
node 3. The global-c,?ordinate axes and the element lengths are shown in Figure 5-4. 
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1----10ft 
10,000 ,lb I oX _ 

(i) 

Figure 5-4 Plane frame for analysis, also showing local x axis for each element 

Let E = 30 x 106 psi and A = 10 in2 for all elements, and let J = 200 in4 for elements 
1 and 3, and I = 100 in4 for element 2. 

Using Eq. (5.1.1 I), we obtain the global stiffness matrices for each element. 

Element 1 

For element 1, the angle between the global x and the local x axes is 90° (counter­
clockwise) because i is assumed to be directed from node 1 to node 2, Therefore, 

Also, 

C - 90° - Xl - Xl _ ,-60 - (-60) 0 
- cos - £(I) - 120 

S - . 90° - Y2 - YJ _ 120 - 0 - 1 
- sm - £(l) - 120 -

lL~ = 12(200) = 0.167 in2 

(10 x 12)2 

6J = 6(200) = 100' 3 
L 10 x 12 . In 

~ = 30 x 10
6 = 250 000 Ib/' 3 

L 10 x 12 ' In 

(5.2.1) 

Then, using Eqs. (5.2.1) to help in ev~luating Eq. (5.1.11) for element 1, we obtain the 
element global stiffness matrix as 

db d1y rPI d2;x d2y rP2 
0.167 0 -10 -0.167 0 -10 
0 10 0 0 -10 0 

lfP) = 250,000 
-10, 0 800 10 0 400 Ib 

(5.2.2) 
-0.167 0 10 0.167 0 10 in. 

0 -10 0 0 10 0 

-10 0 400 10 0 ~OO 

where all diagoruu tel1llS are positive. 



220 .A 5 Frame and Grid Equations 

Element 2 

For element 2, the angle between x and x is zero because x is directed from node 2 to 
node 3. Therefore, 

c= 1 S=O 

Also, 121 = 12(100) = 00835' 2 
L2 1202 • lD 

61 =. 6(100) = 5 ° in3 
L 120 . (5.2.3) 

f = 250,000 IbJin
3 

Using the quantities obtained in Eqs. (5.2.3) in evaluating Eq. (5.l.fl) for element 2, 
we obtain 

d2,;.; tky ~ d3% d3y tP3 
10 0 0 -10 0 0 

° 0.0835 5 0 -0.0835 .' 5 

~(2) = 250,000 0 5 400 0 -5 200 Ib 
(5.2.4) 

-10 0 0 10 0 0 

0 -0.0835 -5 ° 0.0835 -5 

0 5 200 0 -5 400 

Element 3 

For element 3, the angle between x and i is 2700 (or -90°) because i is directed from 
node 3 to node 4. Therefore, 

C=O S= -1 

Therefore, evaluating~. (5.1.11) for element 3, we obtain 

d3l: dly '3 t.kx ik.y '4 
0.167 0 10 -0.167 0 10 

0 10 0 0 -10 ° 
k(3) = 250,000 10 .0 800 -10 0 400 Ib 

(5.2.5) 
-0.167 0 -10 0.167 0 -10 in. 

0 -10 0 0 10 0 

10 0 400 -10 0 800 

Superposition of Eqs. (5.2.2), (5.2.4), and (5.2.5) and application of the boundary con­
ditions d l :( = dty "I = ° and t.kx = d.ty = '4 ° at nodes 1 and 4 yield the reduced '. 
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set of equations for a longhand solution as 

10,000 10.167 0 10 -10 0 0 d2;r 

0 0 10.0835 5 ° -0.0835 5 d2y 

0 
=250,000 

10 5 1200 0 -5 200 th. 
0 -10 0 0 10.167 0 10 d3x 

0 0 -0.0835 -5 0 10.0835 -5 d3y 
5000 0 5 -200 10 -5 1200 tP3 

(5.2.6) 

Solvmg Eq. (5.2.6) for the displacements and rotations, we have 

d2;r 0.211 in. 
d2y 0.00148 in. 

~ -0.00153 rad 
(5.2.7) 

dh 0.209 in. 
d3y -0.00148 in. 

tP3 -0.00149 rad 

The results indicate that the top of the frame moves to the right with negligible vertical 
displacement and small rotations of elements at nodes 2 and 3. 

The element'forces can nQw be.obtained using j kIf! for each element, as 
was previously done in solving truss and beam proble:nls. We will illustrate this proce­
dure only for element 1. For element 1, on using Eq. (5.1.10) for I and Eq. (5.2.7) for 
the displacements at node 2, we have 

,0 I 0 0 0 0 db = 0 
-1 0 0 0 0 0 dly=O 

I4.=' 
0 0 1 0 0 0 tPl =0 
0 0 0 0 1 0 d2x = 0.211 

(5.2.8) 

0 0 0 -1 0 0 d2y = 0.00148 
0 0 0 0 0 "2 = -0.00153 

On multiplying the matrices in Eq. (S.2.8), we obtain' 

o 

° 
I!!. = 

o 
0.00148 

(5.2.9) 

-0.211· 
-0.00153 
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Then using if from Eq. (5.L8» we obtain element 1 local force~ as 

10 0 0 -10 0 0 0 
0 0.167 10 0 -0.167 10 0 

i = kId = 250,000 
. 0 10 800 0 ~IO 400 0 

-10 0 ° 10 0 0 0.00148 
0 -0.167 -10 0 0.167 -10 -0.211 
0 10 400 0 -10 .800 -0.00153 

(5.2.10) 

Simplifying Eq. (5.2.10) we obtain the local forces acting on element 1 as 

.Ax -37001b 

"'y 4990lb 

ml 376,000 lb-in. 
(5.2.11) 

f2x 3700 Ib 

hy 
-4990 Jb 

m2 223,000 Ib-in. 

A free-body diagram of each element is shown in Figure 5-5 along with equilibrium 
verification. In Figure 5-5, the i axis is directed from node 1 to node 2-consistent 
with the order of the nodal degrees of freedom used in developing the stiffness matrix 
for the element. Since the x-y plane was iIutially establi'shed as shown in Figure 5-4, 
the z axis is directed 'outward-consequently, so is the z axis '(recall i = z). The y 
axis is then established such that x cross y yields the direction of i. The signs on the 
resulting element forces in Eq. (5.2.11) are thus, consistently shown in Figure 5-5. 
The forces in elements 2 and 3 can be obtained in a manner similar to that used to 
obtain Eq. (5.2.11) for the nodal forces in element 1. Here we report only the final 
results for the forces in elements 2 and 3 and leave it to your discretion to petform 
the detailed calculations. The element forces (shown in Figure 5-5(b) and (e)) are as 
follows: 

Element 2 

f2x = 5010 lb 12Y = -3700 Ib m2 = -223,000 tb-in. 

Ax = -5010 Ib Ay = 3700 Ib 
(S.2.l2a) 

m3 = -221,000 Ib-in. 

Element 3 

Ax 37001b Ay = 5010 Ib m3 = 226,000 lb-in. 

hx = -3700 Ib t.y = -5010 Ib 
(5.2.l2b) 

m4 = 375,000 tb-in. 
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223.000 lb-in. 
2 ~+--r-'" 4990 Ib 

CD 
120 in. 

376.000 Ib--in. 

9 -----:-I.jo-Io-t---'-- 4990 Jb 

3700 Ib 

(a) 

3700tb 
. (b) 

3700 Ib 

--_r+r--+---r-_y 

1 

5010lb 

37001b 

(c) 

I 

221,000 lb-in. 

50101b 

37001b 

Figure s-s Free-body diagrams of (a) element', (b) element 2, and (c) element 3 

Considering the free body of element 1, the equilibrium equations' ar~ 

L Fi: -4990 + 4990 = 0 

L Fy: -3700 + 3700 = 0 

LM2: 376,000 + 223,000 - 4990(120 in.) ~ ° 
Considering moment equilibrium at node2) we see from Eqs. (5.2.l2a) and (5.2.12b) 
that on element 1) m! = 223,000 lb-in., and the opposite value, -223,000 Ib-in., 
occurs on element 2. Similarly, moment equilibrium is satisfied at node 3, as m3 
from elements 2 and 3 add to the 5000 lb-in. applied moment. That is, from 
Eqs. (5.2.12a) and (5.2.l2b) we have 

-221,000 + 226,000 = 5000 lb-in. • 
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ExampleS.2 

To illustrate the procedure for solving frames subjected to distributed loads, solve the 
rigid plane frame shown in Figure 5~6. The frame is fixed at nodes I and 3 and sub. 
jected to a uniformly distributed load of 1000 Ib/ft applied downward over element 2. 
The global-coordinate axes have been established at node 1. The element lengths are 
shown in the figure. Let ~ = 30 X 10' psi, A = 100 in2, and I 1000 in4 for both ele­
ments of the frame. 

We begin by replacing the distributed load acting on element 2 by nodal forces 
and moments acting at nodes 2 and 3. ,Using Eqs. (4.4.5)-(4.4.7) (or Appendix D), 
the equivalent nodal forces and moments are calculated as 

fiy = - ~L _ (10~)40 = -20,000 Ib = -20 kip 

(a) 

(1000)402 

12 

. -20 kip 

-l600k-m. 

(b) 

-133,3331b-ft = -1600 k-in. 

-20 kip 

1600Je-m. 

(5.2.13) 

Figure 5-6 (a) Plane frame for analysis and (b) equivalent nodal forces on frame 
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13 = - wL = - (1000)40 = -20000 Ib = -20 kip 
y 2 . 2 ' 

wL2 (1000)402 

m3 = 12 = 12 133,3331b-ft = 1600 k-in. 

We then use Eq. (5.1.11), to determine each element stiffness matrix: 

Element 1 

8(1) =.450 C = 0.707 S = 0.707 L(l) = 42.4 ft = 509.0 in . 

. ~ = 30 X 10
3 = 58.93 

L 509 

k"(i) = 58.93 49.98 50.02 -8.33 -:-
[

50.02 49.98 8.33] kip 

8.33 -8.33 4000 tn. 

Simplifying Eq. (5.2.14) we obtain 

db: 

k(I) = [~:: 
491 

(5.2.14) 

(5.2.15) 

where only the parts of the stiffness matrix associated with degre~s offreedom at node 
2 are included because node 1 is fixed. 

Element 2 

e(2) = 00 C=l S=O L(2) = 40 ft = 480 in. 

~ = 30 X 10
3 

= 62 50 
L . 480 . 

[100 0 o ] . 
k(2) = 62.50 ~ 0.052 12.5 ~p 

12.5 4000 m. 
(5.2.16) 

Simplifying Eq. (S.2.l6)) we obtain 

d2x d2y th. 
[62~ 0 o ] k' IsP) = . ~ 3.25 

Ip 
781.25 -:-

tn. 
781.25 250,000 

(5.2.17) 

where, again, only the par:ts of the stiffness matrix associated with degrees of freedom 
at node 2 are included because node 3 is fixed. On superimposing the stiffness matrices 
of the elements, using Eqs. (5.2.15) and (5.2.17), and using Eq. (5.2.13) for the nodal 
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forces and moments onJy at node 2 {because the structure is fixed at node 3), we have 

{
Fa: = 0 } [9198 2945 491] {d2x

} 
F2y = -20 = 2945 2951 290 d2y 

M2 = -1600 491 290 485)00 ;2 
(5.2.18) 

Solving Eq. (S.2.18) for the displacements and the rotation at node 2, we obtain 

{ 

d1x } {0.0033 in. } 
d2J1 = -0.0097 in. 

;2 -0.0033 fad 
(S.2.19) 

The results indicate that node 2 moves to the right (d'l;( = 0.0033 in.) and down 
(d2y = -0.0097 in.) and the rotation of the joint is clockwise (;2 = -0.0033 rad). 

The local forces in each element can now be determined. The procedure for 
elements that are subjected to a distributed load must be applied to element 2. Recall 
that the local forces are given by i kTd.. For element 1, we then have 

0.707 0.707 0 O· 0 0 0 

-0.707 0.707 0 0 0 0 0 

T4= 
' 0 0 1 0 0 0 0 
,0 0 0 0.707 0.707 0 0.0033 

(5.2.20) 

0 ,0 0 -0.707 0.707 0 -0.0097 
0 0 0 0 0 -0.0031 

Simplifying Eq. (S.2.20) yields 

0 
0 

Ti!.= 
0 

-0.OO4S2 
(5.2.21) 

-0.0092 
-0.0033 

Using Eq. (5.2.21) and Eq. (5.1.8) for k, we obtain 

ltx 5893 0 0 -5893 0 0 0 

lty 2.730 694.8 0 -2.730 694.8 0 

ml 117,900 0 -694.8 117,900 0 

fa. 5893 0 0 -0.00452 

hy 
2.730 -694.8 -0.0092 

. ~, "'2 
. ~~~try 235,800 -0.0033 

(5.2.22) 
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Simplifying Eq. (5.2.22) yields the local forces in element I as 

itx = 26.64 kip ity -2.268 kip 

.Ax = -26.64 kip h,. = 2.268 kip 

m}x = -389.1 k-in. 

m2x = -778.2 k-in. 
(5.2.23) 

For element 2, the local forces are given by Eq. (4.4.11) because a distributed load is 
acting on the element. From Eqs. (5.1.10) and (5.2.19» we then have 

1 0 0 0 0 0 0.0033 

0 1 0 0 0 0 -0.0097 

1f1= 
0 0 1 0 0 0 -0.0033 

0 0 0 0 0 0 
(5.2.24) 

0 0 0 0 I 0 0 

0 0 0 0 0 0 

Simplifying Eq. (S.2.24), we obtain 

0.0033 

-0.0097 
-0.0033 

0 
(5.2.25) 

0 
0 

Using Eq. (5.2.25) and Eq. (5.1.8) for k> we have 

6250 0 0 -6250 0 0 0.0033 

3.25 781.1 0 -3.25 781.1 -0.0097 

!4=kI4= 
250,000 0 -781.1 125,000 -0.0033 

6250 0 0 0 

3.25 -781.1 0 

Symmetry 250,000 0 

(5.2.26) 

Simplifying Eq. (5.2.26) yields 

20.63 

-2.58 

k4= 
-832.57 (5.2.27) 
-20.63 

2.58 

-412.50 
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26.64 kip 
778.2 k-in. LOO kilt 2013 k-in. 

CD 
2 ~~~P~ ~ ~~. 

2.268 lOp 767.4 k-in:2 ~ ~ . kip 

389.1 k-in. J7 .42 kip 22.58 kip 

26.64 tip 2.268 tip 

Figure 5-7 Free-body diagrams of elements 1 and 2 

To obtain the actual eJement local nodal forces, we apply Eq. (4.4.1 1); that is, we must 
subtract the equivalent nodal forces fEqs. (S.2J3)} from Eq. (5.2.27) to yield 

Simplifying Eq. (5.2.28), we obtain 

20.63 

-2.58 

-832.57 

-20.63 

2.58 

-412.50 

i2x = 20.63 kip .12, = 17A2 kip 

Ax = - 20.63 kip 13, = 22.58 kip 

o 
-20 

. -1600 
o 

-20 
1600 

m2 = 767A k-in. 

1ft'S = -2013 k-in. 

(5.2.28) 

(5.2.29) 

Using Eqs. (5.2.23) and (5.2.29) for the local forces in each element, we can con­
struct the free-body diagram for each element, as shown in Figure 5-7. From the free­
body diagrams) one can confirm the equilibrium of each element, the total frame, and 
joint 2 as desired. • 

In Example 5.3, we will illustrate the equivalent joint force replacement method 
for a frame sUbjected to a load acting on an element instead of at one of the joints of 
the structure. Since no distributed loads are present, the point of application of the 
concentrated load could be treated as an extr~ joint in the analysis. and we could 
solve the problem in the same manner as Example 5.1_ 

This approach has the disadvantage of increasing the total number of joints, as 
welJ as the size of the total structure stiffness matrix K. For small structures solved 
by computer. this does not pose a problem. However, for very large structures, this 
might reduce the maximum size of the structure that could be analyzed. Certainly. 
this additional node greatly increases the longhand solution time for the structure. 
Hence. we wiU illustrate a standard procedure based on the concept of equivalent 
joint forces applied to the case of concentrated loads. We will again use Appendix D. 
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Example 5.3 

Solve the frame shown in Figure 5-8(a). The frame consists of the three elements 
shown and is subjected to' a IS-kip horizontal load applied at lQidlength of element 1. 
Nodes 1) 2, and 3 are fixed, and the dimensions are shown in the figure. Let 
E = 30 X 106 psi) I = 800 in\ and A = 8 in2 for all elements. 

1. We first express the applied load in the element 1 local coordinate 
system (here x is directed from node 1 to node 4). This is shown in 
Figure 5-8(b). 

(a) Rigid frame 

3.36 kip 

6.71 kip 

4 900 k·in. 

CD M = ~ (from ~ppendix D) 

_ (13.42)(44.1 x 12) 
- 8 
== 900 k·in. 

6.71 kip 
900 k-in. 

3.36 kip 

(c) Equivalenl joint forces expressed 
in locaI-coordinale system 

4 

13.42 kip 

CD 
6.72ldp 

(b) Applied load expres...ed 
in clement I local­
coordinate system 

7.5 kip 

900 Ie·in. 

7.5 kig 

(d) Final equivalent joint forces 
expressed in global-coordinate 
system 

Figure 5-8 Rigid frame with a load applied on an element 
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2. Next, we detennine the equivalent joint forces at each end of element 1, 
using the table in Appendix D. (These forces are of opposite sign from 
what are traditionally known as fixed-end forces in classical structural 
analysis theory [1].) These equivalent forces (and moments) are shown 
in Figure 5-8(c). 

3. We then transfoml. the equivalent joint forces from the present loca]­
coordinate-system forces into the global-coordinate-system forces, 
using the equationf = rTf, where r is defined by Eq. (5.1.10). These 
global joint forces are shown in Figure 5-8(d). 

4. Then we analyze the structur~ in Figure 5-8(d), using the equivalent 
joint forces (plus actual joint forces, if any) in the usual manner. 

5. We obtain the final internal forces developed at the ends of each 
element that has an applied load (here element 1 only) by subtracting 
step 2 joint forces from step 4 joint forces; that is, Eq. (4.4.11) is 
applied locally to all elements that originally had loads acting on 
them. 

The solution of the structure as shown in Figure 5-8( d} now follows. Using 
Eq. (5.1.11), we obtain the global stiffness matrix for each element. 

Element 1 

For element I, the angle between the global x and the local i axes is 63.43° because x 
is assumed to be directed from node I to node 4. Therefore, 

o X4 - XI 20 - 0 
C cos 63.43 = -zJi) = 44.7 = 0.447 

S . 63 43° Y4 YI 40 - 0 0 89 =Sln . =~= = . 5 

121 12(800) = 0.0334 61 = 6(800) = 8.95 
(44.7 x 12)2 44.7 x 12 

E 30 X 103 

L 
55.9 

Using the preceding results in Eq. (5.1.11) for ls, we obtain 

<P4 

448] -224 
179,000 

(5.2.30) 

where only the parts of the stiffness matrix associated with degrees of freedom at, node 
4 are included because node 1 is fixed and, hence, not needed in the solution for the 
nodal displacements. 
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Element 3 

For element 3, the angle between x and i is zero because i is directed from node 4 to 
node 3. Therefore, 

C=l S 0 

61 = 6(800) = 8.00 
L 50x12 

121 _ 12(800) 
- (SO x 12)2 

0.0267 

E 30 X 10
3 = SO 

L 50 x 12 

Substituting these results into!s:, we obtain 

since node 3 is fixed. 

Element 2 

d4x d4y 

k(3} = [4~ ~.334 
o 400 

(S.2.31) 

For element 2, the angle between x and x-is 116.57° because x is directed from node 2 
to node 4. Therefore, . 

C 20 - 40 = -0.447 
44.7 

S 40 - 0 = 0895 
44.7 . 

121 = 0.0334 ~ =8.95 
E 
L = 55.9 

since element 2 has the same properties as element 1. Substituting these results into &> 
we obtain 

t4x 

[ 

90.9 
-178 

448 

t4y tP4 

-178 448] 
359 224 
224 179,000 

(5.2.32) 

since node 2 is fixed. On superimposing the stiffness matrices given by Eqs. (5.2.30), 
(S.2.31), and (5.2.32), and using the nodal forces given in Figure 5-8(d) at node 4 
only, we have 

{ -~.50 kiP} = [58~ 7I~ !~~l {~:} 
-900 k-in. 896 400 518,000 tP4 

Simultaneously solving the three equations in Eq. (5.2.33), we obtain 

t4x -0.0103 in. 

c4y = 0.000956 in. 

tP4 = -0.00172 rad 

(5.2.33) 

(5.2.34) 
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Next, we determine the element forces by again using I 

C S 0 0 0 

-S C 0 0 0 

I4= 
0 0 0 0 

0 0 0 C S 
0 0 o -s C 
0 0 0 0 0 

Thus, the preceding matrix. multiplication yields 

Element 1 

[4= 

[4 

o 
o 
o 

Cd;x + Sdiy 

-Sdix + Cdly 

,pi 
Cdjx+S~y 

-Sdjx + Cd.iy 

t/>j 

(0.447)( -0.0103) + (0.895)(0.000956) 

(-0.895)( -0.0103) + (0.447)(0:000956) 

-0.00172 

Using Eq. (5.1.8) for k and Eq. (5.2.36), we obtain 

447 0 0 -447 0 

0 1.868 500:5 0 -1.868 

kr4= 0 500.5 179~000 0 -500.5 

-447 0 0 447 0 

0 -1.868 -500.5 0 1.868 

0 500.5 89,490 0 -500.5 

0 

0 

0 

0 

0 

1 

kId. In general, we have 

du: 
diy 

rPi 

4x 
djy 
,pj 

0 

o 
o 
o 

-0.00374 

0.00963 

-0.00172 

500.5 

89,490 

(5.2.35) 

(5.2.36) 

0 
0 

0 
0 

x 
-0.00374 

-500.5 0.00963 

179,000 -0.00172 

(5.2.37) 

These values are now called effective nodal forces. Multiplying the matrices of Eq. 
(5.2.37) and using Eq. (4.4.11) to subtract the equivalent nodal forces in local coordi­
nates for the element shown in Figure 5-8(c), we obtain the final nodal forces in 



5.83 kip 

4 

CD 
15 kip 

7.S91dp 

1058 Ie·in. 

1.6& Icip 
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2.44 kip 275 k-in. 

4 4.12 l;f Cf Q) SO fI 

0.687 kip 

0.877 kip 

114;12 ""' 

137 Ie-in. 

0.687 kip 

5.03 kip 
2.44 kip 

Figure 5-9 Free-body diagrams of aU elements of the frame in Figure 5-8(a) 

in element 1 -as 

L()7 -3.36 5.03 kip 
-0.88 6.71 -7.59 kip 

j(l)= -158 900 -1058 k-in. 
-1.67 -3.36 1.68 kip 

(5.2.38) 

0.88 6.71 -5.83 kip 
-311 -900 589 k-in. 

Similarly, we can use Eqs. (5.235) and (5.1.8) for elements 3 and 2 to obtain the local 
nodal forces in these elements. Since these elements do not have any applied loads on 
them, the final nodal forces in local coordinates associated with each element are 
given by i = k'I.4. These forces have been detennined as fonows: 

Element 3 

hx = -4.12 kip hy = -0.687 kip m4 = -275 k-in. 

hx hy = 0.687 kip 
(5.2.39) 

4.12 kip m3 = -137 k-in. 

Element 2 

i2X -2.44 kip h.y = -0.877 lcip m2 -l58 k-in. 

14x = 2.44 kip 14)' = 0.8TI kip 
(5.2.40) 

rht = .-312 k-in. 

Free-body diagrams of all elements are shown in Figure 5-9. Each element has been 
determined to be in equilibrium, as often occurs even if errors are made in the long­
hand calculations, However, equilibrium at node 4 and equilibrium of the whole 
frame are also satisfied. For instance, using the results of Eqs. (5.2.38)-(5.2.40) 
to check equilibrium at node 4, which is implicit in the formulation of the global 
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equations, we have 

L M4 = ,589 - 275 - 312 = 2 k-in. (close to zero) 

LFx = 1.68(0.447) + 5.83(0.895) 2.44(0.447) 

- 0.877(0:895) - 4.12 = -0.027 kip (close to zero) 

L Fy = 1.68(0.895) - 5.83(0.447) + 2.44(0.895) 

0.877(0.447) - 0.687 = 0.004 kip (close to zero) 
Thus, the solution has been verified to be correct within the accuracy associated with a 
longhand solution. • 

To illustrate the solution of a problem involving both ba! and frame elements, 
we will solve the following example. 

Example 5.4 

The bar element 2 is used to stiffen the cantilever beam element 1, as shown in Figure 
5-10. Determine the displacements at node 1 and the element forces. For the bar, let 
A = 1.0 X 10-3 m2• For the beam, let A = 2 X 10-3 m2, 1= 5 X 10-5 m4, and 
L = 3 m. For both the bar and the beam elements, let E = 210 Gpa. Let the angle 
between the beam and the bar be 45':-. A downward force of 500 kN is applied at 
node 1. ' 

For brevity's sake, since nodes 2 and 3 are fixed. we keep only the parts of!!; for 
each element that are needed to obtain the global IS matrix necessary for solution of 
the nodal degrees of freedom. Using Eq. (3.4.23), we obtain!!; for the bar as 

k(2) = (1 >< 10-3)(210,>< 106
) [0.5 0.5] 

- (3Jcos45°) 0.5 0.5 

or, simplifying this equation, we obtain 

500kN 

d1x dIp 

k(2) = 70 x 103 [0.354 0.354]' kN 
- 0.354 0.354 m (S.2A1 ) 

Figure 5-10 Cantilever beam with a bar element 
support 
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Using Eq. (5.1.11), we obtain k for the beam (including axial effects) as 

db dl~ tPl 

Is}!) = 70 x 103 [~ ~.067 ~.IO]~ 
o 0.10 0.20 

(5.2.42) 

wher~ (ElL) x 10-3 has been factored out in evaluating Eq. (S.2.42). 
We assemble Eqs. (5.2.41) and (5.2.42) in the usual manner to obtain the global 

stiffness matrix as . 

K 70 X 103 0.354 0.421 0.10 kN 
[

2.354 0.354 0 ] 

o 0.10 0.20 m 
(5.2.43) 

The global equations are then written for node I as 

{ -50~} = 70 X 103 [~~~~ ~:!~~ ~.lo] { ~:: } 
o 0 0.10 0.20 ¢J, 

(5.2.44) 

Solving Eq. (5.2.44» we obtain 

d1x = 0.00338 m d1y = -0.0225 m ¢J, = 0.0113 rad (5.2.45) 

In general, the local element forces are obtained using j = kIt!.. For the bar 
element, we then have -

{~X}=AE[ 1 -l"I[C S 0 0]1~::1 (5.2.46) 
hx L -1 I. 0 0 C S d3x 

d3y 

The matrix triple product ofEq. (5.2.46) yields (as one equation) 

• AE 
fix = y(Cdtx + Sd1y) (5.2.47) 

Substituting the numerical values into Eq. (5.2.47), we obtain 

l.x = (I X IO-l m2~~~~0; 10' kN 1m2) [~ (0.00338 - 0.0225) 1 (5.2.48) 

Simplifying Eq. (5.2.48), we obtain the axial force in the bar (element 2) as 

ftx = -670 kN (5.2.49) 

where the negative sign means ftx is in the direction opposite x for element 2. Simi­
larly, we obtain 

.Ax 670 kN (5.2.50) 
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670 kN 

0.0 kN· m CD 78.3 kN· m 

47~ kN I 3m 

473 kN i 

670 kN 
26.5 leN 26.5 leN 

Figure 5-11 Free-body diagrams of the bar (element 2) and beam (element 1) 
elements of Figure 5-10 

which means the bar is in tension as shown in Figure 5-11. Since the local and global 
axes are coincident for the beam element, we have! and 4 = fl. Therefore, from 
Eq. (5.1.6), we have at node) -

(5.2.51) 

where only the upper part of the stiffness matrix is needed because the displacements 
at 'node 2 are equal to zero. Substituting numerical values into Eq. (5.2.51), we obtain 

{ ~ml:l } = 70 X 103 [00
2 ~.067 ~.10l {_~:~~~8} 

0.10 0.20 0.0113 

The matrix product then yields 

J..x = 473 kN J..y = -26.5 kN m1 =O.OkN·m (5.2.52) 
Similarly, using Eq. (5.1.6), we have at node 2, 

{~; } = 70 X 103 [-~ -~.067 -~.l0l { _~~~~~8} 
"m2 0 0.10 0.10 0.0113 

The matrix product then yields 

J2:r = -473 kN hy = 26.5 kN m2 = -78.3 kN . m (S.2.53) 

To help interpret the results of Eqs. (5.2.49), (5.2.50), (S.2.52)~ and (5.2.53), free­
body diagrams of the bar ~d beam elements are shown in Figure 5-11. To further 
verify the results, we can show a check on equilibrium of node 1 to be satisfied. You 
should also verify that moment equilibrium is satisfied in the beam. • 
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A 5.3 Inclined or Skewed Supports-Frame 
Element 

or 

For the frame element with inclined support at node 3 in Figure 5-12, the transfonna­
tion matrix r used to transform global to local nodal displacements is given by 
Eq. (5J.lO). 

In the example shown in Figure 5-12, we use I. applied to node 3 as follows: 

The same steps as given in Section 3.9 then follow for the plane frame. The 
resulting equations for the plane frame in Figure 5-12 are (see also Eq. (3.9.13)) 

[Ti ]{!} = [TiJ[K][Ti}T{d} 

Fix dlx=O 

Fly dIp 0 

Ml 'tPl =0 

Fa d2x 

F2y = [Td[K][Ti( d2y 

M2 tP2 
Fjx d;x 

F';y dly = 0 

M3 ) ;~ ;3 

[OJ 
where rJ1 

[Til = [0] (Il [OJ 
[0] ] 

[0] [0] [t3] 

[ cos. sino: 

~] and [13] -~ino: cos IX 

0 

r ~ 
2 

Figure 5-12 Frame with inclined support 

-.% 
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II 5.4 Grid Equations 

A grid is a structure on which loads are applied perpendicular to the plane of the struc­
ture, as opposed to 'G. plane frame} where loads are applied in the plane of the structure. 
We will noW develop the grid element stiffness matrix. The elements of a grid are 
assumed to be rigidly connected, so that the original ahgies b~tween elements con­
nected together at a n~e remain un(;nanged. Both torsional and bending moment 
continuity then exist at the node point of a grid. Examples of grids include floor and 
bridge deck systems. A typh:ai grid structure subjected to loads FI; F2, F3, and F4 is 
shown in Figure 5-13. 

We will now consider the development of the grid element stiffness matrix and 
element equations. A representative grid element with the nodal degrees of freedom 
and nodal forces is shown in Figure 5-14. The degrees of freedom at each node for a 
grid are a vertical deflection (fiy (no?Dal to the grid), a torsional rotation ~ix about 
the x axis, and a bending rotation tPu about the z axis. Any effect of axial displace­
ment is ignored; that is, (fix O. The nodal forces consist of a transverse force i;y) a 
torsional moment mix about the i aXis, and a bending moment mjz about the z axis. 
Grid elements do not resist axial ioading; that is fix O. 

To develop the local stiffness matrix for a grid element, we need to include the 
torsio~al effects in the basic beam element stiffness matrix Eq. (4.1.14). Recall that 
Eq. (4.1.14) already accounts for the bending and shear effects. 

We can derive the torsional bar element stiffness matrix in a manner analogous 
to that used for the axial bar element stiffness matrix in Chapter 3. In the derivation, 
we simply replace fix with miXl dix with ~ix> E with G (the shear modulus) A with J (the 
torsional constant, or stiffness factor), O'with 't (shear stress), and ewith y (shearsttain). 

Figure 5-13 Typical grid structure 

Figure 5-14 . Grid element with nodal degrees offreedom and nodal forces 
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m2;"~2" m"'~1l m"";,, 

L 
Q¥-i 1 ( ....... -)-+C--L--11,-8.:J..J¥-- x 

Figure 5-15 Nodal and element torque sign conventions 

The actual derivation is briefly presented as follows. We assume a circular cross 
section with radius R for simplicity but without loss of generalization. 

Step 1 

Figure 5-15 shows the sign conventions for nodal torque and angle of twist and for 
element torque. 

Step 2 

We assume a linear angle-of-twist variation along the x axis of the bar ,$uch that 

(5.4.1) 

Using the usual 2rocedure of expressing at and a2 in terms of unknown nodal angles 
of twist ¢IX and ¢'2x' we obtain 

~= (Ju~J1X)X+~b 

or, in matrix fonn, Eq. (5.4.2) becomes 

with the shape functions given by 

Nt = 1 

Step 3 

X 
L 

(5.4.2) 

(5.4.3) 

(5.4.4) 

We obtain the shear strain y/angle of twist J relationship by considering the torsional 
deformation of the bar segment shown in Figure 5-16. Assuming that aU radial lines, 
such as OA, remain straight during twisting or torsional deformation, we observe that 
the arc length 1B is given by 

is = J'max dx = Rd¢ 

Solving for the maximum shear strain I'max, we obtain 

Rdj 
Ymax = dx 
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Figure 5-:-16 Torsional deformation of a bar segment 

Similarly, at any radial position r, we tlien have, from similar triangles DAB and 
OeD, . 

(5.4.5) 

where we have used Eq. (5.4.2) to derive the final expression in Eq. (5.4.5). 
The shear stress r/shear strain y relationship for linear-elastic isotropic materials 

is given by 

r= Gy 

where G is the shear modulus of the material. 

Step 4 

(5.4.6) 

We derive the element stiffness matrix in the following manner. From elementary 
mechanics, we have the shear stress related to the applied torque by 

m:c = ~ (5.4.7) 

where J is cal1ed the polar moment of inertia for the circular cross section or, generally, 
the torsional conscant (or noncircular cross sections. Using Eqs. (5.4.5) and (5.4.6) in 
Eq. (5.4.7), we obtain 

By the nodal torque sign convention of Figure 5-15, 

or, by using Eq. (5.4.8) in Eq. (5.4.9), we obtain 

.. GJ - ~ 
/n1x = L (¢>1.Y - (h,J 

Similarly, 

or 

(5.4.8) 

(5.4.9) 

(5.4.10) 

(5.4.11) 

(5.4.12) 
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Expressing Eqs. (5.4.10) and (S.4.l2) together in matrix fonn, we have the resulting 
torsion bar stiffness matrix equation: 

(5.4.13) 

Hence, the stiffness matrix for the torsion bar is 

- = GJ [ 1 -1] 
If L -1 1 (5.4.14) 

The cross sections of various structures, such as bridge decks, are often not 
circular. However, Eqs. (5.4.13) and (5.4.14) are still general; to apply them to other 
cross sections, we simply evaluate the torsional constant J for the particular cross sec­
tion. For instance, for cross sections made up of thin rectangular shapes such as chan­
nels, angles, or I shapes, we approximate J by 

(5.4.15) 

where hi is the length of any element of the cross section and ti is the thickness of any 
element of the cross section. In Table 5-1, we list values of J for various common 
cross sections. The first four cross sections are called open sections. Equation (5.4.15) 
applies only to these open cross sections. (For more infonnation on the J concept, 
consult References [2] and [3]. and for an extensive table oftorsionaJ constants forvar~ 
ious cross-sectional shapes, consult Reference [4].) We assume the loading to go 
through the shear center' of these open cross sections in order to prevent twisting or 
the cross section. For more on the shear center consult References [2} and [5}. 

On combining the torsional effects of Eq. (5.4.13) with the shear and bending 
effects of Eq. (4.1.13), we obtain the local stiffness matrix equation for a grid element 
as 

12El 
0 

6El -12E1 
0 

6El 
V V IT V 

GJ 
0 0 

-GJ 
0 fity .ity L 

mix 4El -6El 
0 

2El ~lx 
mi. T IF JIZ (5.4.16) 
f2y 12El 

0 
-6£1 d2y 

rn2x L2 J2x 
m2z GJ 

0 ~2z 
L 

Symmetry 
4El 

L 
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Table 5-1 Torsional constants J and shear centers SC for various cross sections 

Cross Section 

1. Channel 

b 

2. Angle 

T=~I b l 

~c. 12 

~, 

3. Z section 

,oc~1 
'~_I 

t b 

4. Wide-flanged beam with 
unequaJ flanges 

lEt
c~· ;-

I h 

w~ 

b l 
'I 

5. Solid circular 

6. Closed hollow rectangular 

,~ £':sc III 
~Q-l 

Torsional Constant 

t 3 

J=3(h+2b) 

h2b2t 
e=4I 

J = 2ftl (0 - t)2(b - t)2 

at + btl - t'2 - tr 
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where, from Eq. (5.4.16), the local stiffness matrix for a grid element is 

d11 "IX Jlz ( 2)" ¢2.r: ~2:: 
12EI 

0 
6EI -12El 

0 
6EI 

IT V -V- v: 
0 

GJ 
0 0 

-GJ 
0 T L 

6El 
0 

4£1 -6El 
0 

2El 

kG= v: L L 
(5.4.17) 

-12El -6EI 12EI -6El 
-V- 0 --v:- IF 0 --v:-

0 
-GJ 

0 0 
GJ 

0 L L 
6£1 

0 
2E1 -6£1 

0 
4£1 

V- I: L2 

and the degrees of freedom are in the order (1) vertical deflection, (2) torsional rota­
tion, and (3) bending rotation, as indiCated by the notation used above the columns 
ofEq. (5.4.17). 

, The transformation matrix relating local to global degrees of freedom for a grid 
is given by -

1 0 0 0 0 0 

0 C S 0 0 0 

la= 
0 -s C 0 0 0 

(5.4.18) 
0 0 0 1 0 0 

0 0 0 0 'C S 
0 0 0 0 -s c 

where 8 is now positive, taken counterclockwise from x to x in the x-z plane (Figure 
5...:17) and 

y. 

L z 

IX·-·Xi 
C=cos8=-'J_· -

L 
S = sin 8 = Zj Zi 

L 

j 

Figure 5-17 Grid element arbitrarily oriented 
in the x-z plane 
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where L is the length of the element from node i to nodej. As indicated by Eq. (S.4.lS) 
for a grid, the vertical deflection dy is invariant with respect to a coordinate transfor· 
mation (that is, y = y) (Figure 5-17). 

The global stiffness matrix for a grid element arbitrarily oriented in the x-z plane 
is then given by using Eqs. (5.4.17) and (5.4.18) in 

(5.4.19) 

Now that we have formulated the global stiffness matrix for the grid element, 
the procedure for solution then follows in the'same manner as that for the plane 
frame. 

To illustrate the use of the equations developed in Section 5.4, we will now solve 
the following grid structures. 

Example 5.5 

Analyze the grid shown in Figure 5-18. The grid consists Dr three elements, is fixed at 
nodes 2,3, and 4, and is subjected to a downward vertical forne (perpendicular to the 
x-z plane passing through the grid elements) of 100 kip. The global-coordinate axes 
have been established at node 3, and the eiement lengths are shown in the figure. Let 
E = 30 X 103 ksi, G = 12 X 103 ksi, [= 400 in4, and J = 110 in4 for all elements of 
the grid. 

y 

2 

z 

Figure 5-t 8 Grid for analysis showing local x axis for each element 

Substituting Eq. (5.4.17) for the local stiffness matrix and Eq. (5.4.18) for the 
transformation matriX into Eq. (5.4.19), we can obtain each element global stiffness 
matrix. To expedite the longhand solution, the boundary conditions at nodes 2,3, 
and 4, 
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make it possible to use only the upper left-hand 3 x 3 partitioned part of the local 
stiffness and transformation matrices associated with the degrees of freedom at 
node I. Therefore, the global stiffness matrices for each element are as follows: 

Element 1 

For element I, we assume the local x axis to be directed from node 1 to node 2 for the 
formulation of the elem~nt stiffness matrix. We need the following expressions to eval-
uate the element stiffness matrix: . 

X2 -.xl -20 - ° 
C = cos f) lJi) = 22.36 = -0.894 

Z2 10 - ° 
S = sin f) = = 22.36 = 0.447 

12El = 12(30 x 103)(400) = 7.45 
L3 (22.36 x 12)3 

6El = 6{30 x' 103)(400) = 1000 
L2 {22.36 x 12/ 

GJ = (12 x 103)(110) = 4920 
(22.36 x 12) 

4El 4(30 x 103)(400) 
T = (22.36 x 12) 

179,000 

(5.4.21) 

Considering the boundary condition Eqs. (5.4.20), using the results ofEqs. (5.4.21) in 
Eq. (5.4.17) for kG and Eq. (5.4.18) for IG, and then applying Eq. (5.4.19). we obtain 
the upper left-hand 3 x 3 partitioned part of the global stiffness matrix for element 1 
as 

k(t) r ~ -~.894 -~.4471 [ ~.45 492~ 1 O~] [~-~.894 ~.447] lo 0.447 -0.894 1000 0 179,000_ 0 -0.447 -0.894 

Performing the matrix multiplications, we obtain the global element grid stiffness 
matrix . 

, (5.4.22) 

where the labels next to th~ columns indicate the degrees of freedom. 
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Element 2 

For element 2, we assume the local x axis to be directed from node 1 to node 3 for the 
fonnulation of the element stiffness matrix. We need the following expressions to eval­
uate the element stiffness matrix: 

X3 -XI -20-0 
C = IJ2) = 22.36 = -0.894 

(5.4.23) 
S = Z3 - Zl = -10 - 0 = -0 447 

V 2) 22.36 . 

Other expressions used in Eq. (SA.!7) are identical to those in Eqs. (5.4.21) for ele­
ment 1 because E,.G,l,J, and L are identical. Evaluating Eq. (5.4.19) for the global 
stiffness matrix for element 2, we obtain 

If(") = [~-~.894 ~.447] [ ~.45 492~ lOO~] [~ -~.894 -~.447] 
o -0.447 -0.894 1000 0 179,000 0 0.447 -0.894 

Simplifying, we obtain 

dly 

[ 

'7.45 
1f(2) = 447 

-894 
(5.4.24) 

Element 3 

For element 3, we assume the locali axis to be directed from node 1 to node 4. We 
need the folloWing expression~ to evaluate the element sjiffness "matrix: 

C X4 - Xl =: 20 - 20 = 0 
L(3) 10 

Z4 -ZI 0-10 
S=[ff) =-1 

12El = 12(30 x 103}(400) = 83.3 
, L3 (10 X 12)3 

(5.4.25) 

6El = 6(30 x 103)(400) = 5000 
L2 (10 X 12)2 



5.4 Grid Equations .. 247 

GJ (12 x 103)(110) 
(10 x 12) 

117000 
4EI = 4(30 x 103)(400) = 400 000 
L (10 x 12) } 

Using Eqs. (5.4.25), we can obtain the upper part of the global stiffness matrix for ele­
ment 3 as 

(5.4.26) 

Superimposing the global stiffness matrices from Eqs. (5.4.22), (5.4.24), and 
(5.4.26), we obtain the total stiffness matrix of the grid (with boundary conditions 
applied) as 

(5.4.27) 

The grid matrix equation then becomes 

{ ;::: ;100} = [ 50:.2 
47;: -17~] {:::} 

MIz 0 -1790 0 299,000 tPl: 
(5.4.28) 

The force Fly is negative because the load is applied in the negative y direction. 
Solving for the displacement and the rotations in Eq. (5.4.28), we obtain 

d1y = -2.83 in. 

"'Ix = 0.0295 rad 

tPlz = -0.0169 rad 

(5.4.29) 

The results indicate that the y displacement at node 1 is downward as indicated by the 
minus sign, the rotation about the x axis is positive, and the rotation about the z axis 
is negative: Based on the downward loading location with'respect to the supports, 
these results are expected. . " 

Having solved for the unknown dispJacement and the rotations, weican obtain 
the local element forces on formulating the element equations in a manner similar 
to that for the beam and the plane frame. The local forces (which are needed in the 
design/analysis stage) are found by applying the eQlJ2tionj = kGTG4 for each element 
as follows: - . 
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Element 1 

Using Eqs. (5.4.17) and (5.4.18) for kG and LG and Eq. (5.4.29), we obtain 

1 0 0 0 0 0 -2.83 

0 -0.894 0.447 0 0 0 0.0295 

0 -0.447 -0.894 0 0 0 -0.0169 
LG4= 0 '0 0 0 0 0 

0 0 0 0 -0.894 0.447 0 

LO 0 0 0 -0.447 -0.894 0 

Multiplying the matrices, we obtain 

-2.83 
-0.0339 

1:G4= 
0.00192 

(5.4.30) 
0 

0 

0 

Then! kG1:G4 becomes 

i. y 7.45 .0 1000 -7.45 0 1000 -2.83 

mix 0 4920 0 0 -4920 0 -0.0339 

mlz 1000 0 179,000 -1000 0 89,500 0.00192 

hy -7.45 0 -1000 7.45 0 -IQOO 0 

m2x 0 -4920 0 0 4920 0 0 

m2,z 1000 0 89,500 -1000 0 179,000 0 

(5.4.31) 

Multiplying the matrices in Eq. (5.4.31), we obtain the local element forces as 

].y -19.2 kip 

mix -167 k-in. 

mlz -2480 k-in. 
(5.4.32) 

hy 19.2 kip 

mlx 167 k-in. 

rn2z -2660 k-in. 

The directions of the forces acting on element 1 are shown in the free-body diagram of 
element 1 in Figure 5-19. 
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8S.l kip 
8240 k·in. 

4 

7.23 kip 

(1) 2340 Ie·in. 

723 kip 

92.5 k-in. £ 

88.1 kip 

2480 k-in. 

2660_k-in. 2 
19.2 kip 

19.2 kip 

Figure 5-19 Free-body diagrams of the elements of Figure 5-18 showing 

local-coordinate systems for each 

Element 2 
Similarly, using! = kG'lGd. for element 2, with the direction cosines in Eqs. (5.4.23), 
we obtain -

i..y 
7.45 0 1000 -7.45 0 1000 

mIx 0 4920 0 0 -4920 0 

WI): 1000 0 179,000 -1000 0 89,500 

hy 
-7.45 0 -1000 7.45 0 -1000 

m3x 0 -4920 0 0 4920 0 

m3: 1000 0 89,500 -1000 0 179,000 

1 0 0 0 0 0 -2.83 

0 -0.894 -0.447 0 0 0 0.0295 

0 0.447 -0.894 0 0 0 -0.0169 
x 

0 0 0 l' 0 0 0 

0 0 0 0 -0.894 -0.447 0 

0 0 0 0 0.447 -0.894 0 
(5.4.33) 
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Multiplying the matrices in Eq. (5.4.33), we obtain the local element forces as 

it, ::; 7.23 kip 

Element 3 

mix. = -92.5 k-in. 

mlz = 2240 k-in. 

13, -7.23 kip 

m3.'l: 92.5 k -in. 

m3z -295 k-in. 

(5.4.34) 

. Finally, using the direction cosines in Eqs. (5.4.25), we obtain the local element forces 
as 

jjy 83.3 0 5000 -83.3 0 5000 

mix 0 11,000 0 0 -11,000 0 

ml: 5000 0 400.000 -5000 0 200,000 

.13, -83.3 0 -5000 83.33 0 -5000 

m3x 0 -11,000 0 0 11,000 0 

m3z 5000 0 200,000 -5000 0 400,000 

1 0 0 0 0 0 -2.83 

0 0 -1 0 0 0 0.0295 

0 1 0 0 ·0 0 -0.0169 
x (5.4.35) 

0 0 0 1 0 0 0 

0 0 0 0 0 -1 0 

0 0 0 0 0 0 

MUltiplying the matrices in Eq. (5.4.35), we obtain the local element forces as 

jjy -88.1 kip 

mix = 186 k-in. 

mh = -2340 k-in. 

14y = 88.1 kip 

m4x = -186 k-in. 

thtz = -8240 k-in. 

(5.4.36) 

Free-body diagrams for all elements are shown in Figure 5':"'}9. Each eletpent is in 
equilibrium. For each element, the x axis is shown directed from the first node to the 
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J----~-x f8~k-in, 
1260 k-in. 7.23 kip 

.....!.--2340 k-in. 

19.2 88.1 kip 

2150 k-in/ kip 
100 kip 

1960Ic.-jI 

Figure 5-20 Free-body djagram of node 1 of Figure 5-18 

second node, the y axis coincides with the global y axis, and the z axis is perpendicular 
'- to the i-y plane with its direction given by the right-hand rule. 

To verify equilibrium of node 1 t we draw a free-body diagram of the node show­
ing all forces and moments- transferred from node 1 of each element,. as in Figure 
5-20. In Figure 5-20, the 'local forces and moments from each element have been 
transformed to global components) and any applied nodal forces have been included. 
To perform this transformation, recall that, in general, j = rf, and therefore f = 
rT I because rT = rI. Since we are transfonning forces at node 1 of each elem~nt, 
onlY the upper 3 x 3 part ofEq. (5.4.18) for IG need be applied. Therefore, by pre­
multiplying the local element forces and moments at node 1 by the transpose of the 
transformation matrix for each element, we obtain the global nodal forces and 
moments as follows: 

Element 1 

{ 
~~} = [~ -~.894' -~.447] { _~~~.2} 
mI. 0 0.447 -0.894 -2480 

Simplifying, we obtain the globaI-coordinate force and moments as 

fly = -19.2 kip mix = 1260 k-in. mlz = 2150 k-in. (5.4.37) 

where fir = ity because y = y. 

Element 2 

{ ~~} := [~-~.894 ~.447) { _9~:~3} 
ml: 0 -0.447 -0.894 2240 
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Simplifying, we obtain the global-coordinate force and .moments as 

fry = 7.23 kip mIx = 1080 k~in. mlz = -1960 k-in. (5.4.38) 

Element 3 

{ ~~ } = [~ ~~] {. ~~!.l} 
m't 0 -1 0 -2340 

Simplifying, we obtain the giobal-coordinate force and moments as 

fly = -88.1" kip mIx -2340 k-in. m,. = -186 k-in. (5.4.39) 

Then forces and moments from each element that are equal in magnitude but opposite 
in sign win be applied to node 1. Hence, the free-body diagram of node 1 is shown in 
Figure 5-20. Force and moment equilibrium are verified as follows: 

LFIY = -100 -7.23 + 19.2+ 88.1 = 0.07 kip (close to zero) 

I: Mix = -1260 -- 1080 + 2340 = 0.0 k-in. 

LMI:: = -21'50 + 1960+ 186 = -4.00 k-in. (close to zero) 

Thus, we have verified the solution to be"correot within the accuracy associated with a 
longhand solution. • 

Example 5.6 

Analyze the grid shown in Figure 5-21. The grid consists of two elements, is fixed at 
nodes 1 and 3, and is subjected to a downward vertical load of 22 kN. The global­
coordinate axes and element lengths are shown in the figure. Let E 210 GPa, G = 
84 GPa, 1 = 16.6 x 10-5 m4, and J = 4.6 X 10-5 m4. " 

As in EXaDlple 5.5, we use the boundary conditions and expreS$ only the part of 
the stiffness matrix associated with the degrees of freedom at node 2. The boundary 
conditiqns at nodes 1 and 3 are 

(5.4.40) 

,~ 3 

/ 22 kN <D 
/ 3m 

/ 
Figure S-~l Grid example 
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The global stiffness matrices for each element are obtained as follows: 

Element 1 

For element 1. we have the local x axis coincident with the global x axis. Therefore, 
we obtain 

C - X2 - XI - ~ - 1 
- L(l) - 3-

Z2 - ZI 3 - 3 
S = lJi) = -3- = 0 

Other expressions needed to evaluate the stiffness matrix are 

l2EI 12(210 x 106 kN/m2)(16.6 x 10-5 m4) 

V= (3m)l 

6EI = 6(210 x 106)(16.6 x 10-5
) = 2.32 x 104 

L2 (3)2 

GJ (84 x 106)(4.6 x 10-5
) 1.28 x 103 

y= 3 

4?1 = 4(210 x 106)(16.6 x.IO-5
) = 465 X 104 

L 3 . 

(5.4.41) 

Considering the boundary condition Eqs. (5.4.40), using the results of Eqs. 
(5.4.41) in Eq. (5.4.17) for kG' and Eq. (5,4.18) for TG, and then applying Eq. 
(5.4.19), we obtain the reduced part of the global stiffness matrix associated only 
with the degrees of freedom at node 2 as ' 

[
1 0 0] [ 1.55 0 -2.32] [1 0 0] 

k(l} = 0 1 0 0 0:128 0 (104
) 0 1 0 

o 0 1 -2.32, 0 4.65 0 0 1 

Since the local axes associated with element 1 are paranel to the global axes, we 
observe that IG is merely the identity matrix; therefore, kG = kG- Performing the 
matrix multiplications, we obtain 

[ 

1.55 0 
k(l) = 0 0.128 

-2.32 0 

-2.32] o (104) kN 

4.65 m 
(5.4.42) 

Element 2 

For element 2; we assume the local x axis to be directed from node 2 to node 3 for the 
formulation of k. Therefore, 

Z3 -Z2 0- 3 
S =-:r:m-=-3-=-1 (5.4.43) 
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Other expressions used in Eq. (5.4.17) are identical to those obtained in Eqs. (5.4.41) 
for element 1. Evaluating Eq. (5.4.19) for the global stiffness matrix, we obtain 

[
1 0 0] [1.55 0 2.32] [1 0 0] 

g(2) = 0 0 1 0 0.128 0 (104
) 0 0 -1 

o -1 0 2.32 0 4.65 0 1 0 

where the reduced part ,of If is now associated with node 2 for element 2. Again per­
fonning the matrix multiplications, we have 

g(2) =: 2.32 4.65 0 (104) kN 
[ 

1.55 2.32 0 .] 

o 0 0.128 m 
(5.4.44) 

Superimposing the global stiffness matrices from Eqs. (5.4.42) and (5.4.44), we obtain 
the total global stiffness matrix (with boundary conditions applied) as 

KG = 2.32 4.78 0 (104
) kN 

[ 

3.10 2.32 -2.32] 

-2.32 0 4.78 m 

The grid matrix equation becomes 

{
;:: ~22} = [ ~:!~ ~:~~ -~.32] {.:: }(104) 

M2z = 0 -2.32 0 4.78 '~2z 

Solving for the displacement and the rotations in Eq. (5.4.46), we obtain 

d2y = -O.2~9 X W-2 m 

;2x = 0.126 x 10-2 rad 

;2z = -0.126 x 10-2 rad 

(5.4.45) 

(5.4.46) 

(5.4.47) 

We detennine the local element forces by applying the local equation j = 
!GTG4 for each eJement as follows: . -

Element 1 

Using Eq. (5.4.17) for~G' Eq. (5.4.18) for TG, and Eqs. (5.4.47). we obtain 

fl 0 0 0 0 0 0 

0 1 0 0 0 0 0 
TG4= 

0 0 0 0 0 0 
0 0 0 1 0 0 -0.259 X 10-2 

0 0 0 0 1 0 0.126 X 10-2 

0 0 0 0 0 -0.126 X 10-2 
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Multiplying the matrices~ we have 

0 

0 

Tad. 
0 

(5.4.48) 
-0.259 x 10-2 

0.126 X 10-2 

-0.126 X 10-2 

Using Eqs. (S.4.l7), (5.4.41), and (5.4.48), we obtain the local element forces as 

~, 1.55 0 2.32 -1.55 0 2.32 0 

mix 0.128 0 0 -0.128 0 0 

mlz 4.65 -2.32 0 2.33 0 

/i, 
= (104

) 
1.55 0 -2.32 -0.259 x 10-2 

m2,x 0.128 0 0.126 x 10-2, 

m2z Symmetry 4.65 -0.126 x 10-2 

Multiplying the matrices in Eq. (5.4.49), we obtain 

~y 11.0 kN 

/i, = -11.0 kN 

Element 2 

mIx = -L50kN·m ml z = 31.0 kN'm 

rn2x = 1.50 kN· m m2z 1.50 kl'J ~m 

(5.4.49) 

(5.4.50) 

We can obtain the local element forces for element 2 in a similar manner. Because the 
procedure is the same as that used to obtain the element I local forces, we will not 
show the details but will only list the final results: 

lip = -11.0 kN m2x = 1.50 kN· m rn2z -1.50 kN· m 
(5.4.51) 

1;y = 11.0 leN m3x = -1.50 kN· m m3z = -31.0 kN· m 

Free·body diagrams showing the lOCal element forces are shown in Figure 5-22. • 

1: 5.5 Beam Element Arbitrarily.Oriented • 
in Space 

In this section, we develop the stiffness matrix for the beam element arbitrarily ori-
o ented in space, or three dimensions. This element can then be used to analyze frames 
in three-dimensional space. 

First we consider bending about two axes, as shown in Figure 5-23. 
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31.0 kN . m 3 
1.50 kN· m 

II kN 

t P 

1.~Y1' 31.0kN·m 

i IIkN 

1.50 kN . m 

2.&~1'=2--

~kN'(! II kN 
II kN 

Figure 5-22 Free-body diagram of each element of Figure 5-21 

Figure 5-23 Bending about two axes'y and z 

We establish the follo:wmg sign convention for the axes. Now we choose positive 
x from node 1 to 2. Then j is the principal axis for which the moment of inertia is 
minimum, [y. By the rightahand rule we establish z, and the maximum moment of 
inertia is I z . 

Bending in i-£ Plane 

First consider bending in the x=z plane due to my. Then clockwise rotation ~y is in the 
same sense as before for single bending. The stiffness matrix due to bending in the x-z 
plane is then 

[

I2L -6L2 -I2L -6L2] 
E~ 4L3 6L2 2L3 

L4 I2L 6L2 

Symmetry 4L3 

(5.5.1) 

where 1.1 is the moment of inertia of the cross section about the principal axis y, the 
weak axis; that is, Iy < Iz< 

Bending in the £-j Plane 

Now we consider bending in the i-y plane due to mz• Now positive rotation Jz is 
counterclockwise instead of clockwise. Therefore, some signs change in the stiffness 
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matrix for bending in the i-y plane. The resulting stiffness matrix is 

[

I2L 6L2 

ic _ Elz 4L3 

-1. - L4 

Symmetry 

-12L 
-6L2 

12L 
(5.5.2) 

Direct superposition of Eqs. (5.5.1) and (5.5.2) with the axial stiffness matrix Eq. 
(3.1.14) and the torsional stiffness matrix Eq. (5.4.14) yields the element stiffness 
matrix for the. beam. or frame element in three-dimensional space as 

AE o T 

o liE/: 
l) 

o o 

o o 

o o o 
I 

o 1_ AE 0 
I L 
I 

o o 

o o o 6El. I 0 12£1: 0 
L2 I ---V o 

12£ly 6EIy I 
IT 0 -v: 0 I 0 

o GJ o 
r 
I 

o : 0 
1 

o 12E1, 0 
-V-

o o GJ 

o o 

o 6El: 
V 

o 

o o 

o 0 - 6Ely 0 4EIy 0 : 0 0 6Ely 0 2£1)' 0 
£2 L I L2 L 

o 6EI= 0 0 0 4EI: j 0 _ 6E1;:: 0 0 0 2£1: 
£2 L L2 L --------------------------- ---------------------------

- AE 0 0 0 0 0 AE 0 0 0 0 0 
L L 

11£1: 6EI=': 11El:: o -l) 0 0 0 -Vl 0 l) 

o 12£1,)' 6Ely , I 
o -IT 0 V 0 : 0 o 

I 

010 o o o GJ o o 
I 
r 

6Ely 0 2El)' 0 I 0 
-V L I 

o o o 

o 
!2ET, 
IF 

o. 

I 
2EI: : 0 6El: 0 

L I -IT o 6E1:: 
V o o o 

I 

o o 

o 6El, 
V o 

GJ o o 

o 4Ely 
L o 

o o 

(5.5.3) 

The transformation from local to global axis system is accomplished as follows: 

1£ = IT&T (5.5.4) 

where k is given by Eq. (5.5.3) and T is given by 

(5.5.5) 
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y y 

~-+--'---- :r JC--+----- x 

zxx=p 

z. 

Figure 5-24 Direction cosines 
associated with the x axis 

Figure 5-25 Illustration showing how 
. local y axis is determined 

[ 

C,;xx Cyx ezx 1 
J = Cry Cyy elY 

Cxi Cyi Czi 

(5.5.6) where 

Here Cyi: and ex,;; are not necessarily equal. The direction cosines are' shown in part in 
Figure 5-24. . 

Remember that d4'ection cosines of the .i axis member are 

where 

Y2-YI 
cos()yx =-L-=m 

Z2 -Zl 
cosBzx=-L-=n 

(5.5.7) 

(5.5.8) 

The y axis is selected to be perpendicular to the i and z axes in such a "fYay that the 
cross product of global z with x results in the y axis) as shown in Figure 5-25. 
Therefore, 

A t 
i j k 

zxi y=- 0 0 1 
D I m n 

(5.5.9) 

A m-z: I '!' 

y= -j):+j)J (5.5.10) 

and D= (/2+m2)1/2 

The i axis will be determined by the orthogonality condition z = x x y as follows: 

i j k 
z=ixy 75 m n (5.5.11 ) 

-m 0 



5.5 Beam Element Arbitrarily Oriented in Space Ii. 259 

or 
In- mtl- -z= --i--j+Dk 
D D 

(5.5.12) 

Combining Eqs. (5.5.7), (5.5.10), and (5.5.12), the 3 x 3 transformation matrix 
becomes 

m n 

m 
0 1:<3 = D D (5.5.13) 

In mn 
D -15 -Ii 

This vector J rotates a vector from the local coordinate system into the global one. 
This is the J used in the r matrix. In summary, we have 

m 
cosO.,.;, =--

'V D 

J 
cos8yy =15 
cos8zy = 0 

In 
cos On =-­

D 
mn 

cos8yi =-Ii 
cos 8:: D 

(S.5.I4) 

Two exceptions arise when local and global axes have special orientations with 
respect to each other. If the local x axis coincides with the global z axis, then the mem­
ber is parallel to the global z axis and the y axis becomes uncertain, as shown 
in Figure S-26(a). In this case the local y axis is selected as the global y axis. Then, for 

y 

)-------x 

(a) i in same direction as z (b) ~ in opposite direction of z 

Figure 5-26 Special cases of transformation matrices 
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the positive x axis in the same direction as the global z, J becomes 

J. = [ ~ 0 ~] 
-I 0 0 

(5.5.15) 

For the.positive x axis opposite the global z [Figure 5-26(b)]. J. becomes 

(5.5.l6) 

Example 5.7 

Determine the direction cosines and the totation matrix. of the local x,y,z axes in 
reference to the global x,y,z axes for the beam element oriented in space with end 
nodal coordinates of 1 (0,0,0) and 2 (3.4,12), as shown in Figure 5-27. 

I 
I 

14 
I 
I 
I 

12 ------.. 
3 

y 

1 (0,0.0) 

Figure 5-27 Beam element oriented in space 

First we determine the length of the element as 

L = J32 + 42 + 122 13 
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Now using Eq. (5.5.8), we obtain the direction cOsin~ of the oX axis as fonows: 
Xl -XI 3-0 3 

lX=-L-=13=13 

Y2-Yl 4-0 4 
m;x = -L- = U = 13 (5.5.17) 

12 - 0 12 
1Ix =-13-=i3 

By Eq. (5.5.10) or (5.5.14), we obtain the direction cosines of the y axis as follows: 

D = (/' + "»'/' [ (;3) '+Cwr 153 
Define the direction cosines of the y axis as ly , my> and 1Iy , where 

/ 
_ m 4 

y-

/ 3 
my =])=5 

1Iy =O 

(5.5.18) 

(5.5.19) 

For the z axis, defiile the direction cosines as Iz, mz, n: and again use Eq. (5.5.12) or 
(5.5.14) as follows: 

lz = _!!!. = (- -13) (H) 
D 13 

mn (-n) (M) 48 
mz =--= 5 =--

D 13 65 

5 
nz=D=i3 

Now check that /2 + m2 +.,;. = I. 

32 +42 + 122 
For x: = 1 

+32 
For y: ..:..-..:-.:--= 1 

Fori: (-!~'+( -:)'+(!D'= 1 

By Eq. (5.5.13), the rotation matrix is 

[ 

3 4 12l 13 13 13 
6)(3 = -~ J 0 

-~ . -~ fi 

(5.5.20) 

(5.5.21) 

Based on the resulting direction cosines from Eqs. (5.5.17), (5.5.19), and (5.5.20), the 
local axes are also shown in Figure 5-27. • 
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Example 5.8 

Determine the displacements and rotations at the free node (node 1) and the element 
local forces and moments for the space frame shown in Figure 5-28. Also verify equi­
librium at node L Let E = 30)000 ksi, G = 10,000 ksi, J = 50 in.4, ly = 100 in.4, 
1: = 100 in.4, A= 10 in.2, and L = 100 in. for all three beam elements. 

3 

FY=t-SOk ,~o$-' 
-..: --!. Mr=-IOOOk-in. 

jlllJoC----------\--fl ~ 
,/ 2 .i L= H)();~ (j) 

Y I 

~ Jointi 
4 

L= 100 in. 

Plan 

Figure 5-28 Space frame for analysis 

Use Eq. (5.5.4) to obtain the global stiffness matrix for each element. This requires us 
to first use Eq. (5.5.3) to obtain each local stiffness matrix, Eq. (5.5.5) to obtain the 
transfonnation matrix for each element, and Eqs. (5.5.6) and (5.5.14) to obtain the 
direction cosine matrix for each element. 

Element 1 

We establish the local x axis to go from node 2 to node 1 as shown in Figure 5-28. 
Therefore, using Eq. (5.5.8), we obtain the direction cosines of the x axis as ronows: 

1 = I, m = O~ n 0 (5.5.23) 

Also, 

Using Eqs. (5.5.10) and (5.5.14), we obtain the direction cosines of the y axis as 
foHows: 

I 
my =15= 1 (5.5.24) 
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3·103 

0 
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0 
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k(l) = 0 
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0 
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Using Eqs. (5.5.12) and (5.5.14), we obtain the direction cosines ofthe'z axis as 
follows: 

In mn 
(5.5.25) Iz = -- == 0 mz = -D=O n;:=D=1 

D 

Using Eqs. (5.5.23) through (5.5.25) in Eq. (5.S.B)? we have 

J= [~ 
0 

~l 1 (5.5.26) 
0 

Using Eq. (5.5.3), we obtain the local stiffness matrix for element one as 

(fly dl: JlI: ~2Y il: d!x dly d~ il>: ~!y ~I: 
0 0 0 0 0 -3·102 0 4) 0 0 

36 0 0 0 1.8.103 0 -36 0 0 1.8·!oJ 
0 36 o -1.8·t()l 0 0 0 -36 0 _1.8.101 0 
{I 0 5-103 () 4) 0 0 o· -5·103 0 0 
0 -L8·10-> 0 I.:;!' lOS 0 0 0 1.8.103 4) 6·10' 0 

1.8· I02 4) 0 0 1.2 . lOs 0 -L8·103 0 0 6· lac 

0 0 0 0 4) 3·loJ 0 0 0 0 0 

-36 0 0 0 -1.8·103 0 36 0 0 0 -1.8·ZoJ 

0 -36 0 1.8 ·1()l 0 0 36 0 1.8·103 0 

0 0 -5·IoJ 0 4) 0 0 0 5·1& 0 

0 -1.8·J03 6·t()4 0 0 0 1.8·1oJ 0 J.2·lOs 0 

1.8.103 4) 0 0 6.J<f 0 -L8·1()l 0 0 4) 1.2· lOS 

(5.5.27) 

Using Eq. (5.5.26) in Eq. (5.5.5), we obtain the transfonnation matrix from local to 
global axis system as 

1 0 0 0 0 0 0 0 0 0 0 0 

0 I 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 

(5.5.28) I.. = 
0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 I 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 

~J 0 0 0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 0 0 0 
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kO) ='LTk(l)X.'" 

Finally, using Eq. (5.5.4), we obtain the global stiffness matrix for element 1 as 

~ ~ ri1: hr ily ~ Ii!" d t , al; ¢b ,pIT ~I; 

3·1()l 0 0 0 -3.1()3 0 0 0 

J6 0 Ul·I()3 0 -36 0 1.8· [()3 

0 36 {) -1.8·1()3 /) 0 -36 0 -L8·1()l 

0 () 5·!()3 0 {) 0 -S·!()3 0 
0 0 -I.!H&l 0 1.2·10' 0 {) 0 l.8·1@ 6·104 
(I UH()3 0 0 1.2·10' 0 -t.8. t(Jl (I 0 6·104 

-3·W 0 0 0 3·161 0 0 

-J6 0 -!·8.l()3 36 0 0 -1.8·]()3 

0 -36 0 1.8·!()l 0 36 () !.8·I()l 

0 0 -S·l@ 0 0 0 s·W 0 {) 

0 -u·W 6·10' 0 0 l.8·11)l 1.2·10' 0 
0 \.8·10' 0 0 6·10' 0 -U·I@ 1.2·1~ 

(5.5.29) 

Element 2 

We establish the local x axis from node 3 to nod~ 1 as shown in Figure 5-28. We note 
that the local x axis coincides with the global z axis. Therefore, by Eq. (5.5.15), we 
obtain 

~ = [~ ~ ~] 
-1 0 0 

(5.5.30) 

The local stiffness matrix is the same as the one in Eq. (5.5.27) as all properties are the 
same as for element one. However, we must remember that the degrees of freedom are 
for node 3 and then node 1. . . 

Using Eq. (5.5.30) in Eq. (5.5.5), we obtain the transfonnation matrix as 
follows: 

0 0 1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 .0 0 

-1 0 0 0 0 0 0 0 0 '0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 

1:.= 
0 0 0 -1 0 0 0 0 0 0 0 0 

(5.5.31) 
0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 -I 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 -1 0 0 
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Finally, using Eq. (5.5.31) in Eq. (5.5.4), we obtain the global stiffness matrix for ele­
ment two as 

illy If].: ;3;, 
0 0 0 

36 0 -1.8· !1)3 

3· 11)1 

-1.8 .\1)1 1.2. \0' 

() 

0 

-36 1.8.103 

0 -3·10' 

-1.8·11)3 () 6·10' 

() () 

0 

Element 3 

1:2 ·IIY 

-I.S.\@ 

6 ·ICf 

0 

fJ: 
o 
(} 

() o 

tJ1r ;1, ;1, 
o U·lcP 0 

-36 o -1.&·IIY 

o -l·!()l o. 
o 1.8·1@ 6·ICf 

O· -1.8 ·lcP 

s· t()l 

36 

-l.8 ·10' 

-S·\()l 

0 

36 

LS·Io-1 

6·\rf 

o - 5 ·lcP 

o -!.s·/oJ 

I.S ·loJ 0 

3·10) 0 

(5.5.32) . 

We establish the local oX axis from node 4 to node 1 for element 3 as shown in Figure 
5-28. The direction cosines are now 

Also D = 1. 

o 0 
1=-=0 

100 
0-(-100) 

m= 100 
0-0 

n= 100.=0 

Using Eq. (5.5.14), we obtain the rest of the direction cosines as 

and 

m 

in 
I. = --= 0 . D 

-1 
L 

my =-=0 
D 

m'Z= mn=O 

Using Eqs. (5.5.33) through (5.5.35), we obtain 

o 

n: =D= I 

(5.5.33) 

.(5.5.34) 

(5.5.35) 

(5.5.36) 
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J .. < 

36 

kf.3l= -1.8.\(}l 

-36 

0 

0 

-l.S.H)l 
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The transfonnation matrix for element three is then obtained by using Eq. (5.5.5) as: 

0 1 0 0 0 0 0 0 0 0 0 0 

-1 0 0 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 o '0 

0 0 0 -1 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 
L= 

0 0 0 0 0 0 0 0 0 0 0 
(5.5.37) 

0 0 0 0 0 0 -1 0 0 0 0 0 

0 0 0 0 0 0 0 0 I 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 -1 0 0 

0 0 6 0 0 0 0 0 0 0 0 

The element three properties are identical to the element one properties; there-
fore, the local stiffness matrix is identical to the one in Eq. (5.5.27). We must remem-
ber that the degrees of freedom are now in the order node 4 and then node I. 

Using Eq. (5.5.37) in Eq. (5.5.4), we obtain the globaJ stiffness matrix for ele-
ment three as 

fL., ~, ?4.x ,p41 ~4:. QI.. dly ti!: til" ~IY ?!: 

0 0 -1.8·1@ -36 0 0 0 -1.8·1(}l 

~ ·lol 0 -3-1(}l 0 

36 1.8 -tol Q -36 I.S-tal 

0 1.8.103 1.2.105 I} 0 -1.8 ·ltY 6·10" 

0 s·](}l -5·1& 0 

1.2· lOS 1.8·10) 0 ,.1(1' 

0 l.8.tQl 36 LB·tQl 

-3·10> 3· tQl 

-:36 -1.8 ·I<Y 0 36 - 1.8. I<Y 

0 I.8·W 6· !O' (} 0 -l.8.!()3 1.2 ·10' 

0 -S·IO> 0 () s .10> 

6·1(f 1.8. ttY 0 1.2·10' 

(5.5.38) 

Applying the boundary conditions that displacements in the x, y, and z directions are 
all zero at nodes two, three, and four, and rotations about the x~ y, and z axes are all 
zero at nodes two, three, and four, we obtain the reduced global stiffness matrix. Also, 
the applied global force is directed in the negative y direction at node one and 
so expressed as Fly = -50 kips, and the global moment about the x axis at node 1 is 



1

0

) 

-50 
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MIx = -1000 k~in. With these considerations, the final global equations are 

3.072 x l()l 0 0 0 -1.8x l()l 1.8 x IcP 

rl 
0 3.072 x 103 0 1.8 x 103 0 -1.8 x 103 d ly 

0 0 3.072 x 103 -1.8 x 103 1.8 X 103 0 d l : 

0 1.8 x 103 -1.8 x 103 2.45 x lOS 0 0 ¢llx 
(5.5.39) 

-l.8x 1()3 0 1.8 x 1()3 0 2.45 x lOS 0 ~!)' 
1.8 X 103 -1.8xl()3 0 0 0 2.45 x lOS "1: 

Finally, solving simultaneously for the displacements and rotations at node one, we 
obtain ' 

7.098 X 10-5 in. 

-0.014in. 

-2.352 x 10-3 in. 
4. = -3.996 X 10-3 rad 

1.78 x 10-5 rad 

-1.033 x 10-4 rad 

(5.5.40) 

We now determine the element local forces and moments using the equatiorif = kI..4. 
for each element as previously done for plane frames and trusses. As we are .dealing 
with space frame elements, these element local forces and moments are now the nOf­
mal fOfce, two shear force~, torsional moment, and two bending moments ~t each 
end of each element. . 

Element 1 

Using Eq. (5.5.27) for the local stiffness matrix, Eq. (5.5.28) for the transformation 
matrix, Land Eq. (5.5.40) for the displacements, we obtain the local element forces 
and moments as 

Element 2 

-0.213 Kip 

0.318 Kip 

0.053 Kip 

19.98 Kip· in. 

-3.165 Kip . in. 

18.991 Kip· in. 

0.213 Kip 

-0.318Kip 
-0.053 Kip 
-19.98 Kip . in 
- 2.097 Kip . in . 

12.79 Kip· in 

(5.5.41) 

Using Eq. (5.5.27) for the local stiffness matrix, Eq. (5.5.28) for the transforma­
tion matrix and Eq. (5.5.40) for the displacements, we obtain the local forces and 
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moments as 

Element 3 

7.056 Kip 
7.697 Kip 

- 0.029 Kip 
0.517Kip· in 
O.94Kip·in 
264.957 Kip· in 
7.056 Kip 

-7,697Kip 
0.029 Kip 

- 0.517 Kip· in 
2.008 Kip . in 
504.722 Kip" in 

(5.5.42) 

Similarly, using Eqs. (5.5.27), (5.5.37), and (5.5.40), we obtain the local forces and' 
moments as 

[ 
41.985 Kip 

- 0.183 Kip 
-7.l08Kip 
- 0.089K.ip· in 

235.532 Kip· in 
- 6.073 IGp . in 
-41.985IGp 

O.l83K.ip 
7.l08K.ip 
0.089 Kip . in 
475.297 Kip . in 

- 12.273 Kip . in 

(5.5.43) 

We can verify equilibrium of node I by considering the node one forces and moments 
from each element that transfer to the node. We use the results from Eqs. (5.5.41), 
(5.5.42). and (5.5.43) to establish the proper forces and moments transferred to 
node 1. (Note that based on Newton's third law, the opposite forces and moments 
from each element are sent to node I.) For instance, we observe from summing forces 
in the global y diiection (shown in the diagram that follows) 

0.318 kip + 7.697 kip + 41.985 kip - 50 kip = 0 (5.5.44) 

In Eq. (5.5.44)) 0.318 kip is from element one local y force that is coincident with 
the global y direction; 7.697 kip is from element two' local y force that is co­
incident with the global y direction, while 41.985 kip from dement three is from 
the local xdirection that is coincident with the globaJ y direction. We "observe 
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these axes from Figure 5-28. Verification oftbe other equilibrium equations is left 
to your discretion. 

150kiP 

0.318 kip It 7.697 kip 

t 41.985 kip 
Global y force equilibrium 

Figure 5-29 Finite element model of bus frame subjected to roof load [6] 

• 

An example using the frame element in three-dimensional space is shown in 
Figure 5-29. Figure 5-29 shows a bus frame subjected to a static roof-crush analysis. 
In this model, 599 frame elements and 357. nodes were used. A total downward load of 
100 kN was uniformly spread over the 56 nodes of the roof po~on of the frame. 
Figure 5-30 shows the rear of the frame and the displaced view of the rear frame. 
Other frame. models with additional loads simulating rollover and front-end collisions 
were studied in Reference [6]. .-

~ 5.6 Concept of Substructure Analys~s 
The problem of exceeding memory capacity on todays personal computers has 
decreased significantly for IQost applications. However, for those structures that 
are too Jarge to be analyzed as a single system or treated as a whole; that is, the final 
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~ ~ -
Cant rail .... r"'" 

Waist-rail-~ 

----

\ J 

Figure 5-30 Displaced view of the frame of Figure 5-29 made of square section 
members 

stiffness matrix and-equations for solution exceed the inemory capacity of the com­
puter, the concept of substructure analysis can be used. The procedure to overcome 
this problem is to separate the whole structure into smaller units called substructures. 
For example, the space frame of an airplane, as shown in Figure 5-31 (a), may require 
thousands of nodes and elements to mo1el and describe completeiy the response of the 
whole structure. If we separate the aircraft into substructures, such as parts of the 
fuselage or body,-wing sections, and so on, as shown in Figure 5-31(b), then we.can 
solve the problem more readily and on computers with limited memory. 

(a) 
(b) 

Figure 5-31 Airplane frame showing substructuring. (a) Boeing 747 aircraft ~.~ 
(shaded area indicates portion of the airframe analyzed by finite element method). 
(b) Substructures for finite element analysis of shaded region 
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r--t----I -----S~~_;; c 
-------t--

...---+--1---1----. Substructure 8 

r--+---t-----f-I------l----,-:----'t--
Substructure A 

r----+-I--I---t--+---i __ 1 __ 
(a) 

J or I r L 
o = substructure interface 

nodes, i 

(b) 

Figure 5-32 Ca) Rigid frame for substructure analysis and (b) substructure B 

The analysis of the airplane frame is performed by treating each substructure 
separately while ensuring force and displacement compatibility at the intersections 
where partitioning occurs. 

To describe the procedure of substructuring, consider the rigid frame shown in 
Figure 5-32 (even though this frame could be analyzed as a whole). First we define 
individual separate substructures. Normally, we make these substructures of similar 
size, and to reduce computations, we make as few cuts as possible. We then separate 
the frame into three parts, A, B, and C. 
. We now analyze a typical substructure B shown in Figure 5-32(b). This sub­
structure includes the beams at the top (a-a), but the beams at the bottom (b·b) are 
included in substructure A, although the beams at top could be included in substruc­
ture C and the beams at the bottom could be inCluded in substru~ture B. 

The force/displacement equations for substructure B are partitioned with the 
interface displacements and forces separated from the interior ones as' follows: 

{-~~} = [A} I ~rl {-~} Fe Ke/ t Kee 4e 
(5.6.1) 

where the superscript B denotes the substructure B, subscript i denotes the interface 
nodal forces and displacements, and subscript e denotes the interior nodal forces and 
displacements to be-eliminated by static condensation. Using static condensation, 
Eq: (5.6.1) becomes 

(5.6.2) 

, (5.6.3) 

We eliminate the interior displacements 4e by solving Eq. (5.6.3) for 4:, as follows: 

Then we substitute Eq. (5.6.4) for 4! into Eq. (5.6.2) to obtain 

EB - K![K!rIfeB = (Kff - K![K!r'K!)4f 

(5.6.4) 

(5.6.5) 
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We define 

and (5.6.6) 

Substit~ting Eq. (5.6.6) into (5.6.5), we obtain 

E/ -EtB =K:g! (5.6.7) 

Similarly, we can write force/displacement equations for substructures A and C. These 
equations can be partitioned in a manner similar to Eq. (5.6.1) to obtain 

(5.6.8) 

Eliminating g;, we obtain 

f;A - f: = E:4t (5.6.9) 

Similarly, for substructure C, we have 

(5.6.10) 

The whole frame is now considered to be made of superelements A, B, and C 
connected at interface nodal points (each super-element being made up of a collection 
of individual smaller elements). Using compatibility, we have 

4ftop = !!.i~ottom and 4!top 4Fbott()m (5.6.11) 

That is, the interface displacements at the common locations'where cuts were made 
must be the same. 

The response of the whole structure can now be obtained by direct superposition 
of Eqs. (5.6.7), (5.6.9), and (5.6.10), where now the final equations ~re expressed 
in terms of the interface displacements at the eight interface nodes only [Figure 
5-32(b)] as 

(5.6.12) 

The solution of Eq. (5.6.12) gives the displacements at the interface nodes. To 
obtain the displacements within.each substructure) we use the force..:displacement 
Eqs. (5.6.4) for 4: with similar equations for substructures A and C. Example 5.9 
illustrates the concept of substructure analysis. In order to solve by hand, a relatively 
simple structure is used. 

Example 5.9 

Solve for the displacement and rotation at node 3 for the beam in Figure 5-33 by 
using substructuring. Let E = 29 X 103 ksi and 1 = 1000 in4. 

To illustrate the substructuring concept, we divide the beam into two substruc­
tures, labeled I and 2 in Figure 5-34. The 10-kip force has been assigned to node 3 
of substructure 2, although it could have been assigned to either substructure or a frac­
tion of it assigned to each substructure. 
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Figure 5-33 Beam analyzed by substructuring 

20 kip 10 kip 

,I 0) i~ CD J :JOO~~fl 
Is 13 

Substructure J Substructure 2 

Figure 5-34 Beam of Figure 5-33 separated into substructures 

The stiffness matrix for each beam element is giv.en by Eq. (4.1.14) as 

[ 

12 

k(l) = M2) = k(3) = k(4) = 29 x 10
6 

6(120) 
- - - - (120)3 -12 

6020) 

1 

2 
3 
4 
6(120) 
4{120)2 

-6(120) 
2(120)2 

-12 
-6(120) 

12 
-6(120) 

. [12 720 -12 720] 
= 16.78 _72

1
°2 57,600 - 720 28,800 

-720 12 -720 
720 28,800 -720 57,600 

2 

3 
4 
5 

6(120) ] 
2(120)2 

-6(120) 
4(120)2 

(5.6.13) 

(5.6.14) 

For substructure I, we add the stiffness matrices of elements 1 and 2 together. The 
equations are 

where the boundary conditions d1y = ,pI = 0 were used, to reduce the equations. 
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Rewriting Eq. (5.6.15) with the interface displacements first allows us to use 
Eq. (5.6.6) to condense out, or eliminate, the interior degrees of freedom, d2y and ",,-. 
These reordered equations are 

16.78(12d3J' - 720"3 - 12d2y - 720~2) = 0 
16.78( -720d3.v + 57,600tPJ + 720d2y + 28,800"2) 0 

16.78( -12d3y + 720"3 + 24d2y + tP2) = -20 

16.78( -720d2y + 28,8oo~3 + Od2y + 115,200tP2) = 0 

(5.6.16) 

Using Eq. (5.6.6) we obtain equations for the interface degrees of freedom as 

,([ 12 -720] 
16.78. -720 57,600 [-12 -720] [24 0] -1 [ -12 nO]}{d3 } 

720 28,800 0 115,200 -720 28,800 rI>; 

= {O } _ [-12 -720] [24 0] ~ 
1 

{ 20 } 
0. 720 28,800 0 115,200 0 

(5.6.17) 

, Simplifying Eq. (5.6.17), we obtain 

[ 
25.17 -3020] {d3y } {-IO} 

-3020 483,264 tP3 = 600 
(5.6.18) 

For substructure 2, we ;ldd the stiffness matrices of elements 3 and 4 together. 
The equations are 

[ 

12. 720 

16.78 720 57,600 
-12 -720 

. 720' 28,800' 

720 ) ! d

ly I ! -10 I -720 28,800 tP3 _ 0 
12 + 12 - 720 + 720 iL,y - 0 

-120 + 720 57,600 + 57,600 IP4 1200 

-12 

(5.6.19) 

where boundary conditions dsy = IPs = 0 were used to reduce the equations. 
Using static condensation, Eq. (5.6.6), we obtain equations with only the inter­

face disp)acements d3y and ~3' These equations are 

16. 78{[ 7~ 57.:]- [_ ~~ 28.~:][~· 115,2~r[ ~~~ 2;,:~1}{i;} 
={-100} [-12 720][24 O]-l{ O} 

-720 28,800 0 115.200 1200 
(5.6.20) 

Simplifying Eq. (5.6.20), we obtain 

[ 
25.17 3020]{d3y}={ -17.5} 

3020 483,264 tP3 -300 
(5.6.21) 
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Adding Eqs. (5.6.18) and (5.6.21), we obtain the final nodal equilibrium equations at 
the interface degrees of freedom as 

[
50.34 0] {dlY } = {-27.S} 
o 966,528 tP3 300 

Solving Eq. (5.6.22) for the displacement and rotatil?n at node 3! we obtain 

d3y = -0.5463 in. 

?3 = 0.0003104 rad 

(5.6.22) 

(5.6.23) 

We could now return to Eq. (5.6.15) or Eq. (5.6.16) to obtain d2y and'2 and to 
Eq. (5.6.19) to obtain ~Y and '4' II 

We emphasize that this example is used as a simple illustration of substructur­
ing and is not typical of the size of problems where substructuring is normally per­
formed. Generally. substructuring is used when the number of degrees of freedom is 
very large, as might occur,' for instance, for very large stmctures'such as the airframe 
in Figure 5-31. 
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:l Problems 

Solve all probJems using the finite element stiffness method. 

5.1 For the rigid frame shown' in Figure P5-1, deteanine (1) the displacement compo­
nents and the rotation at node 2, (2) the support reactions, and (3) the forces in each 
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element. Then check equilibrium at node 2. Let E = 30 X 106 psi, A = 10 in2, and 
1= 500 in4 for both elements. 

5000 Ib 

2 I CD 20ft 

.1 
2 10,000 Ib_--r

r

-

CD 40ft 

~ 
CD 

I 1 3 " '\ 
, ~30 ft 30 fr--l 

\: 

1-20fl-1 
Figure P5-t Figure PS-2 

5.2 For the rigid frame shown in Figure P5-2, detennine (1) the nodal displacement 
components and rotations, (2) the support reactions, and (3) the forces in each ele­
ment. Let E = 30 X 106 psj, A = 10 in2, and 1 = 200 in4 for all elements. 

5.3 For the rigid stairway frame shown in Figure PS-3, detennine (1) the displacements at 
node 2, (2) the support reactions, and (3) the local nodal forces acting on each ele­
ment. Draw the bending moment diagram for the whole frame. Remember that the 
angle between elements 1 and 2 is preserved as deformation takes place; similarly for 
the angle between elements 2 and 3. Furthermore, owing to symmetry, d2x = -d3x> 
day == d3y, and t/J2 = -t/J3" What size A36 steel channel section would be needed to 
keep the allowable bending stress less than two-thirds of the yield stress? (For A36 
steel, the yield stress is 36,000 psi.) , 

2000 Ib 

8ft 

_I 
2000 Ib 

Figure P5-3 
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504 For the rigid frame shown in Figure P5-4) determine (1) the nodal displacements 
and rotation at node 4, (2) the reactions, and (3) the forces in each element. Then 
check equilibrium at node 4. Finally, draw the shear force and bending moment di­
agrams for each element. Let E = 30 X 103 ksi, A = 8 in2) and / = 800 in4 for all 
elements. 

20 kip 

40ft 

1 
-;.--30ft 

Figure PS-4 

5.5-5.15 For the rigid frames shown in Figures P5-5-P5-15, determine the displacements 
and rotations of the nodes, the element forces, and the reactions. The values of E, A,' 
and I to be used are listed next to each figure. 

£ = 30 X IOf> psi 
A = IOin1 

I 200 in· 

Figure P5-5 

CD 

20 kip 

40 kip 

40 kip 

IO'~ 
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E = 30 x 10" . 
A = IOin2 psi 
I=- 2OOin4 CD 

20 k.ip 

1--10 .-1-10 ft I . 4 

Figure P5-6 -+-IS .--1 

E = 2iOGPa 
A =: 1.0 X 10-2 l 

I =: 1.0 x 10-":' 

Figure PS-7 

E", 30 x 10' . 
A "" lSin2 psi 
I = 250 inoil 

Figure PS-8 

SOkN 

4OkN· 

2SO Ib/ft 2 

l--20ft~ 
4 

1 
1 

4 



Figure PS-9 

10 leN 

Figure PS-10 

E = 210GPa 
A = 2 X 10-2 2 

1= 2 X 10-4 :. 

E = 210GPa 
A = 1 X 10-2 1 

I:: 2 X 10-4 : 4 

<D® 1 

,I~)m I . ) 1 
-l-3m~ 

Figure PS-11 

Problems 279 
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Figure PS-12 

E:: 30 x ltJ6 pSi 
A lOin l 

1= 2OOin4 

(for e1eme:nts I. 
2, and 3) 

Figure PS-13 

1 
10ft <D 

Figure PS-14 

E"" 210GPa 
A = 8 X 10-2 m2 

I = 1.2 X 10-4 m( 

5000 It> 

2 

E"'" 30 x ItJ6PSiJ 
1:::: 1 in" 

A 2inJ 

2000 Ibjft 

E = 30 x 100psi 
A 5in2 . 

I"" 2OOin" 
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20 kN ___ 2_.;.-__ ...-.--.... 

E = 70GPa 
A ::: 4 X 10-2 m2 

1=2 X 10-4 m4 

Figure PS-1S 

5.16-5.18 Solve the structures in)Figures P5-16-P5-18 by using substructuring. 

P=20JcN 

5 

E:: 200 GPa 
A == I X 10-% ml 

2 6 

F.igure P5-16 (Substructure the truss at nodes 3 and 4) 

10 kip 10 kip 10 Kip 

t ! t Is £=29x 103 ksi 

2 4 1 = 1000 in' 

Figure PS-17. (Substructure the beam at node 3) 

2 r-t-----+ .. 3 

1m 
E = 200 GPa 
A::: I X 10-1 m'2-

1=2 X 10-4 m4 

Figure P5-18 (Substructure the beam at node 2) 
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Solve Problems 5.19-5.39 by using a computer program. 

~ 5.19 For the rigid frame shown in Figure P5-19, detennine (1) the' ,nodal displace­
Jill ment components and (2) the support reactions. (3) Draw the shear force and bending 

moment diagrams. For all elements, let E = 30 x 106 psi, I = 200 in4, and A 10 in2• 

15 k·ft· " 3000 Ib-ft 

f IS 'kip 1200 Ib 
3 ® 41 

6 ft 0 2 

Q) (4) IHt 

10 kip 
1= 300in4 + 16 ft 

2400 Ib 
® S ® 

1 
2 

10 ft CD CD ® 15 ft 

1 ~ 4 
~8ft~ 25 ft 

Figure PS-19 Figure P5-20 

5.20 For the rigid frame shown in Figure P5--20, detennine (1) the nodal displacement 
components and (2) the support reactions. (3) Draw the shear force and bending mo­
ment diagrams. Let E = 30 X 106 psi, 1 200 in\ and A = 10 in2 for all elements, 
except as noted in the figure. 

S 5.21 

9 5.22 

For the slant-legged rigid frame shown in Figure P5-21, size the structure for mini­
mum weight based on a maximum bending stress of 20 ksi in the horizontal beam 
elements and a maximum compressive stress (due to bending and direct axial load) of 
15 ksi in the slant-legged elements. Use the same element size for the two slant-legged 
elements and the same element size for the two iO-foot sections of the horizontal ele­
ment. Assume A36 steel is used. 

Figure PS-21 

For the rigid building frame shown in Figure P5-22, determine the forces in each 
element and calculate the bending stresses. Assume an the vertical elements have 
A = 10 in2 and 1= 100 in4 and all horizontal elements have A = 15 in2 and'] = 
150 in4. Let E = 29 x 106 psi for aU elements. Let c = 5 in. for the vertical elements 
and c = 6 in. for the horizontal elements, where c denotes the distance from the 
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neutral axis to the top or bottom of the beam cross section, as used in the bending 
stress fonnula u = (Me/I). 

4 12 8 
1000 Ib -""""'""-------........ -------..., t 

10 ft ___ ~~3------------~-----------1~1 + 2000 Ib 

10ft 

~lb--~~2----------~6+_-----------1~O ~ 
10 ft 

s -L 

Figure PS-22 

5.23-5.38 For the rigid frames or beams shown in Figures P5-23-P5-38, determine the dis­
• placements and rotations at the nodes, the element forces, and the reactions. 

3000 Ib-ft 
1= 200io" 

A =. 1;:.1b--S~-+----A-="":::1";"2-in-l---"'6---1-
I = ISO in" ® 0 15 ft 

({or elements 3 and 4) . + 
2400 lb __ 3~ ___ 1_=_300_in~4. __ ""';;l!III4 

A"" 12inl 

A w~ 0 ®. 
I = 150 in4 ~l5ft 

(for elements I 
an(2) 2 

I tot4---2S ft ---...-/ 

Figure PS-23 

300 Ib/rr I~"--- 2S ft --------oo-i·1 

For cross members: 
J = LOin" 
A ;: 2.0in2 

E = 30 X 106 psi 
(for all members) 

S @ 6 1 E = 30 x lot-psi 
J:= 2ooin" 

@ 15fl 

~® ------I. -+ 
A "" 15 in1 

® 15ft 

2~ 

Figure PS-24 
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1251b 15 Ib J15 Ib 25tb 

2~ 

(a) Design I (b) Design 2 

t y (30. IS) 

(10, IS) 2 @ 4 ® 
5 (32. t 1.25) 

<D Q5 ® CD 
(0.0) (a--=--1.:T 6 (3~ ® 3 (20.0) 

I~ 
(30,15) 

2 (10,15) 5 ® 
@ 6 (32.11.15) 

Q) 3 n'\ (j) 
8 0 7 (38.0) 

a--®=3"=~4 (20. 0) ~ 

(a) Design I (b) Design 2 

Case I AI =0.1 in~ 
E ... 30 x 106 psi 
Case 2 

A:z == A3 A4 = As = 0.15 in;! 
At. = A, = A'a = 0.3 in2 

E = 10 x l~ psi 11 = 0.01 in4 

12 = 13 = 14 = 1, = 0.02 in4 

16 = I, = 18 = 0.1 in4 

Figure PS-2S Two bicycle frame models (coordinates shown in inches) 

1000lb/ft 

12 ft I,.A , 

i. 
J--12 ft ---=.t 

Figure PS-26 

E = 30 x 1()6 psi 
It = 300in4 

12 == 6OOi04 

AI ISin2 

A: 3Oin2 



60 kN 

r-- 4m 4m--1 

2 r-------:::®::-----=-3--0'=3~' --:'7'14 1 
<D 

~l 
Figure PS-27 

j--Jom 

E = 210 GPa 
I = 1.0 x 10-" m4 

A "" 1.0 X 10-2 m2 

S / E = 210 GPa 

Figure P5-28 

E = 30 x 100 psi 
1=lSOin4 

3 , 

1= 0.5 x 1O-4 m4 

A = O.S X 10-2 m2 

Problems £. 28S 

A"" 10in2 
16 kip 16 lcip 4 lei 

1~ _____ @~1 _____ Jl~_®~2 __ ~!3~0~!_:~@~~:Sr-____ ® _____ ~6 
AJ4-\a __ JO ft --......1--14 ft"~7fc..l..7ft ...... I • .---- 30 ft --~-tl 
Figure P5-29 
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£=30>< 106 psi 30 kip 30 kip 
I =200in4 

2On+ISft-i A = 12inl 

1'5ft 

® 3 ® 4 ! 
@ lO fr 

t 2 5 

CD ® 
30ft 

l 6 

I· SOft 

Figure P5-30 

2 

£ = 30 x 1()6 psi 
1 100 in" 
A = 8 in2 

CD @ 15 ft 

1 450 

3 

" 
Fig'ure PS-31 

IOkN-m ® 
3 

15 kN 

T 2 
6m 

E=210GPa 
1= 2 X IO-"m" 
A = 2 x 10-2m2 

CD ® 6m 

L 4 

" " 
Figure PS-32 



I 

I 

6OkN·m 
7 11' A, 

20kN 

I}. A) I). A, 

5 II. Aj 6 
20tH 

12• A~ r~. A2 

3 II.A I 4 
20kN 

I!. A~ 12, Al 

2 

'" 
~------lOm------~~ 

Figure PS-33 

Figure P5-34 

2800N"m 
2A1.311 

4000N 
9 10 

A3. 13 4m A3. /3 

8000N 
7 

~t,3tl 

8 

A).h 4m A,. I) 

lA .. 3/, . 
8000 N 

S 6 

A1.12 4m A~. h 
lA •• 3/, 

12.000 N 
3 " 

AI.'I 6m AI.I, 

1 2 

'" 
~Iom ~. 

Figure PS-35 
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T E "" 210 CPa 

3m 
1\ :::; 2 )( 10-4 m4 

+ A\ :: 2 )( 10-2 m~ 
12 = 1 ~ 10-4 m4 

A2 "" I X 10-1 m1 

13 = 0.5 x 10-" m' 
3m A) = 005 X 10-2 m2 

+ 4m 

1 

E 210 GPa 
1 = I X 10-4 m' 
A= I x 10- 2 m2 

E = 210GPz 
AI = 2.0 x 10-~ m'l 
11 = 2.0 x 10-4 m" 

A1 = 1.5 x 10-= m2 

12 =: 1.5 X 10-4 m4 

A.l = 1.0 x 10-2 m1 

I) "" 1.0 X 10-4 m· 
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IOkN IOkN 

E:: 210GPa .1 ® 
I = I X 10-4 m4 

T A ::. I X 10-2 m2 @ (J)@ 

® 2.5 m 

II 
·1· 3m 

Figure P5-36 

18 kN 72 kN 72 kN 
E 210GPa 
1= 4 X 10-4 m4 

1-6m -+4m A 4 x 10-2 m1 
I 

?' 
~ 
~ 

2 8 

Figure P5-37 

80kN 

1 E:: 210 CPa 
I = 2.0 X 10-4 m' 

A ... 1.0 X 10-2 m2 

® ® 8m 

1 3OOkN/m 
J 7 

'" " \--7m -I- 1m-l 
Figure P5-38 

• 5.39 Consider the plane structure shown in Figure P5-39. First assume the structure to 
be a plane frame with rigid joints;· and analyze using a fra.'Iie element Then assume 
the structure to be pin-jointed and analyze as a plane truss, using a truss element. 
If the structure is actually a truss. is it appropriate to model it as a rigid frame? How 
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4m 
IOkN 

8 

3m 

5 6 
20 kN 

E = 200GPa 

3m 
A = 2 x 10-" m2 

1= 4 x 10-" m' 

4 
20kN 

(1) 0 CD 8 3m 

2 

Figure PS-39 

can you modeJ the truss using the frame (or beam) element? In other words, what 
idealization could you make in your model to use the beam element to approximate 
a truss? 

~ . 5.40 For the two-story, two-bay rigid frame shown, determine (I) the nodal displacement 
components and (2) the shear force and bending moments in each member. Let 
E = 200 GPa, 1= 2 x 10-4 m4 for each horizontal member. and 1 = J.5 X 10-4 m4 

for each vertical member. 

5m 

A B cl 
!---1O m ---........ 140----10 m ----1 

Figure PS-40 

S 5.41 For the two-story, three-bay rigid frame shown, detennine (1) the nodal displacements 
and (2) the member end shear forces and bending moments. (3) Draw the shear 
force and bending moment diagrams for each member. Let E = 200 
GPa, I = 1.29 x t 0-4 m4 for the beams and J == 0.462 x 10-4 m4 for the columns. 
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. .s 5.42 

The properties for I correspond to a W 610 x 155 and a W 410 x 114 wide-flange 
section. respectively, in metii(f ~ts. 

I J K L 2SkN-DDD
t
r 

50 leN -~F===~;:=;;;==,;====;;;;;;;"I 
E F G H 

6m 
~_1 B - '--

c --A 
-'--

~8m--t--6m-l--8m--l 

Figure PS-41 

For the rigid frame shown. detennine (1) the nodal displacements and rotations and 
(2) the member shear forces and bending moments. Let E = 200 GPa, 
1= 0.795 X 10-4 m4 for" the horizontal members and 1=0.316 X 10-4 m4 for the 
vertical members. These I values correspond to a W 460 x 15& and a W 410 x &5 
wide-flange section, respectively" 

WkN-fcj=lr 
40kNb E F + 

, 3m 
A B .C.L -. 

!--Sm-+-Sm-1 
Figure PS-42 » 5.43 For the rigid frame shown, determine (I) the nodal displacements and rotations and' 
(2) the shear force and bending moments in each member, Let E = 29 x 106 psi, 
/ = 3100 in.4 for the horizontal members and / = 1110 in.4 (or the vertical members. 
The I values correspond to a W 24 x 104 and a W 16 x 77. 

Figure PS-43 
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5.44 A structure is fabricated by welding together three lengths of I-shaped members as 
shown in Figure P5-44. The yield strength of the m(mlbers is 36 ksi, E = 2ge6 psi, and 
Poisson's ratio is 0.3. The members all have cross-section properties corresponding to 
a Wl8 by 76. That is, A = 22.3in2

, depth of section is d = 18.21 in., Ix = 1330in4
, 

S)C = 146in3
, 1y = 152in4

, and Sy = 27.6in3
. Detennine whether a load of 

Q = 10,000 lb downward is safe against general yielding of the material. The factor of 
safety against general yielding is to be 2.0. Also, determine the m~um vertical and 
horizontal deflections of the structure. ' . 

~'5.45 

90" t I 

/ r 
90" 

Q 

/ '-

Figure PS-44 

For the tapered beam shown in Figure P5-45, detennine ,the maximum detlection 
using one, two, four, and eight elements. Calculate the moment of inertia at the mid­
length station for each element. Let E = 30 X 106 psi, 10 = 100 in\ andL = 100 in. 
Run cases where n'=.1,3, and 7. Use a beam element. The analytical solution for 
n = 7 is given by Reference [7]: 

PL3 1 PL3 

VI = 49E10 (1/7ln8 + 2.5) = 17.55 £10 

PL2 1 PL2 

Bl = 49E10 (InS -7) = - 9.95 E10 

l(x) = 10(1 +nf) 
where n = arbitrary numerical factor and 10 = moment of inertia of section at x = o. 

p = SOO Jb 
,-A 
I 

~----_+--------~2 
~----~~------~--.x 

Figure PS-4S Tapered cantilever beam 

~
~ ----

I :.. 2 
. --..... -.-- ..... 
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5.46 Derive the stiffness matrix for the nonprismatic torsion bar shown in Figure P5-46. 
The radius of the shaft is given by 

-, = '0 + (xjL)ro l where '0 is the radius at x = O. 

figure P5-46 

5.47 Derive the total potential energy for the prismatic circular cross-section torsion bar 
shown in Figure P5-47. Also determine the equivalent nodal torques for the bar sub­
jected to unllorm torque per unit length (lb-in./in.). Let G be the shear modulus and J 
be the polar moment of inertia of the bar. 

Figure PS-47 

. 5.48 For the grid shown in Figure P5-48, determine the nodal displacements and the Jocal 
element forces. Let E = 30 X 106 psi, G 12 X 106 psi, I = 200 in4) and J = 109 in4' 

for both elements. 

Figure P5-48 

5.49 Resolve Problem 5-48 with an additional nodal moment of 1000 k-in. applied about 
the x axis at node 2. 

5.50-5.51 For the grids shown in Figures P5-50 and PS-Sl, determine the nodat displacements 
and the local element forces. Let E = 210 GPa, G 84 GPa, I 2 x 10-4 m4, 

J 1 x 10-4 m\ and A = 1 X 10-2 m2• 
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~~---3m------~bl 

________ ~_ IOkN 

10 kN 

Figure P5-50 

y 

/"'*1..-- 4 m --~..; ,. 
2 

3 

ISkN 

Figure PS-Sl 

5.52-5.57 Solve the grid structures shown in Figures P5-52-P5-57 usmg a computer program. 

•

. For grids P5-52-P5-54~ let E = 30 x 10~ ps~ G = l.~ X 106 
psi, 1=200 in4) and 

J = 100 in4, except as noted in the figures. In Figure P5-54, let the cross elements 

I 
I 

z 

y 

IOft-j 

Figure PS-S2 
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have I = 50 in4 and J 20 in\ with dimensions and loads as in Figure P5-53. For 
grids P5-55-PS-57, let E = 210 GPa, G = 84 GPa, I = 2 X 10-4 m\ J = I X 10-4 

m4, and A = 1 X 10-2 m 2. 

y lkip lkip 1 kip lk.ip 

;.----6 @ 6 ft '" 36 ft ------.J 

z 

Figure P5-53 

(all loads 1 kip each) 

;.----6 @ 6 ft '" 36 ft -----I 

Figure PS-S4 

40kN 

Figure P5-55 
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y 

~ _____ ",,~_""J: 

$ 
") 

~ ____ ......JI'-L 
4m--/ 

y 
tOO kN 

IOOkN 

Figure P5-56 

Figure PS-57 

5.58-5:59 Determine the displacements and reactions for the space frames shown in Figures 

• 

P5-58 and P5-S9. Let Ix = 10
2
°\ in\ Iy = 200 in\ Iz = 1000 in\ E = 30,000 ksi, 

G = 10,000 ksi, and A = 100 in fo~ both frames. 

Fy =-5 kip 

2 
I'IlJ'JIe:------lK-r­

m",=-IOOk-ft 

Figure P5-58 



296 .. 5 Frame and Grid Equations 

IJ 5.60 

6 'I 
10 ft 

20ft 
;, 

8 M==-SO k-ft 

4 

Figure P5-59 

Use a computer program to assist in the design problems in Problems 5.60-5.72. 

Design a jib crane as shown in Figure P5-60 that will support a downward load of 
6000 lb. Choose a common structural steel shape for all members. Use allowable 
stresses of 0.66Sy (Sy is the yield strength of the material) in bending, and O.60Sy in 

--~---e=86m.----

6000ib 

Figure P5-60 



• 5.61 

.5.62 
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tension on gross areas. The maximum deflection should not exceed 1/360 of the 
length of the horizontal beam. Buckling should be checked using Euler's or Johnson's 
method as applicable . 

Design tbe support members, AB and CD. for the platfonn lift shown in Figure 
P5-61. Select a mild steel anl choose suitable cross--sectional shapes with no more 
than a 4: I ratio of moments of inertia -between the two principal directions of the 
cross section. You may choose two different eross sections to make up each arm to 
reduce weight. The actual structure has four support arms, but the loads shown are for 
one side of the platfonn with the two arms shown. The loads shown are under ope1"­
ating conditions. Use a factor of-safety of 2 for human safety. In developing the finite 
element model, remove the platform and replace it with statically equivalent loads at 
the joints at Band D. Use truss elements or beam elements with low ~ding stiffness 
to model the anus from B to D, the intermediate connection, E to F, and the hydraulic 
actuator. The allowable stresses are 0.668y in bending and 0.608y in tension. Check 
buckling using either Euler's method ot Johnson's method as appropriate. Also check 
maximum deflections. Any deflection greater than 1/360 of the length of member AB 
is considered too large. 

~ 

c 

~-t 
1 30 

600 lb _! 

Dimensions are in inches 

6OO1b 8001b 

24 
L. 

A 

f 
30 

~ 

Figure PS-61 

A two-story building frame -is to be designed as shown in Figure PS-62. The members 
are all to be I-beams with rigid connections. We would like the ~oor joists beams to 
have a IS-in. depth and the columns to have a 10 in. width. The material is to be A36 
structural steel. Two horizontal loads and vertical loads are _shown. Select members 
such that the allowable bending in the beams is 24,000 pSi. Check' buckling in the 
columns using Euler's or Johnson's method as appropriate. The allowable deflection 
in the beams should not exceed 1/360 of each -beam span. The overall sw~y of the 
frame should not exceed 0.5 in. -
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RlS.63 

T 
5' 

5000lb 

JbIft 8' 

lO.OOOIb 

10' 

-~--lS'--t 

Figure P5-62 

'-t-------9.()' 

Figure P5-63 

A pulpwood loader as shown in Figure P5-63 is to be designed to lift 2.5 kip. Select a 
steel and determine a suitable tubular cross section for the main upright member .BF 
that has attachments for the hyd~u1ic cylinder actuators AE and DG. Select a steel 

. and determine a suitable box section for the horizontalloaq ann A C. The horizontal 
load arm may have two different cross sections AB and BC to reduce weight. The 
finite element model should use beam elements for all members except the hydraulic 
cylinders, which should be truss elements. The pinned joint at B between the upright 
and the horizontal beam is best modeled with end release of the end nOde of the top 
element on the upright member. The allowable bending stress is O.66Sy in members 
AB and BC. Member BF should be checked for buckling. The allowable deflection at 
C should be lesS than 1/360 of the length of BC. As a bonus, the client would like you 
to select the size of the hydraulic cylinders AE and DG. 
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A piston ring (with a split as shown in Figure P5-64) is to be expanded by a tool to 
facilitate Its installation. The ring is sufficiently thin (0.2 in. depth) to justify uSIng 
conventional straight-beam bending formulas. The ring requires a displacement of 0.1 
in. at its separation for installation. Determine the force required to produce this sep­
aration. In a.ddition, determine the largest stress in the ring. Let E 18 x 106 psi, 
G = 7 x 106 psi, cross-sectional area A 0.06 in. 2, and principal moment of inertia 
J = 4.5 X 10-4 in.4. The inner radius is 1.85 in., and the outer radius is 2.15 in. Use 
models with 4,6,8, 10, and 20 elements in a symmetric model until convergence to the 
same results occurs. Plot the displacement versus the number of elements for a con­
stant force Fpredicted by the conventional beam theory equation of Reference [8]. 

d = 3n::3 

+ n;: + ~~: where R 2.0 in. and 6 0.1 in. 

Figure PS-64 

!I 
LO=O.1 in. required due to F 

A small hydraulic floor crane as shown in Figure P5-65 carries a 5000-1b load. De­
termine the size of the ~m and column needed. Select either a standard box section 
or a wide~fl~mge section. Assume a rigid connection between the beam and column. 
The column is rigidly connected to the floor. The allowable bending stress in the ~m 
is O.60Sy • The allowable deflection is 1/360 of the beam length. Check the column for 
buckling. 

gin. 
f-I -I-1--72in..---i 

l'l,lJ""---r----- --

5000lb 

Figure PS-65 
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» 5.66 Detennine the size of a solid round shaft such that the maximum angle of twist be­
tween C and B is 0.26 degrees per meter of length and the deflection of the beam is less 
than 0.005 inches under the pulley C for the loads shown. Assume.simple supports at 
bearings A and B. Assume the shaft is made from cold-rolled AISI 1020 steel. (Rec­
ommended angles of twist in driven shafts can be found in Machinery's Handbook, 
Oberg, E., et. aI., 26th ed., Industrial Press, N.Y., 2000,) 

5kN 

Figure P5-66 

'. 5.67 The shaft shown supports a winch load of 780 Ib and a torsional moment of 7800 Ib­
in. at F (26 inches from the center of the bearing at A): In addition, a radial load of 
500 Ib and an axial load of 400 lb act at point E from a wonn gearset Assume the 
maximum stress in the shaft cannot be larger than that obtained from the maximum 
distortional energy theory with a: factor o( safety of 2.5. Also make sure the angle of 
twist is less than 1.5 deg between A and D. In'your modeJ, assume the bearing at A to 
be frozen when calculating the angle of twist. Bearings at B, C, and D can be assumed 
as simple supports. Detennine the required shaft diameter. 

Shaft 

I--IO'·-+-'n .. -~.l'7"--..-I 

Figure P5-67 
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Design the gabled frame subjected to the external ~nd load shown (comparable to an 
80 mph wind speed) for an industrial building. Assume this is one of a typ~caJ frame 
spaced every 20 feet. Select a wide flange section based on allowable bending stress of 
20 ksi and an allowable compressive stress of 10 ksi in any member. Neglect the pos­
sibility of buckling in any members. Use ASTM A36 steel. 

I 
16ft 

t 
11ft 

1 
(a) (b) 

Figure P5-68 

5.69 Design the gabled frame shown for a balanced snow load shown (typical of the Mid­
west) for an apartment building. Select a wide flange section for the frame. Assume 
the allowable bending stress not to exceed 140 MPa. Use ASTM A36 ste~l. 

740MPa 

t--- 6 m----l 

Figure PS-69 

T 
3m 

t 

I (4 m spacing offrames) 

4m 

1 

~ 5.70 Design a gantry crane that must be able to lift 10 tons as it must lift compressors, 
motors, heat exchangers, and controls. This load should be placed at the center of 
one of the main 12-foot-long beams as shown in Figure P5-70 by the hoisting de­
vice location. Note that this beam is on one side of the crane. Assume you are using 
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.. 5.71 

1--8ft---1 

15ft 

Figure,PS-70 

ASTM A36 stl1Jctural steel. The crane must be 12 feet long, 8 feet wide, and 15 feet 
high. The beams should all be the same size, the columns all the same size, and the 
bracing all the same size. The comer bracing can be wide flange sections or some 
other common shape. You must verify that the structure· is safe by checking the 
beam's bending strength and allowable deflection, the column's buckling strength, 
and the bra~ing's buckling strength. Use a factor of safety against material yielding 
of the beams of 5. Verify that the beam deflection is less than Lj360, where L is the 
span of the beam. Check Euler buckling of the long columns and the bracing. Use a 
factor of safety ag.unst buckling of 5. Assume, the column-to-beam joints to be rigid 
while the bracing (a total of eight braces) is pinned to the column and beam at each 
of the four comers. Also assume the gantry crane is on roUers with one roller locked 
down to behave as a pin support as shown . 
Design the rigid highway bridge frame structure shown in Figure P5-71 for a moving 
tn,lck load (shown below) simulating a truck moving across the bridge. Use the load 
shown and place it along the top girder at various locations. Use the allowable stresses 
in bending and compression and allowable deflection given in the Standard Specifica­
tions for Highway Bridges, American Association of State Highway and Trans­
portation Officials (AASHTO), Washington, D.C. or use some other reasonable 
values. 
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A f--25 (t ·1· 50 ft -----.1.110-.--25 ft --l D 

£0 1" 
- ~[Oft \~5ft 

E F 

0.2 W 0.8 W 

LU 
~14ft-1 

W = total weight of truck and load 

I I 
1120-44 8k 32k 

H truck loading 

Figure P5-71 

For the tripod space frame shown in Figure P5-72, determine standard steel pipe 
sections such that the maximmn bendlllg stress must not exceed 20 ksi, the com· 
pressive stress to prevent buckling must not exceed that given by the Euler buckling 
formula with a factor of safety of 2 and the maximum deflection will not exceed Lj360 
in any span, L. Assume the three bottom supports to be fixed. All coordinates shown 
in units of inches. 

lOOOlb 

(-20, 30, 60) 
lOOOlb 

lOOOlb 

(0.10, (0) l-------.;::,c 

(30.40,0) 
(0.0,0) 

x 

Figure P5-72 



Introduction 

In Chapters 2-5, we considered only line elements. Two or more line.~lements are 
connected only at common nodes, forming framed Of articulated structures such as 
trusses, frames, and grids. Line elements have geometric properties such as cross­
sectional area and moment of inertia associated with their cross sections. However, 
only one local coordinate x along the length of the element is required to describe a 
position along the element (bence, they are called line elements or one..wmensional ele­
m.ents). Nodal compatibility is then enforced during the formulation of the nodal 
equilibrium equations for a line element. 

This chapter considers the two-dimensional finite element. Two-dimensional 
(planar) elements are defined by three or more nodes in a two-dimensional plane 
(that is, x-y). The elements are connected at common nodes andlor along common 
edges to form continuous structures such as those shown in Figures 1-3, 1-4, 1-6, 
and 6-6(b). Nodal displacement compatibility is then enforced during the formulation 
of the nodal eqUilibrium equations for two-dimensional elements. If proper displace­
ment functions are chosen, compatibility along common edges is also obtained. The 
two-dimensional element is extremely important for (1) plane stress analysis, which 
includes problems such as plates with holes, fillets, or other changes in geometry that 
are loaded in their plane resulting in local stress concentrations, such as illustrated 
in Figure 6-1; and (2) plane strain analysis, which includes problems such as a long 
underground box culvert subjected to a unifonn load acting constantly over its-length, 
as illustrated in Figure 1-3, a long, cylindrical control rod subjected to a load that re­
mains constant over the rod length (or depth), as illustrated in Figure 1-4) and dams 
and pipes subjected to loads that remain constant over their lengths as shown in . 
Figure 6-2. 

We begin this chapter with the development of the stiffness matrix for a basic 
two-dimensional or plane finite element, called the constant-strain triangular element. 
We consider the constant-strain triangle (CST) stiffness matrix because its derivation 
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is the simple~t among the available two-dimensional elements. The element is called a 
CST because it has a constant strain throughout it. . 

We will derive the CST stiffness matrix by using the principle of minimum 
potential energy because the energy fonnulation is the most feasible for the develop­
ment of the equations for both two- and three-dimensional finite elements. 

We will then present a simple, thln~plate plane stress example problem to illus­
trate the assemblage of the plane element stiffness matrices using the, direct stiffness 
method as presented in Chapter 2. We will present the total solution, including the 
stresses within the plate. 

:I 6.1 Basic Concepts of 'Plane Stress and Plane Strain 

In this section) we will describe the concepts of plane stress and plane strain. These 
concepts are important because the developments in' this chapter are directly appli­
cable only to systems assumed to behave in a plane stress or plane strain manner. 
Therefore, we will now describe these concepts in detail. 

Plane Stress 

Plane stress is defined to be a state of stress in which the nonnal stress and the shear 
stresses directed perpendicular to the plane are ,assumed to be zero. For instance, in 
Figures 6-1(a) and 6-1(b) the plates in thex-y plane shown subjected to surface tractions 
T (pressure acting on the surface edge 'or face of a member in. units of forceJarea) in 
the plane are under a state of plane stress; that is, the nonnal stress Cir. and the shear 
stresses Tx: and Tyz are assumed to be zero. Generally, members that are thin (those 
with a small z dimension compared to the in-plane x and y dimensions) and whose 
loads act only in the x-y plane can be considered to be under plane stress. 

Plane Strain 

Plane strain is defined to be a state of strain in which the strain normal to the x-y plane 
t z and the shear strains 'Yrz and 'Yy: are assumed to be zero. The assumptions of plane 
strain are realistic fot long bodies (say> in the z direction) with constant cross~sectional 
area subjected to loads that act only in the x and/or y directions and do not vary in the 

y y 

'----.-.."r 

Y--++-+-X 

<a) (b) 

Figure 6-1 Plane stress problems: (a) plate with hole; (b) plate with fillet 
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Figure 6-2 Plane strain problems: (a) dam subjected to horizontal loading; (b) pipe 
subjected to a vertical load 

z direction. Some plane strain examples are shown in Figure 6-2 [and in Figures 1-3 
(a long underground box culvert) and 1-4 (a hydraulic cylinder rod end)]. In these 
examples, only a unit thickness (1 in. or 1 ft) of the structure is considered 
because each unit thickness behaves identically (except near the ends). The finite ele­
ment models of the structures in Figure 6-2 consist of appropriately p,iscretized cross 
sections in the x-y plane with the loads acting over unit thicknesses in the x andlor y 
directions only. 

Two-Dimensional State of Stress and Strain 

. The concept of a two-dimensional state of stress and strain and the stresslstrain rela­
tionships for plane stress and plane strain are necessary to understand fully the develop­
ment and appliCability of the stiffness matrix for the plane stress/plane strain triangular 
element. Therefore, we briefly outline the essential concepts of two--dimensional stress 
and strain (see References [I} and [2] and Appendix C for mQre details on this subject). 

First, we i1lustrate the two-dimensional state of stress using Figure 6-3. The 
infinitesimal element with sides dx and dy has normal stresses (J)t and (Jy acting in the 
x and y directions (here on the vertical and horizontal faces), respectively. The shear 
stress 1:xy acts on the x edge (vertical face) in the y direction. The shear stress .yx acts 
on the y edge (horizontal face) in the x direction. Moment equilibrium of the element 
results in 1:xy being equal in magnitude to 1:yx - See Appendix C.1 for proof of this 
equality. Hence, three independent stresses exist and are represented by the vector 
column matrix 

{u} = {::} 
1:xy 

(6.1.1 ) 

The element equilibrium equations are derived in Appendix C.l. 
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u, 

Figure 6-3 Two-dimensional state of stress 

The stresses given by Eq. (6.1.1) will be expressed in terms of the nodal displace­
ment degrees of freedom. Hence, once the nodal displacements are determined, these 
stresses can be evaluated directly. 

Recall from strength of materials [2} that the priocipal stresses, which are the 
maximum and minimum normal stresses in the two-dimensional plane, can be 
obtained from the following expressions: 

(Ix +"'y 
(12 =--2--

(1x (1y 2 

( )

2 

--2- + r xy = limn 

(1:x - (1y 2 _ . 

( )

2 

2 +'xy-(1mm 

(6.1.2) 

Also, the principal angle 8p• which defines the normal whose direction is perpen­
dicular to the plane on which the maximum or minimum principal stress acts, is 
defined by 

(6.1.3) 

Figure 6-4 shows the principal stresses (1) and (12 and the angle 8p • Recall (as Figure 
6-4 indicates) that the shear stress is zero on the planes having principal (maximum 
an~ minimum) normal stresses. 

In Figure 6-5, we show an infinitesimal element used to represent the gen­
eral two-dimensional state of strain at some point in a structure. The element is 
shown to be .displaced by amounts u and v in the x and y directions at point A, and 
to displace or extend an additional (incremental) amount (au/ox) dx along line AB, 
and (ov/oy) dy along line AC in the x and y directions, respectively. Furthennore, 
observing lines AB and AC, we see that point B moves upward an amount 
(ov/ox)dx with respect to A, and point C moves to the right an amount (Ou/oy)dy 
with respect to A. 
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Figure 6-4 Principal stresses'and their dir~ctions 

u + 2!dx 
ib: 

'L'I? 
X.U 

Figure 6-5 Displacements and, rotations of lines of an element in the x-y plane 

From the general definitions of normal and shear strains and the use of Figure 
',' 6-5, we obtain ' ' 

iJu 
t x =­ax 

OV 
e-­
Y- ay (6.1.4) 

Appendix C.2 shows a detailed derivation ofEqs. (6.1.4). Hence, recall that the strains 
ex and ey are the changes in length per unit length of material fibers originally parallel 

,'. to the x and y axes) respectively, when the element undergoes deformation. These 
strains are then called nonna/ (or extensional or longitudinal) ~~rajns. The strain )IX)! 

is the change in the original right angle made between ax and dy when the element 
undergoes deformation. The strain )IX)! is then called a shear strain. 

The strains given by Eqs. (6.1.4) are generally represented by the vector column 
, matrix 

{e} = { :; } 
Yxy. 

(6.1.5) 
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The relationships between strains and displacements referred to the x and y 
directions given by Eqs. (6.1.4) are sufficient for your understanding of subsequent 
material in this chapter. 

We now present the stress/strain relationships for isotropic materials for both 
plane stress and plane strain. For plane stress, we assume the following stresses to be 
zero; 

{1z = Lx;: = 'Cyz = 0 (6.1.6) 

Applying Eq. (6.1.6) to the three-dimensionaI'stresslstrain relationship [see Appendix 
C, Eq. (C.3JO)], the shear strains Yxz = Yy: 0, but tz =1= O. For plane stress condi­
tions, we then have 

{a} = [DHt} (6.1.7) 

1 v 0 

where fD}=~ v 0 
I-v2 

o 0 1-
'. (6.1.8) 

is called the stress/strain matrix (or constitutive matrix), E is the modulus of elasticity, 
and· v is Poisson's ratio. In Eq. (6.1.7), {tT} and {e} are defined by Eqs. (6.1.1) and 
(6.1.5), respectively. 

For plane strain, we assmne the following strains to be zero: 

ez = Yx:.: = Y)'Z = 0 (6.1.9) 

Applying Eq. (6).9) to the three-dimensional stress/strain relationship {Eq. (C.~.lO)J, 
the shear stresses 't'~z;::: !yz = 0, but (J'z =1= o. l1te stress/strain matrix then becomes 

(6.1.10) 

The {u} and {e} matrices remain the same as for the plane stress case. The basic par­
tial differential equations for plane stress, as derived in Reference [1]. are 

(6.1.11) 
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:l 6.2 Derivation of the Constant-Strain 
Triangular Element Stiffness Matrix 
and Equations 

To illustrate the steps and introduce the basic equations necessary for the plane trian­
gular element, consider the thin plate subjected to tensile surface traction loads Ts in 
Figure 6-6( a). 

Y,V y 
m 

'-----------.. x,u "'-----------_ x 

Figure 6-6(a) Thin plate in tension 

Step 1 Select Element Type 

Figl,lre 6-6(b) Discretized plate of 
Figure 6-6(a) using triangular elements 

To analyze the plate, we consider the basic triangular element.in Figure 6-7 taken 
from the discretized plate, as shown in Figure 6-6(b). The discretized plate has been 
divided into triangular elements, each with nodes such as i) j, and m. We use triangu­
lar elements because boundaries of irregularly shaped bodies can be closely approxi­
mated in this way, and because the expressions related to the triangular element are 
comparatively simple. This discretization is cilled a coarse-mesh generation if a few 
large elements are used. Each node has two degrees of freedom-an x and a y dis­
placement. We win let Uj and Vi represent the node i displacement components in the 
x and y directions, respectively. 

. Here all fOmlulatiolls are based on this counterclockwise system of labeling of 
nodes, although a fOmlulation based on a clockwise system of labeling could be 
used. Remember that a consistent labeling procedure for the whole body is necessary 

y m(.:r",.y",) 

~----------------x 

UIII 

Figure 6-7 Basic triangular element showing 
degrees of freedom 
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to avoid problems in the calculations such as negative element areas. Here (Xj,Yi), 
(Xj) Yj ), and (xm, Ym) are the known nodal coordinates of nodes i, j) and m, respectively. 

The nodal disp1acement matrix is given by 

\ Ui 

{d}= {£} = 

Vi 

Uj 

Vj 

Um 

Vm 

Step 2 Select Displac~ment Functions 

We select a linear displacement function for each element as 

u(x,y) = al + a2X + a3Y 

v(x,y) = il4 + asx+ a6Y 

(6.2.1 ) 

(6.2.2) 

where u(x,y) and v(x,y) describe displacements at any interior point (Xi,Yi) of the 
element. 

The linear function ensures that compatibility will be satisfied. A linear function 
wi~ specified endpoints has only one path through which to pass-that is, through 
the two points. Hence, the linear function ensures that the displacements along the 
edge and at the nod~ shared by adjacent elements, such as edge i-j of the two ele­
ments shown in Figure 6-6{b), are equal. Using Eqs. (6.2.2), the general displacement 
function {"'}, which stores the functions U and v, can be expressed as . 

{1jI} 

at 

a2 

{
a, + a2X + a3Y } = [1 x Y 0 0 yO] a3 
il4 + asx + a6Y 0 0 0 1 x il4 

as 
a6 

(6.2.3) 

To obtain the a's in Eqs. (6.2.2), we begin by substituting the coordinates of the 
nodal points iI~to Eqs. (6.2.2) to yield 

Ui U(X;,Yi) = a, + a2Xi + (J3Yi 

Uj = u(xjlYj) = al + a2Xj + a3Yj 

um = u(xm,Ym) = at + a2Xm + a3Ym 

Vi = v(x!',yd = tz.t+aSXi + (J6Yi 

Vj = V(Xj,Yj) = il4 + fJSXj + (J6Yj 

Vm = V(Xm,Ym) == 14 + asxm + a6Ym 

(6.2.4) 
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We can solve for the a's beginning with the first three of Eqs. (6-2.4) expressed in ma­
trix form as 

{ :; } = [! :; ~; ] { :: } 
Um 1 Xm Ym a3 

(6.2.5) 

or, solving for the a's, we have 

{a} = [xtl{u} (6.2.6) 

where [x] is the 3 x 3 matrix on the right side of Eq. (6.2.5). The method of cofactors 
(Appendix A) is one possible method for finding the inverse of [x]. Thus, 

[ «, 
(Xj ~] [xrf = 2~ Pi Pj Pm 

Yi Yj Ym 

Xi Yi 
where 2A~ Xj Yj 

Xm Ym 

is the determinant of [xl, which on evaluation is 

2A xd.rj - Ym) + xiYm - Yi) + Xm(Yi - Yj) 

Here A is the area of the triangle, and 

ct.i XjYm - YjXm 

Pi =Yj - Ym 

Vi = Xm - Xj 

(Xj = YiXm - XiYm 

Pj =Ym - Yi 

ct.m = XiYj - YiXj 

Pm =Yi - Yj 

Ym Xj -Xi 

(6.2.7) 

(6.2.8) 

(6.2.9) 

(6.2.10) 

Having determined [xr', we can now express Eq. (6.2.6) in expanded matrix form as 

(6.2.11) 

Similarly, using the last three of Eqs. (6.2.4), we can obtain 

(6.2.12) 

We will derive the general x displacement function u(x,y) of {t/I} (v will follow 
analogously) in terms of the coordinate variables x and Y, known coordinate variables 
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iI,., iIb ••• , 1m. and unknown nodal displacements Ui, uj, alfd Um. Beginning with Eqs. 
(6.2.2) expressed in matrix form, we have 

{u} = [I x y[E} (6.2.13) 

Substituting Eq. (6.2.11) into Eq. (6.2.13), we obtain 

(6.2.14) 

(6.2.15) 

Multiplying the two matrices :. Eq. (6.2.15) and rearranging, we obtain 

1 
u(x,y) = 2A {(a; + PiX + YiY)Ui + (OCj + Pjx + YjY)Uj + (ocm + Pmx + YmY)um} 

(6.2.16) 

Similarly, replacing Ui by Vj"Uj by Vj, and Urn by Vm in Eq. (6.2.16), we have the Y dis­
placement given by 

v(X,y) = 2~ {(OCi + PiX + YiY)Vi + (aj+ Pjx + YjY)Vj + (am + Pmx + YmY)vm} 

(6.2.17) 

To express Eqs. (6.2.16) and (6.2.17) for u and v in simpler form, we define 

1 
Ni = 2A (ai + PiX + YiJI) 

1 
Nj = 2A (aj + Pjx + YjY) 

1 
Nm = 2A (am + Pmx+ JlmY) 

Thus, using Eqs. (6.2.18), we can rewrite Eqs. (6.2.16) and (6.2.17) as 

U(x,y) ~ Niuj + Njuj + Nmum 

v(x,y) NiVi + Np.Jj + Nmvm 

(6.2.18) 

(6.2.19) 
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Expressing Eqs. (6.2.19) in matrix fonn, we obtain 

{t/I} = {U(X,y)} 
v(x)y) 

Uj 

Vi 

{y,}= [~i 0 Nj 0 Nm ~m] Uj 
or 

M 0 Nj 0 Vj 
(6.2.20) 

Um 

Vm 

Finally, expressing Eq. (6.2.20) in abbreviated matrix fOIm" we have 

{t/J} = [N){d} (6.2.21) 

where iN] is given by 

(6.2.22) 

We have now expressed the general displacements as functions'of {d}, in tenns 
of the shape functions Nj ,1Yj, and Nm • The shape functions represent the shape of 
{I/I} when plotted over the surface of a typical element. For instance, Nj represents 
the shape of the variable u when plotted over the surface of the element for U; = I 
and all other degrees of freedom equai to zero; that is, Uj = Um = Vi = Vj Vm = O. 
In addition) U(XhYi) must be 'equal to Uto Therefore, we must have Ni 1, 1Yj = 0, 
and Nm = 0 at (XilY;). Similarly, u(xbYj) = Ujo Therefore, Ni 0, Nj = I, and 
Nm = 0 at (xbYj)' Figure 6-8 shows the shape variation of Ni plotted over the surface 
of a typical element. Note that Nt does not equal zero except along a line connecting 
and including nodes j and'm. 

Finally, Nj + N; + Nm = 1 for all x and Y locations on the surface of the element 
so that u and v will yield a con$tant value when rigi<kbody displacement occurs. The 
proof of this relationship follows that given for the bar element in Section 3.2 and is 
left as an exercise (Problem 6.1). The shape functions are also 'used to determine the 
body and surface forces at element nodes, as described in Section 6.3. 

N, 

y 

Figure 6-8 Variation of M over the x-y surface 
of a typical element 
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(a) Rigid-body modes of a plane stress element (from leflLO right. pure 
translation in x and y directions and pure rotation) 

~ 
) 

Rigid-body translation 
h and rotation occurs for 

~ dem ... Iorightofload 

(b) Cantilever beam modeled using constant-strain triangle elements; 
elements to the right of the loading are stress-free 

Figure 6-9 Unstressed erements in a cantilever beam modeled with CST 

The requirement of completeness for the constant-strain triangle element 1,lsed 
in a two-dimensional plane stress element is illustrated in Figure 6-9. The element 
must be able to translate uniformly in either the x or y direction in the plane and 
to rotate without straining as shown in Figure 6-9{a). The reason that the ele­
ment must be able to translate as a rigid body and to rotate stress-free is illustrated 
in the example of a cantilever beam modeled with plane stress elements as shown 
in Figure 6-9(b}. ·By simple statics, the beam elements beyond the loading are stress­
free. Hence these elements must be free to translate and rotate without stretching or 
changing shape. 

Step 3 Define the Strain! Displacement a"d Stress/Strain 
Relationships 

We express the element strains and stresses in terms of the un~nown nodal 
displacements. 
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Element Strains 

The strains associated with the two-dimensional element are given by 

OU 

{
ex '} {e} = 8y = 
"Ixy 

ox 
av 
oy 

OU au 
-+­oy ox 

Using Eqs. (6.2.19) for the displacements, we have 

or 

(6.2.23) 

(6.2.24) 

(6.2.25) 

where the comma followed by a variable indicates differentiation with respect to that 
variable. We have used Ui,x = 0 because Ui = U(Xi,Yi) is a constant value; similarly, 
Uj,x = 0 and um,x = O. 

Using Eqs. (6.2.18), we can evaluate the expressions for the derivatives o(the 
. shape functions in Eq. (6.2.25) as follows: 

Similarly, 

Therefore) using Eqs. (6.2.26) and (~.2.27) in Eq. (6.2.25), we have 

au 1 
ox = 2A (ftiUi + PjUj + fJmum) 

Similarly, we can obtain 

ou 1 
oy = 2A ('iVj + fjVj + 'mVm) 

OUOV 1 ' 
oy + ax = 2A (YjUi + PiVi + "IjUj + fJjVj + 'mUm + fJmVm) 

Using Eqs. (6.2.28) and (6.2.29) in Eq. (6.2.23), we obtain 

Uj 

I [P' 
0 Pj 0 Pm y: ] 

Vi 

{e} =- 0 "Ii 0 '1j 0 Uj 

2A Vj 
. "Ii Pi Yj Pj Ym Pm 

Um 
Vn! 

(6.2.26) 

(6.2.27) 

(6.2.28) 

(6.2.29) 

(6.2.30) 
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or 
- {d,} 

is} = [11, ~ llml :~ 
where 

Finally, in simplified matrix form, Eq. (6.2.31) can be written as 

{e} = [B]{d} 

where [B] = lRi Rj Rm] 

(6.2.31) 

(6.2.32) 

(6.2.33) 

(6.2.34) 

The Ii matrix is independent of the x and y coordinates. It depends solely on the ele­
ment nodal coordinates l .as seen from Eqs. (6.2.32) and (6.2.10). The strains in Eq. 
(6.2.33) will be constant; hence, the element is caHed a constant-strain triangle (CST). 

Stress/Strain Relationship 

In general, the in-plane stress/strain relationship is given by 

{ 
(Jx } { ex } 
q, = [D] ,ey 

!xy Yxy 

(6.2.35) 

where [DJ is given by Eq. (6.1.8) for plane stress problems and by Eq. (6.1.10) for 
plane strain problems. Using Eq. (6.2.33) in Eq. (6.2.35), we obtain the in-plane 
stresses in terms of the unknown nodal degrees of freedom as 

{q} = [DJ[B]{d} (6.2.36) 

where the stresses {(J} are also constant everywhere within the element. 

Step 4 Derive the Element Stiffness Matrix and Equations 

Using the principle of minimum potential energy, we can generate the equations for a 
typical constant-strain triangular element. Keep in mind that for the basic plane stress 
element, the total potential energy is now a function of the nodal displacements 
u;, Vi, Uj,"" vm (that is, {d}) such that 

(6.2.37) 

Here the total potential energy is given by 

7tp = U + nb + np + Os (6.2.38) 
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where the strain energy is given by 

u = ~ J J J {e} T {CT} dV (6.2.39) 

v 

or, using Eq. (6.2.35), we have 

u = ~JJJ{e}TrD]{e}dV 
v . 

(6.2.40) 

where we have used [D] T = [D] in Eq. (6.2.40). 
The potential energy oC the body forces is given by 

Ob = - JJJ{y,}T{X}dV (6.2.41) 
. v 

where {"'} is again the general displacement function, and {X} is the body weight! 
unit volume or weight density matrix (typically> in units of pounds per cubic inch or 
kilonewtons per cubic meter). 

The potential energy of concentrated loads is given by 

(6.2.42) 

where {d} represents the usual nodal displacements, and {P} now represents the con· 
centrated external loads. 

The potential energy of distributed loads (Qr surface tractions) moving through 
respective surface displacements is given by 

Os -JJ{y,S}T{Ts}dS (6.2.43) 

s 

where {Ts} represents the surface tractions (typically in units of pounds per square 
inch or kilonewtons per square meter) {y,s} represents the field of surface displace­
ments through which the surface tractions act, and S represents the surfaces over 
which the tractions {Ts} act. Similar to Eq. (6.2.21), we express {y,s} as {t/ls} = 
[NsJ{d}, where [NsJ represents the shape function matrix evaluated along the surface 
where the surface traction acts. 

Using Eq. (6.2.21) for {y,} and Eq. (6.2.33) for the strains in Eqs. (6.2.40)­
(6.2.43), we have 

1Cp = ~JJJ {d}T[Bf[DHB]{d} dV - JIJ{d}T[Nf {X} dV 
v v 

- {d}T{p} - JJ{d}T[Nsf{Ts}dS (6.2.44) 

s 
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The nodal displacements {d} are independent of the general x-y coordinates, so {d} 
can be taken out of the integrals ofEq. (6.2.44). Therefore, 

1lp = ~{d}T JJI[B([D][B] dV{d} - {df JJJ[N( {X} dV 
v v 

- {df{p} - {d}T JJ[NsIT{Ts}dS (6.2.45) 
S 

From Eqs. (6.2.41)-(6.2.43) we can see that the last three terms of Eq. (6.2.45) repre­
sent the total load system if} on an element; that is, 

if} = IIJ[Nf{X}dV+{P} + II[Nsf{Ts}dS (6.2.46) 
v s 

where the first) second, and third terms on the right side of Eq. (6.2.46) represent the 
body forces, the concentrated nodal forces, and the surface tractions, respectively. 
Using Eq. (6.~.46) in Eq. (6.2.45), we obtain 

• ". 17.p ~{d}T IJJ[Bf[D][B]dV{d} - {d}T{f} (6.2.47) 
, v 

Taking the.first variation; or equivalently, as shown in Chapters 2 and 3, the partial 
derivative of 17.1' with respect to the nodal displacements since 1(,1' = 1l:p@ (as was pre­
viously done for the bar and beam elements in Chapters 3 and 4, respectively), we 
obtain ' 

07;} = [f!JlB],IDltBldV]{d} If) =0 (6.2.48) 

Rewriting Eq. (6.2.48), we have 

JIJ[Bf[D][B] dV{d} = {f} (6.2.49) 
y 

where the partial derivative with respect to matrix {d} was previously defined by Eq. 
(2.6.12). From Eq. (6.2.49) we can'see that 

[k] = JJJ[B]T[DJIB]dV (6.2.50) 
v 

For an element with constant thickness, t, Eq. (6.2.50) becomes 

[k] = t JJ[Bf[D][B] dxdy (6.2.51) 

A 

where the integrand .is not a function of x or y for the cOllstant-strain triangular 
element and thus can be taken out of the integral to yield 

[k] = tA[Bf[DI[B] (6.2.52) 
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where A is given by Eq. (6.2.9), [B] is given by Eq. (6.2.34), and [DJ is given by Eq. 
(6.1.8) or Eq. (6.1.10). We will assume elements of constant thickness. (This assump­
tion is convergent to the actual situation as the element size is decreased.) 

From Eq. (6.2.52) we see that [kJ is a function of the nodal coordinates (because 
[B] and A are defined in tenns 'Of them) and of the mechanical properties E and v (of 
which [D) is a function). The expansion of Eq. (6.2.52) for an element is 

where the 2 x 2 submatrices are given by 

[kiiJ = [Bd T[D][BiJtA 

[kiiJ = [Bi] TID)[Bj]tA 

[kim] = [B;f[DJ[Bm]IA 

(6.2.53) 

(6.2.54) 

and SO forth. In Eqs. (6.2.54), [Bi], [Bj], and [Bm] are defined by Eqs. (6.2.32). The [kJ 
matrix is seen to be a 6 x 6 matrix (equal in order to the number of degrees of free­
dom per node, ~wo, times the total number of nodes per element, three). 

In general, Eq. (6.2.46) must be used to evaluate the surface and body forces. 
When Eq. (6.2.46) is used to evaluate the surface and body forces, these forces are 
called consistent loads because they are derived from the consistent (energy) approach. 
For higher-order elements, typicaUy with quadratic or cubic displacement functions, 
Eq. (6.2.46) should be used. However, for the CST element, the body and surface 
forces can be lumped at the nodes with equivalent results (this is illustrated in Section 
6.3) and added to any concentrated nodal forces to obtain the element force matrix. 
The element equations are then given by , 

fix Ut 

ii, kll k12 

k

16

] 

VI 

f2x k21 k21 k26 U2 

12y IJ2 
(6.2.55) 

h:x k61 k62 ... k66 U3 

h y V3 

Step 5 Assemble the ~Iement Equations to Obtain 
the Global Equations and Introduce Boundary Conditions 

We obtain the global structure stiffness matrix and equations by using the direct 
stiffness method as 

N 
[K] = I)k(e)] (6.2.56) 

e=t 
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and {F} = fK]{d} (6.2.57) 

where, in Eq. (6.2.56), all element stiffness matrices are defined in terms of the global 
x-y coordinate system, {d} is now the total structure displacement matrix) and 

(6.2.58) 

is the column of equivalent global nodal loads obtained by lumping body forces and 
distributed loads at the proper nodes (as wen as including concentrated nodal loads) 
or by consistently using Eq. (6.2.46). (Further details regarding the treatment of 
body forces and surface tractions will be given in Section 6.3.) 

In the formulation of the element stiffness matrix Eq. (6.2.52)) the matrix has 
been derived for a general orientation in global coordinates. Equation (6.2.52) then 
applies for all elements. All element matrices are expressed in the global-coordinate 

. orientation. Therefore, no transformation from local to global equations is necessary. 
However, for completeness, we will now describe the method to use jf the local axes 

. fof the constant-strain triangular element are riot parallel to the global axes for the 
whole structure. 

--if the local axes for the constant-strain triangular element are not parallel to the 
global axes for the whole structure, we must apply rotation-of-axes transformations 
simj1ar to those introduced in Chapter 3 by Eq. (3.3.16) to the element stiffness ma­
trix, as well as to the e1ement nodal force and displacement matrices. We il1ustrate 
the transformation of axes for the truingular element shown in Figure 6-10, consider­
ing the element to have local axes x-y not parallel to global axes x-yo Local nodal 
forces are shown in the figure. The transformation from local to global equations fol­
lows the procedure outlined in Section 3.4. We have the same general expressions, 
Eqs. (3.4.14), (3.4.16), and (3.4.22), to relate local to global displacements, forces, 
and stiffness matrices) respectively; that is, 

4=I4 /=1:[ (6.2.59) 

where Eq. (3.4.15) for the transformation matrix I used in Eqs. (6.2.59) must be 
expanded because two additional degrees of freedom are present in the constant-strain 

y 

.:e Figure 6-t 0 Triangular element with 
. local axes not paralle~ to global axes 

~----------------~x 
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triangular element. Thus, Eq. (3.4.15) is expanded to 

si I 
Ui C 0 0 1 0 0 

I I 

-S C I 0 0 ~ 0 0 
------~------~------

Vi 

0 0 1 C S: 0 0 Uj 
I= I (6.2.60) 0 o : -S C: 0 0 

-O--O-r-O--O-:--c--i Vj 

I I 
Um 

o 0 i 0 0 I -S C Vm 

where C = cos 0, S = sin 0, and ° IS shown in Figure 6-10. 

Step 6 Solve for the Nodal Displacements 

We determine the unknown global structure nodal displacements by solving the 
system of algebraic equations given by Eq. (62.57). 

Step 7 Solve for the Element Forces (Stresses) 

Having solved for the nodal displacements,_ we obtain the strains and stresses in the 
global x and y directions in the elements by using Eqs. (6.2.33) and (6.2.36). Finally, 
we determine the maximum and minimum in-plane principal stresses O'l and 0'2 by 
using the transformation Eqs. (6. I .2), where these stresses are usually assumed to act 
at the centroid of the element. The angle that one of the principal stresses makes 
with the x axis is given by Eq. (6.1.3). 

Example 6:1 

Evaluate the stiffness matrix for the element shown in Figure 6-11. The coordinates 
are shown in units of inches. Assume plane stress conditions. Let E = 30 X 106 psi, 
v = 0.25, and thickness t = 1 in. Assume the element nodal displacements have been 
determined to be UI = OJ,) V1 = 0.0025 in., U2 = 0.0012 in., V2 = 0.0) U3 = 0.0, and 
V3 = 0.0025 in. Determine the element stresses. 

y 
(0. f) 

I--____ .....;::;,--i _=_2_ x Figure 6-11 Plane stress element for stiffness 
(2, 0) matrix evaluation 

i:: I (0. -I) 



6.2 Derivation of the Constant-Strain Triangular Bement Stiffness Matrix & Equations ~ 323 

We use Eq. (6.2.52) to obtain the element stiffness matrix. To evaluate If, we first 
use Eqs. (6.2.10) to obtain the p's and /"s as follows: 

Pi = Yj - Ym = 0 - 1 = -1 Yi = Xm - Xj = 0 - 2 = -2 

Pj = Ym -)li = 1 - (-1) = 2 Yj = Xi - Xm = 0 - 0 = 0 (6.2.61) 

Y m = Xj - Xi = 2 - 0 = 2 

Using Eqs. (6.2.32) and (6.2.34), we obtain matrix!l as 

[

-1 0 2 0 

!l 2t2) 0 -2 0 0 
-2 -1 0 2 

where we have used A = 2 in.2 in Eq. (6.2.62). 
Using Eq. (6.1-8) for plane stress conditions) 

[

1 0.25 

D 30 x 106 0.25 I 
- 1- (0.25)2 

o 0 
~ 1 . pSI 

1 ~.25 

Substituting Eqs. (6.2.62) and (6.2.63) into Eq. (6.2.52), we obtain 

-1 0 -2 
0 -2 -1 

k = (2)30 X 106 2 0 0 

- 4(0.9375) 0 0 2 
-1 0 2 

0 2 -1 

x [~.25 
0.25 

o ] [-I 0 2 0 -1 
1 

I 02:2: 0 -2 0 0 0 

0 0.375 () -2 -1 0 2 2 

Petforming the matrix triple product, we have 

25 1.25 -2 -1.5 -0.5 0.25 

1.25 4.375 -1 -0.75 -0.25 -3.625 

~ =4.0 x 106 -2 -I 4 0 -2 I 
-1.5 -0.75 0 1.5 1.5 -0.75 
-0.5 -0.25 -2 1.5 2.5 -1.25 

0.25 -3.625 -0.75 -1.25 4.375 

-;] 

Ib 

(6.2.62) 

(6.2.63) 

(6.2.64) 
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To evaluate the stresses, we use Eq. (6.2.36). Substituting Eqs. (6.2.62) and 
(6.2.63), along with the given nodal displacements, into Eq. (6.2.36), we obtain 

{ :x } = 30 X 10
6 [~.25 ~.25 ~ ] 

y 1 - (0.25)2 
!xy 0 0 0.375 

0.0 

0.0025 

x 2;2) [~ =; ~ ~ -~ _~] :::12 
0.0 

0.0025· 

Performing the matrix triple product in Eq. (6.2.65), we have 

(Jx = 19,200 psi (Jy = 4800 psi r xy = -15,000 psi 

(6.2.65) 

(6.2.66) 

Finally, the principal stresses and principal angle are obtained by substituting 
the results from Eqs. (6.2.66) into Eqs. (6.1.2) and (6.1.3) as follows: 

[ 

2 ]1/2 = 19,200 + 4800 (19,200 - 4800) (-15000)2 
(JI 2 + 2 +, 

= 28,639 psi 

19,200 + 4800 
(J2 = 2 (6.2.67) 

= -4639 psi 

B =! -1.[ 2(-15,000) ] = -32.20 
p 2 tan 19,200 - 4800 • 

.It. 6.3 Treatment of Body and Surface Forces 

. Body Forces 

Using the first term on the right side of Eq. (6.2.46), we can evaluate the body forces 
at the nodes as 

{A} = IIJ!Nf{X}dV (6.3.1) 

v 



y 

m 

b--r i 

where 
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1 
If 

=--l 
Figure 6-12 Element with centroidal 
coordinate axes 

{X} = {~:} (6.3.2) 

and Xb and Yb are the weight densities in the x and y directions in units of force/unit 
volume, respectively. These forces may arise, for instance, because of actual body 
weight (gravitational forces). angular velocity (called centrifugal body forces, as 
described in Chapter 9), or inertial forces in dynamics. . 

In Eq. (6.3.1), [N] is a linear function of x and y; therefore~ the integration must 
be carried out. Without ]a~k of generality, the integration is simplified if the origin of 
the coordinates is chosen at the centroid of the element. For example, consider the el­
ement with coordinates shown in Figure 6-12. With the origin of the coordinate 
placed at the centroid of the element, we have, from the definition of the centroid, 
I I x dA = f f Y dA = 0 and therefore, 

(6.3.3) 

and (6.3.4) 

Using Eqs. (6.3.2)-(6.3.4) in Eq. (6.3.1), the body force at node i is then represented 
by 

(6.3.5) 

Similarly, considering thej and m node body forces, we obtain the same results as in 
Eq. (6.3.5). In matrix fonn, the element body forces are 

fbix Xb 
}biy Yb 

Ub} = fbjx Xb At 
(6.3.6) 

ibjy Yb 3" 
fbmx Xl> 
fbmy Yb 



326 ;,. 6 Development of the Plane Stress and Plane Strain Stiffness Equations 

y 

L 

2 

L 

(a) 

pObjin:) I 

~POb/in.~ 
~-
2 3 

(b) 

Figure 6-13 (a) Elements with uniform surface traction acting on one edge and 
(b) element one with uniform surface traction along edge 1-3 

From-the results ofEq. (6.3.6), we can conclude that the body forces are distributed to 
the nodes in three equal parts. The signs depend on the directions of Xb and Yb with 
respect to the positive x and y global coordinates. For the case of body weight only, 
because of the gravitational force associated with the y direction, we have only 
Yb (Xb = 0). 

Surface Forces 

Using the third term on the right side of Eq. (6.2.46), we can evaluate the surface 
forces at the nodes as ' 

{Is} = II[Ns]T{Ts}dS (6.3.7) 
s 

We emphasize that the subscript Sin [Nsl in Eq. (6.3.7) means the shape functions 
evaluated along the surface where the sufface traction is applied. 

We will now illustrate the use of Eq. (6.3.7) by considering the example of a uni­
fonn stress p (say, in pounds per square inch) acting between nodes 1 and 3 on the 
edge of element 1 in Figure 6-13(b). In Eq. (6.3.7), the surface traction now becomes 

{Tsl = {~; } = { ~ } (6.3.8) 

N] 0 

0 Nt 

and [Ns]T = 
N2 0 

0 N2 
(6.3.9) 

N3 0 

0 N3 evaluated at x = a, y = y 

As the surface traction p acts along the edge at x = a and y = y from y = 0 to y = L, 
we evaluate the shape functions at x = a and y = y and integrate over the surface from 
o to L in the y direction and from 0 to t in the z direction, as shown by Eq. (6.3.10). 
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Using Eqs. (6.3.8) and (6.3.9), we express Eq. (6.3.7) as 

NJ 0 
o NI 

{Is} = t J: ~2 ~2 {~ } dz dy 

N3 0 
o N3 evaluated at x = a, Y = Y 

Simplifying Eq. (6.3.10), we obtain 

NIP 
o 

{Is} == I J: ~2P dy 

N3P 
o evaluated at x = a,. y = y 

Now, by Eqs. (6.2.18) (with i = 1), we have 

1 
NJ =2A(CtI +Plx+YIY) 

(6.3.10) 

(6.3.11) 

(6.3.12) 

For convenience> we choose the co<;>rdinate system for the element as shown in 
Figure 6-14. Using the definition Eqs. (6.2.l0), we obtain 

or, with i = l,j = 2, and m = 3, 

ctl = X2Y3 - Y2X3 

Substituting the coordinates into Eq. (6.3.13), we obtain 
ctl =0 

Similarly, again using Eqs. (6.2.10), we obtain 

PI = 0 YI =a 

Therefore, substituting Eqs. (63.14) ~nd (6.3.15) into Eq.,(6.3.12), we obtain 

J 

L p 

<D 2 ''-------................ -_ x 
a 

Figure 6-14 ' Representative element 
subjected to edge surface traction p 

(6.3.13) 

(6.3.14) 

(6.3.15) 

(6.3.16) 
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Similarly, using Eqs. (6.2.18), we can show that 

N2 = L(a-x) and 
2A 

Lx-ay 
N3=---

2A 
(6.3.17) 

On substituting Eqs. (6.3.16) and (6.3.17) for N1,Nl, and N3 into Eq. (6.3.11), eval­
uating N I ) N2, and N3 at x = a and y y (the coordina.tes corresponding to the 
location of the surface load p), and then integrating with respect to y, we obtain 

a(~2)p 

0 

t 0 
{Is} = 2(aL/2) 0 

(6.3.18) 

(L2 _ ~2)ap 
0 

where the shape function N2 = 0 between nodes 1 and 3, as should be the case according 
to 'the definitions of the shape functions. Simplifying Eq. (6.3.l8), we finally obtain 

IsIX pLt/2 

IsIY 0 

{Is} = h2x 0 
(6.3.19) 

h2y 0 

h3x pLt/2 
1s3y 0 

Figure 6-15 illustrates the results for the surface load equivalent nodal forces for both 
elements 1 and 2. . 

We can conclude that for a constant-strain triangJe~ a distributed load on an 
element edge can be treated as concentrated loads acting at the nodes associated 
with the loaded edge by making the two kinds of load statically equivalent [which is 
equiva1ent to applying Eq. (6.3.7)]. However, for higher-order elements such as the 

__ 2 f---"""'-I--- eb! + eb! Figure 6-15 Surface traction 
2 2 equivalent nodal forces 

5 
a 
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linear-strain triangle (discussed in Chapter 8), the load replacement should be made by 
using Eq. (6.3.7). which was derived by the principle of minimum potential energy. 
For higher-order elements, this load replacement by use ofEq. (6.3.7) is generally 
not equal to the apparent statically equivalent one; however, it is consistent in that 
this replacement results directly from the energy approach. 

We now recognize the force matrix {Is} defined by Eq. (6.3.7), and based on the 
principle of minimum potential energy, to be equivalent to that based on work equiv­
alence, which we previously used in Chapter 4 when discussing distributed loads act­
ing on beams. 

... 6.4 Explicit Expression for the Constant-Strain 
Triangle Stiffness Matrix 

Although the stiffness matrix is generally formulated internally in most computer 
programs by performing the matrix triple product indicated by Eq. (6.4.1), it is still a 
valuable learning experience to evaluate the stiffness matrix explicitly for the constant­
strain triangular element. Hence, we will consider the plane strain case specifically in 
this development. 

FIrSt, recall that the stiffness matrix is given by 

[kJ tA[B] T[DJrBJ (6.4.1) 

where, for the 'plane strain case, [D] is given by Eq. (6.1.10) and [B} is given by Eq. 
(6.2.34). On substituting the matrices (D] and [BJ into Eq. (6.4.i), we obtain 

Pi 0 Yi 

0 "Ii Pi 

[k]- IE Pj 0 Ij 

- 4A(1 + v)(1 - 2v) 0 '1j Pj 

Pm 0 'm 
0 'III Pm 

1 - V V 0 

[~ 
0 Pj 0 Pm 

r:, ] X 
V 'V 0 

)Ii 0 '1j 0 (6.4.2) 

0 0 
2v 'Ii Pi '1j Pj 1m Pm -2-

On mUltiplying the matrices in Eq. (6.4.2), we obtain Eq. (6.43), the explicit 
constant-strain triangle stiffness matrix for the plane strain case. Note that [k] is a 
function of the difference in the x and y nodal coordinates, as indicated by the y's 
and p's, of the material properties E and v, and of the thickness t and surface area A 
of the element. 
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k=. tE 
- 4A(1 + "1)(1 - 2v) 

2 2(1-2'V) Pi (I-v) +Yi -2-

2 2 (1-2V) Yj(l-v)+Pi ~ 

x 

Symmetry 

(1-2V) 
Pml'lV + P;"lm -2-

(1-2V) 
Pm"ljV + Pjl'm -2-

2 2 (1-2V) Pm(l-v)+Ym -2-

(1-2V) 
PjYiV+PiYj -2-

2 2(1-2V) Pj (I-v) +Yj -2-

(1-2V) 
P/Ym V +[Jm"/i -2-

(1-2V) )';Ilm(1-v) + fJiPm -2-

(1-2"1) 
ymPm'V + PmYm -2-

y;,(I -v) + P!C ~2V) 
(6.4.3) 

For the plane stress case, we need only replace 1 - v by I, (1 - 2v)/2 by 
(1 v)/2) and (1 + v){l - 2v) outside the brackets by 1 - v2 in Eq. (6.4.3). 

Finally:" if should be noted that for Poisson's ratio v approaching 0.5, as in rub­
berlike materials and plastic solids, for instance, a material becom.es incompressible 
(2]. For pJane strain, as v approaches 0.5, the denominator becomes zero in the mate­
rial property matrix [see Eq. (6.1.10)] and hence in the stiffness matrix, Eq. (6.4.3). 
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A value of v near 0.5 can cause ill-conditioned structural equations. A special formu­
lation (called a penalty formulation [3]) has been used in this case . 

.A 6.5 Finite Element Solution of a Plane Stress 
Problem 

To illustrate the finite element method for a plane stress problem, we now present a 
detailed solution. 

Example 6.2 

For a thin plate subjected to the surface traction shown in Figure 6-16, determine the 
nodal displacements and the element stresses. The plate thickness t 1 in., E = 30 X 

106 psi, and v = 0.30. 

Discretization 

To illustrate the finite element method 'solution for the plate, we first discretize the 
plate into two elements, as shown in Figure 6-17. It should be understood that the 
coarseness of the mesh will not yield as true a predicted behavior of the plate as 
would a finer mesh, particularly near the fixed edge. However, since we are perform­
ing a longhand solution, we will use a coarse discretization for simplicity (but without . 
loss of generality of the method). 

In Figure 6-17, the original tensile surface traction in Figure 6-16 has been con­
verted to nodal forces as follows: 

20 in. 

10 in. 

F=~TA 

F = ~(1000 psi) (I in. x 10 in.) 

F= 5000lb 

T = 1000 psi 

Figure 6-16 Thin plate subjected to tensile stress 
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~------~------~ __ ---5~lb 

Q) 

~------+---------~---~lb 
~ 4 

Figure 6-17 Discretized plate 

In gene~I) for higher-order elements~ Eq. (6.3.7) should be used to convert distributed 
surface tractions to nodal forces. However, for the CST element. we have shown in 
Section 6.3 that a statically equivalent force replacement can be used directly, as has 
been done here. 

The governing global matrix equation is 

{F} = (K]{d} (6.5.1) 

Expanding matrices in Eq. (6.5.1), we obtain 

FI...: RI.~ db. 0 
Fly Rly d1y 0 
F'},;,{ R2.'( d'),x 0 
F2y R2, =[K) 

d2y = [K] 
0 

F3x 5000 d3.'C d3x 
(6.5.2) 

F3y 0 d3y d3y 

F4:r: 5000 t4x d4x 

F4y 0 t4y t4y 

where [K} is an 8 x 8 matrix (two degrees of freedom per node with four nodes) before 
deleting rows and columns to account for the fixed boundary support conditions at 
nodes I and 2. 

Assemblage of the Stiffness Matrix 

We assemble the global stiffness matrix by superposition of the individual element 
stiffness matrices. By Eq. (6.2.52), the stiffn~ matrix for an element is 

[kl = tA[Bf[D][B] (6.5.3) 

In Figure 6-18 for element I, we have coordinates Xi = 0) Yi = 0, Xj = 20, Yj = 10, 
x'" = 0, and Ym 10, since the global coordinate axes are set up at node I, and 

A =!bh 
A = (~)(20)(1O) = 100 in2 
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Figure 6-18 Element 1 of the 
discretized plate 

or, in general, A can be obtained equivalently by the -nodal coordinate formula of 
Eq. (6.2.9). 

We will now evaluate [B], where [B] is given by Eq. (6.2.34), expanded here as 

[B] = ~ 0 'Yi 0 "Ij 0 1m (6.5.4) [
Pi 0 Pj 0 Pm 0 ] 

)'i Pi Yj Pj Ym Pm 
and, from Eqs. (6.2.10), 

Pi.= Yj - Ym 10 - 10 = 0 

Pj = Ym -.Yi = 10 - 0 = 10 

Pm =Yi-Yj =0-10=-10 

·Ii Xm -xr=0-20= -20 

1j = Xi - Xm = 0 ...: 0 = 0 

1m = ?,i - Xi = 20 - 0 = 20 

Therefore, substituting Eqs. (6.5.5) into Eq. (6.5.4), we obtain ' 

[BJ = 2~ 0' -20 0 0 0 20 ~ 
[ 

0 0 10 0 -10 0] 

-20 0 0 10 20 -10 In. 

For plane stress, the [D] matrix is conveniently expressed here as 

[D] = (1 ~ ~) [: : 1; v 1 

With v = 0.3 and E = 30 x 106 psi, we obtain 

[D1 = 30(10
6

) [~.3 ~.3 ~ ]" 
0.91 0 0 0.35 ps1 

(6.5.5) 

(6.5.6) 

(6.5.7) 

(6.5.8) 
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0 0 -20 
0 -20 0 

[~.3 
0.3 

~.3S 1 
T 30(106) 10 0 0 

Then [B} [D] = 200(0.91) 1 
0 0 10 

0-
-10 0 20 

(6.5.9) 

0 20 -10 

Simplifying Eq. (6.5.9) yields 

0 0 -7 
-6 -20 0 

[B] T[D] = (0.15)(10
6

) 10 3 0 
0.91 0 0 3.5 

(6.5.10) 

-10 -3 7 

6 20 -3.5 

Using Eqs. (6.5.10) and (6.5.6) in Eq. (6.5.3), we have the stiffness matrix for element 
1 as 

0 0 -7 

-6 -20 0 

[k] = (1)(100) (0~15)(106) 10 3 0 
0.91 0 0 3.5-

-10 -3 7 

6 20 -3.5 

x 2(1~) [ ~ 
0 10 0 -10 0] -20 0 0 0 20 (6.5.11 ) 

-20 0 ° 10 20 -10 

Finally, simplifying Eq. (6.5.11) yields 

UI VI U3 V3 U2 V2 

140 ° 0 -70 -140 70 

° 400 -60 ° 60 -400 

{kJ = 75,000 ° -60 100 0 -100 60 lb 
(6.5.12) 

0.91 -70 0 0 35 70 -35 in. 

-140 60 -100 70 240 -130 
70 -400 60 -35 -130 435 

where the labels above the columns indicate the nodal order of the degrees of freedom 
in the element 1 stiffness matrix. 
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m=3 

i"" I j=4 

Figure 6-19 Element 2 of the 
discretized plate 

In Figure 6-19 for element 2, we have Xj = 0, Yi = 0, Xj = 20, Yj = 0, Xm = 20, 
and Ym = 10. Then, from Eqs. (6.2.10), we have 

Pi = Yj - Ym = 0 - 10 = -10 

Pj = Ym - Yi = 10 - 0 = 10 

Pm = Yi - Yi = 0 - 0 = 0 

Yi = Xm - Xj = 20 - 20 = 0 

'Pj = Xi - xm :::;; 0 - 20 = -20 

Ym = Xj - Xi = 20 - 0 = 20 

Therefore, using Eqs. (6.5J3) in Eq. (6.5.4) yields 

[B} = 2~0 [-1000 ~ l~ -2~ ~ 2~] ~ 
-10 -20 10 200

m
. 

The [D} matrix is again given by 

[DJ = 30(10
6
) [~.3 ~.3 ~ ] psi 

0.91 ,0 0 0.35 

Then, using Eqs. (6.5.14) and (6.5.15), we obtain 

-10 0 0 
0 0 -to 

[~.3 
0.3 

o ] [HJ T[D] = 30(10
6

) 10 0 -20 o . 
200(0.91) 0 -20, 10 

0 0 20 
0 0.35 

0 20 0 

(6.5.13) 

(6.5.14) 

(6.5.15) 

(6.5.16) 
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Simplifying Eq. (6.5.16) yields 

-10 -3 0 

0 0 -3.5 

[Bf[D] = 
(0.15)(106) 10 3 -7 

(6.5.17) 
0.91 -6 -20 3.5 

0 0 7 

6 20 0 

Finally, substituting Eqs. (6.S.17) and (6.5.14) into Eq. (6.5.3), we obtain the stiffness 
matrix for element 2 as 

-10 -3 0 

o 0 -3.5 

10 3-7 

-6 -20 3.5 

o 0 7 

6 20 0 

(6.5.18) 

Equation (6.5.18) simplifies to 

U, VI U4 V4 Us 03 

.100 0 -100 60 0 -60 
o 35 70 -35 -70 0 

[k] = 75,OO~ -100 70 240 -130 -140 60 Ib 
0.91 60 -35 -130 435 70 -400 in. 

(6.5.19) 

o -70 -140 70 140 0 
-60 0 60 -400 O· 400 

where the degrees of freedom in the element 2 stiffness matrix are shown above the 
columns in Eq. (6.5.19). Rewriting the element stiffness matrices, Eqs:'(6.5.12) and 
(6.5.I9)J expanded to the order ot and rearranged according to, increasing nodal 
degrees of freedom of the total K matrix (where we have factored out a constant 5), 
we obtain 
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Element 1 

ul PI U2 "2 U3 V3 ll4 V4 

28 0 -28 14 0 -14 0 0 
0 80 12 -80 -12 0 0 0 

-28 12 48 -26 -20 14 0 0 

[k] = 375,000 14 -80 -26 87 12 -7 0 0 Ib (6.5.20) 
0.91 0 -12 -20 12 20 0 0 0 in. 

-14 0 14 -7 0 7 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

Ele~ent2 

UI VI "2 V2 U3 V3 14 V4 

20 0 0 0 0 -12 -20 12 
0 7 0 0 ,-14 0 14 -7 
0 0 0 0 0 0 0 0 

[k] = 375,000 0 0 0 0 0 0 0 0 Ib 
(6.5.21) 

0.91 0 -14 0 0 28 0 -28 14 in. 

-12 0 0 0 0 80 12 -80 
-20 14 0 0 -28 12 48 -26 

12 -7 0 0 14 -80 -26 87 

Using suPerPosition of the element stiffness matrices, Eqs. (6.5.20) and (6.5.21), npw 
that the orders of the degrees of freedom are the same, we obtain the total glpbal stiff· 
ness matrix as 

"I VI U2 V2 U3 V3 U4 V4 

48 0 -28 14 0 -26 -20 12 
0 87 ' 12 -80 -26 0 14 -7 

-28 12 48 -26 -20 14 0 0 

[K] = 375,000 14 -80 -26 87 12 -7 0.. 0 Ib 
(6.5.22) 

0.91 0 -26 -20 12 48 0 -28 14 in. 

-26 0 14 -7 0 87 12 -80 

-20 14 0 0 -28 12 48 -26 

12 -7 0 0 14 -80 -26 87 

[Alternatively, we could have applied the direct StiffDess method to Eqs. (6.5.12) and 
(6.5.19) to obtain Eq. (6.5.22).] Substituting [K] into {F} = [K]{d} ofEq. (6.5.2), we 
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have 

R1x 48 0 -28 14 0 -26 -20 12 0 

Rly 0 87 12 -80 -26 0 14 -7 0 

R2x -28 12 48 -26 -20 14 0 0 0 

Rzy 375,000 14 -80 -26 87 12 -7 0 0 0 
=--

5000 0.91 0 -26 -20 12 48 0 -28 14 d3x 

0 -26 0 14 -7 0 87 12 -80 d3y 

5000 -20 14 0 0 -28 12 48 -26 d4x 

0 12 -7 0 0 14 -80 -26 87 ~y 

(6.5.23) 

Applying the support or boundary conditions by eliminating rows and columns corre­
sponding to displacement matrix rows and columns equal to zero [namely. rows and 
columns 1-4 in Eq. (6.5.23)], we obtain 

. [ 5~O 1 = 375,000 [4~ 8~ -~~ -~~] [~;; 1 
.'- 5000 0.91 -28 12 48 -26' c4x (6.5.24) 

o , 14. -80 -26 87 t4y 

Premultiplying both sides ofEq. (6.5.24) by K-1, we have 

[ 

48 0 -28 14]_1 [ 5000'1 
0.91 0 87 12 -80 0 

375,000 -28 12 48 -26 5000 
14 -80 -26 87 0 [~I (6.5.25) 

Solving for the displacements in Eq. (6.5.25), we obtain 

[ ~~I = 0.91 [~::;:I 
c4x 75 0.05470 
c4y 0.00878 

(6.5.26) 

Simplifying Eq. (6.5.26), the final displacements are given by 

[ 

d3x 1 [609.61 
d3y '= 4.2 10-6 • 
c4x 663.7 x m. 

d4y 104.1 

(6.5.27) 

Comparing the finite element solution to an analytical solution~ as a first 
approximation, we have the axial displacement given by 

8 = PL (10,000)20 -6 • 
AE 10(30 x 106) 670 x 10 m., 
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for a one-dimensional bar subjected to tensile force. Hence, the nodal x displacement 
components ofEq. (6.5.27) for the two-dimensional plate appear to be reasonably cor­
rect, considering the coarseness of the mesh and the directional stiffness bias of the 
modeL (For more on this subject see Section 7.5.) The y displacement would be 
expected to be downward at the top (node 3) and upward at the bottom (node 4) as 
a result of the Poisson effect. However, the directional stiffness bias due to the coarse 
mesh accounts for this unexpected poor result. 

We now determine the stresses in each element by using Eq. (6.2.36): 

{a} = [DHB]{d} (6.5.28) 

In general, for element 1, we then have 

db 

[I . 0 d1y 

X (~) [~ 
0 /33 0 /32 :'] E v 0 0 0 

d3x 

{a} = (I - .2) 0 YI Y3 
I-v /31 /33 /32 

d3y 

0 Yt Y3 }/2 
d2x 

d2y 

(65.29) 

Substituting numerical values for (B], given by Eq. (6.5.6); for [Dj, given by Eq. 
(6.5.8); and the appropriate part of {d}, given by Eq. (6.5.27), we obtain 

6 6 [1 0.3 L] { }:: 30(10 )(10-) OJ 1 
0' 0.91(200) 

.' 0 0 

0 

0 10 0 
0 

[ 0 
-10 0] 0 0 

609.6 
x 0 -20 0 20 

0 10 20 
4.2 

-20 0 -10 
0 

(6.5.30) 

0 

Simplifying Eq. (6.5.30), we obtaiQ 

{
ax } { 1005 } 
(ly = 301 psi 
t xy 2.4 

(6.5.31) 
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In general, for element 2) we have 

db 
I v 0 d1y 

[PI 0 P4 0 P3 :'] {a} = (1 E v2) (2~) v 0 0 0 
d4x 

X 0 ')'1 ')'4 

I-v PI Y4 P4 P3 
d4y 

0 0 )II )13 
d3x 

d3y 

(6.5.32) 

Substituting numerical values into Eq. (6.5.32), we obtain 

6 6 [I 0.3 0 1 
{ } = 30(10 )(10-) 03 1 0 
a 0.91(200) . 

o 0 0.35 

0 

[-10 2~] 
0 

0 10 0 0 
663.7 

x 0 0 0 -20 0 
104.1 

(6.5.33) 

0 -10 -20 10 20 
609.6 

4.2 

Simplifying Eq. (6.5.33)~ we obtain 

{

995 } 
-1.2 psi 
-2.4 

(6.5.34) 

The principal stresses can now be detennined from Eq. (6.1.2), and the principal angle 
made by one of the principal stresses can be detennined fr9m Eq. (6.1.3). (The other 
principal stress will be directed 90° from the first.) We detennine these principal 
stresses for element 2 (those for element 1 will be similar) as 

[ 

2 ]1/2 _ ax + ay (ax - ay) 2 
a l --2-,-+ -2- +'xy 

0) = 995 + t 1.2) + [e95 -t 1.2»), + (~2.4)2]'/2 

0'1 = 497 + 498 = 995 psi 

- 995 + (-1.2) 498 - 1 1 . 
0'2 - 2 - - - . pSI 

(6.5.35) 
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The principal angle is then 

1 I [ 2!xy J (}p =-tan- ---
2 Clx Cly 

or 1 -I [ 2(-2.4) ] 00 
fJp = '2 tan 995 _ (-1.2) = 

(6.5.36) 

Owing to the unifonu stress of 1000 psi acting only in the x direction on the edge 
of the plate, we would expect the stress Cl A = at) to be near 1000 psi in each element. 
Thus, the results from Eqs. (6.5.31) and (6.5.34) for ax are quite good. We would ex­
pect the stress ay to be very smaIl (at least near the free edge). The restraint of element 
1 at nodes.! and 2 causes a relatively large element stress (1y, whereas the restraint of 
element 2 at only one node causes a very small stress Clr. The shear stresses rxy remain 
close to zero, as expected. Had the number of elements been increased, with smaller 
ones used near the support edge, even more realistic results would have been obtained. 
However, a finer discretization would result in a cumbersome longhand solution and 
thus was 'not used here. -Use of a computer program is recommended for a detailed 
solution to this plate problem and certainly for solving more complex stress/strain 
problems. • 

The maximum'distortion energy theory [4] (also called the von Mises or von 
Mises-Hencky theory) for ductile materials subjected to static loading predicts that a 
material will fail if the von Mises stress (also called equivalent or effective stress) 
reaches the yield strength, Sy) of the material. The von Mises stress as derived in [4], 
for instance, is given in terms of the three principal stresses by 

(6.5.37a)" 

or equivalently in tenus of the x-y-z components as 

Thus for. yielding to occur; the von Mises stress must become equal to or greater than 
the yield strength of the material as given by 

(6.5.38) 

We can see from Eqs. (6.5.37a or 6.5.37b) that the von'Mises stress is a scalar that 
measures the intensity of the entire stress state as it includes the three principal stresses 
or the three nonnal stresses in the x, y, and z directions, along with the shear stresses 
on the x) Yl and z planes. Other stresses, such as the maximum principal one, do not 
provide the most accurate way of predicting failure. 
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Most computer programs incorporate this failure theory and, as an optional re­
sult, the user can request a plot of the von Mises stress throughout the material 
model being analyzed. If the von Mises stress value is equal to or greater than the 
yield strength of the material being considered, then another material with greater 
yield strength can be selected or other design changes can be made. 

For brittle materials, such as glass and cast iron. with.different tension and com­
pression propertieS. it is recommended to use the Coulomb-Mohr theory to predict 
failure. For more on this theory consult [4]. . 

CST Element Defects 

The CST element has its limitations. In bending problems, the mesh of CST elements will 
produce a model that is stiffer than the actual problem. As we will observe from the 
results shown for a beam-bending problem modeled by CST and LST (to be described 
in Chapter 8) elements, the CST model converges very slowly to the ex~ct solution. 
This is partly due to the element predicting only constant stress within each element. 
when for a bending problem, the stress actually varies linearly through the depth of the 
beam. This problem is rectified by using the LST element as described in Chapter 8. 

As shown in f3] for a beam subjected to pure bending, the CST has a spurious or 
false shear stress and hence a spurious shear strain in parts of the model that should 
not have any shear stress or shear strain. This spurious shear strain absorbs energy; 
therefore) some of the energy that should go into bending is lost. The CST is then 
too stiff in' bending. and the resulting deformation is srnalIer than actually should be. 
This phenomenon of excessive stiffness developing in one or more modes of deforma­
tion is sometimes described as shear locking or parasitic shear.. 

Furthermore, in problems where plane strain conditions exist (recall this means 
when ez = 0) and the Poisson's ratio approaches 0.5, a mesh can actually lock, which 
means the mesh then cannot deform at alL 

This brief description of some liJ~itations in using the CST element does not 
stop us from using it to model plane stress and plane strain problems. It just requires 
us to use a fine mesh as opposed to a coarse one, particularly where bending occurs 
and where in general large stress gradients will result. Also, we must make sure our 
program can handle Poisson's ratios that approach 0.5 if that is desired, such as in 
rubber-like materials. For common materials, such as metals, Poisson's ratio is 
around 0.3 and so locking should not be of concern. 
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A. Problems 

y 

6.1 Sketch the variations of the shape functions Nj and Nm, given by Eqs. (6.2.l8). over 
the surface of the triangular element with nodes i, j, and m. Check that Ni + Nj+ 
Nm = 1 anywhere on the element. 

6.2 F or a simple three-noded triangular element, show explicitly that differentiation of 
Eq. (6.2.47) indeed results in Eq. (6.2.48); that is, substitute the expression for [B} and 
the plane stress condition for [D] into Eq. (6.2.47), and then differentiate 7rp with re­
spect to each nodal degree of freedom in Eq. (6.2.47) to obtain Eq. (6.2.48). 

6.3 Evaluate the stiffness matrix for.the elements shown in Figure P6-3. The cOOrdinates 
are in units of inches. Assume plane stress conditions. Let E = 30 x 106 psi, v = 0.25, 
and .thickness t = 1 in. 

3 (0, I) 
(1.2. t) 

3 3~l) 
l~% 

(0. 0) (2, 0). 

2 I (2.4. OJ 
~--~----~----_x 

(1.2.0) 2 
------~-_x 

(2.0) 

I 
(0, -I) 

(a) (b) (c) 

Figure P6-3 

6.4 For the elements given in Problem 6.3, the nodal displacements are given as 

u) =0.0 

D2 = 0.0 

VJ = 0.0025 in. 

143 0.0 

U2 = 0.0012 in. 

V3 = 0.o025.in. 

Detennine the element stresses u x, u y , 1:xy , UI, and (12 ilnd the principal angle 8p• Use 
the values of E, v, and t given in Problem 6.3. 

6.S Detennine the von Mises stress for problem 6.4. 

6.6 Evaluate the stiffness matrix for the element;s shown in Figure P6-6. The coordinates 
are given in units of millimeters. Assume plane stress conditions. Let E = 210 GPa, 
"V = 0.25, and t = 10 mm. 

6.7 For the elements given in Problem 6.6, the nodal displacements are given as 

Ut = 2.0mm VI = 1.0 mm 

V2 = 0.0 nun U3 = 3.0 nun V3 = 1.0mm 
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Determine the element stresses ux,uy , Txy,UI, and a2 and.the principal angle 8p• Use 
the values of E, v, and t given in Problem 6.6. 

y y 
(15, 10) 

(10.7.<] 
(15,5) 

(50. 120) 

D 
(20,30) (SO. 30) 

~-------------------.x ~-------------------.x 
. (a) (b) 

y 

(5,10) 

1 2 
~----------~------.x 

(0,0) . (10.0) 

(c) 

Figure P6-6 

6.8 Determine the von Mises stress for problem 6.7 

6.9 For the plane strain elements shown in F:igure P6-9, the nodal displacements are 
given as 

III = 0.001 in. 

V2 = 0.0025 in. 

VI = 0.005 in. 

"3 = 0.0 in. 

"2 = 0.001 in. 

V3 = 0.0 in. 

Determine the element stres·ses ax, #, Txy, (fb and U2 and the principal angle 8p• Let 
E = 30 x 106 psi and v = 0.25, and· use unit thickness for plane strain. All coordinates 
are in inches. 



6.10 For th~ plane strain elements shown in Figure P6-1O, the nodal displacements are 
given as 

Ut = 0.005 mm VI = 0.002 mm 

V2, = 0.0 mm U3 = 0.005 mm 

U2 = O.Omm 

113 =O.Omm 

Determine the element stresses O'Xl O',Y,rxy,O''' and 0'2 and the principal angle 8p• Let 
E = 70 GPa and v = 0.3, and use unit thickness for plane strain. All coordinates are 
in millimeters. 

6.11 Determine the nodal forces for (a) a linearly varying pressure Px on the edge of the 
triangular element shown in Figure P6-11(a); and '(b) the quadratic varying pressure 
shown in Figure P6-lt(b) by evaluating: the surface integral given by Eq. (6.3.7). 
Assume the element thickness is equal to.t. 

6.12 Determine the nodal forces for (a) the quadratic varying pressure loading shoWn in 
Figure P6-12(a) and the sinusoidal varying pressure loading shown in Figure P6-12(b) 
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by the work equivalence method (use the surface integral expression given by 
Eq. (6.3.7)). Assume the element thickness to be t. 

6.13 Determine the nodal displacements and the element stresses, including principal 
stresses. for the thin plate of Section 6.5 with a uniform shear load (instead of a tensile 
load) acting on the right edge, as shown in Figure P6-13. Use E = 30 X 106 psi, 
" 0.30, and t = 1 in. (Hint: The [Xl matrix derived in Section 6.5 and given by Eq. 
(6.5.22) can be used to solve the problem.) 

T 2 3 ~ 
to in. • l = )000 Ib/in. 

1. >:l)G'o1 _____ ....J4 t 
~I 

Figure P6-13 

6.14 Determine the nodal displacements . and the element stresses,' including principal 
, stresses, due to the loads shown for the thin plates in Figure P6-14. Use E 210 GPa, 

v = 0.30, and t = 5 tnm. Assume plane stress conditions appJy_ The recommended 
diseretized plates are shown in the figures. 

6.1S Evaluate the body force matrix for the plates shown in Figures·P6-14(a) and (c). As­
sume the weight density to be ?7.l kN/m3. 

6.16 Why is the trianguiarstitTness matrix derived in Section 6.2 called a constant strain 
triangle? 

6.17 How do the stresses vary within the constant strain triangle element? 

6.18 Can you use the plane stress or plane strain element to model the following: 
8. a fiat slab floor of a building 
b. a, wall SUbjected to wind loading (the wall acts as a shear wall) 
c. a tensile plate With a hole drilled through it 
d. an eyebar 
e. a soil mass subjected to a strip footing loading 
f. a wrench subjected to a force in the plane of the wrench 
g. a wrench subjected to twisting forces (the twisting forces act out of the plane of the' 

wrench) 
b. a triangular plate connection with loads in the plane of the triangle 
i. a triangular plate connection with out-of-plane loads 

6.19 The plane stress element only allows for in-plane displacements, while the frame or 
beam element resists displacements and rotations. How can we combine the plane 
stress and beam elements and still insure compatibility? 
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Fiaure P6-14 

6.20 For the plane structures modeled by triangular elements shown in Figure P6-20, show 
that numbering in the direction that has fewer nodes, as in Figure' P6--20(a) (as op­
posed to numbering in the direction that has more nodes), results in a reduced band­
width. Illustrate this fact by filling in, with X's> the occupied elements in K for each 
mesh, as was done in Appendix B.4. Compare the bandwidths for each case. 

8 

4~8 5 6 .3 . 7 

3 4 2 I) 

2 I 5 

(a) (b) 

Figure P6-20 
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6.21 Go through the detailed steps to evaluate Eq. (6.3.6). 

6.22 How would you treat a linearly varying thickness for a three-noded triangle? 

6.23 Compute the stiffness matrix of element 1 of the two-triangle element model of the 
rectangular plate in plane stress shown in Figure P6-23. Then use it to compute the 
stiffness matrix of element 2: 

4 r 3 

f(i)71h 
1~2~X 

b 

Figure P6-23 



Introduction 

In this chapter, we will describe some modeling guidelines, including generally recom­
mended mesh size, natural subdivisions modeling around concentrated loads, and 
more on use of symmetry and associated boundary conditions. This is followed by dis-­
cussion of equilibrium, compatibility, and convergence of solution. We will then con­
sider interpretation of stress results. 

Next; we introduce the concept of static condensation, which enables us to apply 
the concept of the basic constant-strain triangle stiffness matrix to a quadrilateral ele­
ment. Thus, both three-sided and four-sided two-dimensional elements can be used in 
the finite element models of actual bodies. 

We then show some computer program results. A computer program facilitates 
the solution of complex, large-number-of-degrees-of-freedom plane stress/plane strain 
problems that generally cannot be solved longhand because of the larger number of 
equations involved. Also, problems for which longhand solutions do not exist (such 
as those involving complex geometries and complex loads or where unrealistic, often 
gross, assumptions were previously made to simplify the problem to allow it to be 
described via a classical differential equation approach) can now be solved with a 
higher degree of confidence in the results by using the finite element approach {with 
its resulting system of algebraic equations} . 

.A. 7.1 Finite Element Modeling 

We will now discuss various concepts that should be considered when modeling any 
problem for solution by the finite element method. 
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General Considerations 

Finite element modeling is partly an art guided by visualizing physical interactions 
taking place within the body. One appears (0 acquire good modeHng techniques 
through experience and by working with experienced people. General-purpose pro­
grams provide some guidelines for specific types of problems f12, I5}. In subsequent 
parts of this section, some significant concepts that should be considered are described. 

In modeling, the user is first confronted with the sometimes difficult task of 
understanding the physical behavior taking place and understanding the physical be­
havior of the various elements available for use. Choosing the proper type of element 
or elements to match as closely as possible the physical behavior of the problem is 
one of the numerous decisions that must be made by the user. Understanding the 
boundary conditions imposed on the problem can, at times, be a difficult task. Also, 
it is often difficult to determine the kinds of loads that must be applied to a body 
and their magnitudes and locations. Again, working with more experienced users 
and searching the literature can belp overcome these difficulties. 

Aspect Ratio and Element Shapes 

The aspect ratio is defined as the rglio of the longest dimension to the shortest dimension 
of a quadrilateral element. In many cases) as the aspect ratio increases, the inaccuracy 
of the solution increases. To illustrate this point, Figure 7-1(a) shows five different fi­
nite element models used to analyze a beam subjected to bending. The element used 
here is the rectangular one described "in Section lO.2. Figure 7-1 (b) is a plot of the 
resulting error in the displacement at point A of the beam versus the aspect ratio. 
Table 7-1 reports a comparison of results for the displacements at points A and B 
for the five models, and the exact solution [2}. 

There are exceptions for which asPect ratios approaching 50 still produce satis­
factory results; for example, if the stress gradient is close to zero at some location of the 
actual problem, then large aspect ratios at that location still produce reasonable results. 

In general, an element yields best results if its shape is compact and regular. Al­
though different elements have different sensitivities to shape distortions, try to main­
tain (1) aspect ratios low as in Figure 7-1, cases 1 and 2, and (2) corner angles 
of quadrilaterals near 90D

• Figure 7-2 shows elements with poor shapes that tend 
to promote poor results. If few of these poor element shapes exist in a model, then 
usually only results near these elements are poor. ]n the Algor program [12J, when 
IX ~ 170° in Figure 7-2(c), the program automatically divides the quadrilateral into 
two triangles. 

Use of Symmetry 

The appropriate use of syrnmetry* will often expedite the modeling of a problem. Use 
of symmetry allows us to consider a reduced problem instead of the actual problem. 

'" Again, reflective s}mmetry means correspondence in size, shape, and position of loads: material propenies; 
and boundary conditions that are on opposite sides of a dividing line or plane. 
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Figure 7-1 (a) Beam with loading; effects of the aspect ratio (AR) ilhJstrated by five 
cases with different aspect ratios 

Thus, we can use a finer subdivision of elements with less labor and computer costs. 
For another discussion on the use of symmetry, see Reference [3]. 

Figures 7-3-7-:-5 illustrate the use of symmetry in modeling (1) a soil mass sub­
jected to foundation loading, (2) a uniaxially loaded member with a fillet, and (3) a 
plate with a.hole subjected to internal pressure. Note that at the plane of symmetry 
the displacement in the direction perpendicular to the plane must be equal to zero. 
This is modeled by the rollers at nodes 2-6 in Figure 7-3, where the plane of symme­
try is the vertical plane passing through nodes 1-6, perpendicular to the plane of the 
modeL In Figures 7-4(a) and 7-5(a), there are two planes of symmetry. Thus, we need 
model only one-fourth of the actual members, as shown in Figure!:! 7-4(b) and 7-5(b). 
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Figure 7-1 (b) Inaccuracy of solution as a function of the aspect ratio (numbers in 
parentheses correspond to the cases listed in Table 7-1) 

Table 7-1 Comparison of results for various aspect ratios 

Vertical Percent 
DispJacement, Error in 

Aspect Number of Number of v (in.) Displacement 
Case Ratio Nodes Elements Point A Point B atA 

1 t.l 84 60 -1.093 -0.346 5.2 
2 1.5 85 64 -1.078 -0.339 6.4 
3 3.6 77 60 -1.014 -0.328 11.9 
4 6.0 81 64 -0.886 -0.280 23.0 
5 24.0 85 64 -0.500 -0.158 56.0 

Exact solution [21 -1.152 -0.360 

Therefore, rollers are used at nodes along both the vertical·and horizontal planes of ' 
symmetIy. 

As previously indicated in Chapter 3, in vibration and buckling problems, sym­
metry must be used with caution since symmetry in geometry does not imply symme­
try in an vibration or buckling modes. 
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Figure 7-2 Elements with poor shapes 
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Figure 7-3 Use of symmetry applied to a soil mass subjected to foundation loading 
(number of nodes = 66, number of elements = SO) (254 cm = 1 in .. 4.445 N = lib) 

Natural Subdivisions at Discontinuities 

Figure 7-6 illustrates various natural subdivisions for finite element discretization. 
For instance, nodes are required at locations of concentrated loads or discontinuity 
in loads, as shown in Figure 7-6(a) and (b). Nodal lines are defined by abrupt changes 
of plate thickness, as in Figure 7-6(c). and by abrupt changes of material properties, 
as in Figure 7-6(d) and (e). Other natural subdivisions occur at re~trant comers, as 
in Figure 7-6(0. and along holes in members, as in Figure 7-5. 
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lA=m~ 
4 in. ---"'i1 ..... --4 in. ..I. 4 in. 

I 
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1--3in.-J 
(a) Plane stress uniaxially loaded member wich fille' 

(b) Enlarged finite element IllOdeI of the cross-batched quarter of the: member 
(number of nodes = 78. number of elements 60) (2.54 em '" 1 in.) 

Figure 7-4 Use of symmetry applied to a uniaxially loaded mer,nber with a fillet 

Sizing of Efements and the hand p Methods of Refinement 

For structural problems, to obtain displacements, rotations, stresses, 'and strains, 
many computer programs include two basic solution methods. (These same methods 
apply to nonstructural problems as well.) These are called the h method and the 
p method. These methods are then used to revise or refine a finite element mesh to im­
prove the results in the next refined analysis. The goal of the analyst is to refine the 
mesh to obtain the necessary accuracy by using only as many degrees of freedom as 
necessary. The final objective of this so called adaptive refinement is to obtain equal 
distribution of an error indicator over all elements. 

The discretization depends on the geometry of the structure, the loading pattern,~ . 
and the boundary conditions. For instance, regions of stress concentration or high 
stress gradient due to fillets, holes, or re-entrant corners require a finer mesh near 
those regions, as indicated in Figures 7-4, 7-5, and 7-6{f). 

We will briefly describe the hand p methods of refinement and provide refer­
ences for those interested in more in-depth understanding of these methods. 

h Method of Refinement In the h method of refinement, we use the particular element 
based on the shape functions for that element (for example, linear functions for the 
bar, quadratic for the beam, bilinear for the CST). We then start with a baseline 
mesh to provide a baseline solution for error estimation and to provide guidance for 
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(a) Plate with hole under plane stress 

y 
___ Axis of symmetry 

Irlc+-+ .... ~r---.. x 

(b) Finite element model of one-quart.er of the plate 

Figure 7-5 Problem reduction using. axes of symmetry applied to a plate with a hole 
subjected to tensile force 

mesh revision. We then add elements of the same kind to refine or make smaller elements 
in the model. Sometimes a uniform refinement is done where the original element size 
(Figure 7-7a) is perhaps divided in two in both directions as shown in Figure 7-7b. 
More often, the refinement is a nonuniform h refinement as shown in Figure 7-7c 
(perhaps even a local refinement used to capture some physical phenomenon, such as 

. a shock wave or a thin boundary layer in fluids) [19]. The mesh refinement is contin­
ued until the results from one mesh compare closely to those of the previously refined 
mesh. It is also possible that part of the mesh can be enlarged instead of refined. 
F or in~tance) in regions where the stresses do not change or change slowly 1 larger 
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elements may be quite acceptable. The h-type mesh refinement strategy had its begin­
nings in !20-23). Many commercial computer codes, such 'as [12], are based on the h 
refinement. 

p Method of Refinement In the p method of refinement [24-28}, the polynomial pis 
increased from perhaps quadratic to a higher-order polynomial based on the degree 
of accuracy specified by the user. In the p method of refinement, the p method adjusts 
the order of the polynomial or the p level to better fit the conditions of the problem, 
such as the boundary conditions, the loading, and the geometry changes. A problem 
is solved at a given p level, and then the order of the polynomial is nonnaI1y increased 
while the element geometry remains the same and the problem is solved again. The 
results of the iterations are compared to some set of convergence criteria specified by 
the user. Higher-order polynomials nonnally yield better solutions. This iteration pro­
cess is done automatically within the computer program. Therefore, the user does not 
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Figure 7-7 Examples of hand p refinement 
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Figure 7-7 (Continued) 

need to manually change the size of elements by creating a finer mesh, as must 1;>e 
done in the h method. (Tbe h refinement can be automated using a remeshing algo­
rithm within the finite element software.) Depending on the problem, a coarSe mesh 
will often yield acceptable results. An extensive discussion of error indicators and esti· 
mates is given in the literature [l9}. 

The p. refinement may consist of adding degrees of freedom to existing nodes, 
adding nodes on existing boundaries between elements} andlor adding internal degrees 
of freedom. A uniform p refinement (same refinement performed on all elements) is 
shown in ·Figure 7-7d. One of the more common commercial computer programs, 
Pro/MECHANICA 129], uses the p method exclusively. A typicar discretized finite el­
ement model ofa pulley using Pro/MECHANICA is shown in Figure 7-7e. 

Transition Triangles 

Figure 7-4 illustrates the use of triangular elements for transitions from smaller quad­
rilaterals to larger quadrilaterals. This transition is necessary because for simple CST 
elements, intermediate nodes along element edges are inconsistent with the energy 
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fonnulation of the CST equations. If intennediate nodes were used, no assurance of 
compatibility would be possible~ and resulting, holes could occur in the deformed 
model. Using higher-order elements, such as the linear-strain triangle described in 
Chapter 8, allows us to use intennediate nodes along element edges and maintain 
compatibility. 

Concentrated or Point Loads and Infinite Stress 

Concentrated or point loads can be applied to nodes of an element provided the ete· 
ment supports the degree of freedom associated with the load. For instance, truss 
elements and two- and three-dimensional elements support only translational degrees 
of freedom, and therefore concentrated nodal moments cannot be applied to these 
elements; only concentrated forces can be applied. However, we should realize that 
physically concentrated forces are usually an idealization' and mathematical conve· 
nience that represent a distributed load of high intensity acting over a small area. 

According to classical linear theories of elasticity for beams, plates, and solid 
bodies [2, 16, 17}, at a point loaded by a concentrated normal force there is finite dis­
placement and stress in a beam, 'finite displacement but infinite stress in a plate, and 
both infinite displacement and stress in a two- or three-dimensional solid body. 
These results are the consequences of the differing assumptions about the stress fields 
in standard linear theories of beams, plates, and solid elastic bodie~. A truly concen~ 
trated force would cause material under the load to yield, and linear elastic theories 
do not predict yielding. 

In a finite element' analysis, when a concentrated force is applied to a node of a 
finite element model, infinite displacement and stress are never computed. A concen· 
trated force on a plane stress or strain model has a number of equivalent distributed 
loadings, which would not be expected to produce infinite displacements or infinite 
stresses. Infinite displacements and stresses can be approached only as the mesh 
around the load is highly refined. The best we can hope for is that we can highly refine 
the mesh in the vicinity of ' the concentrated load as shown in Figure 7-6(a), with the 
understanding that the deformations and stresses will be approximate around the 
load) or that these stresses near the concentrated force are not the object of study, 
while stresses near another point away from the force) such as B in Figure 7-6(f), 
are of concern. The preceding remarks about concentrated forces apply to concen­
trated reactions as well. 

Finally, another way to model with a concentrated forte is to use additional ele­
'ments and a single concentrated load as shown in Figures 7-6(h). The ~hape of the 
distribution used to simulate a distributed load can be controlled by the relative stiff­
ness of the elements above the loading plane to the actual structure by changing the 
modulus of elasticity of these elements. This method spreads the concentrated load 
over a number of elements of the actual structure. 

Infinite stress based on elasticity solutions may also exist for special geometries 
and loadings, such as the re...entrant comer shown in Figure 7-6(f). The stress is pre­
dicted to be infinite at the re...entranf corner. Hence, the finite element method based 
on linear elastic material models will never yield convergence (no matter how many 
times you refine the mesh) to a correct stress level at the re-entrant corner 118J. 
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We must either change the sharp re-entrant corner to one with a radius or use a theory 
that accounts for plastic or yielding behavior in the material. 

Infinite Medium 

Figure 7-3 shows a typical model used to represent an infinite medium (a soil mass 
subjected to a foundation load). The guideline for the finite element model is that 
enough material must be included such that the displacements at nodes and stresses 
within the elements become negl~gibly small at ioeations far from the foundation 
load. Just how much of the mediUm should be modeled can be determined by a trial­
and-error procedure in which the horizontal and vertical distances from the load are 
varied and the resulting effects on the displacements and stresses are observed. Alter­
natively, the experiences of other investigators working on similar problems may 
prove helpful. For a homogeneous soil mass) experience has shown that the iniluence 
of the footing becomes insignificant if the horizontal distance of the model is taken 
as approximately four to six times the width of the footing and the vertical distance 
is taken as approximately four to ten times the width of the footing [4-6}. Also, the 
use of infinite elem~ts is described in Reference [13]. 

After choosing the ~orizontal and vertical dimensions of the model, we must 
idealize the boundary conditions. "Usually, the horizontal displacement becomes negli­
gible far from the load, and we restrain the horizontal movement of all the nodal 
Points on that boundary (the right-side boundary in Figure 7-3): Hence, rollers are 
used to restrain the horizontal motion along the right side. The bottoIl! boundary 
can be completely fixed, as is modeled in Figure 7-3 by using pin suppo\:ts at each 
nodal point along the bottom edge. Alternatively, the bottom can be cbnstrained 
only against vertical movement. The choice depends on the soil condltions ~t the bot~ 
tom of the model. Usually, complete fixity is assumed if the lower boundary is taken 
as bedrock. 

In Figure 7-3, the left-side vertical boundary is taken to be directly under the 
center of the load because symmetry has been assumed. As-we said before when dis­
cussing symmetry) all nodal points along the line of symmetry are restrained against 
horizontal displacement. 

Finally} Reference [111 is recommended for additional discussion regarding guide­
lines in modeling with different element types, such as beams, plane stress/plane strain, 
and three-dimensional solids. 

Connecting (Mixing) Different Kinds of Elements 

Sometimes it becomes necessary in a model to mix different kinds of elements, Sl,lch as 
beams and plane elements, such as CSTs. The problem with mixing these elements is 
that they have different degrees of freedom at each node. The beam allows for trans­
verse displacement and rotation at each -node, while the plane element only has"in­
plane displacements at each node. The beam can resist a concentrated moment at a 
node, whereas a plane element (CST) cannot. Therefore~ if a beam element is COD­

nected to a plane element at a single node as shown in Figure 7-8(a), the result will 
be a hinge connection at A. This means only a force can be transmitted through the 
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Plane elements Plane elements 

(a) (b) 

Figure 7-8 Connecting beam element to plane elements (a) No moment is 
transferred, (b) moment is transferr,ed 

node between the two kinds of elements. This also creates a mechanism, as shown by 
the stiffness matrix being singular. This problem.can be corrected by extending the 
beam into the plane element by adding one or more beam elements, .shown as AB, 
for one beam element in Figure 7-8(b}. Moment can now be transferred through the 
beam to the plane element. This extension assures that translational degrees of free­
dom of beam and plane element are connected at nodes A and B. Nodal rotations 
are associated with only the beam element, AB. The calculated stresses in the plane el­
ement will not nonnally be accurate near node A. 

For more examples of connecting different kinds of elements see Figures 1-5, 
11-10, 12-10 and 16-31. These figures show examples of beam. ~nd plate elements 
connected together (Figures 1-5, 12-10, and '16-31) and solid (brick) elements con­
nected to plates (Figure 11-10). 

Checking the Model 

The discretized finite element model should be checked carefully before results are 
computed. Ideally, a model should be checked by an analyst not involved in the prep­
aration of the model, who is then more likely to be objective. 

Preprocessors with their detailed graphical display capabilities (Figure 7-9) now 
make it comparatively easy to find errors, particularly the more obvious ones involved 
with a misplaced node or missing element or a misplaced load or boundary support. 
Preprocessors include such niceties as color, shrink plots, rotated views, sectioning, 
exploded views, and removal of hidden lines to aid in error detection. 

Most commercial codes also include warnings regarding overly distorted ele­
ment shapes and checking for sufficient supports. However, the user must still select 
the proper element types, place supports and forces in proper locations, use oonsistent 
units, etc., to obtain a successful analysis. 

Checking the Results and Typical Postprocessor Results 

The results should be checked for consistency by making sure that intended support 
nodes have zero displacement, as required. If symmetry exists) then stresses and dis­
placements should exhibit this symmetry. Computed results from the finite element 
.. "'1111 !=\hould be compared with results from other available techniques, even if 
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Figure 7-9 Plate of steel (20 in. long, 20 in. wide, 1 in. thick, and with a Hn.'i'adius 
hole) discretized using a preprocessor prowam [15] with automatic mesh generation 

these techniques may be cruder than the finite element results. For instance, approxi­
mate mechanics of material formulas, experimental data, and numerical analysis of 
simpler but similar problems may be used for comparison, particularly if you have 
no real idea of the magmtude of the answers. Remember to use all results with some 
degree of caution) as errors can crop up in such sources as textbook or handbook 
comparison solutions and experimental results. 

In the end, the analyst should probably spend as much time processing, check­
ing, and analyzing results as is spent in data preparation. 

Finally. we present some typical postprocessor results for the plane stress prob­
lem of Figure 7-9 (Figures 7-10 and 7-11). Other examples with results are shown 
in Section 7.7. 

:I 7.2 Equilibrium and Compatibility of Finite 
Element Results 

An approximate solution for a stress analysis problem using the finite element method 
based on assumed displacement fields does not generally satisfy all the requirements 
for equilibrium and compatibility that an exact theory-of-elasticity solution satisfies. 
However. remember that relatively few exact solutions exist. Hence, the finite element 
method is a vr;ry practical one for obtaining reasonable, but approximate~ numerical 
solutions. Recall the advantages of the finite element method as described in Chapter 1 
and as illustrated numerous times throughout this text. 
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1000 psi 

20 in. 

Figure 7-10 Plate with a hole showing the deformed shape of a"plate superimposed 
over an undeformed shape. Plate is fixed on the left edge and subjected to 10DO-psi 
tensile stress along the right edge. Maximum horizontal displacement is 7.046 x 
10-4 in. at the center of the right edge 

We now describe some of the approximations generally inherent in finite ele-
ment solutions. ' 

1. 'Equilibrium of nodal forces and moments is satisfied. This is true 
because the global equation E = K 51 is a nodal equilibrium equation 
whose solution for 51 is such that the sums of all forces and moments 
applied to each node are zero. Equilibrium of the whole structure is 
also satisfied because the structUre'reactions are included in the global 
forces and hence in the nodal equilibrium equations. Numerous 
example problems, particUlarly involving truss and frame analysis in 
Chapter 3 and 5, respectively, have illUstrated the equilibrium of 
nodes and of total structures. 

2. Equilibrium within an element is not always satisfied. However, for 
the constant-strain bar of Chapter 3 and the constant-strain triangle of 
'Chapter 6, element equilibrimn is satisfied. Also the cubic displace­
ment function is shown to satisfy the basic beam equilibrium differen­
tial equation in Chapter 4 and hence to satisfy element force and 
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Figure 7-11 Maximum principal stress contour (shrink fit plot) for a plate with hole. 
Largest principal stresses of 3085 psi occur at the top and bottom of the hole, which 
indicates a stress concentration of 3.08. Stresses were obtained by using an average of 
the nodal values (called smoothing) 

moment equilibrium. However, elements such as the linear-strain 
triangle of Chapter 8, the axisymmetric element of Chapter 9, and the 
rectangular element of Chapter 10 usually only approximately satisfy 
the element equilibrium equations. 

3. Equilibrium is not usually satisfied between elements. A differential 
element including parts of two adjacent finite elements is usually not 
in equilibrium (Figure 7-12). For line elements, such as used for truss 
and frame analysis, interelement equilibrium is satisfied, as shown in 
example problems in Chapters 3-5. However, for two- and three­
dimensional elements, interelement equilibrium is not usually satisfied. 
For instance, the results of Example 6.2 indicate that the nonnal stress' 
along the diagonal edge between the two elements is different in the 
two elements. Also, the coarseness of the me.§h causes this lack of 
interelement equilibrium to be even more pronounced. The normal 
and shear stresses at a free edge usually are not zero even though 
theory predicts them to be. Again, Example 6.2 illustrates this, with 
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Ex.ample6.2 

a, = 301 psi 
0',. ::; 301 psi 

~
.!\= 2.4 psi 

r----'-----::~ • or..,.. = - 2.4 psi ~ t.r = 2.80 ~si 
ax = 995 psi :.--a~ =:: 440 psi 

Stresses on a differential 
element common to both finite 
elements, iIIus£rating violation 
of equilibrium 

0; = 'OOSpa ~ '~PS;99Spa 
'1:.., = 397 psi 

'Ij,,, = - 2.4 psi 

0'., :: -1.2 psi 

Srress along the diagonal between elemenlS, 
showing normal and shear suesses, , 
(I,. and'tnl' Note: aft and t.t are not 
equa.l in magnitude but are opposite in 
sign for the two elements, and so 
interelement equilibrium is not satisfied 

Figure 7-12 Example 6.2, illustrating violation of equilibrium of a differential 
element and along the diagonal edge between two elements (the coarseness of the 
mesh amplifies the violation of equilibrium) 

free-edge stresses O'y and '1:xy not equal to zero. However, .as more 
elements are used (refined mesh) the O'y and'txy stresses on the stress­
free edges will approach zero. 

4. Compatibility is satisfied within an element as lOrlg as the element 
displacement field is continuous. Hence, individual elements do not 
tear apart. 

5. In the formulation of the el~ent equations, compatibility is invoked 
at the nodes. Henc:e) elements remain connected at their common 
nodes. Similarly, the structure remains connected to its support nodes 
because boundary conditions are invoked at these nodes. 

6. Compatibility mayor may not be satisfied along interelement 
boundaries. For line elements such as bars and beams, interelement 
boundaries are merely nodes. Therefore, the prec:eding statement 5 
applies for these line elements: The constant-strain triangle of Chapter 
6 and the rectangular element of Ghapter 10 remain straight-sided 
when deformed.. Therefore, interelement compatibility existS for these 
elements; that is, these plane elements deform along common lines 
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without openings, overlaps, or discontinuities. Incompatible elements, 
those that allow gaps or overlaps between elements, ~an be acceptable 
and even desirable. Incompatible element formulations, in some cases, 
have been shown to converge more rapidly to the exact solution [I}. 
(For more on this special topic, consult References [7J and 18].) 

1 7.3 Convergence of Solution 

In Section 3.2, we presented guidelines for the selection of so--called compatible and 
complete displacement functions as they "related to the bar element. Those four guide. 
lines are generally applicable, and satisfaction of them has been shown to ensure mono­
tonic convergence of the solution of a particular problem [9J. Furthermore, it has 
been shown {I 0] that these compatible and complete displacement functions used in 
the displacement formulation of the finite element method yield an upper bound on 
the true stiffness, and hence a lower bound on the displacement of the problem, as 
shown in Figure 1-13. 

Hence, as the mesh size is reduced-that is, as the number of elements is 
increased-we are ensured of monotonic convergence of the solution when compatible 
and complete displacement functions are used. :txamples of this convergence are 
given in References [1J and [11], and in Table 7-2 for the beam with loading shown 

Exact solution 

i '\ 
~ ~----------------~----~ 

Number of elements 

~ 
is "c "b' ompall Ie dlsplatement 

fonnulation 

Figure :'J -13 Convergence of a finite element solution based on the compatible 
displacement formulation 

Table 7-2 Comparison of results for different numbers of elements 

Vertical 
Number of Number of Aspect Displacement, v (in.) 

Case Nodes Elements Ratio Point A 

21 12 2 -0.740 
2 39 24 I -0.980 
3 45 32 3 -0.875 
4 85 64- 1.5 -1.078 
5 105 80 1.2 -1.100 

Exact solution [2J -1.152 
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in Figure 7-1(a). All elements in the table are rectangular. The results in Table 7-2 indi­
cate the influence of the numbe~ of elements (or the number of degrees of freedom as 
measured by the number of nodes) on the convergence toward a common solution, 
in this case the exact one. We again observe the influence of the aspect ratio. The 
higher the aspect ratio, even with a larger num~r of degrees of freedom, the worse 
the answer, as indicated by comparing cases 2 and 3. 

:l 7.4 Interpretation of Stresses~ 
In th~ stiffness or displacement formulation of the finite element method used 
throughout this text, the primary quantities determined are the interelement nodal dis­
placements of the assemblage. The secondary quantities, such as strain and stress in an 
element, are then obtained through use of {t} = [B]{d} and {u} = [D][B]{d}. For ele­
ments using linear..rusplacement models, such as the bar and the constant-strain trian­
gle, [BJ is constant, and since we assume [DJ to be constant, the stresses are constant 
over the element. In this easel it is common practice to assign the stress to the centroid 
of the element with acceptable results. 

However. as il1ustrated in Section 3.11 for the axial member, stresses are not 
predicted as accurately as the displacements (see Figures 3-32 and 3-33). For exam­
ple, remember the constant-strain or constant-stress element has been used in mode1· 
ing the beam in Figure 7-1. Therefore, the stress in each element is assumed constant. 
Figure 7-14 compares the exact beam theory solution for bending stress through the 
beam depth at the centroidallocation of the elements next to the wall with the finite 
element solution of case 4 in 'Table 7-2. This finite element model consists of four 
elements through the beam depth. Therefore) only four stress values are o.btained 

y(in.) 

4 t------ii> 174.4 

t2h 130.8 

2 
39 Exact solution 

43.6 

--------.1'--'--100 ........ 1-'5-0-200....1.-- (T'~ (ksi) 

-39 
-2 

e-122 -3 

"'------t- -4 
-174.4 

Finite element solution::; e 

Figure 7-14 Com parison of the finite element solution and the exact solution of 
bending stress through a beam cross section 
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through the depth. Again, the best approximation of the stress appears to occur at the 
midpoint of each element, since the derivative of displacement is better predicted be-
tween the nodes than at the nodes. . 

For higher-order elements, such as the linear-strain triangle of Chapter 8, [BI} 
and hence the stresses, are functions of the coordinates. The common practice is then 
to evaluate directly the stresses at the centroid of the element. 

An alternative procedure sometimes is to use an average (possibly weighted) 
value of the stresses evaluated at each node of the element. This averaging method is 
often based on evaluating the stresses at the· Gauss poInts located within the element 
(described in Chapter 10) and then interpolating to the e~ment nodes using the 
shape functions of the specific element. Then these stresses in all elements at a common 
node afe averaged to represent the stress at the node. This averaging process is called 
smoothing. Figure 7-11 shows a maximum. principal stress "fringe carpet" (dithered) 
contour plot obtained by smoothing. 

Smoothing results in a pleasing, continuous plot which may not indicate some 
serious problems with the model and the results. You should always view the un­
smoothed contour plots as well. Highly discontinuous contours between elements in 
a region of an unsmoothed plot indicate modeling probl~ms and typically require ad­
ditional refinement of the element mesh in the suspect region. . '-

If the discontinuities in an unsmoothed contour plot are small or are in regions 
of little consequence) a smoothed contour plot can normally be used with a high 
degree of confidence in the results. There are, however, exceptions when smoothing 
leads to erroneous results. For instance, if the thickness or material stiffness changes 
significantly between adjacent elements, the stresses will no~ally be different from 
one element to the next. Smoothing will likely hide the actual results. Also, for shrink­
fit problems involving one cylinder being expanded enough by heating to slip over the 
.smaller one, the circumferential stress between the mating cylinders is normally quite 
different [16]. 

The computer program examples in Section 7.7 show additional results, such as 
displaced models, along with line contour stress plots and smoothed stress plots. The 
stresses to be plotted can be von Mises (used in the maximum distortion energy theory 
to predict failure of ductile materials subjected to static loading as described in 
Sec.tion 6.5); Tresca (used in the Tresca or maximum shear stress theory also to predict 
failUI;e of ductile materials subjected to static loading) [14, 16], and maximum and 
minimum principal stresses. 

"" 7.5 Static Condensation 

We will now consider the concept of static condensation because this concept is used 
in developing the stiffness matrix of a quadrilateral element in many computer 
programs. 

Consider the basic quadrilateral eiement with external nodes 1-4 shown in 
Figure 7-15. An imaginary node 5 is temporarily introduced at the intersection of the 
diagonals of the quadrilateral to create four triangles. We then superimpose the stiff­
ness matrices of the four triangles to create the stiffness matrix of the quadrilateral 
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Figure 7-15 Quadrilateral element 
with an internal node 

element, where the internal imaginary node 5 degrees of freedom are said to be con­
densed out so as never to enter the final equations. Hence, only the degrees of freedom 
associated with the four actual external comer nodes enter the equations. 

'We begin the static condensation procedure by partitioning the equilibrium 
equations as 

{7.5.l ) 

where di is the vector of internal displacements corresponding to the imaginary' inter­
nal node (node 5 in Figure 7-15), fi is the vector of loads at the internal node, and 
do and Fa are the actual nodal degrees of freedom and loads, respectively, at the 
actual nodes. Rewriting Eq. (7.5.1), we have 

[kll}{du } + [k!2l{di } = {Fa} 

[k21 ]{da } + [k22J{dr} = {F;} 

Solving for {di } in Eq. (7.5.3), we obtain 

{di } = -[k22r I [k21 l{da } + [k22r l {Fi} 

(7.5.2) 

(7.5.3) 

(7.5.4) 

Substituting Eq. (7.5.4) into Eq_ (7.5.2), we obtain the condensed equilibriwn equation 

[kd{d:J} = {Pc} 

where [krJ = [kill - [kI2J[k:rd-1 [k2d 

{f;} = {FlI } [kI211k22rl {Fi} 

(7.5.5) 

(7.5.6) 

(7.5.7) 

and [k/.J and {F;.} are called the condensed stiffness matrix and the condensed load vecu 

101', respectively. Equation (7.5.5) can now be solved for the actual comer node dis­
placements in the usual manner of solving simultaneous linear equations. 

Both constant-strain triangular (CST) and constant-strain quadrilateral elements 
are used to analyze plane stress/plane strain problems. The quadrilateral element has the 
stiffness of four CST elements~ An advantage of the fOUI..csr quadrilateral is that the 
solution becomes less dependent on the skew of the subdivision mesh, as shown in 
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Figure 7-16. Here skew means the directional stiffness bias that can be built into a 
model through certain discretization patterns, since the stiffness matrix of an element 
is a function of its nodal coordinates) as indicted by Eq. (6.2.52). The four-CST 
mesh of FigiJre 7-16(c) represents a reduction in the skew effect over the meshes of 
Figure 7-16(a) and (b). Figure 7-16(b) is generally worse than Figure 7-16(a) because 
the use of long, narrow triangles results in an element stiffness matrix that is stiffer 
along the narrow direction of the triangle .. 

The resulting stiffness matrix of the quadrilateral element will be an 8 x 8 matrix 
consisting of the stiffnesses of four triangles, as was shown in Figure 7-1 S. The stiff~ 
ness matrix is first assembled according to the usual direct stiffness method. Then we 
apply static condensatiori as outlined in Eqs. (7.5.1)-(7.5.7) to remove the internal 
node 5 degrees of freedom . 

. The stiffness matrix of a typical triangular element (labeled dement 1 in Figure 
7-15) with nodes 1,2, and 5 is given in general form by 

[

k(J) k(l) k(l) 1 
-II -12 -15 

[k(1)j = k(l) k(l} k(l) 
-21 -22 -25 

k~~) k;~ k;~) 

(7.5.8) 

where the superscript in parentheses again refers to the element number, and each sub­
matrix [kV)] is of order 2 x 2. The stiffness matrix of the quadrilateral, assembled 
using Eq. (7.5.8) along with similar stiffness matrices for elements 2-4 of Figure 7-15, 
is given by the following (before static condensation is used): 

(UI. VI) (U2' V2) (U3) V3) (U4) V4) (us, vs) 

(kii)] 

+ [k~~] [0] [ki~l [ki~)] + rki~)J 
[ki~)l 

fk~;)] 
[k;~)] + [k~;)J [0] [k~~)] + [k~~l 

[J4~J 
[k~~)] 

[k]= [OJ [k~;)l + rk~!)] [k~~)] + [k~!)] (7.5.9) 
[k~~)I 

[k~)] 

rkl~)l [OJ [k~~)J + [ki~}] + [ki~)] 
[k~)l 

'] [kg)l [kWl [k~!ll ([ki~)l + [k~~)]) 
+ + + + + 

[k1i1j [kg) 1 [kg)] [k~)l ([k~~)] + [k;~)J) 
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. (a) (b) (c) _ 

Figure 7-16 Skew effects in finite element modeling 

where the orders of the degrees of freedom are shown above the columns of the 
stiffness matrix and the partitioning scheme used in static condensation is indicated 
by the dotted lines. Before- static condensation is applied. the stiffness matrix is of 
order 10 x 10. 

Example 7.1 

Consider the quadrilateral with internal node 5 and dimensions as shown in Figure 7-17 
to illustraJ:e the application of-static condensation. 

3 
4 

® I 
CD 

5 
0 2 in. 

~ 
Figure 7-17 Quadrilateral with an 

<D internal node 
I 

~ 4 in. ./2 

Recall that the original stiffness matrix of the quadrilateral is lOx 10, but static 
condensation will result in an 8 x 8 stiffness matrix after removal of the degrees of 
freedom (us, tis) at node 5. 

Using the CST stiffness matrix of Eq. (6.4.3) for plane strain, we have 

3 -4 5 
2 5 

1-5 1.0 0.1 0.2 -1.6 -1.2 

3.0 -0.2 2.6 -0.8 -5.6 

[k(J}] = [k(3)] = ~ 1.5 -1.0 -1.6 1.2 
(7.5.10) 

4.16 3.() 0.8 --5.6 
3.2 0.0 

Symmetry 11.2 
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Similarly, from Figure 7-17, we can show that 

E 
4.16 

2 3 
4 1 

1.5 - 1.0 -0.1 0.2 
3.0 -0.2 -2.6 

1.S 

Symmetry 

1.0 
3.0 

5 
5 

-1.4 0.8 
1.2 -0.4 

-1.4 -0.8 
(7.S.!I) 

-1.2 -0.4 
2.8 0.0 

0.8 

where the numbers above the columns in Eqs. (7.SJ 0) and (7.5.11) indicate the orders 
of the degrees of freedom associated with each stiffness matrix. Here the quantity in 
the denominator ofEq. (6.4.3), 4A(1 + v){l - 2v), is equal to 4.16 in Eqs. (7.5.10) 
and (7.5.11) because A = 2 in2 and v is taken to be 0.3. Also, the thickness t of the el­
ement has been taken as I in. Now we can superimpose the stiffness terms as indicated 
by Eq. (7.5.9) to obtain the general expression for a four-CST element. The resulting 
assembled total stiffness matrix before static condensation is applied is given by 

E 
[k] = 4.16 

3.0 2.0 0.1 0.2 0.0 0.0 -0.1 -0.2: -3.0 -2.0 
6.0 -0.2 2.6 0.0 0.0 0.2 -2.6: -2.0 -6.0 

Symmetry 

3.0 -2.0 -0.1 0.2 0.0 0.0: -3.0 2.0 
1 

6.0 -0.2 -2.6 0.0 . 0.0: 2.0 -6.0 
3.0 2.0 0.1 0.2: -3.0 -2.0 

6.0 -0.2 2.6: -2.0 -6.0 
3.0 -2.0: -3.0 2.0 

I 

-~.~-:--~.Q_-~~~ 
:·12.0 0.0 

24.0 

(7.5.12) 

After we partition Eq. (7.5.12) and use Eq. (7.5.6), the condensed stiffness matrix is 
given by 

ur VI U2 V2 U3 V3 U4 V4 

2.08 1.00 -0.48 0.20 -0.92 -LOO -0.68 -0.20 
4.17 -0.20 1.43 -l.00 -1.83 0.20 -3.77 

2.08 -1.00 -0.68 0.20 -0.92 1.00 

E 4.17 -0.20 -3.77 1.00 -1.83 
[kc] = 4.16 2.08 1.00 -0.48 0.20 

4.17 -0.20 1.43 
2.08 -1.00 

Symmetry 4.17 

(7.5.13) 

• 
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A 7.6 Flowchart for the Solution 
of Plane Stress/Strain Problems 

In Figure 7-18, we present a flowchart ofa typical 'finite element process used for the 
analysis of pJane stress and plane strain, problems on the basis of the theory presented 
in Chapter 6 . 

.6.. 7.7 Computer Program Assisted Step-by-Step 
Solution, Other Models and Results for Plane 
Stress/Strain Problems 

In this section, we present.a computer-assisted step-by-step solution of a plane stress 
problem, along with results of some plane stress/strain problems solved using a com­
puter program (12]. These results illustrate the various kinds of difficult problems 
that can be solved using a general-purpose computer program. 

Draw Ihe geometry and apply forces 
and boundary conditions 

Define the element type and mechanical 
properties (here the 2-D element is used) 

Compute the element stiffuc:ss matrix 
!, and the load veclor[in global coordinates 

Perform static condensation if the element has internal degrees of 
freedom (that is, if quadrilaterals are used) 

Use the direct stiffness procedure to add If. and distributed loads [ 
to tbe proper locations in assemblage stiffness K and loads E. 

Output results 

Figure 7-18 Flowchart of plane stress/strain finite element process 
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The computer-assisted step-by-step problem is the bicycle wrench shown in 
Figure "i-19(a). The following steps have been used to solve for the stresses in the 
wrench~~ . 

1. The first step is to draw the outline of the wrench using a standard 
drawing program as shown in Figure 7-i9(a). The exact dimensions 
of the wrench are obtained from Figure P7-35, where the overall 
depth of the wrench is 2.0 em, the length is 14 em) and the sides of the 
hexagons are 9 mm long for the middle one and 7 mm long for the 
side ones. The radius of the enclosed ends is 1_50 em. 

2. The second step is to use a two-dimensional mesh generator to create 
the model mesh as shown in Figure 7-19(b). 

3. The third step is to apply the boundary conditions to the proper 
nodes using the proper boundary condition command. This is 
shown in Figure 7-19(c) as indicated by the small @ signs at the 
nodes on the inside of the left hexagonal shaped hole. The @ sign 
indicates complete fixity for a node. This means these nodes' are 
constrained from translating in the y and z directions in the plane of 
the wrench. 

4. The fourth step- requires us to select the surface where the distributed 
loading is to be applied and then the magnitude of the surface 
traction. This is the upper surface between the middle and right 
hexagonal holes where the surface traction of 100 N/cm2 is applied as 
shown in Figure 7-19{d). In the computer program this surface 
changes to the color red as selected by the user (Figure 7-19{c)). 

S. In step five we choose the material properties. Here ASTM A·514 
steel has been selected, as this is quenched apd tempered steel 
with high yield strength and win allow for the thickness to be 
minimized. 

6. In step six we select the element type for the kind of analysis to be 
performed. Here we select the plane stress element, as this is a good 
approximation to the kind of behavior that is produced in a plane 
stress analysis. For the plane stress element a thickness is required. An 
initia:l guess of one em is made. This thickness appears to be 
compatible with the other dimensions of the wrench. 

7. The seventh step is an optional check of the model. If you choose to 
perform this step you will see the boundary conditions now appear as • 
triangles at the left nodes corresponding to the @ signs forful1 fixity 
and the surface traction arrows, indicating the l~tion and direction 
of the sUlface traction shown also in Figure 7-19(d). 

8. In step eight we perform the stress analysis of the model. 
. 9. In step nine we select the results, such as the displacement plot, the 

principal stress plot, and the von Mises stress plot. The von Mises 
stress plot is used to determine the failure of the wrench based on the 
maximum distortion energy theory as described in Section 6.5. The 
von Mises stress plot is shown in Figure 7-19(e). The maximum 
von Mises stress indicated in Figure 7-19(e) is 502 MPa, and the yield 
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Figure 7--19 Bicycle wrench (a) Outline drawing of wrench, (b) meshed model of wrench, 
(c) boundary conditions and selecting surface where surface traction will be applied, (d) checked 
model showing the boundary conditions. and surface traction, and (e) von Mises stress plot 
(compliments. of Angela Moe) 



" ", 

7.7 Computer Program Assisted Step-by-Step Solution, Other Models and Results .. 317 

---~ 

........... \IlIIIJI< ·1 41l'J13e.Cl1 lbVC .... 2) 

(b) 

Figure 7-20 (a) Conneaing rod subjected to tensile loading and (b) resulting 
principal stress throughout the rod 

strength of the ASTM A-S14 steel is 690 MPa. Therefore, the wrench 
is safe from yielding. Additional trials can be made if the factor of 
safety is satisfied and if the maximum deflection appears to be 
satisfactory . 

Figure 7-20{a) shows a finite element model of a steel connecting rod that is 
fixed on its left edge and loading around· tlie right inner edge of the hole with a total 
force of 3000 lb. For more details, including the geometry of this rod, see Figure 
P7-11 at the end of this chapter. Figure 7-20{b) shows the resulting maximum 
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Figure 7-21 von Mises stress. plot of overload protection device 

principal stress plot. The largest principal stress of 12051 psi occurs at the top and bot­
tom inside edge of the hole. 

Figure 7-21 shows a finite element model along with the von Mises stress plot of 
an overload protection device (see Problem 7-30 for details of this problem). The 
upper member of the device was modeled. Node S at the shear pin location was con­
strained from vertical motion and a node at the roller E was constrained in the hori­
zontal direction. An equilibrium load was applied at B along line BD. The magnitude 
of this load was calculated as one that just makes the shear stress reach 40 MPa in the 
pin at S. The largest von Mises stress of 178 MPa occurs at the inner edge of the cut­
out section. 

Figure 7-22 shows the shrink plot of a finite element analysis of a tapered plate 
with a hole in it, subjected to tensile loading along the right edge. The left edge was 
fixed. For details of this problem see Problem 7-23. The shrink. plot separates the ele­
ments for a clear look at the model. The lugest principal stress of 19.'0 e6' Pa 
(19.0 MPa) occurs at the edge of the hole, whereas the second largest principal stress 
of 17.95 e6 Pa (17.95 MPa) occurs at the elbow between the smallest cross section 
and where the taper begins. .. 

Figure 7-23 shows the shrink fit plot of the maximum principal stresses in an 
overpass subjected to vertiCal loading on the top edge. The largest principal stress of 
56162 Iblft2 (390 psi) occUrs at the top inside edge. For more details of this problem 
see Problem 7.20. 
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Figure 7-22 Shrink fit plot of principal stresses in a tapered plate with hole 

Finally, Figure 7-24(a) shows a finite element discretized model of a steel spur 
gear for stress analysis. The auto meshing feature resulted in very small elements at 
the base of the tooth. The applied load of 164.8 Ib and the fixed nodes around the 
inner hole of the gear are shown. Figure 7-24(b) shows an enlarged von Mises stress 

Su.s:s 
von Mists 
Ib\l(ft"2) 

56161.S6 
50571.37 
44lSO.SS 
39390.4 
33799.91 
28209.42 
22618.93 
17028.44 
11437.05 
5847.4136 
258.9776 

Figure 7-23 Shrink fit plot of principal stresses in overpass (Compliments of David Walgrave) 
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(a) 

(b) 

Figure 7-24 (a) Finite element model of a spur gear and (b) von Mises stress plot 
(Compliments of Bruce Figi) 

plot near the root of the tooth with the applied load acting on it. Notice that the larg­
est stress of 4315 psi occurs at the left root of the tooth. The gear model has 27761 
plane stress elements. 
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4. Problems 

7.1 For the finite element mesh shown in Figure P7-I, comment on the goodness of the 
mesh. Indicate the mistakes in the model. Explain and show how to correct them. 

III ~IIIII 
Figure P7-1 

/: 

C A 

............ . 

../" 
~ 
./ 

D B 

Figure P7-2 

7.2 Comment on the mesh sizing in Figure P7-2. Is it reasonable? lfnot, explain why not. 

7.3 What happens if the material property v = 0.5 in the plane strain caSe? Is this possi­
ble? Explain. 

j . 
7.4 Under what conditions is the structure in Figure P7-4 a plane strain problem? Under 

what conditions is the structure a pJane stress problem? 
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!--IOin.-t 
% T 1000 Ib/in. 

lOin. / 

=--r Figure P7-4 

10 in. 

'~_~_----J -.L 
I----20 in.---1 

7.5 When do problems occur using the smoothing (averaging of stress at the nodes from 
elements connected to the node) method for obtaining stress results? 

7.6 What thickness do you think is used in computer programs for plane strain problems? 

7.7 Which one of the CST models shown below is expected to give the best results for a 
cantilever beam subjected to an end shear load? Why? 

~] I I I I 14@."=4bL ~ 1111111111 n J m 

6 @ 2" = 12" 12 @ 1" = 12" I_ -II fo/It-.. -----'""I 

(a) (b) 

~-I-------li :: 
6" 6" 

! - -I- -I 
(c) (d) 

Figure P7-7 

7.8 Show that Eq. (7.5.13) is obtajned by static condensation of Eq. (7.5.12). 

Solve the following problems using a computer program.. In some of these problems, we 
suggest that students be assigned separate parts (or models) to facilitate parametric 
studies. ' 

• 7.9 Determine the free-end displacements and the element stresses for the plate discretized 
into four triangular elements and subjected to the tensile forces ~hown in Figure P7-9. 
Compare your results to the soIutio~ given in Section 6.5 Why are these results dif.;. 
ferent? Let E = 30 x 106 psi, V = 0.30, and I = 1 in. 
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"* C><J 1.:~1' 10m. 

1 5000 Ib 

Figure P7-9 

~-20in. ..I 

S 7.10 Determine the stresses in the plate with the hole subjected to the tensile stress shown in 
Figure P7-1O. Graph the stress variation ax versus the distance y from the hole. Let 
E = 200 GPa, v = 0.25, and t 25 rnm. (Use approximately 25, 50, 75~ 100, and then 
120 nodes in your finite element model.) Use symmetry as appropriate. 

S 7.11 

2S mm radius 

IOkPa 500mm WkPa L. 

~-500mm .1 
Figure P7-10. 

Solve the following problem of a steel tensile plate with a concentrated load applied at 
the top, as shown in Figure P7-11. Determine at what depth the effect of the load dies 
out. Plot stress Cly versus distance from the load. At distances of 1 in.~ 2 in., 4 in., 6 in., 
10 in., 15 in., 20 in., and 30 in. from the load~ list a y versus these distances. Let the 
width of the plate be b = 4 in., thickness of the plate be t = 0.25 in., and length be 
L == 40 in. Look up the concept of St. Venant's principle to'see how it explains the 
stress behavior in this problem. 

S 7.12 For the connecting rod shown in Figure P7-12, determine the maximum principal 
stresses and their location. Let E = 30 X 106 psi, v = 0.25, t = 1 in., and P = 1000 lb . 

.s 7.13 Determine the maximum pIincipal stresses and their locations for the member with 
fillet' subjected to tensile forces shown in Figure P7-13. Let E = 200 'GPa and 
v = 0.25. Then let E 73 GPa and v 0.30. Let t = 25 mm for both cases. Compare 
your answers for the two cases. 
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Figure P7-12 

Figure P7-13 
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7.14 Determine the stresses in the member with a re-entrant comer as shown in Figure P7 -14. 
At what location are the principal stresses largest? Let E = 30 X 106 psi and v = 0.25. 
Use plane strain conditions. 

--II ftL r::- 100 Iblln. -,....-

!-IOio'-1 
% T 

10 in. 
1000 Ib/in. 

/ 
1 

D 

1 
I 2D---t·1 I""" Axis of symmetry 

I . 
I =T 

JO in. 

'/'--____ --' --L 
!--20in.--j 

Figure P7-14 Figure P7-15 

7.15 Determine the stresses in the soil mass subjected to the strip footing load shown in 
Figure P7-15. Use a width of2D and depth of D. where D is 3, 4.6,8, and 10 ft. Plot 
the maximum stress contours on your finite element model for each case. Compare 
your results. Comment regarding your observations on modeling infinite media. Let 
E = 30,000 psi and v = 0.30. Use plane strain conditions. 

~ 7.16 For the tooth implant sUbjected to loads shown in Figure P7-16) determine the max­
imum principal stresses. Let E = 1.6 X 106 psi arid v = 0.3 for the denta1 restorative 

10 lb 151b 

o 17.' 35. 37. 55. 36. 

I 
32 lD. 32 m. 32 10. 32 Ill. 16 1tI. 

r-' ------- 2~ in.-------t·1 
Figure P7 -16 
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implant material (cross-hatched), and let E = I X 106 psi and v = 0.35 for the bony 
material. Let X = 0.05 in., OJ in.) 0.2 in., 0.3 in., and 0.5 in., where X represents the 
various depths of the implant beneath the bony surface. Rectangular elements are 
used in the finite element" model shown in Figure P7 -16. Assume the thickness of each 
element to be t = 0.25 in. 

Detennine the middepth deflection at the free end and the maximum principal stresses 
and their location for the beam subjected to the shear load v~riation shown in Figure 
P7 -17. Do this using 64 rectangular elements all_of size 12 in. x ! in.; then all of size 
6 in. x 1 in.; then all of size 3 in. x 2 in. Then use 60 rectangular elements all of size 
2.4 in. x 2~ in.; then all of size 4.8 in. x l~ in. Compare the free-end deflections and the 
maximum . principal stresses in each case to the exact solution. Let E = 30 X 106 psi, 
v = 0.3, and t = 1 in. Comment on the accuracy of both displacements and stresses. 

~ 
4O.000-lb total shear 

T 
I 

load parabolically r ___ ~_-----,l d;,"buI<d 

t--1·~-----48in.--------II· 
Figure P7 -17 

S 7.18 Detennine the stresses in the shear wall shown in Figure P7-18. At what location are 
the principal stresses largest? Let E = 21 GPa, v = 0.25, twall = 0.10 m, and tbeam = 
0.20m. 

50 kN/m 

1 
8m 

J 
2m 

1m ________ J __ 
Beam --r-
~~~,--L 

~::~ f=4m 
~ IO'm -----001 

Figure P7-18 
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7.19 Determine the stresses in the plates with the round and square holes subjected to the 
tensile stresses shown in Figure P7-19. Compare the largest principal stresses for each 
plate. Let E = 210 GPa, v = 0.25, and t = 5 mm. 

1 mmrod 

~ XJ~rrvn 

2S-mm radius 2Smm 

Figure P7-19 

.. 7.20 For the concrete overpass structUre shown in Figure P7-20, detennine the maximum 
principal stresses and their locations. Assume plane strain conditions. Let E = 3.0 X 

106 psi and v = 0.30. 

2 k/ft 

~~~l 

ll.5-ft 
radius 

18ft 

Tn I 
'\: ~\: ~~ 
~lOft-t--l0ft-+-lOft-+-IOft~ 
Figure P7-20 

• 7.21 For the steel culvert shown in Figure P7-21, detennine the maximum principal 
stresses and their locations and the largest displacement and its location. Let 
Esteel = 210 GPa and let v = 0.30. . 

.. 7.22 For the tensile member shown in Figure P7-22 with two holes, detemline the maxi· 
mum principal stresses and their locations. Let E = 210 GPa, v 0.25, and t = 10 mm. 
Then let E :: 70 GPa and v == 0.30. Compare your results. 

~ 7.23 For the plate shown iIi Figure P7-23~ determine the maximUm principal stresses and 
their locations. Let E = 210 GPa and v = 0.25. 



t-- 1.5 m 20kN 

3 m FigureP7-21 

)' 

T 
0.3 m+-OA m-l-O.3 m 0.75 m 
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25-mm radius 

, '0 
O.15m 

T 
I 

,0.15 m+015 m~015 m-
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'Figure P7-23 
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» 7.24 For the concrete dam shown subjected to water pressure in Figure P7-24. determine 
the principal stresses. Let E = 3.5 X io6 psi and v = 0.30. Assume plane strain con­
ditions. Perform the analysis for'self-weight and then for hydrostatic (water) pressure 
against the dam vertical face as shown. 

S7.25 Determine the stresses in the wrench shown in Figure P7-25. Let E = 200 GPa and 
v = 0.25, and assume uniform thickness t = 10 mm. 
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1(lO it 

14-----180 it -----001·1 
Figure P7-24 

II 7.26 Determine the principal stresses in the bJade implant and the bony material shown in 
Figure P7-26. Let Ebladc 20 GPa, Vblade = 0.30, Ebone = 12 GPa, and "bone. = 0.35. 
Assume plane stress conditions with"t = 5 mm . 

• 7.27 Determine the stresses in the plate shown in Figure P7-27. Let E 210 GPa and 
v = 0.25. The element thickness is 10 mm . 

• 7.28 

.7.29 

For the O.S in. thick canopy hook shown in Figure P7-28~ used to hold down an air­
craft canopy, determine the maximum von Mises stress and maximum deflection. The 
hook is subjected to a concentrated upward load of 22,400 Ib as shown. Asswne 
boundary conditions of fixed supports over the lower half of the inside hole diameter. 
The hook is made from AISI 4130 steel, quenched and tempered at 400 OF. (This 
problem is compliments of Mr. Steven Miner.) 

For the! in. thlc~ L-sbaped steel bracket shown in Figure P7-29, show that the stress 
at the 90 degree re-entrant comer never converges. Try models with increasing num­
bers of elements to show this while plotting the maximum principat stresS in the 
bracket. That is, start with one model, then refine the mesh around the re-entrant 
comer and see what happens, say, after two refinements. Why? Then add a fillet, say, 
of radius i in. and see what happens as you refine the mesh. A~ plot the maximum 
principal stress for each refinement. 
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Figure P7-25 

Use a computer program to belp solve the design-type problems, 7.30-7.36 • 

The machine shown in Figure P7-30 is an overload protection device that releases the 
load when the shear pin S fails. Determine the maximum von Mises stress in the upper 
part ABE if the pin shears when its shear stress is 40 MPa. Assume the upper part to 
have a unifonn thickness of 6 mm. Assume plane stress conditions for the upper part. 
The part is made of 6061 aluminum alloy. Is the thickness sufficient to prevent failure 
based on the maximum distortion energy theory? If not, suggest a better thickness. 
(Scale aU dimensions as needed.) 

• 7.31 The steel triangular plate 1 in. thick shown in Figure P7-31 is bolted to a steel column 
with }in.-diameter bolts in the pattern shown. Assuming the column and bolts are 
very rigid relative to the plate and neglecting friction forces between the column and 
pJate) detennine the highest load exerted on any bolt. The bolts should not be included 
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66N 

66N 

6mm T 

Blade: implant ............... 

Figure P7-26 

3k.N 3kN 

Figure P7-27 

in,the·model. Just fix the nodes around the bolt circles and consider the reactions at 
these nodes as the bolt loads. If i-in.-diameter bolts are not sufficient, recoIJJ.IIieild 
another standard diameter. Assume a standard material for the bolts. Compare the 
reactions from the finite element results to those .found by classical methods . 

• 7.32 A l in. thick ~chine part supports an end load of 1000 lb as shown in Figure P7-32. 
Determine the stress concentration factors for the two changes in geometry l09ated at 
the radii shown on the lower side of the part. Compare the stresses you get to classical 

. beam theory results with and without the change in geometry, that is, with 'a unifonn 
depth of 1 in. instea4 of the additional matetial depth of 1.5 in. Assume standard 
mild steel is used for the part. Recommend any changes you might make in the 
geometry. 
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Figure P7-28 
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Figure P7-29 
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~.7.33 
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figure P7-30 Overload protection device 

o 0 

24 
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Figure P7-31 Steel triangular plate 
connection 

Figure P7-32 Machine part 

Dimensions in inches 

A plate with a hole off-centered is shown in Figure P7-33. Determine how close to the 
top edge the hole can be placed before yielding of the A36 steel occurs (based on the 
maximum distortion energy theory). The applied tensile stress is 10)000 psi, and 
the plate thickness is i in. Now if the plate is made of 6061-T6 aluminum alloy with a 
yield strength of 37 ksi, does this change your answer? If the plate thickness is changed 
to ! in., how does this change the results? Use same total load as when the plate is ~ in. 
thick. 
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Figure P7~33 Plate with off-centered hole 

~ 7.34 One arm ofa crimper tool shown in Figure P7-34 is to be designed of 1080 as-rolted 
steeL The loads and boundary conditions are shown in the figure. Select a thickness 
for the arm based on the material not yielding with a factor of safety of 1.5. Recom­
mend any other changes in the design. (Scale any other dimensions that you need.) 

.... 1.-. ---8.oooo------....!,1 

O.6000;} RO.l409 

! 

(a) Crimper ann with dimensions (inches) RO.l409 

y E=60lb 

1oot----S.8 in. .1 
x--------~--------_. 

B=S411b 

*" 
(b) Crimper arm loads and boundary condtions 

Figure P7-34 Crimper arm 

• 7.35 Design tJ:ie-bicycle wrench with the approximate dimerisions shown in Figure P1-35. 
If you need to change dimensions explain why. The wrench should be made of steel or 
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SJ 7.36 

aluminum alloy. Determine the thickness needed based on the maximum distortion 
energy theory. Plot the deformed shape of the Wrench and the principal stress and von 
Mises stress. The boundary conditions are shown in the figure, and the loading is 
shown as a distributed load acting over the right part of the wrench. Use a factor of 
safety of 1.S against yielding. 

R= J.50cm The sides of the middle 
hexagon are 9 rnm long. 

The sides of the comer 
. hexagons are 7 mm long. 

Fixed all the way around this hexagon. 

Figure P7 -35 Bicycle wrench 

For the various parts shown in Figure P7-36 determine the best one to relieve stress. 
Make the original part have a small radius of 0.1 in. at the inside re-entrant comers. 
Place a uniform pressure load of 1000 psi on the right end of each part and fix the left 
end. All units shoYlIl are taken in inches. Let the material be A 36 steeL 

T I T 
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+ 
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Introduction 

In this chapter, we consider the development of the stiffness matrix and equations for 
a higher-order triangular element, called the linear-strain triangle (LST). This element 
is available in many commercial computer programs and has some advantages over 
the constant-strain triangle described in Chapter 6. 

The LST element has six nodes and twelve unknown displacement degrees of 
freedom. The displacement functions for the element are quadratic instead of linear 
(as in the CST). 

The procedures for development of the equations for the LST element follow the 
same steps as those used in Chapter 6 for the CST element. However, the number of 
equations now becomes twelve instead of six, making a longhand solution extremely 
cumbersome. Hence, we will use a computer to perform many of th~ mathematical 
operations. ' 

After deriving the element equations, we will compare results from problems 
solved using the LST element with those solved using the CST element. The introduc­
tion of the higher-order LST element win illustrate the possible advantages of higher­
order elements and should enhance your general understanding of the concepts 
involved with finite element procedures. 

... 8.1 Derivation of the linear-Strain 
Triangular Element Stiffness Matrix 
and Equations 

We will now derive the LST stiffness matrix and element equations. The steps used 
here are identical to those used for the CST element, and much of the notation is the 
same. 



Fuel injector-The turbine engine fuel injector is part of a turbine engine used in road transport 
vehicles designed by an engineering firm. Shown is the steady-state heat transfer analysis 
performed in ALGOR to determine the temperature distribution from convection loads applied to 
the inner shaft and the outside surface of the entire assembly. Brick elements (not shown) were 
used in the model. (Courtesy of ALGOR, Inc.) 

Housing model-The housing model made of ASTM A-S72, grade 50 steel, is the rear-axle housing 
of a mining truck. A finite element analysis of the housing was necessary to determine why the 
housing failed in the field. The stress analysis performed using brick elements With torsional loads 
applied showed that the area around the padeye (shown in red color) was subjected to critical 
stresses, validating the visual inspection of the damaged part. The analysis was performed by iii 
structural engineer working for the mining company_ (Courtesy of ALGOR, Inc.) 



Cylinder head-The cylinder head model made of stainless steel AIS. 410, is part of a prototype 
diesel engine that would provide reduced heat rejection and increased power density. Shown is 
the ALGOR steady-state heat transfer analysis {using brick elements} ,revealing the high 
temperatures of 1 SoO degrees F in red color at the interface between the two exhaust ports. These 
temperatures were then fed into the linear stress analyzer to obtain the thermal stresses ranging 
from 85 ksi to 200 ksi. The linear stress analysis confirmed the behavior that the engineers saw in 
the initial prototype tests. The highest thermal stresses coincided with the part of the cylinder head 
that had been leaking in the preliminary prototypes. (Courtesy of ALGOR-Inc.) 

Subsoiler-The 12-row subsoiler used in agricultural equipment was designed to prepare 10 inch 
wide seed beds spaced 40 inches apart as commonly used in cotton production. One of these load 
conditions was simulating the shanks of the subsoiler pulling through 18 inches of hardpan soil. 
The ALGOR linear static stress analysis program was used to optimize the thickness, shape, and 
material of the frame, hitch and hinge components to reduce high stresses. The stress shown is 
the von Mises stress plot when the load is simulating the shanks pulling through approximately 
18 inches of soil. From these results the d~signers can determine the parts that need to be made of 
stronger steel alloys. (Courtesy of ALGOR, Inc.) 



Truck frame-The truck frame shown Is a finite element model made of brick elements. The steel frame was designed to retrofit a 
truck with an electric motor with batteries. (Courtesy of TrueGrld®.) 



Bearing housing-The steel bearing housing model is used to support one end of reel spoof in 
the paper industry_ A finite element model was created to study the deflection and stress in the 
bearing housing. The model consisted of beam elements to model the journal inside of the 
bearing, brick elements to model the bearings (mufti-colored inside of the green colored bearing 
housing), bearing housing, and rail (orange color), universal joints to connect the journal to the 
bearing surface, surface contact pairs to represent the bearing-ta-housing interface and housing­
to-rail interface_ The model was created in Algor using FEMPRO. (Compliments of UW-Platteville 
students, Jason Fencl and David Stertz.) 



8.1 Derivation of the linear-Strain Triangular Element Stiffness Matrix and Equations A 399 

Step 1 Select Element Type 

Consider the triangular element shown in Figure 8-1 with the usuaJ end nodes and 
three additional nodes conveniently located at the midpoints of the sides. Thus, a 
computer program can automatically compute the midpoint coordinates once the 
coordinates of the comer nodes are given as input. 

y,D 

------~-_-_~_ x;u 

Figure 8-1 Basic six-node triangular element showing degrees of freedom 

The unk.nown nodal displacements are now given by 

Ul 

_1.11 

ui 
41 1':2 

42 U3 

{d} = 43 -V3 

44 U4 

is 114 

46 Us 

V5 

U6 

V6 

Step, 2 Select a Displacement Function 

We now select a quadratic displacement function in each element as 

u(x,y) = at + a2X + a3Y + a4x2 + asxy + a6y2 

v(x,y) = a7 + asx + a9Y + aloX2 + auxy + al2Y2 

(8.1.1 ) 

(8.1.2) 

Again, the number of coefficients ai(12) equals the total number of degrees offreedom 
for the element. The displacement compatibility among adjoining elements is satisfied 
because three nodes are located along each side "and a parabola is defined by three 
points on its path. Since adjacent elements are connected at common nodes, their dis-
placement compatibility across the boundaries will be maintained. . 

In general, when considering triangular elements, we can use a complete polyno­
mial in Cartesian coordinates to describe the displacement field Within an element. 
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Terms in Pascal Trilmgk 
J\ 

PolynomiJJ.J Degree N"mDer of Tttrms Tri4llgk 

o (constant) 

x yc 1. (linear) 3. CST A 
(Chap.6) 

x2 xy y2 2 (quadratic) 6 ~~ 
(Chap. 8) 

x3 xly xi~ y3 3 (cubic) 10 QST8 
Figure 8-2 Relation between type of plane triangular element and polynomial 
coefficients based on a Pascal triangle. 

Using internal nodes as necessary for the higher-order cubjc and quartic elements, we 
use all terms of a truncated Pascal triangle in the displacement field Of, equivalently, 
the shape functions, as shown by Figure 8-2; that is, a complete linear function is 
used for the CST element considered previously in Chapter 6. The complete quadratic 
function is used for the LST of this chapter. The complete cubic function is used for 
the quadratic-strain triangle (QST), with an internal node necessary as the tenth node. 

The general displacement functions, Eqs. (8.1.2), expressed in matrix form are 
now 

{~} = { : } = [~ ~ ~ ~ ; Y; 0 ~ ~ ~ : ;2] [ :: 1 (8.1.3) 

al2 

Alternatively, we can express Eq. (8.1.3) as 

{I/J} = [M*]{a} 

where [M·] is defined to be t;he first matrix on the right side ofEq. (8.1.3). The coefficients 
aJ through al2 can be obtained by substituting the coordinates into uand v as follows: 

XI Yt xt XIYt yf 0 0 0 0 

X2 Y2 xi XV'2 y~ 0 0 0 0 

o 0 

o 0 

X6 Y6 x~ X6Y6 n 0 0 0 0 0 0 
o 0 0 0 0 0 XI Yl Xf X1Yl Yf 

o 0 '0 0 '0 0 

o 0 0 0 o 0 

(8.1.5) 
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Solving for the a/5, we have 

al 
XI Y1 x? XIY' yr 0 0 0 0 0 0 

-I 

UJ 

a6 X6 Y6 x2 
6 X6Y6 y~ 0 0 0 0 0 0 U6 

a, 0 0 0 0 0 0 x, YI x2 
I XIYI Yt VI 

a12 0 0 0 '0 0 0 XiS Y6 X2 x6.Y6 yg ViS 
is 

(8.1.6) 

Of, alternatively, we can express Eq. (8.1.6) as 

{a} = [X]-I{d} (8.1.7) 

where [Xl is the 12 x 12 matrix on the right side ofEq. (8.1.6). It is best to invert the 
[X] matrix by using a digital computer. T.hen the a/s, in terms of nodal displacements, 
are substituted into Eq. (8.1.4). Note that only the 6 x 6 part of [Xl in Eq. (8.1.6) 
really must be inverted. Finally, 'using Eq. (8.1.7) in Eq. (8.1.4). we can obtain the gen­
eral displacement expressions in terms of the shape functions arid the nodal degrees of 
freedom as 

where 

{ift} = [N]{d} 

[NJ = [M·}[X]-I 

Step 3 Define the Strain/Displacement and Stress/Strain 
Relationships 

The element strains are again given by 

au 
ax 
av 
oy 

ov au 
-+­ox oy 

or, using Eq. (8.l.3) for u and v in Eq. (8.1.10). we obtain 

[

0 I 0 2x y 0 0 o. 0 0 0 
{e} = 0 0 0 0 0 0 0 0 lOx 

o 0 t 0 x 2y 0 1 0 2x y 

(8.1.8) 

(8.1.9) 

(8.1.10) 

(8.1.11) 

We observe that Eq. (8.1.11) yields a linear strain variation in the element. Therefore, 
the element is called a/inear-strain tritmgle (LSI'). Rewriting Eq. (8.1.11), we have 

{e} = [M1{a} (8.1.12) 
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where [M'] is the first matrix on the right side of Eq. (8.1.11). Substituting Eq. (8.1.6) 
for the a/s into Eq. (8.1.12), we have {e} in terms of the nodal displacements as 

{e} fB]{d} (8.1.13) 

where [B] is a function of the variables x and y and the coordinates (Xl, Yl) through 
(X6, Y6) given by 

[B] = [M'][Xr l (8.1.14) 

where Eq. (8.1.7) has been used in expressing Eq. (8.1.14). Note that [B] is now a 
matrix of order 3 x 12. 

The stresses are again given by 

{ ~ } = [Dl{ :; } = lD][BHd} 
t xy Yxy 

(8.1.15) 

where [D] is given by Eq. (6.1.8) for plane stress or by Eq. (6.1.10) for plane strain. 
These stresses are now linear functions of x and y coordinates. 

Step 4 Derive the Element Stiffness Matrix and Equations 

We detennine the stiffness matrix in a manner similar to that used in Section 6.2 by 
using Eq. (6.2.50) repeated here as 

[k] = J II [Bf[D][B] dV (8.1.16) 

v' 

However, the [B) matrix is now a function of x and y as given by Eq. (8.1.14). There~ 
fore, we must perform the integra~ion in Eq. (8.1.16). Finally, the [B] matrix is of the 
form 

(8.1 J 7) 

where the {f's and y's are now functions of x and y as well as of the nodal coordinates, 
as is illustrated for a specific linear~strajn triangle in Section 8.2 by Eq. (8.2.8). 
The stiffness matrix is then seen to be a 12 x 12 matrix on multiplying the matrices 
in Eq. (8.1.16). The stiffness matrix, Eq. (8.1.16), is very cumbersome to obtain in 
explicit form, so it will not be given here. However, if the origin of the coordinates 
is considered to be at the centroid of the element, the integrations become amenable 
[9]. Alternatively, area coordinates [3, 8, 9] can be used to obtain an explicit form 
of the stiffness matrix. However, even the use of area coordinates usually involves 
tedious calculations .. Therefore,' ~e integration is best carried out numerically. 
(Numerical integration is described in Section lOA.) 
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The element body forces and surface forces should not be automatically lumped 
at the nodes, but for a consistent fonnulation (one that is fonnulated from the same 
shape functions used to fonnulate the stiffness matrix), Eqs. (6.3.1) and (6.3. 7), respec­
tively, should be used. (Problems 8.3 and 8.4 illustrate this concept.) These forces can 
be added to any concentrated nodal forces to obtain the element force matrix. Here 
the element force matrix is of order 12 x 1 because, in general, there could be an x 
and a y component of force at each oftbe six nodes associated with tlle element. The 
element equations are then given by 

fiy k21 k2•12 

· . (8.1.18) · - . · . rl [k" 
}6y kl2,! 

... k,.I2] 

k12,12 El 
(12 x 1) (12 x 12) (12 x 1) 

Steps 5-.7 

Steps 5-7, which involve a~sembling the global stiffness matrix and equations~ deter­
mining the unknown global nodal displacements, and calculating the stresses, are 
identical to those in Section 6.2 for the CST. However, instead of constant stresses in 
each element, we now have a linear varia tion of the stresses in each element. Common 
practice was to use the centroidal element stresses. Current practice is to use the 
average of the nodal element stresses. 

tJ.\. 8.2 Example lST Stiffness Determination 

To illustrate some of the procedures outlined in Section 8.1 for deriving an LST 
stiffness matrix) consider the following example. Figure 8-3 shows a specific LST 
and its coordinates. The triangle is of ba .. e dimension b and height h, with midside 
nodes. 

y 

(Q,h) 3 

(0,0) .... 1 __ ---461t--__ -----l1--__ 

(~.o) 
(b.O) 

Figure 8-3 lST triangle for evaluation of 
a stiffness matrix 
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Using the first six equations of Eq. (8.t".5), we calculate the coefficients a1 

through 06 'by evaluating the displacement U at each of the six known coordinates of 
each node as follows: 

UI = u(O, 0) = 0, 

U2 = u(b, 0) = 01 + a2b + a4b2 

U3 = u(O,h) = al + a3h + Q(,h2 

(b h) b h (b)2 hh (h)2 
U4 = U -, - = al + a2 - + a3 - + 04 - + as - + lZ6 -

22 222 4 2 

Us =u(O,~) =al +a3~+Q(,(~y 

.. = u(~, 0) =a, +a2~+a4m~ 
Solving Egs. (8.2,1) simultaneously for the a/51, we obtain 

2(U2 - 2U6 + UI) 
'4 h2 

2(~3 - 2us + UI) 
a6 = h2 

(8.2.1) 

(8.2.2) 

Substituting Eqs. (8.2.2) into the displacement expression for u from Egs. (8.1.2), we 
have 

(8.2.3) 

Similarly, solving fOT 07 through a12 by evaluating the displacement v at each of the 
six nodes and then substituting the results into the expression for [1 from Eqs. (8.1.2), 
we obtain 

(8.2.4) 
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Using Eqs. (8.2.3) and (8.2.4), we can express the general displacement expressions in 
terms of the shape functions as 

{ u} = [NI 0 N2 0 N3 0 N4 0 Ns 0 N6 0] I :: I 
v 0 Nt 0 N2 0 N3 0 N4 0 Ns 0 N6 : 

V6 

(8.2.5), 

where the shape functions are obtained l:!y collecting coefficients that multiply each Uj 

term in Eq. (8.2.3): For instance, collecting all terms that multiply by u, in Eq. (8.2.3), 
we obtain NI. These sh.ape functions are then given by 

3x 3y 2r 4xy 2y2 
Nl=l-fj"-J; +Th+j;2 Nl= 

4xy 
N4 =-

bh 
Ns= (8.2.6) 

Using Eq. (8.2.5) in Eq. (8.1.10), and performing tbe differentiations indicated on U 

and'v, we obtain 

(8.2.7) 

where II is of the form of Eq. (8.1.17) 'with the resulting P's and "l's in Eq. (8.L17) 
given by 

4hx 
-3h+T +4y 

,84 = 4y ,85 = -4y 

>'4 =4x Ys 
8by 

4b-4x-­
h 

(8.2.8) 

Y6 = -4x 

These {J's and y's are specific to the element in Figure 8-3. Specifically, using Eqs. 
(8.Ll) and (8.1.17) in Eq. (8.2.7), we obtain 

1 
ex = 2A [.B,ul + .B2u2 + .B3u3 + P4U4 + Psus + P6U6J 

ey = 2~ [Yl VI + Y,2V2 + Y3V3 + Y4V4 + Ysvs + Y6V6] 

1 
"Jxy = 2A [Y1Ul + PtVl + ... + P6V6] 

The stiffness matrix for a constant-thickness element can now be obtained on 
substituting Eqs. (8.2.8) into Eq. (8.1.17) to obtain ll, then substituting II into 
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Eq. (8.1.16) and using calculus to set up the appropriate integration. The explicit ex­
pression for the 12 x 12 stiffness matrix\ being extremely cumbersome to obtain, is 
not given here. Stiffness matrix expressions for higher-order e1ements are found in 
References [1] and [2J. 

A 8.3 Comparison of Elements 

F or a given number of nodes, a better representation of true stress and displacement is 
generally obtained using the LST element than is obtained with the same number of 
nodes using a much finer subdivision into simple CST elements. For example, using 
one LST yields better results than using four CST elements with the same number of 
nodes (Figure 8-4) and hence the same number of degrees offreedom (except for the 
case when constant stress exists). 

We now present results to compare the CST of Chapter 6 with the LST of this 
chapter. Consider the cantilever beam subjected to a parabolic load variation acting ; i 

as shown in Figure 8-5. Let E 30 x 106 psi, v = 0.25, and t 1.0 in. 
Table 8-1 lists' the series of tests run to compare results using the CST and LST 

elements. Table 8-2 shows comparisons of free-end (tip) deflection and stress qx 

for each element type used to model the can.tilever beam. From Table 8-2, we can ob­
serve that the larger the number of degrees of freedom for a given type of triangular 
element, the closer the solution converges to the exact one (compare run A-I to run 
A-2, and B-1 to B-2). For a given number of nodes, the LST analysis yields some what 
better results for displacement than the CST analysis (compare run A·I to run B-l). 

(a) (b) 

Figure 8-4 Basic triangular element: (a) four-CST and (b) one--LST 

~~ 
r~_p""""lk"""~401Op(1"'J) 
~~----------- -------------- • X 

I. 48 in. I 

Figure 8-5 Cantilever beam used to compare the CST and LST elements 
with a 4 x 16 mesh 

-, 
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Table 8-1 Models used to compare CST and LST results for the cantilever beam 
of Figure 8-5 

Nwnber Number of Degrees Number of 
Series of Tests Run of Nodes of Freedom, nd Triangular Elements 

A-l 4 x 16 mesh 85 160 128 CST 
A·28 x 32 297 576 512 CST 
B-12 x 8 85 160 32LST 
IJ..24 x 16 297 576 128 LST 

Table 8-2 Comparison of CST and LST results for the cantile'ver beam of Figure 8-5 

Bandwidth! Tip Deflection Location (in.), 
Run nd nb (in.) O'x (ksi) X,Y 

A·I 160 14 -0.29555 67.236 2.250, 11 .250 
A-2 576 22 -0.33850 81.302 1.125, 11.630 
B-1 160 18 -0.33470 58.885 4.500,10.500 
B·2 576 22 -0.35159 69.956 2.250, 11.250 

Exact solution -0.36133 80.000 0,12 

1 Bandwidth is described in Appendix B.4. 

However, one of the reasons that the bending stress O'x predicted by the LST 
model B-1 compared to CST model A-I is not as accurate is as foHows. Recall that 
the stress is calculated at the centroid of the: element. We observe from the table that 
the location of the bending stress is closer to the wall and closer to the top for the 
CST model A-I compared to the LST model B-I. As the classical bending stress is a 
linear function with increasing positive linear stress from the neutral axis for the 
downward applied load in this example, we expect',the largest stress to be at the very . 
top of the beam. So the model A-I with more and smaller elements (with eight ele­
ments'through the beam depth) has its centroid closer to the top (at 0.75 in. from the 
top) than model B-1 with fe~ elements (two elemen~s through the beam depth) with 
centroidal stress located at 1.5 in. from the top. Sunilarly, comparing A-2 to B-2 we 
observe the same trend in the results-displacement at the top end being more accu­
rately predicted by the LST model, but stresses being calculated at the centroid mak­
ing the A-2 model appear more accurate than the LST model due to the location 
where the stress is reported. 

Although the CST element is rather poor in modeling bending, we observe from 
Table 8-2 that the element can be used to model a beam in bending if a sufficient 
number of elements are used through the depth of the beam. In genera], both LST 
and CST analyses yield results good enough for most plane stress/strain problems, 
provided a sufficient number of elements are used.-In fact, most commercial programs 
incorporate the use of CST and/or LST elements for plane stress/strain problems) 
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" v 

u,,(in.) 

" u,,[ I - <(fl'] ~ 
Exact solution '----' 

...-_A+-t-+_ x. u ]j 
0.0014 

-~------

ft.1 
Linear-strain Symmetry 

0.0013 

triangle 

0.0012 CST gridwork 

Constant-strain D A ___ Symmetry 

triangle 
0.0011 

LST gridwork 

O.DOIO Degrees of 
100 200 300 400 500 freedom 

Figure 8-6 Plates subjected to parabolically distributed edge loads; comparison of 
results for triangular elements. (Gallagher, R. H. Finite Element Analysis: Fundamentals, 
© 1975, pp. 269, 270. Reprinted by permission of Prentice Hall, Inc., Englewood Cliffs, NJ) 

although these elements are used primarily as transition elements (usual1y during mesh 
generation). The four-sided isoparametric plane stress/strain element is most fre­
quently used in commercial programs and is described in Chapter 10. 

Also> recall that finite element displacements will always be less than (or equal 
to) the exact ones, because finite element models are normany predicted to be stiffer 
than the actual structures when the displacement formulation of the finite element 
method is used. (The reason for the stiffer model was discussed in Sections 3.10 and 
7.3. Proof of this assertion can be found in References [4-71. 

Finany~ Figure 8-6 (from Reference [8]) illustrates a comparison of CST and 
LST models of a plate subjected to parabolically distributed edge loads. Figure 8-6 
shows that the LST model converges to the exact solution for horizontal displacement 
at point A faster than does the CST model. However1 the CST model is quite accept­
able even for modest numbers of degrees of freedom. For example, a CST model 
with 100 nodes (200 degrees of freedom) often yields nearly as a!=curate a solution as 
does an LST model with the same number of degrees of freedom. 

In .conclusion) the results of Table 8-2 and Figure 8-6 indicate that the LST 
model might be preferred over the CST model for plane stress applications when rela­
tively small numbers of nodes are used. However, the use of triangular elements of 
higher order, such as the LST, is not visibly advantageous when large numbers of 
nodes are used, particularly when the cost of fonnation of the element stiffnesses, 
equation bandwidth, and over3J1 complexities involved in the computer modeling are 
considered. 
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Problems 
\ 

8.1 Evaluate the shape functions given by Eq. (8.2.6). Sketch the variation of each func-
tion over the surface of the triangular element shown in Figure 8-3. 

8.2 Express the strains ex, Sy, and Yxy for the element of Figure 8-3 by using the results 
given in Section 8.2. Evaluate these strains at the centroid of the element; then evaluate 
the stresses at the centroid in terms of E and v. Assume plane stress conditions apply. 

y 

Figure P8-3 
p .s 4 

6 2 

8.3 For the element of Figure 8-3 (shown again as Figure P8-3) subjected to the uniform 
pressure shown acting over the vertical side, determine the nodal force replacement 
system using Eq. (6.3.7). Assume an element thickness of t. 
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8.4 For the element of Figure 8-3 (shown as Figure P8-4) subjected to the linearly vary· 
ing line load shown acting over the vertical side, determine the nodal force replace­
ment system using Eq. (6.3.7). Compare this result to that of Problem 6.9. Are these 
results expected? Explain. 

Po 

\ 
y 

3 

4 

_._-_-........ -_x 
6 2 

Figure P8-4 

8.5 For the linear-strain elements shown in Figure P8-5, determine the strains ex,ey> and 
Yxr Evaluate the stresses 0',;, O'y, and "C:cy at the centroids. The coordinates of the nodes 
are shown in units of inches. Let E = 30 X 106 psi, v 0.25, and t 0.25 in. for both 
elements. Assume plane stress conditions apply. The nodal displacements are given as 

Ul = 0.0 VI = 0.0 

U2 = 0.001 in. t'2 = 0.002 in. 

U3 = 0.0005 in. V3 0.0002 in. 

U4 0.0002 in. V4 = 0.0001 in. 

Us = 0.0 

U6 = 0.0005 in. 

(Him: Use the results of Section 8.2.) 

Vs = 0.0001 in. 

V6 0.001 in. 

y 

(0,6) 

(0,3) 5 
4 

(2.3) 

6 2 
e_-*--___ -- x 

(2.0) (4.0) 

(a) 

Figure P8-S 

y 

(0,4) 3 

(0.2) 5 4 (3,2) 

6 

(3.0) 

(b) 

(6,0) 
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-8.6 For the linear-strain element shown in Figure P8-6, determine the strains Ex: EYI and 
Yxy- Evaluate these strains at the centroid of the element; then evaluate the stresses 
(JXl t1y , and !xy at the centroid. The coordinates of the nodes are shown in units of 
millirpeters. Let E = 210 GPa. v = 0.25, and t = 10 rnm. Assume plane stress con­
ditions apply. Use the nodal displacements given in Problem 8.5 (converted to milli­
meters). Note that the fJ's and y's from the example in Section 8.2 cannot be used here 
as the element in Figure P8-6 is oriented differently than the one in Figure 8-3. 

Y' 

3 (6.6) 

Figure P8-6 
4 (6.3) 

1 
6 2 

x 
(0.0) (3.0) (6,0) 

8.7 Evaluate the shape functions for the linear-strain triangle shown in Figure P8-7. Then 
evaluate the B matrix. Units are millimeters. 

y 

Figure P8-7 
4 

1~ __ ~6 ____ .2 ______ .x 

(0, 0) (60, 0) 

8.8 Use the LST element to solve Example 7.2. Compare the results. 

8.9 Write a computer program to solve plane stress problems using the LST element. 



Introduction 

In previous chapters, we have been concerned with line or one-dimensional elements 
(Chapters 2-5) and two-dimensional elements (Chapters 6-8). In this chapter, we con­
sider a special two-dimensional element called the axisymmetric element. This element 
is quite useful when symmetry with respect to geometry and loading exists about 
an axis of the body being analyzed. Problems that involve soil masses subjected to 
circular footing loads or thick-walled pressure vessels can often be analyzed using the 
element'developed in this chapter. 

We begin with the development of the stiffness matrix for the simplest axisym­
metric element, the triangular torus, whose vertical croSs section is a plane triangle. 

We then present the longhand solution of a thick-walled pressure vessel to illustrate 
the use of the axisymmetric element equations. This is followed by a description of some 
typical large-scale problems that have been modeled using the axisymmetric element. 

:I 9.1 Derivation of the Stiffness Matrix 

In this section, we will derive the stiffness matrix and the body and surface force ma­
trices for the axisymmetric element. However, before the development, we win first 
present some fundamental concepts prerequisite to the understanding of the deriva­
tion. Axisymmetric elements are triangular tori such that each element is symmetric 
with respect to geometry and loading about an axis such as the z axis in Figure 9-L 
Hence, the z axis is called the axis of synvnetry or the axis oj revolution. Each vertical 
cross section of the element is a plane triangle. The nodal points of an axisymmetric 
triangular element describe circumferential lines, as indicated in Figure 9-1. 

In plane stress problems, stresses exist only in the x-y plane. In axisymmetric 
problems, the radial displacements develop circumferential strains that induce stresses 
(ir, (if), (i:, and ''In. where r, I), and z indicate the radial, circumferentia~ and longitudinal 
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Figure 9-1 Typical axisymmetric element ijm 

directions,-respectively. Triangular torus elements are often used to idealize the axisym­
metric system because they can be used to simulate complex surfaces and are simple to 
work with. For instance, the axisymmetric problem of a semi-infinite half--space loaded 
by a circular area (circular footing) shown in Figure 9-2(a), the domed pressure vessel 
shown in Figure 9-2(b), and the engine valve stem shown in Figure 9-2{c) can be solved 
using the axisymmetric e1ement developed in this chapter. 

z. w 
/ Footing load 

Soil mass 

Plan view 

(a) soil mass 

(b) domed vessel (c) engine valve stem 

Figure 9-2 Examples of axisymmetric problems: (a) semi-infinite half~space (soil mass) 
modeled by :;.;symmetric elements, (b) a domed pressure vessel, and (c) an engine 
valve stem 
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c 

r A 

() 

~----~----------x 

(a) 

r A 

c 

I 

(J 

D 

d: 

F 
dr 

~----~---------x 

(b) 

Figure 9-3 (a) Plane cross section of (b) axisymmetric element 

Because of symmetry about the z axis, the stresses are independent of the 8 
coordinate. Therefore, all derivatives with respect to 8 vanish, and the displacement 
component v (tangent to the e direction), the shear strains Y,e and Yo:, and the shear 
stresses !rO and 1:(k are all zero. 

Figure 9-3 shows an axisymmetric ring element and its cross section to represent 
the general state of strain for an axisymmetric probleln.. It is most convenient 
to express the displacements of an element ABCD in the plane of a cross section 
in cylindrical coordinates. We then let u and w denote the displacements in the radial 
and longitudinal directions, respectively. The side AB of the element is displaced an 
amount u, and side CD is then displaced an amount u + (ou/ Br) dr in the radial direc­
tion. The normal strain in the radial direction is then given by 

au 
s, (9.1.1a) 

In general, the strain in the tangentiar direction depends on the tangential displace­
ment v and on the radial displacement u. However, for axisymmetric deformation be­
havior, recan that the tangential displacement v is equal to zero. Hence, the tangential 
strain is due only to the radial displacement. Having only radial displacement u, the 
new length of the arc AiJ is (r + u) de, and the tangential strain is then given by 

(r+u)de-rd8 u 
E8 = rd8 - =; (9.1.1b) 

Next, we consider the longitudinal element BDEF to obtain the longitudinal strain 
and tl1e -shear strain. In Figure 9-4, the element is shown to displace by amounts u 
and w in the radial and longitudinal directions at point E, and to displace additional 
amounts (ow/oz) dz along line BE and (oujor)dr along line EF. Furthermore, observ­
ing lines EF and BE, we see that point F moves upward an amount (ow/or) dr with re­
spect to point E and point B moves to the right an amount (au/ oz) dz with respect to 
point E. Again, from the basic definitions of normal and shear strain, we have the lon­
gitudinal normal strain given by 

ow 
E;; or 

and the shear strain in the r-z plane given by 

ou ow 
J'r;: = + or 

(9.1.1c) 

(9. LId) 
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2!!d~ 
z.w~z -f\ BIJ~_-rD 

oW 
w;- aidz 

lfT-- --1 
Ii! 
dz I I 

Figure 9-4 Displacement and 
rotations of lines of element in the f-Z 

plane 

h i I F all" 
I ~--dr 

wt l~' or 
--~~ au --l II ~ u + a; dr 

~dr 
'"------------_ r,lI 

Summarizing t.1j,e strain/displacement relationships of Eqs. (9.1 .la-d) in one equation 
for easier reference, we have 

au 
er =-or 

II 
eo =­

r 

au ow 
Yr=:::: iJz + or (9.1.le) 

The isotropic stress/strain relationship, obtained by simplifying the general 
stress/strain relationships given in Appendix C, is 

1 - v v 0 

rl v 1 - v v 0 r} (J.,. E Ez (9.1.2) (J~ = (1 + v)(1 - 2v) v 1 - v 0 Gf) 

'rz 1 - 2v Yr:r 
0 0 0 -2-

The theoretical development follows that of the plane stress/strain problem 
given in Chapter 6. 

Step 1 Select Element Type 

An axisymmetric solid is shown discretized in Figure 9-5(a), along with a typical tri­
angular element The element has three nodes with two degrees of freedom per node 
(that is, Uj, Wi at node i). The stresses in the axisymmetric problem are sho'wn in 
Figure 9-5(b). 

Step 2 Select Displacement Funttions 

The element displacement functions are taken to be 

u(r, z) = at + alr + a3Z 

w(r, z) = 04 + asr + a6Z 
(9.1.3) 

so that we have the same linear displacement functions as used in the plane stress, 
constant~strain triangle. Again, the total number of ai's (six) introduced in the 
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Axis of 
symmetry 

l.W 

(a) Typical slice through an axisymmetric 
solid discretized into triangular 
elements 

(b) SlI'esses in [he axisymmetric problem 

Figure 9-5 Discretized axisymmetric solid 

displacement functions is the same as the total number of degrees of freedom for the 
element. The nodal displacemepts-are 

{d}= OJ = (9.1.4) 

and u evaluated at node i is 

u(r;l Zi) = Ui ~ a, + a2r i + Q3Zi (9.1.5) 

Using Eq. (9.1.3), the general displacement ftmction is then expressed in matrix form as 

al 

Q2 

03 

°4 

as 
Q6 

(9.1.6) 

Substituting the coordinates of the nodal points shown in Figure 9-5(a) into 
Eq. (9.1.6), we can solve for the a/s in a manner similar to that in Section 6.2. The 
resulting expressions are 

G}= [: 
rj Zirr} rj Zj Uj 

Tm Zm Um 

(9.1.7) 

G}= [: r 'i Zj Wi 

and rj :~ {;J rm 
(9.1.8) 
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Performing the inversion operations in Eqs. (9.1.7) and (9J .8») we have 

{ :: } = 2~ [;: ~ 
a3 )Ii Yj 

(9.1.9) 

and (9.LIO), 

where 

Pm = Zj - Zj (9.1.1 I) 

'Ym = Tj ri 

We define the shape functions, similar to Eqs. (6.2.18)) as 

1 
Ni = 2A (ti.i + Pl + YiZ) 

1 
Nj = 2A (ti.j + PjT + Yjz) (9.1. (2) 

1 
Nm = 2A (ti.m + Pmr+ Ymz) 

Substituting Eqs. (9.1.7) and (9.1.8) into Eq. (9.1.6), along with the shape func­
tion Eqs. (9.1.12), we find that the general displacement function is 

{if!} = { u(r, z) } = [Ni 0 Nj 0 Nm :m] w(r,z) 0 Ni 0 1Yj Q 

or {if!} = [N]{d} 

Step 3 Define the Strain/Displacement and Stress/Strain 
Relationships 

When we use Eqs. (9.1.1) and (9.1.3), the strains become 

{e} = ! a, ~ a,z I -+a2+-r T 

a3 +as 

Ui 

Wi 

Uj 

Wj 
(9.1.13) 

Urn 

Wm 

(9.1.14) 

(9.1.15) 
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Rewriting Eq. (9.1.15) with the a/s as a separate column matrix, we have 

0 0 0 0 0 :j [ :: I ~ o 0 0 0 0 I 
a3 

(9.1.16) 1 z 1 e, I 000 a4 
r r 

Yr: as 
001 0 1 0 a6 

Substituting Eqs. (9.1.7) and (9.1.8) into Eq. (9.1.16) and making use ofEq. (9.1.11), 
we obtain 

Pi 0 {Jj 0 Pm 0 

!"'l 
0 Ii 0 lj 0 Ym Wi 

1 

~ 
{e} = 2A ~+p. + 

ct· y·z 
0 Cl.m+ fJ +Ymz 

0 0 ..J..+fJ.+..L r I r r J r r m r 

Yi Pi Yj Pj Ym Pm 
(9.1.17) 

or, rewriting Eq. (9.1.17) in simplified matrix form, 

Ui 

Wi 

(9.1.18) 

Pi 01 
where 1 0 

Y, j [Bii= ~+P'+ liZ 0, 
(9.1.19) 

r I r 

Ii Pi 
Similarly, we obtain submatrices llj and !lm by replacing the subscript i with j and 
then with min Eq. (9.1.19). Rewriting Eq. (9.1.18) in compact matrix form, we have 

{e} = [Slid} 

where [B] = [llj !lj gm} 

(9.1.20) 

(9.1.21) 

Note that (Bl is a function of the rand Z coordinates. Therefore, in general, the 
n GO wiiI not be constant. 
The stresses are given by 

{u} = I:DI[B}{d} (9.1.22) 
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where [D] is given by the first matrix on the right side of Eq. (9.1.2). (As mentioned in 
Chapter 6, for v = 0.5, a special formula must be used; see Reference [9J.) 

Step 4 Derive the Element Stiffness Matrix and Equations 

The stiffness matrix is 

[kJ = JIJ [BJT[D][BJdV 
v 

or [kJ = 211: II fB)T[DJfB]rdrdz 
A 

(9.1.23) 

(9.1.24) 

after integrating along the circumferential boundary. The [81 matrix, Eq. (9.1.21), is a 
function of rand z. Therefore, !kJ is a function of rand z and is of order 6 x 6. 

We can evaluate Eq. (9J.24) for [k] by one of three methods: 

1. Numerical integration (Gaussian quadrature) as discussed in 
Chapter 10. 

2. Explicit multipli~ation and tenn-by-tenn integration [1 J. 
3. Evaluate fBJ for a centroidal point (r, z) of the element 

+ +Zm 
Z = Z = ---=---

and define [B(f, z)] = {BJ. Therefore, as a first approximation, 

[kJ = 27!fA[BJT[DJ[BJ 

(9.1.25) 

(9.1.26) 

If the triangular subdivisions are consistent with the final stress distribution (that 
is, small elements in regions of high stress gradients), then acceptable results can be 
obtained by method 3. 

Distributed Body Forces 

Loads such as gravity (in the direction of the z axis) or centrifugal forces in rotating 
machine parts (in the direction of the r axis) are considered to be body forces (as 
shown in Figure 9-6). The body forces can be found by 

{h} = 2it JI fNJT {~: }rdrdZ (9.1.27) 
A 

Figure 9-6 Axisymmetric element with body 
forces per unit volume 
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where R;, = (J)2 pr for a machine part moving with a constant angular velocity (J) about 
the z axis, with .material mass density p and radial coordinate r, and where Zb is the 
body force per unit volume due to the force of gravity. 

Considering the body force at node i, we have 

{jj,..} = 2n II [Nil T {~: }rdrdz (9.1.28) 
A 

where [Nil T 
= [~i ~J (9.1.29) 

Multiplying and integrating in Eq. (9.1.28), we obtain 

{fbi} = 2; {;: }AT (9.1.30) 

where the origin of the coordinates has been taken as the centroid of the element, and 
14 is the radial1y directed body force per unit volume evaluated at the centroid of the 
element. The body forces at nodesj and m are identical to those given by Eq. (9.1.30) 
for node i. Hence, for an element, we have 

where 

Rb 
Zb 

{.tb} = 2nrA Rb 
3 Zb 

Rb 
Zb 

. ~ = (J)2pr 

(9.1.31) 

(9.1.32) 

Equation (9.1.31) is a first approximation to the radially directed body force 
distribution. 

Surface Forces 

Surface forces can be found by 

{Is} = If [Ns]T{T}dS (9.1.33) 

s 

where again [Ns] denotes the shape function matrix evaluated" along the surface where 
the surface traction acts. 

For radial and axial pressures p, and Pr) respectively, we have 

{Is} = IJ [Ns]T {;:} dS (9.1.34) 

s 
For example, along the vertical face jm of an element, let uniform loads Pr and P: 
be applied, as shown in Figure 9-7 along surface r = Yj. We can use Eq. (9.1.34) 
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m 

,. 
118 ppr, 
LJ~ Figure 9-7 Axisymmetric element w;,h ,unace forces 

j 

written for each node separately. For instance, for node j, substituting Nj from Eqs. 
(9.1.12) into Eq. (9.1.34), we have 

(9.1.35) 

evaluated at r = rj I Z = z 

Performing the integration ofEq. (9.1.35) explicitly, along with similar evaluations for 
lsi and f sm' we obtain the total distribution of surface force to nodes i, j, and m as 

Steps 5-7 

o 
o 

{Is} = 2n:rj (Z; - Zj) Pr 
P;: 

Pr 
P: 

(9.1.36) 

Steps 5-7, which involve assembling the total stiffness matrix, total force matrix, 
and total set of equations; solving for the nodal degrees of freedom; and calculating 
the element stresses, are analogous to those of Chapter 6 for the cst element, except 
the stresses are not constant in each element. They are usually determined by one 
of two methods that we use to determine the LST element stresses. Either we deter­
mine the centroidal element stresses, or we determine the nodal stresses for the ele­
ment and then average them. The latter method has been shown to be more accurate 
in some ~ses [2]. 

Example 9.1 

For the element of an axisymmetric body rotating with a constant angular velocity 
()) = 100 rev/min as shown in Figure 9-8, evaluate the approximate body force 
matrix. Include the weight of the material, where the weight density Pw is 0.283 Ibjin3. 

The coordinates of the element (in inches) are shown in the figure. 
We need to evaluate Eq. (9J.3I) to obtain the approximate body force matrix. 

Therefore) the body forces per unit .volume evaluated at the centroid of the element 
are 

Zb = 0.283 Ib/in3 



422 .. 9 Axisymmetric Elements 

+~ (2.3) 3 

~'=1333 in. r'; ~2 Figure 9-8 Axisymmetric element subjected to 
angular velocity 

(2.2) (3.2) 

---- Axis of symmetI)' 

and by Eq. (9.1 .32), we have 

Rb ="oi r = [(100 re.v\) (27trad\) (.1 min)] 2 
(0.283 Ib/in

3
) (2.333 in.) 

P mm rev 60 s (32.2 x 12) in./s2 

Rb = O.1871bjin3 

21!fA = 2:n:(2.333)(0.5) = 2.44 in3 
3 

Ji,lr"= (2.44)(0.187) = 0.457 Ib 

fb!: = -(2.44)(0.283) = -0.691Ib (downward) 

Because we are using the first approximation Eq. (9.1.31), all r-directed nodal 
body forces are equal, and all z-directed body forces are equaL Therefore, 

ib2r = 0.4571b ib2z = -O.6911b 

fb3r = O.4571b ib3z = -0.6911b • 
Ail 9.2 Solution of an Axisymmetric Pressure Vessel 

To illustrate the use of the equations developed in Section 9.1, we will now solve an 
axisymmetric streSs problem. 

Example 9.2 

For the long, thick-walled cylinder under internal pressure p equal to 1 psi shown in 
Figure 9-9, determine the displacements and stresses. 

I 
I 
I 

I 1 
1 I 

..... --1----1- ..... t ... ----; "-
..... __ .,.,<IIfIII'> 

Figure 9-9 Thick-walled cylinder subjected to internal 
pressure 
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z,w 

Axisof "­
symmetry " 

p = I psi 

4 

~------~--------~~~r,u 

Figure 9-10 Discretized cylinder slice 

Discretization 

To illustrate the finite element solution for the cylinder, we first discretize the cylinder 
into four triangular elements, as shown in Figure 9-1 O. A horizontal slice of the cylin­
der represents the total cylinder behavior. Because we are performing a longhand 
solution, a coarse mesh of elements is used for simplicity's sake (but without loss of 
generality of the method). The governing global matrix equation is 

FIr U1 

Flz WI 

Fo U2 

F2z W2 

F3r = fK] U3 

F3: W3 
(9.2.1) 

F4r U4 

F4z W4 

FSt Us 
PSz Ws 

where the [K] matrix is of order 10 x 10. 

Assemblage of the Stiffness Matrix 

We assemble the [Kl matrix. in the usual manner by superposition of the individual 
element stiffness matrices. For simplicity's sake, .we will use the first approximation, 
method given by Eq. (9.1.26) to evaluate ~e element matrices. Therefore, 

[kJ = 21tTA[Bf(DHBJ. (9.2.2) 

For e1emellt 1" (Figure 9-II). the coordinates are Ti = .0.5, Zj = 0, Tj = 1.0; 'zi = O. 
rm = 0.75, and Zm = 0.25 (i = l,j = 2, and m = 5 for element 1) for the global­
coordinate axes as set up in Figure 9-10. 
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Figure 9-11 Element 1 of the discretized cylinder 

We now evaluate [BJ, where (B] is given by Eq. (9.1.19) evaluated at the centroid 
of the element r = r, Z = z, and expanded here as 

Pi 0 Pj 0 Pm 
0 Yi 0 Yj 0 

- 1 [B]=-
ct.! P yjZ '!t + p. + IjZ a.m fJ 'Ymz 2A i+ i+ f 0 f ) ;: 0 f+ m+T 

Yi Pi Ij Pj Ym 

where) using element coordinates ip Eqs. (9.1.11), we have 

cti = 'jZm - Zjrm = (1.0)(0.25) - (0.0)(0.75) = 0.25 in2 

cr.j = 'mZi - Zm'j = (0.75)(0) - (0.25)(0.5) = -0.125 in2 

cr.m = 'iZ) - ZiT) = (0.5)(0.0) - (0)(1.0) = 0.0 in2 

Pi = Zj - zm = 0.0 - 0.25 = -0.25 in. 

Pj = 2m - Zi = 0.25 - 0 = 0.25 in. 

Pm = Zi - z) =;: 0.0 - 0.0 = 0.0 in. 

y, = Tm - Tj = 0.75 - 1.0 = -0.25 in. 

Y) = 'j -'m = 0.5 - 0.75 = -0.25 in. 

Ym = rj - 'j = 1.0 - 0.5 = 0.5 in. 

and r = 0.5 +! (0.5) = 0.75 in. i = l (0.25) = 0.0833 in. 

A = ! (0.5)(0.25) = 0.0625 in2 

Substituting the results from Eqs. (9.2.4) into Eq. (9.2.3» we obtain 

0 

Ym 

0 

Pm 

[ -0.25 0 0.25 0 0 

~.5l1-1 0 -0.25 0 -0.25 ·0 
[BJ = 0.125 0.0556 0 0.0556 0 0.0556 o in 

-0.25 -0.25 -0.25 0.25 0.5 0 

(9.2.3) 

(9.2.4) 

(9.2.5) 
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For the axisymmetric stress case, the matrix [D] is given in Eq. (9.1.2) as 

[

1 v v 

E v I-y 

[D] = (l + v)(1 _ 2v) v y 

° 0 

v 

1 ~2V 1 
v 

I-v 
o 

With v = 0.3 and E = 30 x 106 psi, we obtain 

30(106) 

[D] = (1 + 0.3)[1"- 2(0.3)] 

or, simplifYing Eq. (9.2.7), 

1 0.3 
0.3 
0.3 

o 

0.3 
1-0.3 

0.3 

o 

0.3 
0.3 

1 - 0.3 

o 

[

0.7 0.3 0.3 0 1 
[DJ = 57.7(106) 0~ .. 33 0.7 0.3 0 . 

0.3 0.7 0 pst 

o 0 0.2 

Using Eqs. (9.2.5) and (9.2.8), we obtain 

- 0.158 -0.0583 -0.0361 -0.05 
-0.075 -0.175 -0.075 -0.05 

[Bf[D] 57.7(10
6

) 0.192 
0.125 -0.075 

0.0167 
0.15 

0.0917 
-0.175 

0.0166 
0.35 

0.114 
-0.075 

0.0388 
0.15 

-0.05 
0.05 
0.1 
o 

(9.2.6) 

(9.2.7) 

(9.2.8) 

(9.2.9) 

Substituting Eqs. (9.2.5) and (9.2.9) into Eq. (9.2.2), we obtain the stiffness matrix for 
element 1 as 

;=1 j=2 m=5 

54.46 29:45 -31.63 2.26 -29.37 -31.71 
29.45 61.17 -11.33 33.98 -31.72 -95.15 

Ib 
[k(l)] = (106)" 

-31.63 -11.33 72.59 -38.52 -20.31 49.84 in. 
2.26 33.9& -38.52 61.17 22.66 -95.15 

-29.37 -31.72 -20.31 22.66 56.72 9.06 
-31.71 -95.15 49.84 -95.15 9.06 190.31 

(9.2JO) 

where the nwnbers above the columns indicate the nodal orders of degrees ()(freedom 
in the element 1 stiffness matrix. 
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5 Figure 9-12 Element 2 of the disc:retized cylinder 

2 

For element 2 (Figure 9-12), the coordinates are rj = 1.0, Zj = 0.0, T} = LO, 
Zj = 0.5,'m 0.75, and Zm 0.25~ == 2,j 3, and m = 5 for element 2). Therefore, 

/Xi = (1.0)(0.25):- (0.5)(0.75) -0.125 in2 

/Xj (0.75)(0.0) - (0.25}(LO) = -0.25 in2 

I:1.m = (1.0) (0.5) - (0.0)(1.0) = 0.5 in2 

Pi = 0.5 - 0.25 = 0.25 in. Pj = 0.25 - 0.0 0.25 in. 

p,,; 0.0 - 0.5 = -O.S iI). Yi 0.75 - 1.0 = -0.25 in. 

Yj = 1.0 - 0.75 0.25 in.. 1m = 1.0 - 1.0 = 0.0 in. 

and f = 0.9167 in. i 0>25 in. A = 0.0625 in2 

(9.2.11) 

Using Eqs. (9.2.l1) in Eq. (9.2.2) and proceeding as for element l"we obtain the stiff­
ness matrix for element 2 as 

i= 2 

85.75 -46.07 
-46.07 74.77 

[k{2)] (106) 
52.52 -12.84 
12.84 -41.54 

-118.92 45.32 
33-.23 -33.23 

j=3 

52.52 12.84 
-12.84 -41.54 

85.74 46.07 
46.07 ,74.77 

-118.92 -45.32 
-33.23 -33.23 

m=5 

-118.92 33.23 

45.32 -33.23 
Ib 

-118.92 -33.23 in. 
-45.32 -33.23 
216.41 0 

0 66.46 

(9.2.12) 

We obtain the stiffness matrices for elements 3 and 4 in a manner similar to that 
used to obtain the stiffness matrices for elements 1 and 2. Thus,' 

i=3 ',j=4 m=5 

72.58 38.52 -31.63 11.33 -20.31 -49.84 

38.52 61.17 -.2.26 33.98 ":"22.66 -95:15 Ib 

[k{3)J = (106) 
-31.63 -2.26 54.46 -29.45 -29.37 31.72 in. 

11.33 33.98 -29.45 61.17 31.72 -95.15 
-20.31 -22:66 -29.37 31.72 56.72 -9.06 
-49.84 -95.15 31.72 -95.15 -9.06 190.31 

(9.2.13) 
,", 
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and 
i = 4 j=l m=5 

41.53 -21.90 20.39 0.75 -66.45 21.14 
-21.90 47.57 -0.75 -26.43 36.24 -21.14 Ib [k(4)} = (106) 20.39 -0.75 41.53 21.90 -66.45 -21.14 in. 

0.75 -26.43 21.90 47.57 -36.24 -21.14 
-66.45 36.24 -66.45 -36.24 169.14 0 

21.14 -21.14 -21.14 -2t.l4 0 42.28 

(9.2.14) 

Using superposition of the element stiffness matrices [Eqs. (9:2.10) and (9.2.12)­
(9.2.14)], where we rearrange the elements of each stiffness matrix in order of increas­
ing nodal degrees of freedom, we obtain the global stiffness matrix as 

95.99 51.35 -31.63 2.26 0 0 20.39 -0.75 -95.82 -52.86 
51.35 108.74 -11.33 33.98 0 0 0.75 -26.43 -67.96 -1l6.3 

-31.63 -11.33 158.34 -84.59 52.52 12.84 0 0 -139.2 83.07 
2.26 33.98 -84.59 135.94 -12.84 -41.54 0 0 67.98 - 128.4 
0 0 52.52 -12.84 158.33 84.59 -31.63 11.33 -139.2 -83.07 Ib 
0 0 12.84 -41.54 84.59 135.94 -2.26 33.98 -67.98 -128.4 in. 

20.39 0.75 0 0 -31.63 -2.26 95.99 -51.35 -95.82 52.86 
-0.75 -26.43 0 0 11.33 33.98 -51.35 108.74 67.96 - 116.3 

-95.82 -67.96 -139.2 67.98 -139.2 -67.98 -95.82 67.96 498.99 0 
-52.86 -1l6.3 83.07 -128.4 -83.07 -128.4 52.86 -116.3 0 4&9.36 

(9.2.15) 
The applied nodal forces are given by Eq. (9.l.36) as 

Fir = F4r = 21t(0.5)(0.S) (1) = 0.7851b 
2 

(9.2.16) 

All other nodal forces are zero. Using Eq. (9.2.15) for [Kl and Eq. (9.2.16) for 
the noda1 forces in Eq. (9.2.1), and solving for the nodal displacements, we obtain 

Ul = 0.0322 X 10-6 in. Wi = 0.00115 X 10-6 in. 

U2 = 0.02]9 X 10-6 in. W2 = 0.00206 X 10-6 in. 

U3 = 0.0219 X 10-6 in. w~ = -0.00206 X 10-6 in. (9.2.17) 

U4 = 0.0322 X 10-6 in. 

Us = 0.0244 X 10-6 in. 

W4 = -0.00115 x 10-6 in. 

Ws =0 

The results for nodal displacements are as expected because radial displacements 
at the inner edge are equal (UI =!4) and those at the outer edge are equal (U2 = U3). 
In addition, the axial displacements at the outer nodes and inner nodes are equal 
but opposite in sign (WI ~ -W4 and W2 = -W3) as a result of the Poisson effect and 
symmetry. Finally, the axial displacement at the center node is zero (ws = 0), as it 
should be because of symmetry. 
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By using Eq. (9.1.22), we now determine the stresses in each element as 

{u} = [DHB]{d} (9.2.18) 

For element 1, we use Eq. (9.2.5) for [11), Eq. (9.2.8) for [D]. and Eq. (9.2.l7) for {d} 
in Eq. (9.2.18) to obtain 

(J'r -0.338 psi 

(J8 0.942 psi 

Similarly, for element 2, we obtain 

a, = -0.105 psi 

l1(J = 0.690 psi 

For'element 3, the stresses are 

(J'z = -0.0126 psi 

7:r: = -0.1037 psi 

az = -0.0747 psi 

'Crz = 0.000 psi: 

U, = -0.337 psi Uz -0.0125 psi 

l19 = 0.942 psi Tn 0.1037 psi 

For element 4, the stresses are 

u, = -0.470 psi 

(J(J = 1.426 psi 

U z = 0.1493 psi 

7:rz = 0.000 psi 

Figure 9-13 shows the exact solution [10] along with the results determined here 
and the results from Reference (5]. Observe that agreement with the exact solution 
is quite good except for the limited results due to the very coarse mesh used in 
the longhand example, and in case 1 of Reference (5). In Reference [51, stresses have 
been plotted at the center of the quadrilaterals and were obtained by averaging the 
stresses in the four connecting triangles. • 

11: 9.3 Applications of Axisymmetric Elements 

Numerous structural (and nonstructural) systems can be classified as axisymmetric. 
Some typical structural systems whose behavior is modeled accurately using the 
axisymmetric element developed in this chapter' are represented in Figures 9-14, 
9-15, and 9-17. 

Figure 9-14 illustrates the finife element model of a steel-reinforced concrete 
pressure vessel. The vessel is a thick-walled cylinder with flat heads. An axis of sym­
metry (the z axis) exists such that only one-half of the r-z plane passing through 
the middle of the strupture need be .modeled. The concrete was modeled by using the 
axisymmetric triangular element developed in this chapter. The steel elements were 
laid out along the boundaries of the concrete elements so as to maintain continuity 
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Case J 

Case 2 

r.1l 

(a) Finite element models (from Reference 15]) 

)( 

Radius 

Legend 
- Exact solution [10] 
0- Case I 

)( 

0- Case2 
, Case 3 
• - Section 9.2 awrage-of-four­

triangle slresses 
x - Section 9.2 elemen! 

centroid stresses 

O.S 0.6 0.7 0.8 0.9 1.0 

x q,. 

(b) Resulting stresses 

Figure 9-13 Finite element analysis of a thick-walled cylinder under internal 
pressure 

(or perfect bond assumption) between the concre}e and the steel. The vessel was then 
subjected to an internal pressure as shown in the figure. Note that the nodes along 
the axis of symmetry should be supported by roners preventing motion perpendicular 
to the axis of symmetry. 

Figure 9-15 shows a finite element model of a high-strength steel die used in a 
thin-p1astic-film-making process [7]. The die is an irregularly shaped disk. An axis of 
symmetry with respect to geometry and loading exists as shown. The die was modeled 
by using simple quadrilateral axisymmetric elements. The locations of high stress were 
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T 
37ft 

75 ft 

I 

37 ft 

1 
(a) Two-dimensional view of a 

finite element idealization 
for a prestressed COflcrele reactor 
vessel (PCRV) 

(b) Axisymmetric ideaJizalion o£ the 
sleel reinforcemenl 

Figure 9-14 Model of steel·reinforced concrete pressure vessel (from Reference (4), 
North Holland Physics Publishing, Amsterdam) 

of primary concern. Figure 9-16 shows a plot of the von Mises stress contours for the 
die of Figure 9-15. The von Mises (or equivalent, or effective) stress 18} is often used 
as a failure criterion in design. Notice the artificially high stresses at the location of 
load F as explained in Section 7.1. 

(Recall that the failure criterion based on the maximum distortion energy theory 
for ductile materials subjected to static loading predicts that a material will fail if 
the von Mises stress reaches the yield strength of the material.) Also recall from 
Eqs. (6.5~37) and (6.5.38), the von Mises stress (J'VII'I is related to the principai stresses 
by the expression 

(9.3.1 ) 



Axis of symmetry 

2.75 ill. 

~~"""'IF:= 45,750 Ib 

--I 0.557 in. \- 1---1.126 in.---! 

Figure 9-15· - Model of a high-strength steel die (924 nodes and 830 elements) 

Axis of symmetry 

7644 psi 

33,779 psi 

~ 
46,846 psi 

59,914 psi 

"4 . 
72,981 pSI 

186,049 psi 
~.;:to-_--, 

99.116 psi 

Figure 9-16 'von Mises stress contour plot of axisymmetric model of Figure 9-15 
(also producing a radial inward deflection of about 0.015 in.) 

431 



432 .& 9 Axisymmetric Elements 
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Figure 9-17 (a) Stepped shaft subjected to axial load and (b) the discretized model 

where the principal stresses are given by 0"1, (12, and (13. These results were obtained 
from the commercial computer code ANSYS (12). 

Other dies with modifications in geometry were also studied to evaluate the most 
suitable die before the construction of an expensive prototype. Confidence in the ac­
ceptability of the prototype was enhanced by doing these comparison studies. Finally, 
Figure 9-17 shows a stepped 4130 steel shaft with a fillet radius subjected to an axial 
pressure of 1000 psi in tension. Fatigue analysis for reverse4 axial loading required 
an accurate stress concentration factor to be applied to the averag~ axial stress of 
1000 psi. The stress concentration factor for the geometry shown was to be deter­
mined. Therefore, locations of highest stress were necessary. Figure 9-18 shows the 
resulting maxim~ principal stress plot using a computer program [11]. The largest 
principal stress'was 1932.5 psi at the fiUet. Other examples of the use of the axisym-
metric element can be found in References [2]-[6]. . 

In this chapter, we have shown the finite element analysis of axisymmetric sys­
tems using a simple three-noded triangular element to be analogous to that of the 
two-dimensional plane stress problem using three-noded triangular elements as 
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Max Principal 

H 1932.5 
1689.9 
1447.3 
1204.7 
962.06 

-- 719.44 
-- 476.82 
-- 234.21 

l -8.4093 

Figure 9-18 Principal stress plot for shaft of Figure 9-17 

developed in·Chapter 6. Therefore, the two-dimensional element in commercial com­
puter programs with the axisymmetric element selected will allow for the analysis of 
axisymmetric structures. . 

Finally, note that other axisymmetric elements, such as a simple quadrilateral 
(one with four corner nodes and two degrees of freedom per node, as used in the 
steel die analysis of Figure 9-15) or higher-order triangular elements, such as in Refer­
ence [6], in which a cubic polynomial involving ten terms (ten a's) for both u and w) 
could ,be used for axisymmetric analysis. The three·noded triangular element was 
described here because of its simplicity and ability to describe geometric boundaries 
rather easily . 
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A Problems 

9.1 For the elements shown in Figure P9-I, evaluate th~ stiffness matrices using Eq. 
(9.2.2). The coordinates are shown in the figures. Let E = 30 X 106 psi and v = 0.25 
for each element. 

(0.2) 3 -

(0.0) ~(2.0) 
I 2 

(a) 

Figure P9-1 

3 (2.2) 

(0.0) ~ (2.0) 
I 2 

(b) 

6L 
(0. 0) I 2 (2, 0)' T 

(e) 

9.2 Evaluate the nodal forces used to replace the linearly varying surface traction shown 
in Figure P9-2. Hint: Use Eq. (9.1.34). 

Figure P9-2 
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93 For an element of an axisymmetric body rotating with a constant angular velocity 
w = 20 rpm as shown in Figure P9-3, evahia.te the body·force matrix. The coordi~ 
nates of the element are shown in the figure. Let the weight density Pw be 0.283 Ib/in3. 

t~ )1(6.6) 
I ,LJ2 
I 

(4.4) (6,4) 

Axis of symmetry 

L 
r 

Figure P9-3 

9.4 For the axisymmetric el~ents shown in Figure P9-4, detennine the element stresses. 
Let E = 30 x 106 psi and v = 0.25. The coordinates (in inches) are shown in the figures, 
and the nodal displacements for each element are Ut = 0.0001 in., W; = 0.0002 in., 
Uz = 0.0005 in., W2 = 0.0006 in., U3 = 0, and W3 = O. 

Xl 
.'~2 

. (0.0) (2.0) 

~f3.3) 

,U2 
(\..0) (3,0) 

3~ .. L 
1~2 ' 

(0, 0) ·(2, 0) 

(a) (b) . (c) 

Figure P9-4 

9.S Explicitly show that the integration ofEq. (9.1.35) yields thej surface forces given by 
Eq. (9.1.36). 

9.6 For the elements shown in Figure P9-6, evaluate the stiffness matrices using Eq. 
(9.2.2). The coordinates (in millimeters) are shown in the figures. Let E = 210 GPa 
and v = 0.25 for each element. 

(0.50) 3 3 (60,60) 
:3 (1.2) 

1~ ______ ~2 ____ r 1~ ____ ~~_2 __ _ 

(0.0) (50.0) (0,0) (60.0) 

(al (b) (c) 

Figure P9-6 
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9.7 For the axisymmetric elements shown in Figure P9-7. determine the element stresses. 
Let E 210 GPa and v 0.25. The coordinates (in millimeters) are shown in the 
figures, and the nodal displacements for each element are 

3 (0,50) 

l~ ______ ~ ____ • 

. (0,0) (50.0) 

(3) 

Figure P9-7 

UI = 0.05 rom WI = 0.03 mm 

U2 =O.02mm 

113 =O.Omm 

(30.50) 

W2 = 0.02 mm 

W3 =O.Omm 

I 1t--_____ .......... 2 __ 

(0.0) (60, o} 

(b) 

3 (1.2) 

(c) 

9.8 Can we connect plane stress elements with axisymmetric ones? Explain. 

2 

9.9 Is the three-noded triangular element considered in Section 9.1 a constant strain ele-
ment? Why or why not? . 

9.10 How should one model the boundary conditions of nodes acting on the axis of 
symmetry? 

9.11 How would you evaluate the circumferential strain, ta, at r = O? What is this strain in 
terms of the a>s given in Eq. (9.1.3). Hint: Elasticity theory tells us that the radial 
strain must equal the circumferential strain at r = O. 

9.12 What win be the stresses u, and Uo at r O? Hint: Look at Eq (9.1.2) after considering 
problem 9.1 I. 

Solve the foRowing axisymmetric problems using a computer program. 

S. 9.13 The soil mass in Figure P9-13 is loaded by a force transmitted througb a circular 
footing as shown. Detennine the stresses in the soil. Compare the values of ar using an 

6000 Ib total force 

Figure P9-13 

Soil mass 
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ax.isymmetric model with the (iy values using a plane stress model. Let E 3000 psi 
and v = 0.45 for the soil mass.. 

S 9.14 Perform a stress analysis of the pressure vessel shown in Figure P9-14. Let 
E = 5 X 106 psi and v = 0.15 for the concrete, and let E = 29 X 106 psi and v = 0.25 
for the steel liner. The steel liner is 2 in. thick. Let the pressure p equal 500 psi. 

Model of a nuclear reactor 

Concrete 
Steel liner 

r 
16 in. p 

2 m. 
L,I--l--I---I 

"' 

3·in-tadius hole 
- -7.5 in. 

50 in. 

25 in. 

1--30 in.---1 
Figure P9-14 

9.15 Perform a stress analysis of the concrete pressure vessel with the steelllner shown in 
Figure P9-1S. Let E = 30 GPa and v = 0.15 for the concrete, and let E = 205 GPa 
and v = 0.25 for the steel liner. The steel liner is 50 mm thick. Let the pressure p equal 
700 kPa. 

Steel liner Concrete 

"" t t t --
p--. ~ , 

+325mmj 

T 
400mm 

1 
1250 nlm Figure P9-15 

1 
f--750 mm ---l 
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.9.16 Perfonn a stress analysis of the disk shown in Figure P9-16 if it rotates with constant 
angular velocity of OJ = 50 rpm. Let E = 30 X 106 psi, )' = 0.25~ and the weight den­
si~y Pw = 0.283 Ibjin3 (mass density) P = p.,j(g = 386 in.fs2). (Use 8 and then 16 
elements symmetrically modeled similar to Example 9 ~4. Compare the finite element 
solution to the theoretical circumferential and radial stresses given by 

3+v 2tl-(1 1 +3vr2) 3+)' . 2 2(1 -?-) 
fJ'e -S-POJ - 3 + v a2 ~ fJ', =-g-PW a --;; 

8 
a 

CI) 

Figure P9-16 

__ Axis of symmetry 

12 in.--l.l. 
3in. 1..----+-------lT 

99.17 For the die casting shown in Figure P9-17, determine the maximum stresses and 
their locations. Let E:;: 30 X 106 psi and v = 0.25. The dimensions are shown in the. 
figure. 

Fixed edge I I . .AXiS of,symmerry t:::::::1.62S in.-~-------001 
% 

T O's-In. ramus 
4.175in. 

, 0.75in.==fT1 

1.0625 in. 0.1875 in. 

I 

~----~p~l 
'p 

--~--~~==~==~~~-, 
0.62Sin .. -*'!-,--1.2in.---- , 

u 0.4375 in. 
62 ~ 

I 1----------2.5 in. ---------1 
1---------- 8.5 in. ------Ayl"""--------I 

Figure P9-17 
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For the axisymmetric connecting rod shown in Figure P9-18> detennine the stresses 
O'z, O'r. O'a, and 1:rz• Plot stress contours (lines of constant stress) for each of the normal 
stresses. Let E = 30 X }O6 psi and v = 0.25. The applied loading and bOWldary con· 
ditions are shown in the figure. A typical discrelized rod is shown in the figure for 
il1ustrative purposes only. . 

r---- 2 in. ---1. 
JI-I-+-to++--+--+--+-+--+--41 

I in 

~~~~l 
Ax. is of symmetry /~ 

~-----------------------7!ia----------------------~-
8 

Figure P9-18 

»9.19 For the thick-walled open-ended cylindrical pipe 'Subjected to internal pressure shown 
in Figure P9-19, use five layers of elements to obtain the ci~umferential stress, O'e, 

Axis of symmetry - O.~~M 0.06 0.06 ~t-m m .m m 

1 ~2 3~ 4~ S 6 

- Q) G) ® (9 ® 
1 

O.3m 

7 
12 l 

f 
@ @ O..3m 

MPa - IS i \ 13 

t 
@ @> O.3m 

19 
24 i - f 

G ® O.3m - 30 ! 25 .1. 

p=35 

t-----~1.20 m 

Urn 

Figure P9-19 
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and the principal stresses and maximum radial displacement. Compare these results to 
the exact solution. Let E = 205 GPa and v = 0.3. 

9.20 A steel cylindrical pressure vessel with flat plate end. caps is shown in Figure P9-20 
with vertical axis of symmetry. Addition of thickened sections helps to reduce stress 
concentrations in the corners. Analyze the design and identify the most critically 
stressed regions. Note that inside sharp re-entrant comers produce infinite stress con­
centration zones, so refining the mesh in these regions will not help you get a better 
answer unless you use an inelastic theory or place small fillet radii there. Recommend 
any design changes in your report. Let the pressure inside be 1000 kPa. 

25 18.75 

i--200 dia.--I 

,I---250 dia.----J 
1---310 dia.----1 

Figure P9-20 

25 

Dimensions in millimeters 

9.21 For the cylindrical vesSel with hemispherical ends (heads) under uniform internal 
pressure ofintensity p = 500 psi shown in Figure P9-21, determine the maximum von 
Mises stress and where it is located. The materiat is ASTM-A242 quenched and 
tempered alloy steel. Usea.factor of safety of 3 against yielding. The inner radius is 
a = 100 inches and the thickness t = 2 in. 

",.,._,.--------------1._,'-
/ ~, 

I \ 

I 1_ Figure P9-21 

9.22 Forthe cylindrical vessel with ellipsoidal heads shown in Figure P9-22a under loading 
p = 500 psi, determine if the vessel is safe against yielding. Use the same material and 
factor of safety as in previous problem, 9.21. Now let a = 100 in. and b = 50 in. 
Which vessel has the lowest hoop stress? Recommend the preferred head shape of the 
two based on your answers. ' 
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For modeling purposes, the equation of an ellipse is given by IJ2 Xl + a2;' = rl-b2 ~ 
where a is the major axis and b is the minor axis of the ellipse shown in Figure 
P9-22(b). 

I 

----;-jJ~i;--- ~. 
(a). (b) 

Figure P9-22 

9.23 The syringe with plunger is shown in Figure P9-23. The material of the syringe is glass 
with E = 69 GPa, v = 0.15, and tensjle strength of 5 MPa. The bottom hole is as­
sumed to be closed under test conditions. Determine the deformation and stresses in 
the glass. Compare the maximum principal stress in the glass to the ultimate tensile 
strength. Do you think the syringe is safe? Why? 

45N 

! 

Plunger 

90mm -=~i-- Liquid 

Figure P9-23 
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9.24 For the tapered soliq circular shaft shown, a semicircular groove has been machined 
into the side. The shaft is made of a hot roUed 1040 steel alloy with yield strength of 
71>000 psi. The shaft is subjected to a unifonn axial pressure of 4000 psi. Determine 
the maximum principal, stresses and von Mises stresses at the fil1~t and at the semicir­
cular groove . .Is the shaft safe from failure based on the maximum distortion energy 
theory? . ' . 

T 
3 in. 

1 

R=OSin. 

l"'---I -----.... 
I 
I 
I 
1 
J 
I ,. 

R=tin. 

/ 

~30in. ·I- 30 in. ·1- ~in.--1 
Figure P9-24 

4000 psi 
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Introduction 

In this chapter, we 'introduce the isoparametric formulation of the element stiffness 
matrices. After considering the linear-strain triangular element in Chapter 8, we can 
see that the development of element matrices and equations expressed in terms of 
a global coordinate system becomes an enomlously difficult task (if even possible) ex­
cept for the simplest of elements such as the constant-strain triangle of Chapter 6. 
Hence, the isoparametric formulation was developed [1]. The isoparametric method 
may appear somewhat tedious (and confusing initially), but it will lead to a simple 
computer program formulation, and it is gene~aIly applicable for two- and three­
dimensional stress analysis and for nonstructural problems. The isoparametric formu­
lation aUows elements to be created that are nonrectangular and have curved sides. 
Furthermore, numerous commercial computer programs (as described in Chapter 1) 
have adapted this formulation for their various libraries of elements. 

We first illustrate the isoparametric formulation to develop .the simple bar ele~ 
ment stiffness matrix. Use of the bar element makes it relatively easy to understand 
the method because simple expressions result. 

We then consider the development of the rectangular plane stress element stiff­
ness matrix in terms of a global-coordinate system that will be convenient for use 
with the element. These concepts will be useful in understanding some of the proce~ 
dures used with the isoparametric formulation of the simple quadrilateral element 
stiffness matrix, which we will develop subsequently. 

Next, we will introduce numerical integration methods for evaluating the quadri­
lateral element stiffness matrix and illustrate the adaptability of the isoparametric fOT­

mulation to common numerical integration methods. 
Finally; we will consider some bigher-order elements and their associated shape 

functions. 
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.& 10.1 Isoparametric Formulation of 
the Bar Element 'Stiffness Matrix 

The term isoparametric is derived from the use of the same shape functions (or inter­
polation functions) [N] to define the elemenfs geometric shape as are used to define 
the displacements within the element. Thus, when the shape function is u = at + alS 
for the displacement, we use x = al + az'S for the description of the nodal coordinate 
of a point on the bar element and, hence, the physical shape of the element. 

Isoparametric element equations are formulated using a natural (or intrinsic) c0-

ordinate system s that is defined by element geometry and not by the element orienta­
tion in the global-coordinate system. In other words, axial coordinate s is attached to 
the bar and remains directed along the axial length of the bar, regardless of how the 
bar is oriented in space. There is a relationship (called a transformation mapping) 
between the natural coordinate system s and the global coordinate system x for each 
element of a specific structure, and this relationship must be used in the element equa­
tion formulations. 

We will now develop the isoparametricJormulation of the stiffness matrix of a 
simple linear bar element [with two nodes as shown in Figure 1001(a)J. 

$=0 

XI X2 S = -I ~s s = r 
L L 2 

X.U 
-I 

(a) (b) 

Figure 10-1 Linear bar element in (a) a global coordinate system x and (b) a natural 
coordinate system 5 

Step 1 Select Element Type 

First, the natural coordinate s is attached to the element> with the origin located at the 
center of the element, as shown in Figure 10-1 (b). The s axis need not be parallel to 
the x axis-this is only for convenience. 

We consider the bar element to have two degrees of freedom-axial displace­
ments UI and U2 at each node associated with the global x axis. 

For the special case when the s and x axes are paraUel to each other, the s and x 
coordinates can be related by 

(to. 1. 1 a.) 

where Xc is the global coordinate of the element centroid. 
Using the global coordinates XI and X2 in Eq. (lO.l.la) with Xc (Xl + x2)/2, 

we can express the natural coordinate s in terms of the global coordinates as 

(lO.Llb) 
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s=-) 
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(0) 

N~ 
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-\ o 
(b) 

Nade2 

s=l 

Figure 10-2 Shape function variations with natural coordinates: (a) shape function 
N11 (b) shape function N2, and (c) linear displacement field u plotted over element length 

The shape functions used to define a position within the bar are found in a manner 
similar to that used in Chapter 3 to define displacement within a bar (Section 3.1). We 
begin by relating the natural coordinate to the global coordinate by 

(IO.1.2) 

where we note that s is such that -1 ~ s ~ I. Solving for the a/s in terms of Xl and 
X2) we obtain 

(10.1.3) 

or, in matrix form, we can express Eq. (10.1.3) as 

{x} = ININ21{~:} (10.1.4) 

where the shape functions in Eq. (10.1.4) are 

(10.1.5) 

The linear shape functions in Eqs. (10.1.5) map the s coordinate of any point in the el­
ement to the x coordinate when used in Eq. (10.1.3). For instance, when we substitute 
s = -1 into Eq. (10.1.3), we obtain x = XI. These shape functions are shown in Figure 
10-2, where we can see that they have the same properties as defined for the interpo­
lation functions of Section 3.1. Hence, NI represents the physical shape of the coordinate 
x when plotted over the length of the element for XI = I and X2 = 0, and Nz repre­
sents the coordinate x when plotted over the length of the element for Xl = I and 
XI ::= O. Again, we must have NJ + N2 = t. 



446 ..l. 10 Isoparametric Formulation 

These shape functions must also be continuous throughout the element domain 
and have finite.first derivatives within the element. 

Step 2 Select a Qisplacement Function 

The displacement function within the bar is now defined by the same shape functions, 
Eqs. (10.1.5), as are used to define the element shape; that is, 

{u} = [NI N21{::} (10.1.6) 

When a particular coordinate s of the point of interest is substituted into tN], 
Eq. (10.1.6) 'yields the displacement of a point on the bar in terms of the nodal degrees 
of freedom Ul and U2 as ,shown in Figure 10-2{c). Since u and x are defined by the 
same shape functions at .the same nodes, comparing Eqs. (10.1.4) and (10.1.6), the 
element is called isoparametric. ' 

Step 3 Define the Strain/Displacement and Stress/Strain 
Relationships 

We now want to formulate element matrix [BJ to evaluate [kJ. We use the isoparamet­
ric fonnulation to illustrate its manipulations. For a simple bar element, no real ad­
vantage may appear evident. However, for high.er-order elements, the advantage win 
become clear because relatively simple computer program formulations will result. 

To construct the element stiffness matrix, we must determine the strain, which is 
defined in tenus of the d~rivative of the displacement with respect to x. The displace­
ment U, however, is vow a function of s as given by Eq. (10.1.6). Therefore, we must 
apply the. chain rule of differentiation to the function u as follows: 

du dudx 
ds=dxds (10.1.7) 

We can evaluate (d~Jds) and (dx/ds) using Eqs. (10.1.6) and (10.1.3). We seek 
(duJdx) = Ex. Therefore"we solve Eq. (10.1.7) for (duJdx) as 

Using Eq. (10.1.6) for U, we obtain 

du U2 - Ut 
ds=-2-

and using Eq. (iO.1.3) for x, we have 

because X2 - XI = L 

(10.1.8) 

(10.1.9a) 

(IO.L9b) 
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Using Eqs. (lOJ.9a) and (IOJ.9b) in Eq. (1O.1.8),.we obtain 

(10.1.10) 

S~nce {e} = [BHd}, the strain/displacement matrix [B] is then given in Eq. (l(U.lO) a~ 

[BJ = [-I ±] (10.1.11) 

We recall that use of linear shape functions results in a constant !l matrix, and hence, 
in a .constant strain within the element. For higher-order elements, such as the quadratic 
bar with three nodes, [B] becomes a fWlction of natural coordinate s (see Eq. (10.6.16). 

The stress matrix is again given by Hooke's law as 

Step 4 Derive the Element Stiffness Matrix and Equations 

The stiffness ma~ is 

[kJ = J:[B1T[DJ[B]A dx (10.1.12) 

However, in general, we must transform the coordinate x to s because IB) is, in general, 
a fWlction of s. This general type of transformation is given by ReferenC"A.'.:S [4} and [5] 

IL f(x) dx = Jl J(s) III tis 
o -1 

(10.1.13) 

where I is called the Jacobian. In the one-dimensional case, we have III = I. For the 
simple bar el~ment, from Eq. (lO.1.9b), we have 

dx L 
III = tis =.2 (10.1.14) 

Observe that in Eq. (10.1.14), the Jacobian relates an element length in the global-co­
ordinate system to an element length in the natural...coordinate system. In general) III is 
a func!ion of $ and depends on the numerical values of the nodal coordinates. This can 
be seen oy looking at ~q. (10.3.22) for the quadrilateral element. (Section 10.3 further 
discusses the.Jacobian.) Using'Eqs.. (10.1.13) and (10.1.14) in Eq. (10.1.12), we obtain 
the stiffness matrix in natural coordinates as 

[kJ =~fl[BJTE[BJAdS (10.1.15) 

where, for the one-dimensional case, we have used the modulus of elasticity E = [D) 
in Eq. (1O.1.15). Substituting Eq. (10.1.11) in Eq. (10.1.15) and performing the simple 
integration, we obtain • 

[k} = AE [ I -1 ] 
L -1 1 

(10.1.16) 
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which is the same as Eq. (3.1.14). For higher-order one-dimensional elements, the 
integration in closed form becomes difficult if not impossible (see Example 10.7). 
Even the simple rectangular element stiffness matrix is difficult to evaluate in closed fonn 
(Section 103). However, the use of numerical integration, as described in Section 10.4, 
i1lustrates the distinct advantage of the isoparametric formulation of the equations. 

Body Forces 

We will now determine the body-force matrix using the natural coordinate system s. 
Using Eq. (3.l0.20b), the body-force matrix is 

{~} = JII [N] T{Xb} dV (10.LI7) 

v 
Letting dV = A dx, we have 

(10.1.18) 

Substituting Eqs. (10.1.5) for NJ and N2 into (N) and noting that by Eq. (10.1.9b), 
dx = (L/2) ds~ we obtain 

( 
l-Sj A I -2- _ L 

{Jb} == A J ' {Xb} "2 ds 
-1 1 +s 

-2-

(10.1.19) 

On integrating Eq. (10.1.19), we obtain 

{h} = A~Xb { ! } (10.1.20) 

The physical interpretation of the results for {h} is that since AL represents the 
volume of the element and Xb the body force per unit volume, then ALXb is the 
total body force acting on the element. The factor! indicates that this body force is 
equally distributed to the two nodes of the element. 

Surface Forces 

Surface forces can be found using Eq. (3.l0.20a) as 

{is} = JI [Ns]T{T.T}dS (10.1.21) 
s 

Assuming the cross section is constant and the traction is uniform over the perimeter 
and along the length of the element, we obtain 

(10.1.22) 
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where we now assume Tx is in units of force per unit length. Using the shape functions 
NI and N2 from Eq. (1O.I.5) in Eq. (10.1.22), we obtain 

(
l-Sj 

A I 4 L 
{Is} = J {T;(}"2 ds 

-I I +s 
-2-

(10.1.23) 

On integrating Eq. (10.1.23), we obtain 

• 4 L{l} {Is} = TX2 I (10.1.24) 

The physical interpretation ofEq. (10.L24) is that since T;r is in force-per-unit-Iength 
units. TxL is now the total force. The! indicates that the uniform .surface traction is 
equally distributed to the two nodes of the element. Note that if Tx were a function 
of x (or s), then the amounts of force allocated to each node would generally not be 
equal and would be found through integration as in Example 3.12. 

1: 10.2 Rectangular Plane Stress Element 

We will now deyelop the rectangular plane stress element stiffness matrix. We will later 
~fer to this element in the isoparametric formulation of a general quadrilateral element. 

Two advantages of the rectangular element over the triangular element are ease 
of data input and simpler interpretation of output stresses. A disadvantage of the fect­
angular element is that the simple 1inear~displacement rectangle with its associated 
straight sides poorly approximates the real boundary condition edges .. 

The usual stepS outlined in Chapter 1 will be followed to obtain the element stiff­
ness matrix and related equations. 

Step 1 Select Element Type 

Consider the rectangular element shown in Figure 10-3 (all interior ang1es are 90°) 
with comer nodes 1-4 (again labeled counterclockwise) and base and height dimen­
sions 2b and 2h. respectively. 

The unknown nodal displacements are now given by 

UI 

VI 

U2 

{d} == 
V2 

(10.2.1) 
U3 

VJ 

U4 

V4 
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y, v 

b--.... --b 

h 

~------~~--.x.u 

Figure 10-3 Basic four-node rectangular element with nodal degrees of freedom 

. Step 2 Select Displacement Functions 

For a compatible displacement field, the element displacement functions u and v must 
be linear along each edge because only two points (the corner nodes) exist along each 
edge',We then select the linear displacement functions as . 

u(x,y) = al + a2x + a3Y + tl4;y . 

v(x,y) = as + a6X + a7Y + asxy 
(10..2.2) 

We can proceed in the usual manner to eliminate the a/s from Eqs. (10..2.2) to 
obtain 

U(x,y) 
1 

4bh [(b - x)(h - y)ul + (b + x)(h - Y)U2 

+ (b + x)(h-+ y)U3 + (b'- x)(h + Y)ZI4] 

1 
v(x,y) = 4bh rCb - x)(h - Y)VI + (b + x)(h - Y)V2 

(10.2.3) 

+ (b + x)(h + Y)V3 + (b - x)(h + y)v41 

These displacement expressions, Eqs. (10.2.3), can be expressed equivalently in 
terms of the shape functions and unknown nodal displacements as 

{I/I} [NJ{d} 

where the shape functions are given by 

N _ (b - x)(h - y) 
1- 4hh 

N _ (h + x)(h + y) 
3 - 4bh 

(b+x.)(h- y) 
4hh 

N _ (h - x)(h + y) 
4- 4bh 

(10.2.4) 

(10..2.5) 

and the N/s are again such that NI at node I and NI = 0 at all the other 
nodes, with similar requirements for the other shape functions. In expanded form, 
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Eq. (10.2.4) becomes 

Ul 

Vi 

U2 

{:} = [~l 0 N2 0 N3 0 N4 ~J V2 

Nt 0 N2 0 N3 0 U3 

V3 

U4 

V4 

Step 3 Define the Strain} Displacement and Stress} Strain 
Relationships 

Again the element strains for the two-dimensional stress state are given by 

au 
ox 
Ov 
oy 

au av 
-+-oy ox 

(10.2.6) 

(10.2.7) 

Using Eq. (10.2.6) inEq. (to.2.7) and taking the derivatives of u and v as indi­
cated, we can express the strains in terms of the unknown nodal displacements as 

where 

{e} = [B]{d} 

1 [-Ch- Y) 0 (h - y) 0 
o -(b+x) [B} = 4bh 0 -(b -x) 

-(b - ,x) -(h - y) -(b+x) (h - y) 

(h + y) 0 
o (b+x) 

(b+x) (h + y) 

-(h+ y) 

o 
(b-x) 

o ] (b-x) 
-(h+y) 

(10.2.8) 

(10.2.9) 

From Eqs. (10.2.8) ~d (10.2.9), we observe that ex is a function of y. e, is a 
function of x, and Yxy is a function of both x and y. The stresses are again given by 
the formulas in Eq. (6.2.36), where [B] is now that of Eq. (10.2.9) and {d} is that of 
Eq. (10.2.1). 

Step 4 Derive the Element Stiffness Matrix and Equations 

The stiffness matrix is determiried by . 

[kJ = fh rb [B1 T [DJ fBI t dx dy (10.2.10) 
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with (D} again given by the usual plane stress or plane strain conditions, Eq. (6.1.8) or 
(6.1.10). Because the [B] matrix is a function of x and y, integration of Eq. (10.2.10) 
must be performed. The (kJ matrix for the rectangular element is now of order 8 x 8. 

The element force matrix is determined by Eq. (6.2.46) as 

{f} = J J J [N] T {X} dV + {P} + J J [N.d T {T} dS (10.2.1 1) 

v s 
\ 

where [NJ is the rectangular matrix in Eq. (10.2.6), and NI through N, are given by 
Eqs. (10.2.5). The element equations are then given by 

{f} = [k]{d} (10.2.'12) 

Steps 5-7 

.Steps 5-7, which involve assembling the global stiffness matrix and equatjons, deter­
mining the unkDown nodal displacements, and calculating, the stre?S. are identical to 
those in Section 6.2 for the CST. However, the stresses within each element now 
vary in both' the x and y directions. . 

As previously pointed out when describing defects for the CST in Chapter 6, the 
bilinear rectangle element described in this section also cannot provide pure bending. 
When this element is subjected to pure bending, it also develops false shear strain. 
This means that in a pure bending deformation, the bending moment needed to pro­
duce the deformation is predicted to be larger than the actual value when modeling 
with the rectangular element. Details of this shear locking are presented in [8]. 

To avoid the possibility of shear locking that occurs when the rectangular 
bilinear (four comer noded) element is subjected to bending. the higher order eight­
noded quadratic rectangle has been developed and is described briefly in Section 10.6. 
This eight-noded element is created by adding mid-side nodes to the, bilinear element. 

:1 10.3 Isoparametric Formulation of the Plane 
Element Stiffness Matrix 

Recall that the term isoparametric js derived from the use of the same shape functions 
to define the element shape as are used to define the displacements within the eJement. 
Thus, when the shape function is u = al + Q2S + a3t + 04St for the displacement, we 
use x = al + alS + 03t + (4S1 for the description of a coorc,iinate point in the plane 
element. 

The natural-coordinate system s-t is defined by element'geometry and not by the 
'element orientation in the global-coordinate system x-y. Much as in the bar element 
example, there is a transformation mappirig between the two coordinate systems for 
each element of a specific structure,' and this relationship must be used in the' element 
formulation. 

We wiIJ now discuss the isoparametric formulation of the simple linear plane el­
ement stiffness matrix. This formulation is general enough to be applied to more 
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Edger == I 
Y,v \ (-1,1) I 1 (1,1) 

,...---1------, 
4 3 

Edge 
Edges 

/ 
2 Edger = -I 

(-1,-1) (1,-1) '--------'-------- .I,ll 

(a) (b) 

Figure 10-4 (a) Linear square element in s-t coordinates and (b) square element 
mapped into quadrilateral in x-y coordinates whose size and shape are determined by 
the eight nodal coordinates Xl ,Yl, ... ,Y4 

complicated (higher-order, elements such as a quadratic plane element with three 
nodes along an edge, which can have straight or quadratic curved ·sides. Higher­
order elements have additional nodes and use different shape functions as compared 
to the linear element, but the ·steps in the development of the stiffness matrices are 
the same. We will briefly discuss these elements after examining the linear plane ele­
ment formulation. 

Step 1 Select Element Type 

First, the natural s-t coordinates are attached to the element, with the origin at the 
center of the element, as shown in Figure 10-4(a). The sand t axes need not be 
orthogonal, and neither has to be parallel to the x or y axis. The orientation of s-t 
coordinates is such that the four comer nodes and the edges of the quadrilateral are 
bounded by + 1 or -1. This orientation will later allow us to take advantage more 
fully of common numerical integration schemes. 

We consider the quadrilateral to have eight degrees of freedom, 'UI, VI, ••• ,14, 
and V4 associated with the global x and y directions. The element then has straight 
sides but is otherwise of arbitrary shape> as shown in Figure 10-4(b). 

For the special case when the distorted element becomes a rectangular element 
with sides parallel to the global x-y coordinates (see Figure 10-3), the s-t coordinates 
can be related to the global element coordinates x and y by 

x=x(7+bs y=yc+ ht (10.3.1) 

where XC' and Yc are the global coordinates of the element centroid. 
As we have shown for a rectangular element, the shape functions that define the 

displacements within the, element are given by Eqs. (10.2.5). These same sha~ func­
tions will now be used to map the square of Figure 10-4(a) in isoparametric coor­
dinates sand t to the quadrilatefal of Figure 10-4(b) in x and y coordinates whose size 
and shape are det~ined by the eight nodal coordinates XI ~YI, •• - 1 x4, and Y4- That 
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is, letting 
x = at + a2S + a3t + a4st 

y = as + a6s+a71+ asS! 
(10.3.2) 

and solving for the a/s in tenus ofx:,x2,x3,x4,YI,Y2,Y3, and Y4, we establish a form 
similar to Eqs. (10.2.3) such that 

x = ! [(1 - s)(1 - t)Xl + (1 + s)(1 - t)X2 

+ (1 + s)(1 + t)X3 + (1 - s)(1 + t)X4] 

Y = H(1 - 8)(1 t)Yl + (1 + s)(1 t)Y2 

+ (I + s)(1 + t)Y3 + (1 - s)(1 + I)Y4] 

Or, in matrix form, we can express Eqs. (10.3.3) as 

Xl 

Yl 
x2 

{;} = [~I 0 N2 0 N3 0 N4 ~J Y2 
Nt 0 N2 0 N3 0 X3 

Y3 
X4' 

Y4 

where the shape functions ofEq. (10.3.4) are now 

Nt = (1 -8)(1 - t) N2 = (1 +$)(1 t) 
4 4 

N3 = (1 + $)(1 + t) Tlr _ (1 - $)(1 + t) 
4 ""4 -:' 4 

(10.3.3) 

(10.3.4) 

(10.3.5) 

The shape functions of Eqs. (10.3.5) are linear. These shape functions are seen to map 
the $ and t coordinates of any point in the square element of Figure 1 0-4 ( a) to those 
x and'y coordinates in the quadrilateral element of Figure 10-4(b). For instance, con­
sider square element node 1 coordinates, where s = -1 and t -1. Using Eqs. 
(10.3.4) and (10.3.5), the left side of Eq. (10.3.4) becomes 

x = XI Y = Yl (10.3.6) 
Similarly, we can map the other local nodal coordinates at nodes 2. 3, and 4 such th<1t 
the square element in a-t ,isoparametric coordinates is mapped into a quadrilateral 
element in global coordinates. Also observe the property that NI + N2 + N3+ 
N4 = 1 for all values of s and t. 

We further observe that the shape functions in Eq. (10.3.5) are again such that 
Nt through N4 have the properties that Nt (i = 1,2, 3,4) is equal to one at node i and 
equal to zero at aU other nodes. The physical shapes of Ni as they vary over the ele­
ment with natural cOQrdinates are shown in Figure 10-5. For instance, NI represents 
the geometric shape for Xl = 1, Y1 = 1. and X2,Y2,X3,Yl, X4, and Y4 all equal to zero. 

Until this point in the discussion, we have always developed the element shape 
functions either by assuming some relationship between the natu..-a1 and global 
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I 
I 

s~ 

Figure t 0-5 Variations .of the shape functions over a linear square element 

coordinates in tenns of the generalized coordimttes (a/s) as in Eqs. (10.3.2) or, simi­
larly, by assuming a displacement funct~on in terms of the a/so However, physical in­
tuition can often guide us in directly expressing shape functions based on the following 
two criteria set forth in Section 3.2 and used on nuinerous occasions: . 

n 

I:M=l (i = 1, 2, ... , n) 
i=l 

where n = the nmnber of shape functions corresponding to displacement shape func­
tions Ni• and Ni = 1 at node i and Ni = 0 at an nodes other than i. In addition, a 
third criterion is based on Lagrangian interpolation when displaoement continuity is to 
be satisfied, or on Hermitian interpolation when additional slope continuity needs to be 
satisfied, as in the beam element of Chapter 4. (For a description of the use of Lagrangian 
and Hermitian interpolation to develop shape functions, consult References [4J and [6}.) 

Step 2 Select Displacement Functions 

The displacement functions within an element are now similarly defined by the same 
shape functions as are used to define the element shape; that is, 

Ut 

VI 

U2 

{:} = [~l 0 Nz 0 N3 o· N4 ~J V2 (10.3.7) 
NI 0 N2 0 N3 0 U3 

V3 

U4 
V4 
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where u and v are displacements parallel to the global x and y coordinates, and the shape 
functions are given by Eqs. (10.3.5). The displacement of an interior point P located at 
(x,y) in the element of Figure l0-4(b) is desCribed by u and v in Eq. (10.3.7). 

Comparing Eqs. (10.2.6) and (10.3.7). we see similarities between the rectangu­
lar element with sides of lengths 2b and 2h (Figure 10-3) and the square element 
with sides of length 2. If we let b = 1 and h = I) the two sets of shape functions, 
Eqs. (10.2.5) and (l0.3.5}, are identical. 

Step 3 Define the Strainj Displacement and Stressj Strain Relationships 

We now want to fonnulate element matrix J1 to evaluate k. However, because it becomes 
tedious and difficult (if not impossible) to write the shape functions in terms of the x 
and y coordinates, as seen in Chapter 8, we will carry out the formulation in terms of 
the isoparametric coordinates s· and t. This may appear tedious, but it is easier to use 
the s- and t-coordinate expressions than to attempt to use the x- and y-coordinate 
expressions. This approach also leads to a simple computer program formulation. 

To construct an element stiffness matrix, we must determine the strains, which 
are defined in terms of the derivatives of the displacements with respect to the x and 
y coordinates. The displacements, however, are now functions of the s and t coordi­
nates, as given by Eq. (10.3.7). with the shape functions given by Eqs. (10.3.5). 
Beforl;~, we could determine (of/ox) and (of joy), where> in general,fis a function 
representing the displacement functions u or v. However, 'u and v are now expressed 
tn terms of $ and t. Therefore, we need to apply the chain rule of differentiation be­
cause it will not be'possible to express sand t as functions of x and y directly. For f 
as a function of x and y, the chain rule yields 

of = of ox + of oy 
as· ox as oyos' 

0/ a/ax olay -=--+--at ax at' ayat 

(10.3.8) 

In Eq. (10.3.8), (af /as) , (af jot), (ox/as), (ayjos), (axjat), and (ay/ot) are all known 
using Eqs. (10.3.7) and (10.3.4). We still seek (0/ lox) and (af joy). The strains can 
then be found; for example, ex = (fJujax). Therefore, we solve Eqs. (10.3.8) for 
(of lox) and (of joy) using 'Cramer's rule, which involves evaluation of detenninants 
(Appendix B), as 

0/ oy ax of 
as as as as 
of oy ax of 

of at at af at 
(10.3.9) -= -= .ax ox oy ay ax ay 

as as as as 

ax ay ox ay 
at at at .at 
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where the determinant in the denominator is the ~ .. mninant of the Jacobian matrix 
I.. !fence, the Jacobian matrix is given by 

[1] = 
ax ay [ ~; as] 

ai at 
We now want to express the element strains as 

~.= Brl 

(10.3.10) 
" 

(10.3.11) 

where !1 must now be expressed as a function of sand t. We start with the usual 
relationship between strains and displacements given in matrix fonn· as 

~ 0 ax 

r:}= 0 
o( ) {:} (10.3.12) 

Yxy 
Ty" 

a() 8( ) 

BY ax 
where the rectangular matrix on the right side of Eq. (10.3.12) is an operator matrix; 
that is, 8( )1 ox and 8( ) loy represent the partial derivatives of any variable we put in­
side the parentheses. 

Using Eqs. (10.3.9) and evaluating the determinant in the numerators; we have 

~=-.!... [OY ~_ Oy~] 
aX III at os as at 

~=-.!... [ox ~_ Ox~] 
oy III aS at at os 

(10.3.13) 

where III is the determinant of I given by Eq. (10.3.10). Using Eq. (10.3.13) in Eq. 
(10.3.12) we obtain the strains expressed in terms of the natural coordinates (S-/) as 

ay o() oy a( ) 
0 -----

at as os at 

{q=I~1 0 
ox 8() ax o( ) {:} (10.3.14) 
os Tt-JtTs 

Yxy 

ax o() ox 8( ) oy o() oya() 
os Tt- at Ts aias- os Tt 

Using Eq. (10.3.7), we can express Eq. (10.3.14) in tenns of the shape functions 
and global co'ordinates in compact matrix fonn as 

~ = Il'lfrl (10.3.15) 
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where Ii is an operator matrix given by 

I 1 
Il = III o 

o 

ox o() ax 00 
os Tt. Ts 

ox ao ox 00 ay ao oy 00 
os Tt- at as ot Ts- as Tt 

(10.3.16) 

and!! is the 2 x 8 shape function matrix given as the first matrix on the right side of 
Eq. (10.3.7) and 4. is the column matrix on the right side ofEq. (10.3.7). 

Defining g as 

B = /2' !! 
(3 x 8) (3 x 2) (2 x 8) 

(10.3.17) 

we have B expressed .as a function of sand t and thus have the strains in tenns of s and 
t. Here!l is of order 3 x 8, as indicat~ in Eq. (10.3.17). 

The explicit form of B can be obtained by substituting Eq. (10.3.16) for Ii and 
Eqs. (10.3.5) for the shape functions into Eq. {10.3.17}. The matrix multiplications 
yield 

1 
g(s, t) = III [BI B2 93 B4] 

where the submatrices of !l are given by 

Here i is a dummy variable equal to 1, 2, 3, and 4, and 

a = !fYl(S - 1) + Y2( -1 - s) + Ys(l + s) + Y4(1 - s)] 

b = ![YI(t - 1) + Y2(l-I) + Y3(1 + t) + Y4( -1- t)j 

c = HXt(t -1) +x2(1 - t) +x3(1 + t) +x4(-1- t)} 

. d HXl(S-l) + x2(-1 -s) +x3(1 + s) + x4(1 - s)} 

Using the shape functions defined by Eqs. (10.3.5), we have 

Nt,s HI-I) Nt,t =1{s-l) (and so on) 

(10.3.18) 

(10.3.19) 

(10.3.20) 

(10.3.21) 

where the comma followed by the variable s or t indicates differentiation with,respect 
to that Variable; that is, NI,s == oNl/os, and so on. The de~t III is a polynomial 
in sandt and is tedious to evaluate even for the simplest case of the linear plane 
element. However, using Eq. (10.3.10) for [J} and Eqs. (10.3.3) for x and y. we can 
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evaluate IIi as 

III = Hx,}t ~ 1 

1 - t t-s 
$-1 I 0 s+1 
~~/ {y,} (10.3.22) 

S-I. -s-J 0 
l-s s+t -t -1 

where {Xc}T = [Xl X2 X} X41 (10.3.23) 

and {y,}=gl (10.3.24) 

We observe that IIi is a function of sand t and the ,known global coordinates 
Xl, X2) ••• ,Y4. Hence, D is a function of sand t in both the numerator and the denom· 
inator [because of 111 given by Eq. (10.3.22)J and of the known global coordinates Xl 

through Y4.. ' 
The stress/strain relationship is again Q = !dOd, where because the Jl matrix is a 

function of sand t, so aTso is the stress matrix Q. 

Step 4 Derive the Element Stiffness Matrix and Equations 

We now want to express the stiffness matrix in terms of s-t coordinates. For an ele­
ment with a constant thickness h, we have 

!kJ = 11 [Bf[D][BJhdxdy (1O.3.25) 
A 

However,11 is now a function of~ and t. as seen by Eqs. (10.3.18)-(10.3.20), and so 
we must integrate with respect to sand t. Once again, to transform the variables and 
the region from X and y to s. and t, we must have a standatcl procedure that involves 
the deienninant of J.. This general ~ of transformation [4,5] is given by 

11 f(x,y) dxdy = II f(s,I)lll dsdt (10.3.26) 
A A 

where the inclusion of ill in the integrand on the right side of Eq. (10.3.26) results 
from a theorem of integral calculus (see Reference [5J for the complete proof of this 
theorem). Using Eq. (1O.3.26) in Eq. (10.3.25), we obtain 

(10.3.27) 

The III and 11 are such as to result in complicated expressions within the integral 
ofEq. (10.3.27), and so the integrat,ion to determine the ~lement stiffness matrix is 
usually done numerically. A method for numerically integrating Eq. (10.3.27) is 
given in Section ']0.4. The stiffness matrix in Eq. (10.3.27) is of the order 8 x 8. 
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Body Forces 

The "element body-force matrix will now be detennined from 

{h} 
(8 x 1) 

r r [NJT {X} h!ll dsdt 
-I -1 (8 x 2)(2 xl) 

(10.3.28) 

Like the stiffness matrix, the body-force matrix in Eq. (10.3.28) has to be evaluated by 
numerical integration. 

Surface Forces 

The surface-force matrix, say, along edge t = 1 (Figure 10-6) with overall length L, is 

or 

J
l L 

{Is} = [Nsf {T} h-ds 
(4xl) -1(4x2)(2xl) 2 

evaluated 
along 1=1 

{ PS}h!:.ds 
Pt 2 

(10.3.29) 

(10.3.30) 

because NI = 0 and N2 = 0 along edge t = 1, and hence, no nodal forces exist at 
nodes I and 2. For the case of uniform (constant) Ps and PI along edge t = 1, the 
total surface-force matrix is 

L T 
{Is} = h2"[O 0 OOps PI Ps Pt] (10.3.31) 

Surface forces along other edges can be obtained similar to Eq. (10.3.30) by.merely 
using the proper shape functions associated with the edge where the tractions are 
applied. 

Pt 

(-1, l) Ps t t t i (1, 1) 

4 3 

s 

1 2, 

(-I. -1) (1; -1) 

Figure 10-6 Surface traction: Ps and Pr acting at edge t 
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Example 10.1 

For the four~noded linear plane elemeQ.t shown in Figure 10-7 with a uniform surface 
traction along side 2-3, evaluate the force matrix by using the energy equivalent nodal 
forces obtained from the integral similar to Eq. (10.3.29). Let the thickness of the 
element be h = 0.1 in. 

y 

(0. 4) f-4~ ___ ----.;3 ~---.. 
(5,4) 

T:c = 2000 psi uniform 

~ ___________ ~2~ ____ ~ ____ ~x 
(8.0) 

Figure lQ.::7 Element subjected to uniform surface traction 

Using Eq. (10.3.29), we have 

{Is} = J~I[Ns]~{T}h~dt 
With length of side 2-3 given by 

(10.3.32) 

5 (10.3.33) 

Shape functions N2 and N3 must be used, as we are evaluating the surface traction 
along side 2-3 (at s = 1). Therefore, Eq. (10.3.33) becOmes 

{fs}=J' [N3f{T}h~2dt=Jl [N2 0 N3 O]T{PS}h!::.2dt 
, -1 -} 0 N2 0 N3 Pt 

(10:3.34) 

evaluated alOt;lg s 

The shape functions for the four-noded linear plane element are taken from 
Eq. 00.3.5) as 

N (l+s)(l-t) $-t-st+l N (l+s)(l+t) s+t+st+l 
2 4 ,4 3' 4 4 (10.3.35) 

The surface traction matrix is given by 

{T} = {~} = {2~} (10.3.36) 
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Substituting Eq. (10.3.33) for Land Eq. (10.3.36) for the surface traction matrix and 
the thickness h = 0.1 inch into Eq. (10.3.32), we obtain 

(

N2 0] 'I LION 2000 5 
{is} = Li [Nsf {T}h"2 dt = L1 N3 ~ { ° }O.l2dt 

° N3 

(10.3.37) 

evaluated along s = I 
Simplifying Eq. (10.337)~ we obtain 

{I.} 02{ [~:: ] dt 50{ [ ~lt (10.3.38) 

evaluated along s 

Substituting the shape functions from Eq.(10.3.35) into Eq. (10.3.38), we have 

. {is} . JI 506 
-1 

s-t-st+ 1 
4 
o 

s+ t +st + I dt 

o 

(10.3.39) 

evaluated along s = 1 
Upon substituting s = 1 int() the integrand in Eq. (10.3.39) and pc;nonning the explicit 
integration in Eq. (10.3.40), we obtain . . 

{is} = 5001
1 

-1 

2-21 

o 
21+2 

4 
o 

[ 

z21' . 0.50t- 4 
dt = 500 o. rj 

0.501'4" 
o -I 

(10.3.4O) 

Evaluating the resulting integration expression for each limit) we obtain the final ex­
pression for the surface traction matrix as 

, [0.50 - 0.25] [-0.50 - 0.25] (1] 
{Is} = 500 0 - 500 0 = 500 ~ lb 

0.58 + 0.25 '-0.50 l 0.25 0 

Or in explicit fonn the surface tractions at nodes 2 and 3 are 

{
h2r} [500] h2:1 = 0lb 
h3s 500 
1s3t 0 

(10.3.41) 

(10.3.42) 

• 
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1: 10.4 Gaussian and Newton-Cotes Quadrature' 
(Numerical Integration) 

In this section, we will describe Gauss's method, one of the many schemes for numer­
ical evaluation of definite integrals, because it has proved most useful for finite ele­
ment work. 

For completion sake, we will also describe the more common numerical integra­
tion method of Newton-Cotes. The Newton-Cotes methods for one and two intervals of 
integration are the well-known trapezoid and Simpson's one-third rule, respectively. 
After describing both methods. we wiU then understand why the Gaussian quadrature 
method is used in finite element work. 

Gaussian Quadrature: 

To evaluate the integral 

,I = J1 ydx 
-1 

(lOA.la) 

where Y = y(x), we might choose (sample or evaluate) y at the midpoint y{O) = YI 
and multiply by the length of the -interval, as shown in Figure 10-8, to arrive at 
1= 2YI, a result that is ~xact if the curve happens to be a straight line. This is an 
example of what is called one-point Gaussian quadrature because only one sampling 
pOint was used. Therefore, 

I = J1 y(x) dx ~ 2y(0) 
-1 

(lOA.1b) 

which is the familiar midpoint rule. Generalization ofthe formula [Eq. (1O.4Jb)] leads 
to 

(10.4.2) 

That is) to approximate the integral, we evaluate the function at several sampling 
points n, multiply each value Yi by the appropriate weight w,., and add the teons. 
Gauss's method chooses the sampling points so that for a given number of points, 
the best possible accuracy is obtained. Sampling points are located sy~etrically 
with respect to the center of the interval. Symmetrically paired points are given the 

y 

-----'"1 --+ Approximate area = 2YI 
Yt : 

I 
f 
I 

----~----~----~------x -] 0 

Figure 10-8. Gaussian quadrature using one sampling point 
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same weight Wi. Table 10-1 gives appropriate sampling points and weighting coeffi­
cients for the first three orders-that is, one, two, or three ~pling points (see R~fer­
ence [2] for more complete tables). For example, using two points (Figure 10-9), we 
simply have 1 = YJ + Y2 because WI = Wz = 1.000. This is the exact result if 
Y = f( x) is a polynomial Containing terms up to and including x3• In general, Gaussian 
quadrature using 11 points (Gauss points) is exact if the integrand is a polynomial of 
degree 2n -,lor less. In using n points, we effectively replace the given function 
Y =/(x) by a,polynomial of degree 2n - 1. The accuracy of the numerical integration 
depends on how well the polynomial fits the given curve. 

If the functionf(x) is not a polynomial, Gaussian quadrature is inexact, but it 
becomes more accurate as more Gauss points are used. Also, it is important to under­
stand that the ratio of two polynomials is, in general, not a polynomial; therefore, 
Gaussian quadrature win not yield exact integration of the ratio. 

Table 10-1 Table for Gauss points for integration from minus one to 

one, ft y(x) dx = t ~Yi 
Number 
of Points 

2 
3 

4 

y 

Locations, Xi 

XI =0.000 ... 
XI,X2 ± 0.577350269 I 8962 
x"X3 ±0.77459666924148 

X2 =0.000 ... 
XI ,x.; ±0.8611363116 
Xz. X3 = ±0.3399810436 

I 
I 
I 

Yl J 
I, 

Xl +0.5773 .. . 
Xl;::: - 0.5773 .. . 

4-____ ~-L--~~--~I------~x 
-I ~ XI 1 

Figure 10-9 Gaussian quadrature using two sampling points 

Two-Point Formula 

Associated 
Weights, W; 

2.000 
1.000 

9 0.555 ... 
&= 0.888 ... 
0.3478548451 
0.6521451549 

To illustrate the derivati9D of a twcrpoint (n = 2) Gauss formula based on Eq. (10.4.2), 
we have 

1= JI ydx= WIYt + W2Y2 = W1Y(Xl) + W2Y(X2) 
-1 

(10.4.3) 
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There are four unknown paI'2I1leters to determine: WI. W21Xl, and X2. Therefore, we 
assume a cubic function for y as follows: 

(10.4.4) 

In general, with four parameters in the two-point fonnula, we would expect the Gauss 
formula to exactly predict the area under the curve. That is, 

(10.4.5) 

However, we will assume, based on Gau~s's method, that WI = W2 and Xl = Xl as 
we use two'symmetrically located Gauss points at X = ±a with equal weights. The 
area predicted by Gauss's fonnula is 

(1OA.6) 

where y( -0) and y(a) are evaluated using Eq. (10.4.4). If the error, e = A - AG, is to 
vanish for any Co and C2, we must have, using Eqs. (IOA.S) and (l0.4.6) in the error 
expression, 

and 

oe 
-=0=2-2W 
BCo 

or 

Be 2 2 
-=0=--2a W 
OC2 3 

or a = Ii == 0.5773 ... 

(10.4.7a) 

(10.4.7b) 

Now W = 1 and a == 0.5773 ... are the Wj's and a/s (x/s) for the two-point Gaussian 
quadrature given in Table, 10-1. 

Example 10.2 

Evaluate the integrals (a) I == I~1(X2 + cos(xj2)] dx and (b) I == 1.:1 (3x - x)dX using 
tJuee..point Gaussian quadrature. . 

(a) Using Table 10-1 for the three Gauss points and weights, we have XI = X3 = 
± 0.77459 ... , Xl = 0.000 .. l WI = W3 =~, and W2 = ~. The integral then becomes 

1= [(-0.77459)2 + cos ( - 0.7~459 fad)] § + [02 ~ cos~] ~ 

( (
0.77459 "] 5 + (0.77459)2 + cos -2- rad) 9 

= 1.918 + 0.667 = 2.585 

Compared to the exact solution) ~e have Iex:lAI::t = 2.585. 
In this example, three-point Gaussian quadrature yields the exact answer to four 

significant figures. 
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(b) Using Table 10-1 for the three Gauss points and weights as in part (a), the 
integral then becomes 

[= [3(-O.774S9} _ (-0.77459)] ~ + [3° - 0] ~ + [3(0.77459) (O.77459)1~ 

= 0.66755 + 0.88889 + 0.86065 = 2.4229{2.423 to four significant figures) 

Compared to the exact solution, we have [exact = 2.427. The error is 2.427 2.423 = 
0.004. • 

In two dimensions, we obtain the quadrature formula by integrating first with 
respect to one coordinate and then with respect to the other as 

1= L Lf(s,t)dsdt = L [~W,J(S;,t)] dt 

= 4: Utj [2:: ~f(Sillj)] = E 4: Wi Wi/(St. lj) 
J I / J 

(10.4.8) 

In Eq. (10.4.8), we need not use the same number of Gauss points in each direction 
(that is, i does not have to equal j), but this is usually done. Thus, for example, a 
four-point Gauss rule (often described as a 2 x 2 rule) is shown in Figure 10-10. 
Equation (10.4.8) with i = 1,2 and j = I, 2 yields 

I = WI WII(s!, t1) + WI W2/(SI, t2) + W2 Wt!(S2, tl) + W2 W2!(S2, t2) (10.4.9) 

where the four sampling points are at Si, ti = ±0.S773 ... = ± 1/v'3, and the weights 
are all LOOO. Hence, the double summation in Eq. (10.4.8) can really be interpreted as 
a single summation over the four points for the rectangle. 

In gen~al, in three dimensions., we have 

1= flflft!(S,I,Z)drdtdZ= 4:4:L
k 

JiJI;-BjWk!(Si,tj,Zk) 
I J 

(10.4.10) 

$ "" -0.5173 ... (i = I) s = 0.5713 ... (i == 2) 

\ / 
'1 !.r 

(s .. t2l (S:b t~ I . 
--__ --- ---:.L-- - t = 0.5713. _ . () 2) 

12 14 
I I 
I I 
I 
I I 
! I 

(.fl' I,) (S2' 11) I --'t-------+---I= -0.5773 ... (j 1) 
II ,3 
I I 

Figure 10-10 Four-point Gaussian quadrature in two dimensions 
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Newton-Cotes Numerical Integration: 

We now describe the common numerical integration method caned the Newton~Cotes 
method for evaluation of definite integrals. However, the method does not yield as 
accurate of results as the Gaussian quadrature method and so is not normally used 
in finite element method evaluations, such as to evaluate the stiffness matrix. 

To evaluate the integral 

1= JI ydx 
. -1 

we assume the sampling points of y(x) are spaced at equal intervals. Since the limits of 
integration are from ~l to 1 using the isoparametric formulation) the Newton-Cotes 
formula is given by 

J
I 1'/ 

1= ydx = h L GiYi = h(CoYo + ClYI + G2Y2 + C3Y3 + ... + enYn] (10.4.11) 
-1 i=() 

where the Ci are the Newton-Cotes constants for numerical integration with i intervals 
(the number of intervals will 'be one less than the number of sampli!!,g points, n) and h 
is the interval between the limits of integration (for limits of integration between -1 
and 1 this makes h = 2). The Newton-Cotes constants have been published and are 
summarized in Table 10-2 for i = 1 to 6. The case i = 1 corresponds to the wen­
known trapezoid rule illustrated by Figure 10-11. The case i = 2 corresponds to the 
well·known Simpson one-third rule. It is shown [9J that the formul,as for i = 3 and 
i = 5 have the same accuracy as the fomlUlas for i = 2 and i = 4, rctspectively. There­
fore, it is recommended that the even fonnulas with i·= 2 and i = 4 be used in: prac­
tice. To obtain greater accuracy one can then use a smaller interval (include more 
evaluations of the function to be integrated). This can be accomplished by using a 
higher-order Newton-Cotes fonnula, thus increasing the number of intervals i. 

It is shown [9J that we need to use n equally spaced sampling points to integrate 
exactly a polynomial of order at most n - 1. On the other hand, using Gaussian quadrature 

Table 10-2 Table for Newton-Cotes intervals and points for integration. r n 
-1 y(x) dx = h ~ CiYi 

Intervals. No. of 
Points, n Co C, C2 C3 C4 Cs C6 

1 2 1/2 1/2 (trapezoid rule) 
2 3 1/6 4/6 1/6 . (Simpson's 1/3 rule) 
3 4 1/8 3/8 3/8 1/8 (Simpson's 3/8 rule) 
4 5 7/90 32/90 12/90 32/90 7/90 
5 6 19/288 75/288 50/288 50/288 75/288 19/288 
6 7 41/840 . 216/840 27/840 272/840 27/840 216/840 41/840 
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y 

I YI 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
! 

------_~l--------~O--------~-----------x 

Figure 10-11 Approximation of numerical integration (approximate area under 
curve) using; = 1 interval, n = 2 sampling points (trapezoid rule), for 

'J1 1 1= _/(X)dX=h,~CjYi 

we have previously stated that we use unequally spaced sampling points nand 
integrate ,exactly a polynomial of order at most 2n - 1. For instance, using the 
Newton~Cotes formula with n = 2 sampling points, the highest order polynomial we 

. can integrate exactly 15 a linear one~ However, using Gaussian quadrature, we can in­
tegrate a cubic polynomial exactly. Gaussian quadrature is then more accurate with 
fewer sampling points than Newton-Cotes quadrature. This is because Gaussian 
quadrature is based on optimizing the position of the sampling points (not making 
them equally spaced as in,the Newton-Cotes method) and also optimizing the weights 
Wi given in Table 10-1. After the function is evaluated at the sampling points, the 
corresponding weights are multiplied by these evaluated functions as was illustrated 
in Examp]e 10.2. ' . . 

Example 10.3 is used to illustrate the Newton-Cotes method and compare its 
accuracy to that of the Gaussian quadrature method previously described. 

Example 10.3 

Solve Example 10.2 using the Newton-Cotes method with! = 2 intervals (n = 3 
samp1in~ points). That is, evaluate the integrals (a) I f~J {x2 + cos(x/2)]dx and 
(b) I = Ll(3x,-x)dx using the Newton-Cotes method. 

Using Table 10-2 with three sampling points means we evaluate the function in­
side the integrand at x -1, x = 0, and x = 1, and multiply each evaluated function 
by the respective Newton-Cotes numbers, 1/6,4/6, and Ij6',We,then add these three 
products together and finally multiply this sum by the interval of integration (h = 2) 
as follows: ' 

(iO.4.l2) 
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(a): Using Eq. (10.4.12), we obtain 

yo = Xl + cos(xJ2) evaluated at x -1, etc. as follows: 

Yo = (_1)2 + cos( -1/2 rad) = 1.8775826 

Yl = (0)2 + cos(Oj2) = 1 

Y2 = (1)2 + 008(1/2 rad) 1.8775826 

(lOA.13) 

Substituting Yo Y2 from Eq. (10.4.13) into Eq. (10.4.12» we obtain the evaluation of 
the integral as 

[
1 4 1 ] 1=2 6{1.8775826) +6(1) +6(1.8775826) 2.585 

This solution compares exactly to the evaluation performed using Gaussian quadra­
ture and to the exact solution. However, for higher-order functions the Gaussian 
quadrature method yields more accurate results than the Newton-Cotes method as 
illustrated by part (b) as follows: 

(b): Using Eq. (10.4.12), we obtain 

Yo = 3(-1) - (-1) == ~ 
Yl = 3° -0 = 1 

Y2 = 31 
- (1) = 2 

Substituting Yo - Y2 into Eq. (10.4.12) we obtain I as 

I = 2[~ (~) +~(l) +~(2)J = 2.444 

The error is 2.444 - 2.427 = 0.017. This error is larger than that found using Gaussian 
quadrature {see Example 10.2 (b). • 

A 10.5 Evaluation of the Stiffness Matrix and 
Stress Matrix by Gaussian Quadrature 

Evaluation of the Stiffness Matrix 

For the two-dimensional element, we have shown in previous chapters that 

If = II iT (x,Y)l!i(~,y)hdxdy 
A 

(10.5.1 ) 

where, in general, the integrand is a function of x and y and n~1 coordinate values. 
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Read in four Gauss points and weigl'll functions 
s;.tj = ±O.S773 ... ; Wi. WJ ... = I., I. 

Figure 10-12 Flowchart to evaluate k(e) by four-point Gaussian quadrature 

We,have shown in Section 10.3 that k for a quadrilateral element can be eval­
uated in terms of a local set of coordinates s-t, with limits from minus one to one with­
in the element, and in tenns of global nodal-coordinates as given by Eq. (10.3.27). We 
repeat Eq. (10.3.27) here for convenience as 

k fl [;BT(S,t)12B(a,t)ll1hds'dl (10.5.2) 

where III is defined by Eq. (10.3.22) and B is defined by Eq. (10.3.18). In Eq. (10.5.2), 
each coefficient of the integrand Jl T 12Blll must be evaluated by numerical integration 
in the same manner 33/(5, t) was integrated in Eq. (1O.4.9). 

A flowchart to evaluate If of Eq. (10.5.2) for an element using four-point Gaus­
sian quadrature is given mFigure 10-12. The four-point Gaussian quadrature rule is 
relatively easy to use. Also, it has been shown to yield good results [7]. In Figure 10-12, 
in explicit form for f.':)uf-point Gaussian quadrature (now using the single summation 
notation with i = 1,2,3,4), we have 

If = JlT(Sl, t))12B(3},tl)Il(Sb tl)lhW1 WI 

+ BT (a2' (2)12B($2, t2)Il(32, (2)lh W2 W2 

+ JlT (a3, t3)1l~(s3, t3)ll(S3, t3)lh W3 W3 

+ J1T (34. t4)!2!l(a4, (4)ll(S4, 14)lhW4 W4 (10.5.3) 

where SIll = -0.5773, 32 = -O.5773~ 12 = 0.5773, a3 = 0.5773, 13 = -0.5773, and 
S4 = t4, 0.5773 as shown in Figure 10-9, and WI = W2 = W3 = W4 = 1.000. 
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Example 10.4 

Evaluate the stiffness matrix for the quadrilateral element shown in Figure 10-13 
using the four-point Gaussian quadrature ruJe. Let E = 30 X 106 psi and v = 0.25. 
The global coordinates are shown in inches. Assume h = 1 in. 

Using Eq. (10.5.3), we evaluate the !s matrix. Using the four-point rule, the four 
points are 

(SI' tl) = (-0.5773, -0.5773) 

(S2,12) = (-0.5173,0.5773) 
(S3, 13) = (0.5773, -0.5773) 

{54, 14) = (0.5173,0.5773) 

with weights WI = W2 = W3 = W4 = 1.000. 
Therefore, by Eq. (10.5.3), we have 

"If = BT (-0.5173, -0.5173)l}B( -0.5773, -0.5173) 

x II( -0.5173) -0.5173)1.(1 )(1.000)(1.000) 

+ JlT (-0.5773, 0.5773)12B( -0.5773,0.5773) 

x II( -0.5773,0.5773)1(1)(1.000)(1:000) 

+ lJT (0.5773, -0.5773)12B(0.5773, -0.5773) 

x II(0.5773, -0.5773)/(1)(1.000)(1.000) 

+ llT (0.5773, 0.5773)!Jll(0.5773) 0.5773) 

x II(0.5773, 0.5173)1(1)(1.000)(1.000) 

(10.5.4a) 

(1O.5Ab) 

To evaluate If, we first evaluate III at each Gauss point by using Eq. (10.3.22). For in­
stance, one part of III is given by 

Il{-0.5773,-0.5773)1 =.H3 5 S 31 

[ 

0 1-(-0.5773) -0.5773-(-0.5773) -0.5773-1 1 
-0.5773-1 0 -0.5773+ 1 -0.5713-( -0.5773) 

x -0.5773-(-0.5713) -0.5773-1 0 -0.5773+1 

. ! - (-0.5773) -0.5773+ (-0.5773) -0.5773 - 1 0 

x {~} = L~ 
y 

<r :r 
(3.2) (5,2) 

------~------------x 

(10.5.4c) 

Figure 10-13 Quadrilateral element for 
stiffness evaluation 
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Similarly, 

Il( -0.5773,0.5773)1 = 1.000 

Il(0.5773, -0.5773)1 = 1.000 

II(0.5773,0.5773)! = LOOO 

,/ I (lO.5.4d) 

Even though III = 1 in this example, in general, III ¢ I and varies in space. 
Then, using Eqs. (10.3.18) and (10.3.19), we evaluate 11. For instance, one part 

of 11 is 
I 

11( -0.5773, -0.5773) = II( -0.57.73, -0.5773)1 [111 112 113 !l4] 

where, by Eq. (10.3.19), 

(10.5.4e) 

and by Eqs. (10.3.20) and (10.3.21), a,b,c,d,NI,s, and NI,! are evaluated.' For" 
instance, 

a = HYI,(s - 1) + Y2( -1 - s) + )'3(1 + s) + Y4(1 - s)] 

= 1 {2( -0.5773 - 1) + 2[-1 - (O.5773)]} + 4[1 + (-0.5773)} + 4fl - (-0.5773)] 

= 1.00 

with similar computations used to obtain b, c, and d. Also, 

NI,s = i (t - 1) = H -0.5773 - 1) = -0.3943 

Nl.t = Hs - I) = H -0.5773 - 1) = -0.3943 

(10.5.4f) 

(10.5.4g) 

Similarly, 112, 113, and 114 must be evaluated like Ill, at (-0.5773, -0.5773). We then 
repeat the calculations to evaluate!l at the other Gauss points [Eq. (1O.5.4a}J. 

Using a computer program written specifically to evaluate lJ at each Gauss 
point and then If, we obtain the final form of l1( -0.5773, -0.5773) as 

B( -0.5773, -0.5773) = 

[ -0.1057 0 0.1057 0 0 -0.1057 0 _~.3943] 
-0.i057 -0.1057 -0.3943 0.1057 0.3943 0 --0.3943 

0 0.3943 0 0.1057 0.3943 0.3943 0.1057 -0.3943 

(1O.SAh) 
with similar expressions for 11{ -0.5773,0.5773), and so on. 
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From Eq. (6.1.8), the matrix 12 is 

Q~l~~[: 
\I 

o 1 
32 8 

. ~] x 10' psi 
I O. - 8 l~V -[0 32 (lO.5.4i) 

° 
0 12 

Finally, using Eq. (10.5.4b), the matrix If becomes 

1466 500 -866 -99 -733 -500 133 99 
500 1466 99 133 -500 -733 -99 -866 

-866 99 1466 -500 133 -99 -733 500 

k= 104 -99 133 -SOO 1466 99 -866 500 -733 
-733 -500 133 99 1466 500 -866 -99 
-500 -733 -99 -866 500 1466 99 133 

133 -99 -733 500 -866 99 1466 -500 
99 -866 500 -733 -99 133 -500 1466 

(10.5.4j) • 
Evaluation of Element Stresses 

The stresses !l = IJJ!.!l are not constant wi~ the quadrilateral element. Because B is 
a function of sand t coordinates, !l is also a function of sand t. In practice. the stresses 
are evaluated at the same Gauss points used to evaluate the stiffness matrix k. For a 
quadrilateral using 2 x 2 integration, we get four sets of stress data. To reduce the 
data, it is often practical to evaluate !l at s = 0, t = 0 instead. Another method men­
tioned in Section 7.4 is to evaluate the stresses in all elements at a shared (common) 
node and then use an average of these ele~ent nodal stresses to represent the stress 
at the node. Most computer programs use this method. stress plots obtained in these 
programs are based on this average nodal stress method. Example 10.5 illustrates the 
use of Gaussian quadrature to evaluate the stress matrix at the s = 0, t = 0 location 
of the element. 

Example 105 

For the rectangular element.shown in Figure 10-13, assume plane stress conditions 
with E = 30 X 106 psi, v =.0.3, .and displacements UI = O. VI = 0, U2 = 0.001 in., D2 = 
0.0015 in., U3 = 0.003 in., 1'3 = 0.0016 in., 14 = 0, and V4 = 0. Evaluate the stresses, 
(J;c,(Jy, and Txy at s = 0, t = O. 

Using Eqs. (10.3.18)-(10.3.20), we evaluate Ii at s = 0, t = O. 
I 

B = III fill 82 B3 84] 

1 
B(O,O) = 'l(O, 0)1 WI (0, 0) li2(0, 0) B3(0,0) B4(0,O)] 

(10.3.18) 
(repeated) 
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By Eq. (10.3.22)1 III is 

1/(O,O)I=i!3 5 5 31[ -~ -! j -f] (~) 
=i!-2 -2 2 21(~) 

Il(O,O)1 = 1 ' (10.5.5a) 

By Eq. (10.3.19), we have 

[

aNi,S bNi,t 

Di = 0 
cNi,t - dNi• $ 

o ] eM,t - dNi,s 

aN- -bN- t I.S 1). 

(IO.5.5b) 

By Eq. (10.3.20), we obtain 

a=l b=O c=l d=O 

Differentiating the shape functions in Eq. (10.3.5) with respect to sand t and then 
evaluating at s = 0, t = 0, we obtain 

NI,S =-~ 

N3,$ = ~ 

NI,! = -~ N2,s = ~ 

N3,t = ~ N4,s =-! 
Therefore, substituting Eqs. (10.5.5c) into Eq. (10.5.5b), we obtain 

(10.5.Se) 

The element stress matrix!l is then obtained by substituting Eqs. (1O.5.5a) for III = 1 
and (1O.5.5d) into Eq. (10.3.18) for D and the plane stress!2 matrix from Eq. (6.1.8) 
into the definition for r! as 

106 [0~3 °i
3 ~]' 

o 0 0.35 
!l = DD{/. = (30) --=---1-O-.-09---=- ( con.tinued) 
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0 

0 

[ -0.25 0 0.25 0 0.25 0 -0.25 ~.25 ] 
0.001 

0.0015 
x 0 -0.25 0 -0.25 0 0.25 0 

0.003 
-0.25 -0.25 -0.25 0.25 0.25 0.25 0.25 -0.25 

0.0016 
0 
0 

{ 

3.321 . 10
4 

} 

([ = 1.071 . 104 psi 
1.471 104 

• 

:1 10.6 Higher-Order Shape Functions 

In general, higher-order element shape functions can be developed by adding additional 
nodes to the sides of the linear element. These elements result in higher-order strain 
variations within each element, and convergence to the exact solution thus occurs at 
a faster rate using fewer elements. (However} a trade-off exists because a more compli­
cated element takes up so much computation time that even with few elements in the 
model, the computation time can become larger than for the simple linear element 
model.) Another advantage of the use of higher-order elements is that curved bounda­
ries of irregularly shaped bodies can be approximated more closely than by the use of 
simple straight-sided linear elements. 

To illustrate the concept of higher order elements, we will begin with the three­
noded linear strain quadratic displacement (and quadratic shape functions) shown in 
Figure 10-14. Figure 10-14 shows a quadratic isoparametric bar element (also called 
a linear strain bar) with three coordinates of nodes, X., X2, and X3, in the global 
coordinates. 

Example 10.6 

For the three-noded linear strain bar isoparametric element shown in Figure 10-14, 
detennine (a) the shape functions, Nt, N2. and N3, and (b) the strain/displac:ement 
matrix [BJ. Assume the general axial displacement function to be a quadratic taken 
as u = al + a2s + a3SZ. 

L 
T 

L 
2" 

r---- S 

2 
Figure 10-14 Three-noded linear 
strain bar element 
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(a) As we are fonnulating shape functions for an isoparametric element, we 
assume the following axial coordinate function for x as 

x = a1 +a2$+a3;­

Evaluating the a/s in terms of the nodal coordinates, we obtain 

X( -1) = a1 - a2 + a3 = XI 

x(O) = a1 =X) 

or XI = a1 - a2 + a3 

or X3 =al 

(10.6.1) 

(10.6.2) 

Substituting a1 = X3 from the Seconq of Eqs. (10.6.2), into the first and third of Eqs. 
(10.6.2), we obtain Q2 and a3 as follows: 

XI = X3 - a2 + 03 

X2 = Xl + 02 + a3 

Adding Eqs. (10.6.3) together and solving for a3 gives the following: 

a3 = (XI + X2 - 2x3)/2 

Xl ;:= X3 - a2 + «'.Xl + X2 - 2x3)/2) 
a2 = Xl - XI + ((Xl + Xl - 2x3)/2) = (X2 - xl)/2 

(10.6.3) 

(10.6.4) 
(10.6.5) 

Substituting the values for ai, a2 and a3 into the gener31 equation for x given by Eq. 
(10.6.1). we obtain 

..2 Xl ....: Xl Xl + X2 :...- !xl ..2 
x=al +a2s +a3S- =x3+-

2
- s + 2 r (10.6.6) 

Combining like terms in xl, X2, and Xl. from Eq. (10.6.6), we obtain the final fonn of 
x as: 

(8(8-1») s(s+ 1). ~ 
X= -2- XI +-2-xz +(1-s-)x3 (10.6.7) 

Recall that the function x can be expressed in terms of the shape function matrix and 
the axial coordinates, we have from Eq. (10.6.7) 

{x} = (N. N, N3JHH = [(s(s~ I») s(s~ I) (I-;)J {:} (10.6.8) 

'" Therefore the shape functions are 

(10.6.9) 

(b) We now detennine the. strain/displacement matrix [BJ as"follows: 
From our basic definition of axial strain we have 

du duds {UI} {ex} =-=--= [B] U2 
dx dsdx Ul 

(1O.6.10) 
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Using an isoparametric formulation means the ruSplacement function is of the same 
form as the axial coordinate function. Therefore. using Eq. (10.6.6). we have 

U2 u, UI, U2 ~ 2U3? 
u= U:; +2s -2s +"2s- +2"s- -Ts- (10.6.11) 

Differentiating U with respect to s) we obtain 

: = ~ - ~ + U1S+U2S- 2u3S (s -~)Ul ~ (S+~)U2 + (-1$)u3 (10.6.12) 

We have previously proven that dxlds = Lj2 = [1] (see Eq. (IO.1.9b). This relationship 
holds for th~ higher-order one-dimensional elements as weD as for the two-noded constant 
strain bar element. Using this relationship and Eq. (10.6.12) in Eq. (10.6.10), we 
obtain 

In matrix form, Eq. (10.6.13) becomes 

As (10.6.14) represents the axial strain) we have 

Therefore the (B] is given by 

[B) [1$; I 1$+ 1 -;s] 

Exampre 10.7 

(10.6.13) 

(10.6.14) 

(10.6.15) 

(10.6.16) 

• 

For the three-noded bar element shown previously in Figure 10-,14, evaluate the stiff­
ness matrix analytically. Use the [B] from Example-lO.6. 

From example lO~6) Eq. (10.6.16), we have-

[BJ = [2s; I 2s + I -;$] I [J] = ~ (see Eq. (lO.l.9b)) (10.6.17) 
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Substituting the expression for [BJ into Eq. (10.1 .15) for the stiffness matrix, we obtain 

1 1 

[k] = ~ I [B]T E[BIA~ A~L J 
-1 -I 

(2s 1/ 
---v:­

(2$+ I)(Zs-l) 
L2 

(-4s)(2s - 1) 
L2 

(2s I )(2s + I) 
L2 

(2s + 1)2 
---v:­

(-48)(2s + 1) 
L2 

(28 - 1)(-48) 
L2 

(2s+ 1)(-4s) tis 
L2 

(10.6.18) 
Simplifying the terms in Eq. (IO.6.18) for easier integration, we have 

1 [4; - 4s + 1 4; - 1 -8; + 4S] 
[kJ = 1: J 4; - 1 4S2 + 4s + 1 -8; :- 4s ds 

-I, -8;+48 -8; -48 1&2 

(10.6.19) 

Upon explicit integration ofEq. (10.6J9), we obtain 

4 4 8 ''';''s' -u- +s -r-s --r+U 
3 3 3 

[kJ 
AE 4 4 -u 2L 

-s' -8 3r+~+s 3 
8 8 ~r --;+~ --r-U 
3 3 3 -1 

Evaluating Eq. (10.6:20) at the limits, 1 and -1, we have 

4 4 8 4 4 
--2+1 --1 --+2 ---2-1 --+1 
3 3 3 3 3 

fk]=AE 4 4 8 4 4 
--1 3'+2+1 '---2 --+1 --+2 , 2L 3 3 3 3 

8 8 
-2 

16 8 8 
--+2 -+2 

3 3 

Simplifying Eq. (10.6.21), we obtain the final stiffness matrix as 

Example 10.8 

[ 

4.67 0.667 -5.33] 
[k] = ~: 0.667 4.67 -5.33 

-5.33 -5.33 10.67 

2 

(10.6.20) 

8 
-+2 
3 
8 
3- 2 

16 

(10.6.21) 

(10.6.22) 

• 

We now illustrate how to evaluate. the stiffness matrix for the three~noded bar element 
shown in Figure 10-15 by using two-point Guassian quadrature. We can then com­
pare this result to that obtained by the explicit integration performed in Example 10.7. 
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Figure 10-15' Three-noded bar 
with two Gauss points 

Starting with Eq. (10.6.18) we have for the stiffness matrix 

I 1 

[k~ = ~ I [B)T E[B]Atb = A~L J 
-I -1 

(18 - I)~ 
---v:­

(18+ 1)(18-1) 
L2 

(-48)(18 - 1) 
L2 

(18-1){18+ 1) 
L2 

(2s+ 1)2 
---v:­

(-4s)(2s + I) 
£2' 

(18 - 1)(-4s) 
L2 

(18 + 1)(-48) ds 
L2 

( _4S)2 
--y; 

(10.6.23) 

Using two-wint Guassian quadrature, we evaluate the stiffness matrix at the two 
points shown in Figure 10-13 given by 

'$1 = -0.57735, S2 = 0.57735 (10.6.24) 

with weights given by 

WI =,1, W2 = t (10.6.25) 

We then evaluate each term in the integrand ofEq. (10.6.23) at each Gauss point and 
multiply each term by its weight (here each weight is 1). We then add those Gauss 
point evaluations together to obtain the final term for each element of the stiffness ma­
trix. For two-point evaluation, there will be two terms added together to obtain each 
element of the stiffness matrix. We proceed to evaluate the stiffness matrix term by 
term as follows: 

The one-one element: 

2 L W;(2si _1)2 = (1)[2(-0.57735) - If + (1)[2(0.57735) - 1J2 = 4.6667 
i=1 

The one-two element: 

2 L W;·(2si - 1){2s; + 1) =(1)[(2)(-0.57735) - 1][(2)( -0,57735) + 1] 
i=l 

+ (1)[(2)(0.57735) -11(2)(0.57735) + I} = 0.6667 

The one-three element: 

2 

:E Wj (-4s;{2s;-1» =(1)(-4)(-0.57735)[(2)(-0.57735) -I] 
i=l 

+ (1)(-4)(0.57735)[(2)(0.57735) - 11 = -53333 



480 ... 10 Isoparametric Formulation 

The two-two element: 

2 L JYi(2s; + Ii = (1)[(2)(-0.57735) + If + (1)(2)(0.57735) + If == 4.6667 
;=1 

The two-three element: 

2 . L JYi[-4si (2sj + 1)1 ==(1)(-4)(-0.57735)[(2)( -0.57735) + IJ 
i=l 

+ (1)(-4)(0.57735)[(2)(0.57735) + I} == -5.3333 

The three-three element: 

2 L Wi (l6s?) = (1)(16){-0.57735i + (1)(16)(0.57735)2 = 10.6667 
;==1 

By symmetry> the iwo-one element equals the one-two element, etc. Therefore, from 
the evaluations of the tenus above, the final stiffness matrix is . 

[ 

4.67 0.667 -5.33] 
1£ = ~: 0.661 4.67 -5.33 

-5.33 -5.33 10.67 

(10.6.26) 

Equation (10.6.26) is identical to Eq. (10.6.22) obtained analytically by direct explicit 
integration of each term in the stiffness matrix. • 

To further illustraie the concept of higher-order elements, we will consider the qua­
dratic and cubic element shape functions as described in Reference [3]. Figure 10-16 
shows a quadratic isoparametric element with four comer nodes and four additional 
midside nodes. TIlis eight-noded element is often called a "Q8" element. 

(-1,1) 

(-I. -I) 

Edge,'" +1 

(0. 1)1 -_/_'---. 3 (J. I) 

-----, 
I , , 

(1,0) 

~ 

-Edges"" '+1 

'(0, -I) 2(1· -I) 

S 'Edger:-l 
~------------..-------~------.z 

Figure 10-16 Quadratic isoparametric element 
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The shape functions of the quadratic element are based on the incomplete cubic 
polynomial such that coordinates x and y are 

x = aJ + a2S + a3t + ll4St + asr +a6r2 + Q7rt + agsr2 
(10.6.27) 

These functions have been chosen so that the number of generalized d~grees of free­
dom (2 per node times 8 nodes equals 16) are identical to the total nUmber of a/so 
The literature also refers to this eight-noded element as a "serendipity" element as it 
is based on an incomplete cubic, but it yi~lds good results in such cases as beam bend­
ing. We are also rein:inded that because we are considering an isoparametric formulation, 
displacements u and v.are of identical form as x andy, respectively, in Eq. (10.6.27). 

To describe'the shape functions, two forms are required-one for comer nodes 
and one for midside nodes, as given in Reference [3]. For the comer nodes 
(i = 1,2,3,4), 

Nt = 1 (l - $)(1 - t)( -s t - 1) 

N2 =!(1 +s)(1 - t)(s- i-I) 

N3 = HI + 8)(1 + t)(s+t - 1) 

N4 = 1(1- 3)(1 + t)( -S+ t 1) 

or, in compact index notation, we express Eqs. (10.6.28) as 

Ni = 1 (l + ssi)(l + t'i)(SSi + tti - I) 

where i is the number of the shape function and 

Sf = -1, I ) 1, :-1 

Ij = -1, -1, 1, 1 

(i = 1,2,3,4) 

(i=l,2,3,4) 

For the midside nodes (i = 5,6,7,8), 

or, in index notation, 

Ns =!(l- t)(1 +s)(I.:..s) 

N6 =4(1 +s)(1 + t)(l- t) 

N7 =!{l + t)(1 + $)(1 - s) 

Ns = !(l- s)(1 + t)(1 - t) 

N; = !(l- r}(l + tti) tl = -1,1 

Nj =!(l + ssi)(l - t2
) Si = 1,-1 

(i= 5,7) 

(i = 6,8) 

(10.6.28) 

'(10.6.29) 

(10.6.30) 

(10.6.31) 

(10.6.32) 
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We can observe from Eqs. (10.6.28) and (10.6.31) that an edge (and displacement) can 
vary with s2 (along t constant) or with t2 (along s constant). Furthermore, Ni = 1 at 
node i and Ni = 0 at the other nodes, as it must be according to our usual definition 
of shape functions. 

The displacement functions are given by 

{U} = [Nl 0 
V 0 Nt 

~ 0 M 0 ~ 0 ~ 0 .~ 0 ~ 0 ~ 
o ~ 0 M 0 ~ 0 ~ 0 ~ 0 M 0 

x 

V8 

and the strain matrix is now 

with 

*- = liNd 
R=li!J 

(10.6.33) 

. We can develop the matrix 11 using Eq. (10.3.17) with lJI from Eq. (10.3.16) and with 
!i now the 2 x 16 matrix given in Eq. (10.6.33), where the N's are defined in explicit 
fonn by Eq. (10.6.28) and (10.6.31). 

To evaluate the matrix Jl and the matrix k for the eight~noded quadratic iso· 
parametric element, we now use the nine-point Gauss rule (often described as a 3 x 3 
rule). Results using 2 x 2 and 3 x 3 rules have shown significant differences. and the 
3 x 3 rule is recommended by Bathe and Wilson [7J. Table 10-1 indicates the loca­
tions of points and the associated weights. The 3 x 3 rule is shown in Figure 10-17. 

By adding a ninth node at s = 0, t 0 in Figure 10-16, we can create an ele­
ment caUed a "Q9." This is an internal node that is not connected to any other 
nodes. We then add the QI7?P. and Q 1ss2t2 tenns to x and y, respectively in Eq. 
(10.6.27) and to u and y. The element is then called a Lagrange element as the shape 
functions can be derived using Lagrange interpolation formulas. For more on this 
subject consult [8J. 

S :: -0.7745......., t"""'_ of = 0.7745 ... 

7 : 8 I 9 
-+--~--..... - t = 0.7745 ... 

I I 
I I 
I I !_-+- 5 I 6 
• I 
• I 
I I --+--------+-- t = -0..7745 ... 

I 1 2 J 3 

Figure 10-17 3 x 3 rule in two dimensions 
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y 

4 

~----~------------------~x 

Figure 10-18 Cubic isoparametric element 

The cubic element in Figure 10-18 has four corner nodes and additional nodes 
taken to be,at one-third and two-thirds of the length along each side. The shape func­
tions of the cubic element (as derived in Reference (3]) are based on the incomplete 
quartic polynomial such that 

x = OJ + 02S + 031 + 04S
2 + 05Sl + 0612 + 07s1t + ogst

2 

+ 09S
3 + 0101'3 + ans3t + ai2sr3 

with a similar polynomial for y . For the corner nodes (i = I, 2, 3, 4), 

N; = 12 (1 + S3i)(1 + ttj)[9(s2 + t 2) - 10] 

(10.6.34) 

(10.6.35) 

with Sj and ti given by Eqs. (10.6.30). For the nodes on sides s = ± 1 (i = 7, 8, ll~ 12), 

Ni =~(l +ssi)(l +9tti)(1 _12) (10.6.36) 

. with Sj = ± 1 and ti = ±i. Fo~ the nodes on sides t = ± I (i = 5,6,9,10), 

Ni =:&(1 + tti)(l + 9ssi ) (1 - s2) (10.6.37) 

with tj = ± 1 and Sj = ± i. 
Having the shape functions for the quadratic element given ~y Eqs." (10.6.28) 

and (1O.6.31) or for the cubic element given by ·Eqs. (10.6.3SY-(lO.6.37), we can 
again use Eq. (10.3.17) to obtain B and then Eq. (10.3.27) to set up k for numerical in­
tegration for the plane element. The eubic element requires a 3 x 3 rule (nine points) 
to eva)uate the matrix Is exactly. We then conclude that what is really desired is a li­
brary of shape functions that can be used in the general equations developed for stiff­
ness matrices, distributed load, and body force and can be applied not only to stress 
analysis but to nonstructural problems as welL 

Since in this discussion the element shape functions Ni relating x and y to nodal 
coordinates Xi and Yi are of the same fonn as the shape functions relating u and v 
to nodal displacements Ui and Vi, this is said to be an isoporametric formulation. For 
instance, for the linear element x = E~l NiXj and the displacement function u = 
L~l NiUi, use the same· shape functions Ni given by Eq. (10.3,5). If instead the 
shape functions for the coordinates are of lower order (say, linear for x) than the 
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shape functions used for displacements (say, quadratic for u) this is called a subpara~ 
metric formulation. 

FinalJy, referring to Figure 10-18, note that an element can have a linear shape 
along, say, one edge (1-2), a quadratic along, say, two edges (2-3 and 1-4), and a 
cubic aJong the other edge (3-4). Hence, the simple linear element can be mixed with 
different higher-order elements in regions of a model where rapid stress variation is 
expected. The advantage of the use of higher-order elements is further illustrated in 
Reference [3]. 
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• Problems 

10.1 For the three-noded linear strain bar with three coordinates of nodes XI, X2) and X3, 

shown in Figure PIO-l in the g1obal-coordinate system show that ,the Jacobian de­
terminate is III = L12. 

L 
"2 

Figure Pl0-1 

L 
T 2 

10.2 For the two-noded one-dimensional isoparametric element shown in Figure PI0-2 (a) 
and (b), with shape functions given by Eq. (10.1.5), determine (a) intrinsic coordinate 8 
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A A 

! 
XI = Win. XA = 14 in. X2 = 20 in. x, = 5 in. 

(a) (b) 

Figure Pl0-2 

at point A and (b) shape functions Nl and N2 at point A. If the displacements at nodes 
one and two are respectively, Ut = 0.006 'in. and ui = -0.006 in., determine (c) the 
value of the displacement at point A and (d) the strain in the element. 

10.3 Answer the same questions as posed in problem 10.2 with the data listed under the 
Figure PI0-3. 

A 

! 
~=60mm xl=lOmm 
1.12 = 0.2 rnrn u, = b.OS rnrn 

(a) 

Figure P10-3 

A 

I 
(b) 

~=30rnrn 
U;z = 0.1 rnrn 

10.4 For the four-noded bar element in Figure PI0-4, show that the Jacobian determinate 
is III = L/2. Also determine the shape functions NI N4 and the strain/displacement 
matrix lJ.. Assume U 01 + OlS + 03; + a4s3 . ' 

-1 -~ r s 

4 Figure P10-4 

~'------'~----------'I------
2 4 

10.5 Using the three-noded bar element shown in Figure PIO-S (a) an:d (b), with s1)ape 
functions given by Eq. (10.6.9), determine (a) the intrinsic coordinate s at point A and 
(b) the shape functions, Nt, N2, and N3 at A. For the displacemen~ of the nodes 
shown in Figure PIO-5, detennme (c) the displacement at A and (d) the axial strain 
expression in the element. 

A (xA = 13 in.) 

! 
A (xA =7 in.) 

! 
XI"= lOin. x2=20in. .%3 = 5 in. .12,= lOin. 
"1 = 0.006 in. 1.12 = -0.006 in. 1.13 = 0.001 in. U;z =0.003 in. 

(a) (b) 

Figure P10-5 
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10.6 Using the three-noded bar element shown in Figure PlO-5 (a) and (b), with shape 
functions given by Eq. (10.6.9), determine (a) the intrinsic coordinate s at point A and 
(b) the shape functions, NI, N2, and NJ at point A. For the displacements of the nodes 
shown in Figure PIO-6, determine (c) the displacement at A and (d) the axial strain 
expression in the element. 

A (xA = 1.5 mm) A (XA = 2.5 mm) 

! ! 
X3 = 1 mm X2 = 2 nun Xl = 2 mm xl:: 3 mm X2 =4 mm 
u3 =0.001 mm u2 =.0.002 mm ul = -0.001 nun u3 :: 0 U2 =0.001 nun 

(a) (b) 

Figure Pl 0-6 

10.7 'For the bar sUbjected to the linearly varying axia11ine load shown in Figure PI0-7. 
use the linear strain (three-noded element) with two elements in the model, to deter­
mine the nodal displacements and nodal stresses. Compare your answer with that in 
Figure 3-31 and Eqs. (3.1 L6) and (3.11.7). Let A 2 in.l and E = 30 X 106 psi. Hint: 
Use Eq. (10.6.22) for the element stiffness matrix. 

to xlb/in. 

14~----60in.----r.t' r-----x 
Figure P10-7 

10.8 Use the three-noded bar element and find the axial displacement at the end of the rod 
shown in Figure PlO-S. Determine t~e stress at x = 0) x L/2 and x = L. Let 
A = 2 X 10-4 m2, E = 205 GPa, and L = 4 m. Hint: use Eq. (10.6.22) for ~e element 
stiffness matrix. 

2 kN/m (uniform) 

I ~· .+0-..... ----L=4m 

Figure Pl0-8 

10.9 Show that the sum NI + Nl + N3 + N4 is equal to 1 anywhere on a rectangular ele­
ment, where NI through N4 are defined by Eqs. (10.2.5). 
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10.10 For the rectangular element of Figure 10-3 on page 450, the nodal displacements are 
given by 

Ul =0 VI =0 U2 = 0.005 in. 

V2 = 0.0025 in. 

14 =0 

U3 = 0.0025 in. 

V4 = 0 

V3 = -0.0025 in. 

For b = 2 in., h = 1 in., E = 30 X 106 psi; and \! = 0.3, detennine the element strains 
and stresses at the centroid of the element and at the comer nodes. 

10.11 Derive III given by Eq. (10.3.22) for a four-noded isoparametric quadrilateral 
element. 

10.12 Show that for the quadrilateral element described in Section 10.3, [J] can be expressed as 

[J} = [~lrS N2,$ N),s N4,S] [;~ ;~l 
. Nl,t .f:V'2.t N3,t N4,I X3 Y3 

. X4 Y4 

10.13 Derive Eq. (10.3.18) with Bj given by Eq. (10.3.19) by substituting Eq. (10.3.16) for IJ' 
and Eqs. (10.3.5) for the shape functions into Eq. (10.3.17). 

10.14 Use Eq. (10.3.30) with Ps = 0 and 'PI = P (a constant) alongside 3-4 of the element 
shown in Figure 10-6 on page 460 to obtain the nodal forces. 

10.15 For the element shown in Figure PIO-1S, replace the distributed load with the energy 
equivalent nodal forces by evaluating a force matrix similar to Eq. (10.3.29). Let 
h = 0.1 in thick. 

10.16 . Use Gaussian quadature with two and three Gauss points and Table 10-1 to evaluate 
the following integrals: 

(a) fl cos.itk 

(d) Jl coss ds 
-1 1 - s2 

(b) fl s2 ds 

(e) fl S3 tis 

(c) tl S4 ds 

(f) fl scossds (g) ft (4$ - 2s)ds 

Then use the Newton-Cotes quadrature with two and three sampling points and Table 
10-2 to evaluate the same integrals. 

10.17 For the quadrilateral elements shown in Figure"PIO-I7, write a computer program to 
evaluate the ~ess matrices using fourapoint Ga~an quadrature as outlined in 
Section 10.5. Let E = 30 X 106 psi and v = 0.25. The global ~rdinates (in inches) 
are shown in the figures. 
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y 

4 Ty = 2000 psi uniform 
(0, 4) f-----'----'--'""'" 

2 
(8,0) 

(a) 

y 
4 3 

Linear (8,4) 
(3,4) 

T,=SOOpsi 

2 
(8,0) 

x 

(b) 

Figure Pl0-15 

y 3 
4 3 Y d(5.S) (3.4) D (5.4) (3,4) 

(3,2) (S,2) (3, 2) I 2 (.5, 2) 
1 2 

x JC 

(a) (b) 

Figure Pl0-17 

10.t8 For the quadrilateral elements shown in Figure PIO-18, evaluate .the stiffness Jl18.t.rices 
using four~point Gaussian quadrature as· outlined in Section 10.5. Let ,E = 210 GPa 
and v = 0.25. The global coordinates (in millimeters) are shown in the figures. 

10.19 Evaluate the matrix B for the quadratic q'lladrilaterai element shown in Figure 10-16 
on page 480 (Section 10.6). 

10.20 Evaluate the stiffness matrix for the four-noded bar of Problem 10.4 using three-point 
Gaussian qUadrature. 
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tJ
3

(20'20) 

'Y (12.16) 

(10. 10) (20. 10) 
I 2 

y 
4 3 (,2"0 (20.15) 

(10,10)1 2(20,10) 

"'"-------_x ~--------------.x 

(a) (b) 

Figure Pl0-18 

10.21 For the rectangular element in Figure PIG-2I, with the nodal displacements given in 
Problem 10.10, detennine the!l. matrix. at s = 0, t 0 using the isoparametric formu­
lation described iii Section 10.5. (Also see Example 1O.5.) 

'Y 
4 3 

(0,2) (4,2) 

L 
(0,0) 

(4,0) 
x 

1 2 

Figure Pl0-21 

10.22 For the three-noded bar (Figure PIO-1), what Gaussian quadrature rule (how many 
Gauss points) would you recommend to evaluate the stiffness matrix? Why? 



Introduction 

In this chapter, we consider the three-dimensional, or solid, element. TIUs element is 
useful for the stress analysis of general three-dimensional bodies' that require more 
precise analysis than is possible througo two-dimensional andlor axisymmetric analy­
sis. Examples of three-dimensional problems are arch dams, thick-walJed pressure ves­
sels, and solid forging parts as used. for instance, in the heavy equipment and 
automotive industries. Figure 11-1 shows finite element models of some typical auto­
mobile parts. Also see Figure 1-7 for a model of a swing casting for a backhoe frame, 
Figure 1-9 for a model of a pelvis bone with an implant, and Figures I 1-7 through 
11-10 of a forging part, a foot pedal, a hollow pipe section, and an alternator bracket, 
respectively. 

The tetrahedron is the basic three-'dimensional element, and it is used in the 
development ,of the shape functions, stiffness matrix. and force. matrices in terms of 
a global coordinate system. We follow this development with the isoparametric formu­
lation of the stiffness matrix for the hexahedron, or brick element. Finally, we will pro­
vide some typical three-dimensional applications. 

In the last section of this chapter, we show some three-dimensional problems 
solved using a computer program. 

4. 11.1 Three-Dimensional Stress and Strain 

We begin by considering the three-dimensional infinitesimal element in Cartesian 
coordinates with dimensions ix, dy, and dz and normal and shear stresses as shown 
in FigUre 11-2. This element conveniently represents the state of stress on three mutu­
ally perpendicular planes of a bod'y in a state of three-dimensional stress. As usual) 
normal stresses are perpendicular to the faces of the element and are represented by 
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(a) 

(b) 

Figure 11-1 (a) wheel rim; (b) engine block. «(a) Courtesy of Mark Blair; (b) courtesy of Mark Guard.) 

(1x, (Jy, and (1:. Shear stresses act in the faces (planes) of the element and are repre­
sented by !xy, ty:, r=.~, and so on. 

From moment equilibrium Qf the element, we show in Appendix C that 
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Hence, there are only three independent shear stresses) along with the three normal 
stresses_ 

dy 

...F---t----... x. u 

Z, !oil 

Figure 11-2 Three-dimensional stresses on an element 

The element strain/displacement relationships are obtained in Appendix C. They 
are repeated here, for convenience. as 

au 
ex = ox 

ov 
8)'= oy 

OW 
az = OZ (11.1.1) 

where u, v, and w are the displacements associated with the x,y, and z directions. The 
shear strains y are now given by 

au aD 
'Yxy = oy + ox = Jlyx 

au ow 
Yyz = oz + oy = Yzy (11.1.2) 

ow au 
Yzx = ox + OZ = Yxz 

where, as for shear stresses, only three independent shear strains exist. 
We again represent the stresses and strains by column matrices as 

(1x ex 

(1y By 

{a} = 
(1z 

{e} = 
Cz (11.1.3) 

t'xy Yxy 
t'yz 1>,z 

tzx YD: 

The stress/strain relationships for an isotropic material are again given by , 

{a} [DJ{e} (11.1.4) 
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where {oJ and {e} are defined by Eqs. (11.1.3), and the constitutive matrix [Dl (see 
also Appendix C) is now given by 

I-v v v 0 0 0 
I-v v 0 0 0 

I-v 0 0 0, 

[DJ 
E 2v 

(Il.L5) 
(1 + v)(1 - 2v) 0 0 

1-2v 
0 

Symmetry 2v 

A 11.2 Tetrahedral Element 

We now develop the tetrahedral stress element stiffness matrix by again using the steps 
outlined in Chapter 1. The development is seen to be an extension of the plane ele· 
ment previously described in Chapter 6. This extension was suggested in References 
[1] and [2]. ' 

Step 1 Select Element Type 

Consider the tetrahedral element shown in Figure 11-3 with corner nodes 1-4. This 
element is a four-noded solid. The nodes of the element must be numbered such that 
when viewed from the last node (say, node 4), the first three nodes are ~umbered in 
a counterclockwise manner, such as 1,2, 3,4 or 2, 3, 1,4. This ordering of nodes 
avoids the calculation of negative volumes and is consistent with the counterclockwise 
node numbering associated with the CST element in Chapter 6. (Using an isoparamet­
ric [omulation to evaluate the If matrix for the tetrahedral element enables us to use 
the element node numbering in any orqer. The isoparametric fonnulation of Is: is left 

Z. loll 

Figure 11-3 Tetrahedral solid element 

}--------_ y, v 

X.U 
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to Section 11.3.) The unknown nodal displacements are now given by 

{d} = (11.2.1) 

Hence l there are 3 degrees of freedom per node, or 12 total degrees of freedom per 
element. 

Step 2 Select Di~placement Functions 

For a compatible displacement field, the element displacement functions tI, v, and w 
must be linear along each edge because only two points (the corner nodes) exist 
along each edge, and the functions must be linear in each plane side of the tetrahe­
dron. We then select the linear dJ.splacement functions as 

u(x)y,z) =al +a2x+a3y+a4z 

v(x,y, z) as + 06X + 01Y + asz (11.2.2) 

w(x,y, z) = a9 + alOX + allY + anZ 

In the same manner as in Chapter 6, we can express the a/s in terms of the 
known nodal coordinates (XJ,YI,Z\, •.. ,Z4) and the unknown nodal displacements 
(UI' VI, Wl~' •. , W4) of the element. Skipping the straightforward but tedious details, 
we obtain 

1 
u(x,y,z) = 6V {«(XI + PIX + Y1Y +OIZ)Ul 

+ (a2 + P2X + Y2Y + OlZ)U2 

+ (/X3 + P3x + Y3Y + t>3 Z)U3 

+ (cX4 + P4X + Y4Y +t>4Z)Z4} 

where 6 V is obtained by evaluating the detenninant 

6V= 

XI Y1 Zt 

X2 Y2 Z2 

x) Y3 Z3 

X4 Y4 Z4 

(11.2.3) 

(11.2.4) 
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and V represents the volume of the tetrahedron. The coefficients a.j,Pi! Yj) and 
()j (i = 1,2

1
3,4) in Eq. (11.2.3) are given by 

and 

al = X3 Y3 Z3 

X4 Y4 Z4 

y, = 

Xl YI ZI 

(.(2 = - X3 Y3 Z3 

X4 Y4 Z4 

Y2= -

Xl Y1 ZI 

a.3 = X2 Y2 Z2 

X4 Y4 Z4 

1 Y2 Z2 

PI = - 1 Y3 Z3 

(l1.2.5) 

-b1 =-

(11.2.6) 

1 Y1 ZI 

P3 = - 1 Y2 Z2 

and (11.2.7) 

and 

XI z\ 

Y3 = 

0C4 = - X2 Y2 Z2 

X3 Y3 Z3 

1'4 =-

}'l ZI 

(1l.2.8) 

Expressions for v and w are obtained by simply substituting v/s for all u/s and then 
w/s for all u/s in Eq .. (11.2.3}. 

The displacement expression for u given by Eq. (11.2.3), with similar expressions 
for v and w, can be written equivalently in expanded form in terms of the shape 
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functions and unknown nodal displacements as 

UI 

Vl 

{"} [NI 0 0 N2 0 0 N3 0 0 N4 0 

JJ 
Wt 

v = 0 NI 0 0 N2 0 0 N3 0 0 N4 
W 0 0 Nl 0 0 N2 0 0 N3 0 0 14 

V4 

W4 

(11.2.9) 

where the shape functions are given by 

N _ (ell +f31 X+YIY+OIZ) 
) - 6V 

N _ (1l3 + P3X + f3Y +03Z) 
3- 6V 

N _ (1l2 + /32x + Y2Y + 02Z) 
2- 6V 

N: _ (C4 + P4X + Y4Y + 04Z) 
4 - 6V 

(11.2.10) 

and the rectangular matrix on the right side of Eq. (11.2.9) is the shape function 
matrix [N1 

Step 3 Define the StrainJ Displacement and StressJ Strain 
, Relationships 

The element strains for the three-dimensional stress state are given by 

ou 
ax 
ov 

Ex 
oy 

By OW 

{e} = 
ez az 

Yxy au ov 
--1--

Yyz oy' AX 

Yzx AU Ow 
-+-oz oy 
ow au 
-+-ax oz 

Using Eq. (112.9) in Eq. (11.2.11» we_obtain 

{t} = [B]{d} 

where [Bl = [DI III 113 .94J 

(11.2.11) 

(11.2.12) 

(11.2.13) 
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The submatrix 81 in Eq. (11.2.13) is defined by 

N1,x 0 0 

0 NI" 0 

III = 
0 0 N"z (11.2.14) 

NI" NI,x 0 
0 Nt,z Nl,y 

NI.z 0 Nl.x 

where) again, the comma after the subscript indicates differentation with respect to 
the variable that follows. Submatrices lhll3, and 114 are defined by simply indexing 
the subscript in Eq. (11.2.14) from 1 to 2, 3, and then 4) respectively. Substitut­
ing the shape functions from Eqs. (11.2.10) into Eq. (11.2.14), III is expressed as 

PI 0 0 

0 1'1 0 
1 0 0 til 

81 = 6V 
1'1 PI 0 

(11.2.15) 

0 0, Yl 
01 0 p, 

with similar expressions for 82,83) and 84. 
The element stresses are related to the element strains by 

{a} = [D]{e} (1l.2.16) 

where the constitutive matrix for an elastic material is now given by Eq. (1 L 1.5). 

Step 4 Derive the Element Stiffness Matrix and Equations • 

The element stiffness matrix is given by 

[k] = III [B1T[D][~JdV (11.2.17) 
v 

Because both matrices [B] and [D] are constant for the simple tetrahedral element, 
Eq. (11-.2.17) can be simplified to 

. Ik] = [Bf[D][B]V (11.2.18) 

where, again, V is the volume of the element. The element stiffness matrix is now of 
order 12 x 12. 

Body Forces 

The element body force matrix is given by 

{fo} = III [N)T{X}dV (11.2.19) 
v 
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where [NJ is given by the 3 x 12 matrix in Eq. (11.2.9), and 

{X} = U:} (11.2.20) 

For constant body forces, the nodal components ofthe total resultant body forces can 
be shown to be distributed to the nodes in four equal parts. That is, 

{fb} = i[Xb Yo Zb Xb Yb Zb Xh Yb Zb Xb Yb Zbl T 

The element body force is then a 12 x 1 matrix. 

Surface Forces 

Again, the surface forces are given by 

{Is} = J J [Ns] T {T} dS (11.2.21) 
s 

.• where [Ns] is the shape function matrix evaluated on the surface where the surface 
traction occurs. 

For example, consider the case of uniform pressure p acting on the face with 
nodes 1-3 of the element shown in Figure 11-3 or 11--4. The resulting nodal forces 
become 

{Is} II [NI T.evaluated on {~: } dS 
surface 1.2,3 

S P:: 

(11.2.22) 

where Px,Py, and Pt. are the Xl y, and z components, respectively, of p. Simplifying and 
integrating Eq. (11.2.22), we can show that 

Px 
py 

pz 

Px 
py 

{Is} = S~23 P: (11.2.23) 
P.t 
py 

P. 
0 
0 
0 

where SI23 is the area of the surface associated with nodes 1-3. The use ofvolurne 
coordinates, as explained in Reference {8], facilitates the integration of Eq. (11.2.22). 
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Example 11.1 

Evaluate the matrices necessary to determine the stiffness matrix for the tetrahedral el­
ement shown in Figure 11--4. Let E = 30 X 106 psi and v = 0.30. The coordinates are 
shown in the figure in units of inches. 

3 
~~--.... y 

(0,2.0) 

Figure 11-4 Tetrahedral element 

To evaluate the element stiffness matrix, we first detennine the element volume V 
and all a.'s, fl's, is, and a's from Eqs. (11.2.4)-(11.2.8). From Eq. (11.2.4), we have 

1 2 

6V= o 0 0 = 8 in3 

020 
2 0 

From Eqs. (11.2.5), we obtain 

«, = I~ 
0 

~I =0 p, = -I: 0 

~I=o 2 2 

.2 1 I 

and slmilarly, 

Yl =0 61 =4 

From Eqs. (11.2.6)-(11.2.8), we obtain 

a.2 = 8 fl2 = -2 Y2 =-4 a2 =-1 

!X3 = 0 fl3 =-2 )13 =4 as =-1 

'4 =0 /34 = 4 Y4 = 0 04 =-2 

(11.2.24) 

(11.2.25) 

(11.2.26) 

Note that a.'s typically have units of cubic inches or cubic meters, where f!s, y's, and 
o's have units of square inches or square meters. 
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Next, the shape functions are detennined using Eqs. (I 1.2.10) and the results 
from Eqs. {I 1.2.25) and (11.2.26) as 

4z 
N1 =-

8 
8 - 2x 4y-z 

N2 = ---8--'---

-2x+4y - z 
N3=--8-=--

Note that NI + N2 + N3 +N4 = 1 is again satisfied. 

(11.2.27) 

The 6 x 3 submatrices of the matrix 8, Eq. (11.2.13), are now evaluated using 
Eqs. (11.2.14) and (11.2.27) as 

0 0 0 _1 0 0 4 

0 0 0 0 } 0 -2 
0 0 1 0 0 _1 

Di 2 lh= 8 (11.2.28) 
0 0 0 1 I 0 -'2 -4 
O· I 0 0 1 

2 -8 

! 0 0 0 _1 
4 

-i 0 0 ! 0 0 2 
.0 1 0 0 0 O. 2 

0 0 I 
0 0 

III = 
-'8 

84= I _1 0 0 0 '2 4 

0 I I 0 0 -'8 '2 
1 0 I -! 0 I 

-'8 -4 '2 

Next, the matrix !2 is evaluated using Eq. (11.1.5) as 

0.7 0.3 0.3 0 0 0 

0.7 0.3 0 0 0 
30 X 106 0.7 0 0 0 

(11.2.29) [D1 = (1 + 0.3)(1- 0.6) 0.2 0 0 

0.2 0 
Symmetry 0.2 

Finally, substituting the re~ults from Eqs. (11.2.24), (11.2.28), and (11.2.29) into 
Eq. (11.2.18), we obtain the element stiffness matrix. The resulting 12 x 12 matrix, 
being cumbersome t6 obtain by longhand calculations, is best left for the computer 
to evaluate. • 
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A. 11.3 Isoparametric Formulation 

We now describe the isoparametric formulation of me stiffness matrix for some three­
dimensional hexahedral elements. 

linear Hexahed~1 Element 

The basic (linear) hexahedral element [Figure 11-5(a)] now has eight comer nodes with 
isoparametric natUl:al coordinates given by s, t, and Zl as shown in Figure 11-5(b). The 
element faces are now defined by $, t, z' :::::: ±l. (We 'use $) t, and z' for the coordinate 
axes because they are probably simpler to use than Greek letters e, 'fJ, and C· 

The fonnulation of the stiffness matrix follows steps analogous to the isopara­
metric formulation of the stiffness matrix for the plane element in Chapter 10. 

The function use to describe the element geometry for x in tenns of the general­
ized degrees of freedom a/sis 

x = al + a2s + a3t + tl4 i + asst + a6ti + a7is + agsti (11.3.1) 

The same fonn as Eq. (11.3.1) is used for y and z as well. Just start with a9 through a16 

for y and a17 through Q24 for z. 
First, we expand Eq. (10.3.4) to include the z coordinate as follows: 

{X} 8 ([Ni 0 0 1 {Xi}) Y LONiOYi 
. Z i=l 0 0 Nj Zj, . 

where the shape functions are now given by 

N; = (1 + 99;)(1 + Eti)(l + z'zD 
8 

with Sj) 1hZ; ±l and i = 1,2, ... ) 8. For instancel 

Nl = (1 + 391)(1 + ttl)(l + zlzD 
8 

(11.3.2) 

(11.3.3) 

(11.3.4) 

(x3. )'). %3) (X7' Y7. z,) 
r3 ______________ ~7 (-1,1, -I) (1, I. -1) 

3r--!---"",' 

(-I,l,l) 
4f----!-,_,1 

I 

(-I, I, -~)~-

(-I -I 1) ,/' 
, '11<.../~---v5 (1, -1, 1) 

z' 
(a) (b) 

Figure 11-5 Linear hexahedral element (a) in a global-coordinate system and (b) 
element mapped into ~ cube of two unit sides placed symmetrically with natural or 
intrinsic coordinates s, t, and Zl' 
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and when, from Figure 11-5, Sl = -1, t1 = -1, and z~ = +1 are used in Eq. (11.3.4), 
we obtain 

Nl = (1 - s)(1 - £)(1 + Zl) 
8 

(11.3.5) 

Explicit forms of the other shape functions fonow similarly. The shape functions in 
Eq. (11.3.3) map the natural coordinates (s, t,z') of any point in the element to any 
point in the global coordinates (x, y, z) when used in Eq. (11.3.2). For instance, 
when we let i = 8 and substitute Ss = 1, ts 1, z8 = 1 into Eq. (11.3.3) for Ns, we 
obtain 

Ns = (1 +s)(1 + t)(1 + z') 
8 

Similar expressions are obtained for the other shape functions. Then evaluating all 
shape functions at node 8, we obtain Ns = 1, and all other shape functions equal 
zero at node 8. [From Eq. (11.3.5), we see that Nt = 0 when s = 1 or when t 1.J 
Therefore, using Eq. (11.3.2), we obtain 

X Xs y=Ys z Zs 

We see that indeed Eq. (11.3.2) maps any point in the natural-coordinate system to 
one in the global-coordinate system. 

The displacement functions in terms of the generalized degrees of freedom are of 
the same form as used to describe the element geometry given by Eq. (1 1.3.1). There­
fore we use the same shape functions as used to describe the geometry (Eq. (11.3.3)). 
The displacement functions now include w such that 

(11.3.6) 

with the same shape functions as defined by Eq. {I 1.3.3) and the size of the shape 
function matrix now 3 x 24. 

The Jacobian matrix [Eq. (10.3.10)] is now expanded to 

ox oy oz 
as as aS 

[1J= ax py az (11.3.7) at at ai 
ox oy az 
oz' az' az l 

Because the strain/displacement relationships, given by Eq. (II.2.11) in tenns of 
global coordinates, include differentiation with respect to z, we expand Eq. (10.3.9) 
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as follows: 

oj oy oz ax oj oz 
os os os as as as 
of oy oz ox of oz 
ot at at at at at 
of oy az ox af oz 

of oz' oz' oz' af I az' az' oz' 
-= 

III 
-= 

Il! ax oy 
of 

(11.3.8) 
ox oy 
os os os 
ax oy of 
at ot at 
ax ay of 

of oz' oz' oz' 
-= oz III 

Using Eqs. (11.3.8) by substituting u, v, and then w for f and using the definitions of 
the strains, we Ct,iD express the strains in tenns of natural coordinates (s, t, Zl) to obtain 
an equation similar to Eq. (10.3.14). In compact 'form, we can again express 
the strains in tenns of the shape functions and global nodal coordinates similar to 
Eq. (10.3.15). The matrix B, given by a form similar to Eq. (10.3.17), is now a func­
tion of s, t, and Zl and is of order 6 x 24. 

The 24 x 24 stiffness matrix is now given by 

(kl = fl f, fl[BJT(DJ[BJlII~dtdzl (11.3.9) 

Again, it is best to evaluate lk] by numerical integration (also see Section 10.4); that is, 
we evaluate (integrate) the eight-node hexahedral element stiffness matrix using a 
2 x 2 x 2 rule (or two-poinfrule). Actually, eight points defined in Table 11-1 are 
used to evaluate If as 

8 

Is = 2: nT (sil ti,zf)J2B(sj,Ii,Z:)II(si)ti,zDIWi WjWk 
i=1 

where W; = Wi = Wk for the two-point rule. 

As is true with the bilinear quadrilateral element described in Section 10.3, the eight­
noded linear hexahedral element cannot model beam-bending action well because 
the element sides remain straight during the element deformation. During the bending 
process. the elements will be stretched and can shear lock. This concept of shear lock­
ing is described in more detail' in {I2J along with ways to remedy. it. However, the qua­
dratic hexahedral element described subsequently remedies the shear locking problem. 
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Table 11-1 Table of Gauss points for linear hexahedral element with associated 
weightsO 

Points, i Sf ti z~ 
f 

Weight, Wi 

1 -1/,;3 -1/,)3 1/,;3 
2 1/,;3 -1/../3 1/,;3 
3 1/,;3 1/../3 1/,;3 
4 -1/,;3 1/../3 1/,;3 
5 -1}-/3 -1/../3 -1/..)3 
6 1/,[3 -1/,[3 -1/,;3 
7 1/.J3 1/V3 -Ij.J3 
8 -1/,;3 l/-/3 -1/,;3 

u 1/..)3 = 0.57735. 

Quadratic Hexahedral Element 

For the quadratic hexahedral element shown in Figure 11-6, we have a total of 
20 nodes with the inclusion of a total of 12 midside nodes. 

The function describing the element geometry for x in terms of the 20 ai's is 

x = a, + a2s+ all + a4z' + asst + a6tz' + a7is + ag; + a9r 

+ alOz'2 + all;t + a12sr + al3rz' + al4t:J2 + alszt2s 

+ a16i; + al7sti + alS? tz' + a19st2z' + a2osti2 (11.3.10) 

Similar expressions describe the y and z coordinates. 
The development of the stiffness matrix follows the same steps we outlined be­

fore for the linear hexahedral element, where the shape functions now take on new 
forms. Again, letting Si, ti, z: = ±l, we have for the corner nodes (i = 1,2, ... ) 8), 

(I 1.3.11) 

For the midside nodes at Si = 0) tj = ±I, z: = ±J (i = 17,18,19,20), we have 

Ni = (1 - s2)(l.+ tti)(i + ZIZ;) 

4 
(11.3.12) 

4 

J2 

z· 

Figure 11-6 Quadratic hexahedral isoparametric element 
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Figure 1 1 -7 Finite element model of a forging using linear and quadratic solid elements 

For the midside nodes at Si = ±I, ti 0, z; = ±l (i = 10,12,14,16), we have 

N
j 

= (I + SSi) (I 12)(1 + ZIZ;) 

4 
(11.3.13) 

Finally, for the midside nodes at Si = ±I, lz' = ±I, z; = 0 (i = 9,11) 13, IS), we have 

(I +SSi)(l + tli)(1 z12) 
4 

(11.3.14) 

Note that the stiffness matrix for the quadratic solid element is of order 60 x 60 
because it has 20 nodes and 3 degrees of freedom per node. 

The stiffness matrix for this 20-node quadratic solid element can be evaluated 
using a 3 x 3 x 3 rule (27 points). However, a special 14-point rule may be' a better 
choice [9,. 10j. 

As with the eight-noded plane element of Section 10.6 (Figure 10-16), the 
20-node solid element is also called a serendipity element. 

Figures 1-7 and 11-7 show applications of the use of linear and quadratic 
(curved sides) solid elements to model three-dimensioQ.al solids. 

Finally, commercial computer programs, such as [I I] (also see references [46-56J 
of Chapter I), are available to solve three-dimensional problems. Figures 11-8, 11-9, 
and 11-10 show a steel foot pedal, a hollow cast-iron member, and an alternator 
bracket solved. using a computer program [1 I]. We emphasize that these problems 
have been solved using the three-dimensional element as opposed to using a two­
dimensional element, such as described in Chapters 6 and 8, as these problems 
have a three-dimensional stress state occurring in them. That is, the three normal 
and three shear stresses are of similar order of magnitude in some parts of the foot 
pedal, the cast-iron member, and the alternator bracket. The most accurate results 
will then occur when modeling these problems using the three-dimensional brick or tet­
rahedral elements (or a combination of both). 
. For the foot pedal, the largest principal stress was 4111 psi and the largest von 

Mises stress was 4023 psi, both located at the interior corner of the elbow. 
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51b 

I 

In' lOir:,. --- ~-----------D 

0.25 in. 

Figure 11-8 Three-dimensional steel foot pedal 

Figure 11-9 Cast iron hollow member,·E = 165 GPa with opening on frontside 

Figure 11-10 Meshed model of an altemator bracket (Courtesy of Andrew Heckman. 
Design Engineer, Seagrave Fire Apparatus, LtQ 
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The maximum displacement was 0.01234 in. down at the free end point H in Figure 
11-8. The model had 889 nodes and 648 brick elements.' 

For the cast-iron member, the maximum principal stress was 19 MPa and the 
maximum von Mises stress was 23.2 MPa. Both results occurred at the top near the 
fixed wall support. The free end vertical displacement was -0.300 mm. 

Tabl~ comparing results for cantilever beam modeled using 4-noded-tetrahedral, 
10-noded tetrahedral, 8-noded brick. and 2().-noded brick element 

Solid Number Number of Degrees Number Free End Principal 
Element Used of Nodes of Freedom of Elements Displ., in. Stress, psi 

4-noded tet 30 90 61 0.0053 562 
4-noded tet 415 1245 1549 0.0282 2357 
4-noded tet 896 2688 3729 0.0420 3284 
4-noded tet 1658 4974 7268 0.0548 4056 
100noded tet 144 432 61 0.1172 6601 
10-noded tet 2584 7152 1549 0.1277 7970 
8-noded brick 64 192 27 0.1190 5893 
8-noded brick 343 .1029 216 0.1253 6507 
8-noded brick 1331 3993 1000 0.1277 6836 
20-noded brick 208 624 27 0.1250 7899 
20-noded brick 1225 3675 216 0.1285 8350 
20-noded brick 4961 14,883 1000 0.1297 8323 
Classical solution 0.1286 "6940 

(Mr. William Gobeli for creating the results for Table 11-2) 

For the alternator bracket made of ASTM-A36 hot-rolled steel, the model con­
sisted of 13,298 solid brick elements and 10,425 nodes. A tota.lload of 1000 lb was ap­
plied downward to the flat front face piece. The bracket back side was constrained 
against displacement. The largest von Mises stress was 11,538 psi located at the top 
surface near the center (narrowest) section of the bracket. The largest vertical deflec­
tion was 0.01623 in. at the front tip of the outer edge of the alternator bracket. 

It has been shown [31 that use of the simple eight-noded hexahedral element yields 
better results than use of the constant-strain tetrahedral discussed in Section 1 I. t . 
Table 11.2 also illustrates the comparison between the corner-noded (constant-strain) 
tetrahedral, the linear-strain tetrahedral (mid-edge nodes added), the 8-noded brick, 
and the 20-noded brick models for a three-dimensional cantilever beam of length 
100 in., base 6 in., and height 12 in. The beam has an end load of 10,000 Ib acting up­
ward and is made of steel (E ~ 30 x 106 psi). A typical S-noded brick model with the 
principal stress plot is shown in Figure 11-11. The classical beam theory solution. for 
the vertical displacement and bending stress is also included for comparison. We can 
observe that the constant-strain tetrahedral gives very poor results, whereas the linear 
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27 Bricks 

Figure 11-11 Eight-noded brick model (27 Bricks) sh9win9 principal stress plot 

tetrahedral gives mucb..better results. This is because the linear-strain mode) predicts 
the beam-bending behavior much better. The 8-noded and 20-noded brick mOdels 
yield sim.itar but accurate results compared to the classica1 beam theory results. 

In summary, the use of the three-dimensional elements resu1ts in a large number 
of equations to be solved simultaneously. For instance, a model using a simple cube 
with, say> 20 by 20 by 20 nodes (= 8000 total nodes) for a region requires 8000 
times 3 degrees of freedom per node (= 24,000) simultaneous equations. 

References [4-J} report on early three-dimensional programs and analysis proce­
dures using solid elements such as a family of subparametric curvilinear elements, lin­
ear tetrahedral elements, and 8-noded linear and 20-noded quadratic isoparametric 
elements. 
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1: Problems 

11.1 Evaluate the matrix II for the tetrahedral solid element shown in Figure PH-I. 

y 

2 (0,2,0) 

4. (2.0.0) 
)-----~3-:---... x 

I 
(0,0.2) 

(a) 

~i9ure Pl1-1 

y 

4 (0,2,0) 
\ 
'\ 

\ 
'\ 

\(1,0.0) (3, o. 0) 
r-~~~~3~~--x 

2 
(0.0,2) 

(b) 

11.2 Evaluate the stiffness matrix for the elements shown in Figure PI 1-1. Let E = 30 X 

106 psi and v 0.3. 

11.3 For the .. eIement shown in Figure Pll-I. assume the nodal displacements have been 
detennined to be 

Ul 0.005 in. VI = 0.0 WI =0.0 

U2 = 0.001 in. V2 = 0.0 W2 = 0.001 in. 

U3 = 0.005 in. 1'3 = 0.0 W3 = 0.0 

U4 = -0.001 in. V4 = 0.0 W4 = 0.005 in. 

Determine the strains and then the stresses in the element. Let E = 30 x 106 psi and 
v 0.3. 

11.4 What is special about the strains and stresses in the tetrahedral element? 
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11.5 Show that for constant body force Zb acting on an element (l:'b = 0 and Yb == 0), 

Ub,}=fUJ 
where {lsi} represents the body forces at node i of the element with voiume v. 

11.6 Evaluate the B matrix. for the tetrahedral solid element shown in Figure P11-6. The 
coordinates are in units of millimeters. 

y 

(25,25,0) 2 

(10. O. O} 

3 (25.0.2Si 

(a) 

Figure P6-6 

4 

(40.0,0) 

(l0.7,0) 

: .. ~o)4,(1~2'~ 
(10,2, S) 

x r-----------~~x 

(b) 

11.7 For the element shown in Figure Pll-6, assume the nodal displacements have been 
determined to be 

UJ =0.0 VI =0.0 WI =0.0 

U2 = 0.01 mm V2 = 0.02mm Wz =0.01 rom 

U3 = 0.02 mm V3 =0.01 mm W3 0.OO5mm 

U4 0.0 V4 0.01 nun W4 = 0.01 mm 

Determine the strains and then "the stresses in the element. Let E = 210 GPa and 
v == 0.3. . 

11.8 For the linear strain tetrahedral element shown in Figu)e Pll..".8) (a) express the dis­
placement fields u, v, and w in ~he x, y and z di'rections, respectively. Hint: There are 

4 Figure P11-8 



[ 
I: 

Problems ... 511 

10 nodes each with three translational degrees of freedom, Ui, Vi} and Wi- Also look at 
the linear strain triangle given by Eq. (8.1.2) or the expansion of Eqs. (11.2.2). 

11.9 Figure PII-9 shows how solid and plane elements may be connected. What restric­
tion must be placed on the externally applied loads, for this connection to be 
acceptable? 

Figure Pll-9 

x.,,/'" Solid elements 

11.10 Express the explicit shape functions N2 through Ns, similar to NJ'-given by 
Eq. (11.3.4), for the linear hexahedral element shown in Figure 11-5 on page 501. 

11.11 Express the explicit shape functions for the comer nodes of the quadratic hexahedral 
element shown in Figure 11-6 on page 504. 

11.12 Write a computer program 'to evaluate k of Eq. {I 1.3.9) using a 2 x 2 x 2 Gaussian 
quadrature rule. 

Solve the following problems using a computer program. 

11.13 Detennine the deflections at the four corners of the free end of the structural steel 
cantilever beam shown in FIgure Pl1-l3. Also detennine the maximum principal 
stress. 

% 

x 

Figure P11:"'13 
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11.14 A ponion of a structural steel brake pedal in a vehicle is modeled as shown in Figure 
fl PI 1-14. Determine the maximum deflection at the pedal under a line load of 5th/in. 

All? as shown. . 

11.15 • 
, 

O.2Sin. 

Figure Pl1-14 

For the compressor flap valve shown in Figure PIl-15, determine the maximum 
operating pressure such that the material yield stress is not exceeded with a factor of 
safety of two. The valve is made of hardened 1020 steel with a modulus of elasticity of 
30 million psi and a yield strength of 62,000 psL The valve tbiclmess is a unifonn 
0.018 in. The value clip ears support the valve at opposite diameters. The pressure 
load is applied uniformly around the annular region. 

!02.2S0in. 

RO.lOO.in. 

14----------- 2.750 in. ---~----""'I 

t::.. denotes fixed boundary. 

Figure Pll-1S 

11.16 An S-shaped block used in force measurement as shown in Figure PIl.16 is to be 
designed for a pressure of 1000 psi applied uniformly to t~e top surface. Determine the 
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uniform thickness of the block needed such that the sensor is compressed no more 
than 0.05 in. Also make sure that the maximum stress from the maximum distonion 
energy failure theory is less than the yield strength of the materiaL Use a factor of 
safety of 1.5 on the stress only. The overall size of the block must fit in a 1.5-in.-high, 
l-in.-wide= l-in.-deep volume. The block should be made of steel. 

1000 psi 

~T 
I Figure P11-16 S-shaped b~.xk 

11.17 A device is to be hydraulically loaded to resist an upward force P = 6000 Ib as shown 
in Figure PIl-I7. Determine the thickness of the device such that the maximum 
deflection is 0.1 in. vertically and the maximum stress is less than the yield strength 
using a factor of safety of 2 (only on the stress). The devi~ must fit in a space 7 in. 
high, 3 in. wide, and 2,3 in. deep. The top flange is bent vertically as shown, and the 
device is clamped to the floor. Use steel for the material. 

t 
p 

otij 
I ~go 

Section A-A 

Figure Pll-17 Hydraulically loaded device 
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Introduction 

In this chapter, we will begin by describing elementary concepts of plate bending be­
havio~~d theory. The plate element is one of the more important structural elements 
and·is used to model and analyze such structures as pressure vessels> chimney stacks 
(Figure 1-5), and automobile parts. This descIiption of plate bending is followed by 
a discussion of some commonly used plate finite elements. A large number of plate 
bending element formulations exist that would require a lengthy chapter to cover. 
OUf purpose in this chapter is to present the derivation of the stiffness matrix for one 
of the most common plate bending finite elements and then to compare solutions to 
some classical problems from a variety of bending elements in the literature. 

We finish the chapter with a solution to a plate bending problem using a com­
puter program. 

1: 12.1 Basic Concepts of Plate Bending 

A plate can be considered the two~djmensional extension of a beam in simple bending. 
Both beams and plates support loads t~ansverse or perpendicular to their plane and 
through bending action. A plate is fiat (if it were curved, it would become a shell). A 
beam has a single bending moment resistance, while a plate resists bending about 
two axes and has a twisting moment. 

We will consider the classical thin-plate theory or Kirchhoff plate theory [I}. 
Many of the assumptions of this theory are analogous to the classical beam theory 
or Euler-Bernoulli beam theory described in Chapter 4 and in Reference [2]. 

Basic Behavior of Geometry and Deformation 

We begin the derivation of the basic thin-plate equations by considering the thin plate 
in the x-y plane and of thickness f measured in the _ direction shown in Figure 12-1. 

'-" J._ ";./-, 
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y 

/L _______ _ 

/ / I 
2c / / t t 
/~/ 'I t q 

// 
// 

~------------~----+r--------x 

2b 

Figure 12-1 Basic thin plate showing transverse loading and dimensions 

The plate surfaces are at z = ±t/2, and its midsurface is at z = O. The assumed basic 
geometry of the plate is as follows: (1) The plate thickness is much smaller than its in­
plane dimensions band c (that is, t « b or c). (If t is more than about one-tenth the 
span of the plate, then transverse shear deformation must be accounted for and-the 
plate is then said to be thick.) (2) The deflection w is much less than the thickness t 

'(that is, wJt« 1). 

Kirchhoff Assumptions 

Consider a differential slice cut from the. plate by planes perpendicular to the x axis as 
shown in Figure 12-2(a). Loading q causes the plate to deform laterallY'or upward in 
the z direction, and 'the deflection w of point P is assumed to be a function of x and y 
only; that is, w w(x,y) and the plate does not stretch in the z direction. A line a-b 
drawn perpendicular to the plate surfaces before loading .remains perpendicular to 
the surfaces after loading [Figure 12-2(b}]. This is consistent with the Kirchhoff 
assumptions as follows: 

1. Nonnals remain nonnal. This implies that transverse shear strains 
Yyz = 0 and similarly Yxz = O. However, Yxy does not equal 0; right 
angles in the plane of the plate may not remain right angles after 
loading. The plate may twist in the plane. 

2. Thickness changes can' be neglected and nounals undergo no 
extension. This means nonna) strain, ez = O. 

3. NonnaJ stress az has no effect on in-plane strains e)C and Sy in the 
stress-strain equations and is considered negligible. 

4. Membrane or in-plane forces are neglected here, and the plane stress 
resistance can be superimposed later (that is, the constant-strain 
triangle behavior of Chapter 6 can be, superimposed with the basic 
plate bending element resistance). That is, the in-plane deformations 
in the x and y directions at the midsurface are assumed to be zero; 
u(x,y,O) = 0 and v(x,y, 0) = O. 
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w II=-ZI'.I. 

z,w 
a 

1.....--..!.-4---i-+---~-- J:, II 

b 
(a) 

X,Zl 

(b) 

Figure 12-2 Differential slice of plate of thickness t (a) before loading and 
(b) displacements of point P after loading, based on Kirchhoff theory. Transverse shear 
deformation is neglected. and so right angles in the cross section remain right angles. 
Disp'acements in the y-z plane are similar 

Based on the Kirchhoff assumptions, any point P in Figure 12~2 has displacement in 
the x direction due to a small rotation ct of 

u = -Zct = -z(~:) (12.1.1) 

and similarly the same point has displacement in the y direction of 

v=-z(~;) (12.1.2) 

The curvature$, of the plate are then given as the. rate of change of the anguJar dis~ 
placements of the normals and are defined as 

(12.1.3) 

The first of Eqs. (12.1.3) is used in beam theory [Eq. (4. 1. Ie)}. 
Using the definitions for the in-plane strains from Eq. (6.1.4), along with Eq. 

(12.1.3), the in-plane strain/displacement equations become 

(12.1.4a) 

or using Eq. (12.1.3) in Eq.(12.l.4a), we have 

(12.1.4b) 

The first of Eqs. (12.l.4a) is used in beam theory [see Eq. (4.LlO)}. The others are new 
to plate theory. 
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y Q. 
My 

z#. dy 

Mx y M:r.y 

dx Q. 
x x 

Qy M.. 
My.; 

(a) (b) 

Figure 12-3 Differential element of a plate with (a) stresses shown on the edges of 
the plate and (b) differential moments and forces 

Stress/Strain Relations 

Based on the third assumption above, the plane stress equations can be used to relate 
the in-piane stresses to the in-plane strains for an isotropic material as 

E 
(J;x = -1--2 (ex + vey ) 

-v 
E 

(Jy = I _ ".2 (ey + vex) 

1:;xy = Gyxy 

(12.1.5) 

The in-plane normal stresses and shear stress are shown acting on the edges of the 
plate in Figure 12-3(a). Similar to the stress variation in a beam, these stresses vary 
linearly in""n1e Z direction from the mid surface of the plate. The transverse shear 
stre~ses r yz and 'Cxz are also present, even though transverse shear deformation is 
neglected. As in beam theory, these transverse stresses vary quadratically through the 
plate thickness. The stresses ofEq. (12.1.5) can be related to the bending moments 
Mx and ~. and to the twisting moment Mxy acting along the edges of the plate as 
shown in Figure 12-3(b). 

The moments are actually functions of x and y and are computed per unit length 
. in the plane of the plate. Therefore, the moments are 

J
I12 

Mx = z(Jx dz 
-t/2 J

tl2 
My = z(J.vdz 

-t/2 

.J JI12 
Mxy - ZJxydz 

-t/2 
(12.1.6) 

The moments can be related to the curvatures by substituting Eqs. (1 2. 1.4b) into Eqs. 
(12.1.5) and then using those stresses in Eq. (12.1.6) to obtain 

DCI - v) 
Mxy = --2--K.xy (12.1.7) 

where D = £t3/[12(1 - ",2)J is called the bending rigidity of the plate. 
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The maximum magnitudes of the normal stresses on each edge of the plate are 
located at the top or bottom at z = t/2. For instance, it can be shown that 

(12.1.8) 

This formula is similar to the flexure fonnu)a U x Mxc/I when applied to a unit 
width of plate and when c = t/2. 

The governing equilibrium differential equation of plate bending is important in 
selecting the element displacement fields. The basis for this relationship is the equilib­
rium differential equations derived by the -equilibrium of forces with respect to the z 
direction and by the equilibrium of moments about the x and yaxes) respectively. 
These equilibrium equations result in the following differential equations: 

oQx 8Qy 0 ax+ay+q 

8M): + oMxy _ Qx = 0 
ox oy (12.1.9) 

aMy + oMxy _ Q. = 0 
oy ax )-

where q is the transverse distributed loading and Qx and Qy are the transverse shear 
line loads shown in Figure 12-3(b). 

Now substituting the moment/curvature relations from Eq. (12.1.7) into the sec­
ond and third of Eqs. (12.1.9), then solving those equations for Qx and Qy, and finally 
substituting the resulting expressions into the first of Eqs. (12.1.9), we obtain the gov­
erning partial differential equation for an isotropic, thin-plate bending behavior as 

(
04w 204W 04W) 

D O~4 + ox20y2 + 8y4 = q (12.1.10) 

From Eq. (12.1.10), we observe that the solution of thin-plate bending using a dis­
placement point of view depends on selection of the single-displacement component 
W, the transverse displacement. 

If we neglect the differentiation with respeCt to the y coordinate, Eq. (12.1.10) 
simplifies to Eq. (4.1.1g) for a beam (where the flexural rigidity D of the plate reduces to 
E1 of the beam when the Poisson effectis set to zero and the plate width becomes unity). 

Potential Energy of a Plate 

The total potential energy of a plate is given by 

U =! J (O'xex + O'yG)' + 'l'xY}'xy} dV (12.1.11) 

The potential energy can be expressed in tenns of the moments and curvatures by sub­
stituting Eqs. (12.1.4b) and (12.L~) in Eq. (12.1.1 I) as 

(12.1.12) 
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A 12.2 Derivation of a Plate Bending Element 
Stiffness Matrix and Equations 

Numerous finite elements for plate bending have been developed over the years, and 
Reference {31 cites 88 different elements. In this section we will introduce only one 
element formulation, the basic 12-degrees-of-freedom rectangular element shown in 
Figure 12-4. For more details of this formulation and of various other formulations 
including triangular elements, see References [4-18]. 

n 
m 

/ 

Figure 12-4 Basic rectangular plate 
element with nodal degrees of 
freedom 

The formulation will be developed consistently with the stiffness matrix and 
equations for the bar} beam, plane stress/strain, axisymmetric, and solid elements of 
previous chapters. 

Step 1 Select Element Type 

We will consider the 12-degrees-of-freedom flat-plate bending element shown in 
Figure 12-4. Each node has 3 degrees of freedom-a transverse displacement win 
the z direction, a rotation Ox about the x axis, and a rotation Of about the y axis. 

The nodal displacement matrix at node i is given by 

{di } = {~i} 
OYI 

(12.2.1) 

where the rotations are related to the transverse displacement by 

ow ow 
By:= +-;- Oy = - J:\x 
~ , uy u 

(12.2.2) 

The negative sign on Oy is due to the fact that a negative displacement w is required to 
produce a positive rotation about the y axis. 

The total element displacement matrix is now given by 

{d} = {fit 4) flm fin} T (12.2.3) 

Step 2 Select the Displacement Function 

Because there are 12 total degrees of freedom for the element, we select a 12-term 
p01ynomial in x and y as follows: 

W = G! + G2X + G3Y + l1.4x2 + Gsxy + G6l + G7X3 + Qsx2y 

(12.2.4) 



520 .. 12 Plate Bending Element 

Equation (12.2.4) is an incomplete quartic in the context of the Pascal triangle (Figure 8-2). 
The function is complete up to the third order (ten terms), and a choice of two more 
terms from the remaining five terms of a complete quartic must be made. The best 
choice is the x 3y and xy3 terms as they ensuie that we win have continuity in displace­
ment among the interelement boundarieS. (The X4 and y4 terms would yield disconti­
nuities of displacement along interelement boundaries and so must be rejected. The 
x 2y2 tenn is alone and cannot be paired with any other terms and so is also rejected.) 
The function [Eq. (12.2.4)J also satisfies the basic differential equation fEq. {I2.LlO)J 
over the unloaded part of the plate, although not a requirement in a minimum poten­
tial energy approximation. 

Furthermore, the function allows for rigid-body motion and constant strain, as 
terms are present to account for these phenomena in a structure. However, inter­
element slope discontinuities along common boundaries of elements are not ensured. 

To observe this di~ontinuity in slope, we evaluate the polynomial and its slopes 
along a side or edge (say, along side i-j, the x axis of Figure 12-4). We then obtain 

w = at + a2x+ 04X
2 + 07X3 

oW 2 
OX = a2 + 2a"x + 3a7X 

OW.2 3 
-=:- = a3 + asx+ agX'""" + al2x 
oy 

(12.2.5) 

The displacement w is a cubic as used for the beam element, while the slope ow/ox is the 
S<:!IDt as in beam bending. Based on the beam element, we recall that the four constants 
a"a2,04, and a7 can be defined by invoking the endpoint conditions of (Wj) wj, Oyt>Oyj). 
Therefore, wand ow/ax are completely defined along this edge. The normal slope 
ow/ey is a cubic in.x. However, only two degrees of freedom remain for definition of 
this slope, while four constants (a3, as, as, and all) exist. This slope is then not uniquely 
defined, and a slope discontinuity {)(xUIS., Thus, the function for w is said to' be noncon­
forming. The solution obtained from the finite element analySis using this element will 
not be a minimum potential energy solution. However, this element has proven to give 
acceptable results, and proofs of its convergence have been shown [8]. 

The constants al through a12 can be determined by expressing the 12 simulta­
neous equations linking the values of w and its slopes at'the nodes when the coordinates 
take up their appropriate values. First, we write 

rl ow 1 x x 2 xy y2 x 3 ? xy2 y3 x3y 

~l 
y x-y 

+ay ~[o 0 +1 0 +x +2y 0 +x2 +2xy +3y2 +xJ +3xy2 

Ow 0-1 0 -2x -y 0 -3x2 -2xy _y2 0 -3x2y -i~ 

- ax 

a1 

a2 

X (13 (12.2.6) 

al2 
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or in simple matrix form the degrees of freedom matrix is 

{l/I} = {PJ{a} 

where [P] is the 3 x 12 first matrix on the right side ofEq. (12.2.6). 
Next, we evaluate Eq. (12.2.6) at each node point as follows 

Xi Yi Xf XiYi y; xl xtY,' X,,]; YT 
o +1 0 +Xi +2Yi 0 +x; +2XiYi +3y; 

I~ compact matrix foinl, we express Eq. (12.2.8) as 

{d} = [C]{a} 

where [C] is the 12 x 12 matrix on the right side ofEq. (12.2.8). 
Therefore, the constants (a's) can be solved for by 

{a} = [C]-l{d}' 

Equation (12.2.7) can now be expressed as 

or 

{"'} [p][C]-1 {d} 

{l/I} = [N}{d} 

(12.2.7) 

(12.2.8) 

(12.2.9) 

(12.2.10) 

(12.2.11) 

(12.2.12) 

where [NJ = [P] [Cr I .is the shape function matrix. A specific form of the shape func­
tions Nj ) 1Yj, Nm, and Nn is given in Reference [9}. 

Step 3 Define the Strain (CUIvature)/ Displacement 
and Stress (Moment>/Curvature Relationships 

The curvature matrix, based on the curvatures of Eq.(12.1.3) is 

{K} = { :; } 
1Cxy 

(12.2.13) 

or expressing Eq. (12.2.13) in matrix form, we have 

{K} = [QHa} (12.2.14) 
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where [QJ is the coefficient matrix multiplied by the a's in Eq. (12.2.13). Using 
Eq. (12.2.10) for {a}, we express the curvature matrix as 

where 

is the gradient matrix. 

{K} = [BJ{d} 

[BJ == [Q][C]-l 

The ,moment/curvature matrix for a plate is given by 

{ 
Mx} '{ 'Kx.} {M} = My = [D} 'Ky 
M;cy 'K:xy 

[DHBl{d} 

(12.2.15) 

(12.2.16) 

(12.2.17) 

where the [D} matrix is the constitutive matrix given for isotropic materials by 

[DJ 

I : v 1 
(12.2.18) 

and Eq. (12.2.15) has been used in the final expression for Eq. (12.2.17). 

Step 4 Derive the Element Stiffness Matrix and Equations 

The stiffness matrix is given by the usual form of the stiffness matrix as 

[k] =.1J [B]T[D)[B]dxdy (12.2.19) 

where [B} is defined by Eq. (12.2.16) and [D] is defined by Eq. (12.2.18). The stiffness 
matrix for the four-noded rectangular element is of order 12 x 12. A specific expres­
sion for [k] is given,in References [4} and [5]. 

The surface force matrix due to distributed loading q acting per unit area in the z 
direction is obtained using the standard equation 

(12.2.20) 

For a uniform load q acting over the surface of an element of dimensions 2b x 2c, 
Eq. (12.2.20) yields the forces and moments at node i as 

{
fWi} 
f8xi 
fByi {

' 1/4 } 
4qcb -c/12 

b/l2 

(12.2.21) 

with similar expressions at nodesj,m, and n. We should nete that a uniform load 
yieJds applied couples at the nodes as part of the work-equivaJent load replacement, 
just as was the case for the beam element (Section 4.4). 
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The element equations are given by 

fwi ktl kl2 kl.l21 Wi 

fo:..:i k2t k22 k2,12 Bxi 

!oyi k31 kn k), 12 j ~vi (12.2.22) 

fSyn kn,] k:~,12 8yn 

The rest of the steps, including assembling the global equations) applying 
boundary conditions (now boundary conditions on w, Ox, Oy); and solving the equa­
tions for the nodal displacements and slopes (note three degrees of freedom per 
node), follow the standard procedures introduced in previous chapters. : 

A 12.3 Some Plate Element 
Numerical Comparisons 

A 

We now present some numerical comparisons of quadrilateral plate element formula­
tions. Remember there are numerous plate element formulations in the literature. 
Figure 12-5 shows a number of plate ,element formulation results for a square plate 
simply supported all around and subjected to a concentrated vertical load applied at 
the center of the plate. The results are shown to illustrate the upper and lower bound 
solution behavior and demonstrate the convergence of solution for various plate ele­
ment formulations. Included in these results is the 12-term polynomial described in 
Section 12.2. We note that the 12-term polynomial converges to the exact solution 
from above. It yields an upper bound solution. Because, the interelement continuity 
of slopes is not ensured by the 12-term polynomial, the lower bound classical charac­
teristic of a minimum potential energy formulation is not obtained. However, as 
more elements are used, the solution converges to-the exact solution (1]. 

Figure 12-6 shows comparisons of triangular plate formulations for the same 
centrhli:y loaded simply supported plate used to compare quadrilateral element formu­
lations in Figure 12-5. We can-observe from Figures"12-5 and 12-6 a number of dif­
ferent formulations with results that converge from above and below. Some of these 
elements produce better results than others. 

The Algor program [19] uses th~ Veubeke (after Baudoin Fraeijs de Veubeke) 
16-degrees-of-freedom "subdomain" fonnulation [7} which converges from below, as 
it is based on a compatible displacement formulation. For more information on 
some of these formulations, consult the references at the end of the chapter. 

Finally, Figure 12-7 shows results for some selected Mindlin plate theory ele­
ments. Mindlin plate elements account for bending deformation and for transverse 
shear deformation. For more on Mindlin plate theory, see Reference [6]. The "het· 
erosis" element [101 is the best performing element in Figure 12-7. 
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Figure 12-5 Numerical comparisons: quadrilateral prate element formulations. 
(Gallagher, R. H., Finite Element Analysis Fundamentals, 1975, p. 345. Reprinted by 
permission of Prentice-Hall, Inc., Upper Saddle River, NJ.) 

A 12.4 Computer Solution 
for a Plate Bending Problem 

A computer program solution for plate bending problems [19] is now i1Justrated. The 
problem is that of a square steel plate fixed along all four edges and-subjected to a 
concentrated load at its center as shown in Figure 12-8. 

The plate element is a three- or four-noded eleIhent .formulated in three­
dimensional space. The element degrees of freedom allowed are all three translations 
(u, v, and w) and in-plane rotations (Ox and Oy). The rotational degrees of freedom nor­
mal to the plate are undefined and must be constrained_ The element fonnulated in the 
computer program is the 16-term polynomial described in References [5] and [7). This 
element is known as the Veubeke plate in the program. The 16-nod~ formulation con­
verges from below for the disp]acement analysis, as it is based on a compatible dis­
placement fonnulation. This is also shown in Figure 12-5 for the clamped plate sub­
jected to a concentrated center load. 
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Figure 12-6 Numerical comparisons for a simply supported square pla~e subjected 
to center load triangular element formulations. (Gallagher, R. H., Finite Element Analysis 
Fundamentals, 1975, p. 350. Reprinted by PermissIon of Prentice-Hall, Inc., Upper 
Saddle River, NJ.) 

Example 12.1 

A 2 x 2 mesh was created to model the plate. The resulting displacement plot is shown 
in Figure 12-9. 

The exact solution for the maximmn displacement (which occurs under the con'::' 
centrated load) is given in Reference [lJ as w = 0.OO56PL21D = 0.OO56( -100 Ib)· 
(20 in.)2/(2.747 x 103 1h-in.) -0.0815 in., where D = (30 X 106 psi)(O.1 in)31 
[12(1 - 0.32)J = 2.747 X 103 Ib-in. 

Figure 12-10 (a) and (c) show moeJeIs of plate and beam elements combined. 
Beams can be combined with plates by 'having the beams match the ~terline of the 
plates as shown in Figure 12-IO(a). This ensures compatibility betweenihe plate and 
beam elements: The plate is the same as the one used in Figure. 12-9. The beam elements 
reinforce the plate so the maximmn deflection is reduced as shoVlD. in Figure 12-1 O(b). 
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Figure 12-7 Center deflection of a uniformly loaded clamped square plate of side 
length Lr and thickness t. An 8 x 8 mesh is used in all cases. Thin plates correspond 
to large LTlt. Transverse shear deformation becomes significant for small Ldt. 
Integration rules are reduced (R), selective (5), and full (F) [18], based on Mindlin plate 
element formulations. (Cook, R., Malkus D., and Plesha, M. Concepts 'and Applications of 
Finire Element Analysis. 3rd ed., 1989, p. 326. Reprinted by permission of John Wiley & 
Sons, !nc., New York.) 

looth 

Figcre 12-8 Displacement plot of the damped plate of Example 12.1 

The beam elements used in this model were 2 in. by 12 in. rectangular cross sections 
used to stiffen the plate through the center, as indicated by the Jines dividing the 
plate into four parts. Figure 1-5 also illustrates how a chimney stack was modeled 
using both beam and plate elements. 

Another way to connect beam and plate elements is shown in Figure 12-10{c) 
where the beam elements are offset from the plate elements and short beam elements 
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Figure 12-9 Displacement plot of the damped plate of Example 12.1 

(a) 

Figure 1 ~-1 0 (a) ModeJ of beam and plate elements combined at centerline of ' 
elements, (b) vertical deflection plot for model in part (a), and (e) model showing 
offset beam elements from the plate elements . 
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Fixed Plate with Beam Reinforcement 
Concentrated Load of 100 Ib at center 
0.1 in thicK plate 
2 x 12 in beams 

(c) 

Figure P12-10 (Continued) 

(b) 
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are used to connect the beam and plate elements at the nodes. In this model, 2 in. ~y 
2 in. by ! in. thick square tubing properties we~selected for the beam elements. . 
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~ Problems 

.. Solve these problems using the plate element fro~ a computer program. 

12.1 A square steel plate of dimensions 20 m. by 20 in. with thickness of 0.1 is clamped all 
around. The plate is subjected to a uniformly distnouted loading of I lbIin2• Using a 2 
by 2 mesh and then a 4 by 4 mesh, determine the maximum deflection and maximum 
stress in the plate. Compare the finite element solution to the classical one in [I J. 
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z y 

Figure P12-1 

12.2 An L-shaped plate with thickness 0.1 in. is made of ASTM A-36 steel. Determine the 
deflection under the load and the maximum principal stress and its location using the 
plate element. Then model the plate as a grid with two beam elements with each beam 
having the stiffness of each L-portion of the plate and Compare your answer. 

Figure P12-2 

12.3 A square simply supported 20 in. by 20 in. steel plate with thickness 0.15 in. has a 
round hole of 4 in. diameter drilled through its center. The plate is uniformly loaded 
with a load of 2 Ib/in2• Determine the maximum principal stress in the plate. 

y 

Figure P12-3 

12.4 A C-channel section structural steel beam of 2 in. wide flanges, 3 in. depth and thick­
ness of both flanges and web of 0.25 in. is loaded as shown with 100 lb acting in the y 
direction on the free end. Determine the free end deflection and angle of twist. Now 
move the load in the z direction until the rotation (angle of twist) becomes zero. This 
distance is calJed the shear center (the location where the force can be placed so that 
the cross section will bend but not twist). 
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Figure P12-4 

12.5 For the simply supported structural steel W 14 x 61 wide flange beam shown, compare 
the plate element model results with the classical beam bending results for deflection 
and bending stress. The beam is subjected to a central vertical load of 22 kip. The 
cross~sectional area is 17.9 in.2, depth is 13.89 in., flange width is 9.995 in., flange 
thickness of 0.645 in., web thickness of 0.375 in., and moment of inertia about the 
strong axis of 640 in.4 

Figure P12-S 

12.6 For the structural steel plate structure shown, detennine the maximwn principal stress 
and its location. If the stresses are unacceptably high, recommend any design changes. 

'The initial thickness of each plate is 0.25 in. The left and right edges are simply sup­
ported. The load is a uniformly applied pressure of 10 Iblin.2 over the top plate. 

1'8" I" "I /0''-..../ 

~ •. '-I 

Figure P12-6 
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12.7 Design a steel box structure 4 ft wide by 8 ft long made of plates to be used to protect 
construction workers while working i~ a trench. That is, determine a recommended 
thickness of each plate .. The depth of the structure must be 8 ft. Assume the loading is 
.from a side load acting along the long sides due to a wet soil (density of 62.41b/ft3) and 
varies linearly with the depth. The allowable deflection of the plate type structure is 1 
in. and the allowable stress is 20 ksi. 

Figure P12-7 

z~ •• 

12.8 Determine the maximum deflection and maximum pljncipal stress of the circular plate 
shown in Figure P12-8. The plate is subjected to a uniform pressure p = 700 kPa and 
fixed along its outer edge. Let E = 200 GPa, v = 0.3, radius, 500 mm, and thick­
ness t= 5 mm. 

P 

.:t lIllII ~ • x 

t 
z 

y 

Figure P12-S 

12.9 Determine the maximum deflection and maximum principal stress for the plate shown 
in Figure P12-9. The plate is fixed along all tl: ;e sides. A uniform pressure of 100 psi 
is applied to the surface. The plate is made of steel with E = 29 X 106 psi, v = 0.3, and 
thickness t = 0.50 in. a 30 in. and b = 4() in. 

12.10 An aircraft cabin window of circular cross section and simple supports all around as 
shown in Figure P12-10 is made of poly carbonate with E = 0.345 X 106 pSi, V = 0.36, 
radius = 20 in.) and thickness t = 0.75 in. The safety of the material is tested, at a uni­
form pressure of 10 psi. Determine the maximum deflection and maximum principal 
stress in the material. The yield strength of the material is 9 ksi. Comment on the p0.­

tential use of this material in regard to strength and deflection. 
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Figure P12-9 Figure P12-1 0 

12.11 A square steel plate 2 m by 2 m and 10 mm thick at the bottom of a tank must support 
salt water at a height of 3 m, as shown in Figure P12-11. Assume the plate to be built 
in (fixed all around). The plate allowable stress is 100 MPa. Let E = 200 GPa, v = 0.3 
for the steel properties. The weight density of salt water is 10.054 kN/m3

• Determine 
the maximum principal stress in the plate and compare to the yield strength. 

12.12 A stockroom fioor carries a uniform load of p 80 Iblft2 over half the floor as shown 
in Figure P12-12. The floor has opposite edges clamped and remaining edges and mid­
span simply supported. The dimensions are lOft by 20 ft. The floor thickness is 6 in. 
The fioor is made of reinforced concrete with E = 3 x 106 psi and v = 0.25. Determine 
the maximum deflection and maximum principal stress in the fioor. 

3m 

2m 

Figure P12-11 

p 

Ti 
lOft ~----------------~r-

y 

Figure P12-12 
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Introduction 

In this chapter, we present the first use in this text of the finite element method for 
solution of nonstructural problems. We first consider the heat-transfer problem, 
although many similar problems, such as seepage through porous media, torsion of 
shafts, and magnetostatics {3], can also be treated by the same form of equations 
(but with different physical characteristics) as thai for heat transfer. 

Familiarity with the heat-transfer problem makes possible detennination of the 
temperature distribution within a body. We can then determine the amount of heat 
moving into or out of the body and the thermal stresses. 

We begin with a derivation of the basic differential equation for heat conduction 
in one dimension and then extend this derivation to the two-dimensional case. We win 
then review the units used for the physical quantities involved in heat transfer. 

In preceding chapters dealing with stress analysis, we used the principle of mini­
mum potential energy to derive the element equations; where an assumed displacement 
function within each element was used as a starting point in the derivation. We will 
now use a similar procedure for the non structural heat-transfer problem. We'define 
an assumed temperature function within each element. Instead of minimizing a poten­
tial energy functional, we minimize a similar functional to obtain the element equa­
tions. Matrices analogous to the stiffness and force matrices of the structural problem 
resull 

We will consider one-, two-, and three-dimensional finite element formulations 
of the heat-transfer problem and provide illustrative examples of the determination 
of the temperature distribution along the length of a rod and within a two­
dimensional body and show some three-dimensional heat transfer exampJes as well. 

Next, we will consider the contribution of fluid mass transport. The one­
dimensional mass-transport phenomenon is included in the basic heat-transfer differ~ 
ential equation. Because it is not readily apparent that a variational formulation is 
possible for this problem, we will apply Galerkin~s residual method directly to the 
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differential equation to obtain the finite element equations. (You should note that the 
mass transport stiffness matrix is asymmetric.) We will compare an analytical solution 
to the finite element solution for a heat exchanger design/analysis problem to show the 
excellent agreement. . 

Finally) we will present some computer program results for two-dimensional 
heat transfer. 

I 13.1 Derivation of the Basic Differential 
Equation 

One-Dimensional Heat Conduction (without Convection) 

We now consider the derivation of the basic differential equation for the one­
dimensional problem of heat conduction without convection. The purpose of this 
derivation is to present a physical insight into the heat-transfer phenomena, which 
must be understood so that the finite element fonnulation of the problem can be 
fully understood. (For additional infonnation on heat transfer, consult texts such 
as References [1] and [2J.) We begin with the control volume shown in Figure 13-1. 
By conservation of energy) we'have 

or 

where 

qxA dt + QA dx dt = AU + qx+dxA dt 

Em is the energy entering the control volume, in units of joules (J) or 
kW·horBtu. 

AU is the change in stored energy, in units of kW . h (kWh) or Btu. 

qx is the heat conducted (heat flux) into the control volume at surface 
edge x, in units of kW/m2 or BtuI(h.ft2). 

qx+dx is the heat conducted out of the control volume at the surface edge 
x+dx. 
i is time, in h or s (in U. S. customary units) or s (in S1 units). 

Insulated boundary 

Insulated boundary 

dx 

Figure 13-1 Control volume for 
one-dimensional heat conduction 

(13.1.1) 

(13.1.2) 
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Q is the internal heat source (heat generated per unit time per unit volume 
is positive), in kW/m3 or Btul(h-ft3) (a heat sink, beat drawn out of the 
volume, is negative). 

A is the cross-sectional area perpendicular to heat flow q, in m2 or ftl. 

By Fourier's Jaw of heat conduction, 

where 

dT 
qx = -Kxx dx 

Kxx is the thermal conductivity in the x direction, in kW/(m . 0C) or 
BtU/(h-ft-OF). 

T is the temperature, in °C or "'F. 

dT jdx is the temperature gradient, in "C/m or of/ft. 

Equation (13.1.3) states that the be!:t flux in the x direction is proportional to the 
gradient of temperature in the x direction. The minus sign in Eq. (13.1.3) implies 
that, by convention, heat flow is positive in the direction opposite the direction of tem­
perature increase. Equation (13.1.3) is analogous to the one-dimensional stress/strain 
law for the stress analysis problem-that is, to (Ix = E(dujdx). Similarly, 

dT, . 
qi+dx = -Kxx-

dx x+J.x 
(13.1.4) 

where the gradient in Eq. (13.1.4) is evaluated at x + dx. By Taylor series expansion, 
for any general functionf(x), we have 

df d2f cJ.il 
ix+dx =ix+ dx dx + dx2T+ ... 

Therefore, using a two-term Taylor. series, Eq. (13.1.4) becomes 

qx+dx = - [Kxx a; + ! (Kxx ~ dx] 
The change in stored energy can be expressed by 

~ U = specific heat x mass x change in temperature 

= c(pAdx)dT 

,(13.1.5) 

(13.1.6) 

where c is the specific heat in kW . h/(kg . 0C) or Btul(s}ug-OF), and p is the mass 
density in kg/ml or slug/ft3. On substituting Eqs. (13.L3), (13.1.5), and (13.1.6) into 
Eq. (13.1.2), diViding Eq. (13.1.2Y by Adxdt, and simplifying, we have the one­
dimensional heat conduction equation as 

o (OT) oT - K:xx- +Q=pc-ox ax at (13.1.7) 

For steady state, any differentiation with respect to time is equal to zero) so 
Eq. (13.1.7) becomes 

.!!.. (Kxx d'D + Q = 0 
dx £) ( 13.1.8) 
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(,-0 ELr:r. 
(insulated) ~~S! 

Figure 13-2 Examples of boundary conditions in one-dimensional heat conduction 

For constant thennaI conductivity and steady state, Eq. (13.1.7) becomes 

d2T 
Kxx dx2 +Q=O 

The boundary conditions are of the fonn 

T= TB 

(13.1.9) 

(13.1.10) 

where TB represents a known boundary temperature and SI is a surface where the 
temperature is known, and 

dT 
- Kxx dx = constant (13.1.1 I) 

where S2 is a surface where the prescribed heat flux q; or temperature gradient is 
known. On an insulated boundary, q; = O. These different boundary conditions are 
shown in Figure 13-2, where by sign convention, positive q; occurs when heat is flow­
ing into the body) and negative q; when heat is flowing out of the body. 

Two-Dimensional Heat Conduction (Without Convection) 

Consider the two-dimensional heat conduction problem in Figure 13-3. In a manner 
similar to the, one-dimensional case" for steady-state conditions, we can show that for 
material properties coinciding with the global x and y directions, 

o ( OT)' 0 ( OT) ox K;u ox + oy KyY ay + Q = 0 (13.1.12) 

with boundary conditions 

Q 

onSI (13.1.13) 

(13.1.14) 

Figure 13-3 Control volume for two-dimensional 
q:c+c heat cOlnduction 
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n 

I) Figure 13-4 Unit vector normal to surface 52 

where C.Y; and C)' are the direction cosines of the unit vector 11 normal to the surface S2 
shown in Figure 13-4. Again, q~ is by sign convention, positive if heat is flowing into 
the edge of the body. 

]A 13.2 Heat Transfer with Convection 

For a conducting solid in contact with a fluid, there wil1 be a heat transfer taking place 
between the fluid and solid surface when a temperature difference occurs. 

The fluid will be in motion either through externa1 pumping action (foreed C09-

vection) or through the buoyancy forces created within the fluid by the temperature 
differences within it (natural or free convection). 

We will now consider the derivation of the basic differential equation for one­
dimensional heat conduction with convection. Again we assume the temperature 
change is much greater in the x direction than in the y and z directions. Figure 13-5 
shows the control volume used in the derivation. Again, by Eq. (13.1.1) for conserva­
tion of energy, we have 

q",:A dt + QA dx dt = c(pA dx) dT + qx+dxA dt + qhP dx dt (13.2.1) 

In Eq. (13.2.1), all terms have the same meaning as in Section 13.1, except the heat 
flow by convective heat transfer is given by Newton>g law of cooling 

where 

h is the heat-transfer or convection coefficient, in kW/(m2 . °C) or 
BtU/(h-ft2.oF). 

T is the temperature of the solid surface at the solid/fluid interface. 

Too is the temperature of the fluid (here the free-stream fluid temperature). 

h, T .. 

(13.2.2) 

Figure 13-5 Control volume for one-dimensional 
heat conduction with convection 
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~
_s~ 

h T. ::::::::::: (Streamlines) 
"'---

, T ':ul ..... bo .... ,,> 

Figure 13-6 Model illustrating convective heat transfer (arrows on surface S3 
indicate heat transfer by convection) 

P in:Eq. (13.2.1) denotes the perimeter around the constant cross-sectional 
area A. 

Again, using Eqs. (1'3.1.3)-(13.1.6) and (13.2.2) in Eq. (13.2.1), dividing by A dxdt, 
and simplifying, we obtain the equation for one-dimensional heat conduction with 
convection as 

a (aT) aT hP - Kxx - + Q=pc-+-(T- T~) ax ax at A 
(13.2.3) 

.with possible boundary conditions on (1) 'temperature, given by Eq. (13.1.10), andlor 
(2) temperature gradient, given by Eq. (13.1.1 I), andlor (3) loss of heat by convection 
from the ends of the one-di.mensional body. as shown in Figure 13-6. Equating the heat 
dow in the solid wall to the heat dow in the fluid at the solidlftuid interface, we have 

dT 
-Kx;c dx = h(T.- Too) (l3.2.4) 

as a boundary condition for the problem of heat conduction with convection . 

.A 13.3 Typical Units; Thermal Conductivities, K; 
and Heat-Transfer Coefficients, h. . 

Table 13-1 lists some typical units used for the heat-transfer problem. 
Table 13-2 lists some typical thermal conductivities of various solids and 

liquids. The thermal conductivity K> in BtU/(h~ft-OF) or W/(m· °C), measures the 

Table 13-1 Typical units for heat transfer 

Variable 

Thennal conducti"ity, K 
TemperatUI'e(~'''''::'' , 
Internal heat'§purce, Q 
Heat ftux, q ~, 

Convection coefficient, h 
Energy. E . 
Specific heat, c 
Mass density, p . 

SI 

kW/(m·°C) 
°CorK 
kW/m3 

kW/m2 
kW/(m2 .<lC) 
kW~li 

(kW . h)/(kg . 0c) 
kgfm3 

U. S. Customary 

Btu/(h-ft-°F) 
OF or OR 
BtuJ(h-ft 3) 
BtuJ(h~ft2) 
Btu/(h-ft2.oF) 
Btu 
BtuJ(slug·oP) 
slugfft3 
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Table 13-2 Typical thermal conductivities of some solids and fluids 

Material 

Solids 
Aluminum, O°C (32"F) 
Steel (l% carbon), O°C 
Fiberglass, 20"C (68°F) 
Concrete, 0 "C 
Earth, coarse gravelly, 20"C 
Wood, oak, radial direction, 20°C 

Fluids 
Engine oil, 20 0 e 
Dry air, atmospheric pressure, 20"e 

117 
20 
0.020 
0.46&-0.81 
0.300 
0.098 

0.084 
0.014 

K [Wj(m· 0C)] 

202 
35 
0.035 
0.81-1.40 
0.520 
0.17 

0.145 
0.0243 

Table 13-3 Approximate values of convection heat-transfer coefficients (from 
Reference [l]) 

Mode 

Free convection, air 
Forced convection, air 
Forced convection, water 
Boiling water 
Condensation of water vapor 

1-5 
2-100 

20-3,000 
500-5,000 

11000-20,000 

h [Wj(m2. DC)] 

5-25 
10-500 

100-15,000 
2,500-25,000 
5,000-100,000 

amount of heat energy (Btu or W . h) that will flow through a unit length (ft or m) of a 
given substance in a unit time (h) to raise the temperature one degree eF or 0C). 

Table 13-3 lists approximate ranges of values of convection coefficients for var­
ious conditions of convection. The heat transfer coefficient h, in Btu/{h-fi2_0F) or WI 
(m2 .oC)j measures the amount of heat energy (Btu or W· b) that wiU flow across a 
unit area (ft2 or m2) of a given substance in a unit time (h) to raise the temperature 
one degree (OF or DC). 

Natural or free convection 'occurs when, for instance, a heated plate is exposed to 
ambient room air without an extenial source of motion. This movement of the air, 
experienced as a result of the density gradients near the plate, is called natural or free 
convection. Forced convection is experienced, for instance, in the case of a fan blowing 
air over a plate. . 

A 13.4 One-Dimensional Finite Element 
Formulation Using a Variationa,1 Method 

The temperature distribution influences the amount of heat moving into or out of a 
body and also influences the stresses in a body. Thennal stresses occur in all bodies 
that experience a temperature gradient from some equilibrium state but are not free 



1:' (:. 

i 
[ 

13.4 One-Dimensional Finite Element Formulation Using a Variational Method .A 541 

to expand in all directions. To evaluate thermal stresses, we need to know the tem­
perature distribution in the body. The finite element method is a realistic method for 
predicting quantities such as temperature distribution and thermal stresses in a body. 
In this section, we formulate the one-dimensional heat-transfer equations using a var­
iational method. Examples are included to illustrate the solution of this type of 
problem. 

Step 1 Select EJement Type 

The basic element with nodes 1 and 2 is shown in Figure 13-7(a). 

t2 

r-- i 
L t, 

i 'I • • 12 
L 2 

I 2 

(a) (b) 

Figure 13-7 (a) Basic one-dimensional temperature element and (b) temperature 
variation along length of element . 

Step 2 Choose a Temperature Function 

We choose the ter.nperature function T[Figure 13-7(b)] within each element similar to 
the displacement function of Chapter 3, as 

T(x) =.N,l, + N2t2 

where t\ and t2 are the nodal temperatures to be determined, and 

X 
Nt = 1-­

L L 

(13.4.1) 

(13.4.2) 

are a:gain the saine shape functions as used for the bar element. The IN} matrix is then 
,given by 

(13.4.3) 

and the nodal temperature matrix is 

{t}= {:~} (13.4.4) 

In matrix form, we express Eq. (13.4.1) as 

{T} = [N]{t} (13.4.5) 
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Step 3 Define the Temperature Gradient/Temperature 
and Heat Flux/Temperature Gradient Relationships 

The temperature gradient matrix {g}, analogous to the strain matrix {t.}, is given by 

{g} {~~} = [B1{t} (13.4.6) 

where [BJ is obtained by substituting Eq. (13.4.1) for T(x) into Eq. (13.4.6) and differ­
entiating with respect to X, that is, 

[B] = [d~l ~2] 
. dx dx 

Using Eqs. (13.4.2) in the definition for [BJ, we have 

(BJ = [-± ±] (13.4.7) 

The heat flux/temperature gradient relationship is given by 

qx = -[D]{g} (13.4.8) 

where.~he material property matrix is now given by 

[Ii] = [Kn] (13.4.9) 

Step 4 Derive the Element Conduction Matrix and Equations 

Equations (13.1.9)-(13.1.11) and (13.2.3) can be shown to be derivable (as shown> for 
instance, in References [4-6]) by the minimization of the fonowing functional (analo­
gous to the potential energy functional 7tp ): 

7th = U +OQ+Oq + Oh (13.4.10) 

where 

OQ = - III QTdV Oh = ~ IJ h(T - Tco)2 dS (13.4.11) 
v S3 

and where S2 and S3 are separate surface areas over which heat flow (flux) q* (q. is 
positive into the surface) and convection 10ss.h(T Too) are specified. We cannot 
specify q* and h on the same surface because they cannot occur simultaneously on 
the same surface, as indicated by Eqs. (13.4.11). 

Using Eqs. (13.4.5), (13.4.6), and (13.4.9) in Eq. (13.4.11) and then using 
Eq. (13.4.10). we can write 1th in matrix form as 

1th = ~JJI [{g}T[D]{g}]dV - Jll {t}T[NJT QdV 
v v 

- II {t}T[Nfq"'dS+~JI h[({t}T[Nf - Too )2JdS (13.4.12) 

S2 s~ 
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On substituting Eq. (13.4.6) into Eq. (13.4.12) and using the fact that the nodal tem­
peratures {t} are independent of the general coordinates x and y and can therefore 
be taken outside the integrals, we have 

1Ch =~{t}T If I lB] TrD][B) dV{t} - {t} T IfJ INJT QdV 
y y 

- {t}T II [Nfq" dS + ~II ht{t}T[Nf[N]{t} 
51 S3 

- ({t}T[Nf + [NHt})T~ + T~}dS (13.4.I3) 

In Eq. (13.4.13), the minimization is most easily accomplished by explicitly writing the 
surface integral S3 with it} left inside the integral as shown. On minimizing Eq. 
(13.4.13) with respect to it}. we obtain 

:~} = III {Bf[DHBJdV{t} - JII [N}T QdV 
v v 

- JJ INjTq• ds + JJ h[NJT[NJdS{t} 
s, $] 

- JI fN]ThT~ dS = 0 (13.4.14) 

S3 

where the last term hT~ in Eq. (13.4.13) is a constant that drops out while minimizing 
1Ch. Simplifying Eq. (13.4.14) we obtain 

[III [BJ T[D][JIj dV + t! h[N] T[N] ds] {t} = {fd + {f,} + {f.} (13.4-.15) 

where the force matrices have been defined by 

. {fQ} = IJI [Nf QdV {!q} = JJ [Nf q* dS 
v Sl (13.4.16) 

{Jh} = II [N]ThTco dS 
Sl 

In Eq. (13.4.16), the first term {fQ} (heat source positive, sink negative) is of the same 
form as the body-force term, and the second term {fq} (heat flux, positive into the sur­
face) and third term {Jh} (heat transfer or convection) are similar to surface tractions 
(distributed loading) in the stress analysis problem. You can observe this fact by com­
paring Eq. (13.4.16) with Eq. (6.2.46). Because we are formulating element equations 



544 .. 13 Heat Transfer and Mass Transport 

of the form J = /$.1, we have the element conduction matrix· for the heat-transfer 
problem given in Eq. (13.4.15) by 

[kJ = III [B]TfDHBJdV + JI h(N]T[N]dS (13.4.17) 
y 53 

where the first and second integrals in Eq. (13.4.17) are the contributions of conduc­
tion and convection, respectively. Using Eq. (13.4.17) in Eq. (13.4.15), for each ele­
ment, we have 

if} = [k]{t} (13.4.18) 

Using the first tenn of Eq. (13.4.1 7), along with Eqs. (13.4.7) and (13.4.9), the conduc­
tion part of the fkJ matrix for the one-dimensional element becomes 

[k,] = JIf [BlT[D][B]dV = C { -l }IKxx][-± ±]AdX 

= AKx.~IL[ 1 -J] dx 
L2. 0 -1 1 

(13.4.19) 

or, finally, 

[kd = A~xx [ _ ~ - ! ] (13.4.20) 

The convection part of the [k} matrix becomes 

or, on integrating, 

[kh] = h~L [~. ~] (13.4.21) 

where dS= Pdi 

and P is the perimeter of the element (assumed to be constant). Therefore, adding 
Eqs. (13.4.20) and (13.4.21), we find that the [k] matrix is 

(kJ = AKa: [ I -1] hPL [2 1] 
L -1 1 + 6 1 2 

(13.4.22) 

lit The element conduction' matrix is often called the stiffness matriX because sti.lJ,ress matrix is becoming 
a generally accepted term used to describe the matrix of known coefficients multiplied by the unknown 
degrees offreedom, such as temperatures., displacements, and so on. 
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When h is zero on the boundary of an element, the second term on the right side of 
Eq. (13.4.22) (convection portion of [kJ) is zero. This corresponds, for instance, to an 
insulated boundary. 

The force matrix terms) on simplifying Eq. (13.4.16) and assuming Q, q*, and 
product hTr:IJ to be constant are 

{fQ} = I[1 [~TQdV QA J: r / }dX= Q~L {:} (13.4.23) 

{/q} = JJq*[Nl
T 

dS=q*P I:{ 1 ~~}dX= q·~L {~} 
~ L' 

and (13.4.24) 

and {ijJ = JJ hTr:lJfNlT as = hT~PL { ~ } (13.4.25) 

s) 

Therefore, adding Eqs. (13.4.23)-(13.4.25), we obtain 

if} ~ QAL+q-P;+hTr:lJPL {~} (13.4.26) 

Equation (13.4.26) indicates that one-half of the assumed uniform heaJ source Q goes 
to each node, one-half of the prescribed uniform heat flux q* (positive q. enters the 
body) goes to each node, and one-half of the convection from the perimeter surface 
hTr:IJ goes to each node of an element. 

Finally. we must consider the convection from the free end of an element For 
simplicity's sake, we will assume convection occurs only from the right end of the 
element, as shown in Figure 13-8. The additional convection term contribution to 
the stiffness matrix is given by 

ikh]end = J I h[NJ T {N] dS (13.4.27) 

Sm<I 

Now NI = 0 and N2 = 1 at the right end of the element. Substituting the N's into 
Eq. (13.4.27), we obtain ' 

(13.4.28) 

Figure 13-8 Convection force from the end of an element 
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The convection force from the free end of the element is obtained from the application 
ofEq. (13.4.25) with the shape functions now evaluated at the right end (where con­
vection occurs) and with Ss (the surface over which convection occurs) now equal to 
the cross-sectional area A of the rod. Hence, . 

{Jil}end hT,JJA {~~~~ ~;}. hTooA {~ } (13.4.29) 

represents the convective force from the right end of an element where Nt (x = L) rep­
resents N I evaluated at x = L, and so on. 

Step 5 Assemble the Element Equations to Obtain 
the Global Equations and Introduce Boundary Conditions 

We obtain the global or total structure conduction matrix using the same pro­
cedure as for the structural problem (caIIed the direct stiffness method as described 
in Section 2.4); that is, 

(13.4.30) 

typically in units ofkWrC or BtU/{h-OF). The global force matrix is the sum of aU ele­
ment heat sources and is given by 

N 

{F} = L {fe
)} 

e=1 

typically in units of kW or Btulh. The global equations are then 

{F} = [K1{t} 

(13.4.31) 

(13.4.32) 

with the prescribed nodal temperature boundary conditions given by Eq. (13.1.13). 
Note that the boundary conditions 'on heat flux, Eq. (13.1.11), and convection, 
Eq. (13.2.4), are actually accounted for in the same manner as distributed loading 
was accounted for in the stress analysis problem; that is, they are included in the col­
umn of force matrices through a consistent approach (using the same shape functions 
used to derive [kD, as given by Eqs. (13.4.2). 

The heat-transfer problem is now amenable to solution by the finite element 
method. The procedure used for solution is similar to that for the stress analysis 
problem. In Section 13.5, we will derive the specific equations used to solve the two­
dimensional heat-transfer problem. 

Step 6 Solve for the Nodal Temperatures 

We now solve for the global nodal temPerature, {t}, where the appropriate nodal tem­
perature boundary conditions, Eq. (13.1.13), are specified. 

Step 7 Solve for the Element Temperature Gradients 
and Heat Fluxes 

Finally, we calculate the element temperature gradients from Eq. (13.4.6), and the 
heat fluxes, typically from Eq. (13.4.8). 
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To iJ)ustrate the use of the equations developed in this section, we will now solve 
some one-dimensional heat-transfer problems. 

Example 13.1 

Determine the temperature distribution along the length of the rod shown in Figure 
13-9 with an insulated perimeter. The temperature at the left end is -a constant 
100"'F and the free-stream temperature is wop. Let h = 10 BtU/(h-ft2_0F) and 
Kxx = 20 BtU/(h-ft-OF}. The value of h is typical for forced air convection and the 
value of Kxx is a typical conductivity for carbon steel (Tables 13-2 and 13-3). 

The finite element discretization is shown in Pigure 13-10. For simplicity's sake, 
we will use four elements, each 10 in. long. There will be convective heat loss 
only over the right end of the rod because we consider the left end to have a Iaiown 
temperature and the perimeter to be insulated. We calculate the stiffness matrices for 
each element as fonows~ . 

AKxx n(t in.)2[20 Btu/(h-ft-OF)](1 ft2) 

-y- = ( 10 in. ) ( ", 2) 
12 in.1ft 144ID •• 

= 0.5236 Btu!(h-OF) 

hPL = rIO Btu/(h-ft
2
.oP)](2n) (~) (~)-

6 6 12 in.jft 12 in./ft 
(13.4.33) 

= 0.7272 Btu/(h-OP) 

hTroPL = [10 Btu/(h.ft
2
_OF)}(100P)(2n) (12\~~ift) C~~~~ft) 

= 43.63 Btu/h 

Insulated perimeter 

\ 
:: ] ••• T_ 

40 in. 

Figure 13-9 One--dimensional rod subjected to temperature variation 

IOO'F{CD 2f~ JI~ 4!~ 5j 
I to in.. I 10 in. I 10 in. I 10 in. I 

Figure 13-10 Finite element disc:retized rod 
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In general, from Eqs. (13.4.22) and (13.4.27), we have 

[kJ = A1xx [_~ -~] + hPL [~ ~] + JI h[Nf[N]dS, (13.4.34) 

SOlId 

Substituting Eqs. (13.4.33) ipto Eq. (13.4.34) for element 1, we have 

[k(l)l = 0.5236 [ _~ -~] Btuf(h.oF) (13.4.35) 

where the second and third tenns on the right side of Eq. (13.4.34) are zero J:>ecause 
there are no convection terms associated with element 1. Similarly, for elements 2 
and 3, we have ' 

(13.4.36) 

However, element 4 has an additional (convection) term owing to heat loss from the 
fiat surface at its right end. Hence, using Eq. (13.4.28), we have 

[k(4)1 = !k~I)J + hA [~ ~] 

= 0.5236 [ _~ -~] + {W BtU/(h-ft2-0F)11r(12\~~ift)2 [~ ~) 
= [ 0.5236 -0.5236] B /(h.oF) (134 7) 

-0.5236 0.7418 tu . .3 

In general, we would use Eqs. (13.4.23)-{I3.4.25), and (13.4.29) to obtain the 
element force matrices. However, in this example, Q = 0 (no heat source), q'" = 0 
(no heat flux), and there is no convection except from the right end. Therefore, 

and 

{/')} = {jC2)} = {t<3)} = 0 (13.4.38) 

{f(4)} = hTcoA { ~} 

= flO BtUf(h-ft2-0F)J(lOOF)1r(12\~~iftY {~} 
= 2.182{.~} BtuJh (13.4.39) 

The assembly of the element stiffness matrices [Eqs. (13.4.35)-(13.4.37)] and the 
element force matrices [Eqs. (13.4.38) and (13.4.39)], using the direct stiffness method, 
produces the following system of equations: 

0.5236 -0.5236 0 0 
-0.5236 1.0472 -0.5236 0 

o 
o 
o 

-0.5236 

o 
o 

1.0472 -0.5236 
-0.5236 1.0472 
o -0.5236 

o j<! tl I ! F, I o t2 0 
o 13 = 0 

-0.5236 t4 0 

0.7418 ts 2.182 

(13.4.40) 
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where FI corresponds to an unknown rate of heat flow at node 1 (analogous to an un­
known support force in the stress analysis problem). We have a known nodal temper­
ature boundary condition of tl = l00 0 P. This nonhomogeneous boundary condition 
must be treated in the sarpe manner as was described for the stress analysis problem 
(see Section 2.5 and Appendix BA). We modify the stiffness (conduction) matrix and 
force matrix as follows: 

I 0 0 0 0 
o 1.0472 -0.5236 0 0 
o -0.5236 1.0472 -0.5236 0 
o 0 -0.5236 1.0472 -0.5236 
o 0 0 -0.5236 0.7418 

(13.4.41) ! II I ! 100 I :: = 5~_36 
15 2.182 

where the terms in the first row apd column of the stiffness matrix corresponding to 
the known temperature condition, IJ = 100 OF) have been set equal to 0 except for 
the main diagonal) which has been set equal to 1, and the first row of the foree matrix 
has been set equal to the known nodal temperature at node 1. Also, the term 
(-0.5236) x (100°F) = -5i.36 on the left side of the second equation ofEq. (13.4.40) 
has been transposed to the right side in the second row (as +52.36) ofEq. (13.4.41). 
The second through fifth equations ofEq. (13A.41) corresponding to the rows of un­
known nodal temperatures can now be solved (typically by'Gaussian elimination). 
The resulting solution is given by 

t4 = 57.81 OF ts 43.75°F (13.4.42) 

F or this elementary problem, the closed-form solution of the differential equa­
tion for conduction, Eq. (13.1.9)) with the left-end boundary condition given 
by Eq. (13.1.10) and the right-end boundary condition given by Eq. (13.2.4) yields a 
linear temperature distribution through the length of the rod. The evaluation of this 
linear temperature function at lO-in. intervals (corresponding to the nodal points 
used in the finite element model) yields the same tempez:atures as obtained in this ex­
ample by the finite element method. Because the temperature f1plction was assumed 
to be linear in each finite element, this comparison is as expected. Note that FI could 
be detennined by the first of Eqs. (13.4.40). • 

Example 13.2 

To illustrate more fully the use of the equations developed in Section 13.4, we will 
now solve the heat-transfer problem shown in Figure 13-11. For the one-dimensional 
rod, determine the temperatures at 3-in. increments along the length of the rod and the 
rate of heat flow through element 1. Let Kxx = 3 BtU/(h-in.-QF), h = 1.0 BtU/(h-in2~OF) 
and Too = OCF. The temperature at the left end of the rod is constant at 200°F. 

The tinite element discretization is shown in Figure 13-12. Three elements are 
sufficient to enable us. to determine temperatures at the four points along the rod, 
although more elements would yield answers more closely approximating the analyti­
cal solution obtained by solving the differential equation such as Eq. (13_2.3) with the 
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partial derivative with respect to time equal to zero. There will1?e convective heat loss 
over the perimeter and the right end of the rod. The left end will not have convective 
heat loss. Using Eqs. (13.4.22) and (13.4.28), we calculate the stiffness matrices for 
the elements as follows: 

AKxx 
r:- = 4n Btul (h-° F) 

hPL (l)(4n)(3) 
-6- 6 2n Btu/{h-OF) (13.4.43) 

hA = (l)(4n) = 4n Btu/(h-OF) 

Substituting the results of Eqs. (13.4.43) in,to Eq. (13.4.22), we obtain the stiffness ma­
trix for element 1 as 

!k(l)j 4n[ _~ -~J +2n[~ ~] 

= 4n[ _~ -1] Btuf(h-OF) (13.4.44) 

Because there is no convection across the ends. pf element 1 (its left end has a known 
temperature and its right end is inside the whole rod and thus not exposed to fluid mo­
tion), the contribution to the stiffness matrix owing to convection from an end of the 
element, such as given by Eq. (13.4.28), is zero. Similarly, 

[k(2)}~::;- [k(l)j = 4n[ _~ -n Btuf(h-OF) (13.4.45) 

However, element 3 has an additional (convection) term owing to heat loss from the 
exposed surface at its right end. Therefore, Eq. (13.4.28) yields a contribution to the 
element 3 stiffness matrix, which is then given by 

[k(3)] = [k(l)] + hA [0 0] = 4n [ 2, _1] [0 0] o 1 -2 ~ +4n 0 1 

= 4n[ -:~ -~] Btuj(h-OF) (13.4.46) 

2OO"F 1----__ 1 =h. T., 

9 in. 

Figure 13-11 One-dimensional rod subjected to temperature variation 

200'+ CD! 2 0f 3 ®f 4 

3 in. 3 in. 3 in. 

Figure 13-12 Finite element discretized rod of Figure 13-11 
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In general, we calculate the force matrices by using Eqs. (13.4.26) and (13.4.29). 
Because Q = 0, q* = 0, and Tcr.; = O°F, all force terms are equal to zero. 

The assembly of the element matrices, Eqs. (13.4.44)-(13.4.46), using the direct 
stiffness method, produces the following system of equations: 

[ 
: -~ ~ 0] I 11 ) I Fl ) -- 4 -- 0 12 0 

41l 2 I 2 I = o -2 4 -2 t3 0 
o 0 -!. 3 14 0 

( 13.4.47) 

We have a known nodal temperature boundary condition of tl = 200 OF. As in Example 
13.1, we modify the conduction matrix and force matrix as follows: 

(13.4.48) 

where the terms in the first row and column of the conduction matrix corresponding 
to the known temperature condition, II = 200°F, have been set equal to zero except 
for the main diagonal, which has been set to equal one) and the row of the force 
matrix has been set equal to the known nodal temperature at node 1. That is, the 

; first row force is (200)(41t) = BOOn, as we have left the An term as a mUltiplier 
of the elements inside the stiffness matrix: Also, the term (--1/2)(200)(411:') = -4OO1t 
on the left side of the second equation of Eq. (13.4.47) h.as been transposed to the 
right side in the second row (as +4001C) o(Eq._ (13.4.48). The second through fourth 
equations of Eq. (13.4.48), corresponding to the rows of unknown nodal tempera­
tures, can now be solved. The resulting solution is given by 

12 = 25.4 OF 13 = 3.24 OF 14 = 0.54 OF (13.4.49) 

Next, we determine the heat flux for element I by using Eqs. (13.4.6) in (13.4.8) as 

q(1) = -Kxx[B){ t} (13.4.50) 

Using Eq. (13.4.7) in Eq. (13.4.50), we have 

q(l) = -Kxx[-± ±] {;~} (13.4.51) 

SubstitutU:tg the nwnericaI values into Eq. (13.4.51), we obtain 

q(l) = -3 [_! !] { 200 } 
3 3 25.4 

or q(l) = 174.6 Btu/(h-in2) (13.4.52) 

We then detennine the rate of heat flow lj by multiplying Eq. (13.4.52) by the cross­
sectional area over which q acts. Therefore, 

1/1) = 174.6(41C) = 2194 Btu/h (13.4.53) 
Here positive heat flow indicates heat flow from node 1 to node 2 (to the right). • 
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Example 13.3 

The plane walI shown in Figure 13-13 is 1 m thick. The left surface of the wall 
(x = 0) is maintained at a constant temperature of 200°C, and the right surface 
(x = L = 1 m) is insulated. The thermal conductivity is Kxx = 25 W/{m 0c) and 
there is a uniform generation of heat inside the wall of Q = 400 W 1m 3• Determine 
the temperature distribution through the wan thickneSS\:. 

I.. Im~--~ 

Figure 13-13 Conduction in a plane 
walt subjected to uniform he!lt >­

generation 

Figure 13-14 Discretized model 
of Figure 13-13 

This problem is assumed to be approximated as a one-dimensional heat-transfer 
problem. The discretized model of the wall is shown in Figure 13-14. For simplicity, 
we use four equal-length elements all with unit cross-sectional area (A = 1 rn2). The 
unit area represents a typical cross section of the wall. The perimeter of the waH 
model is then insulated to obtain the correct conditions. 

Using Eqs. (13.4.22) and (13.4.28), we calculate the element stiffness matrices as 
fonows: 

AKxx = (I m2)[25 W f(rn· °C)] = 100 W tc 
L 0.25 m 

For each identical element, we have 

[kJ = 100[ _; -~] WrC (13.4.54) 

Because no convection occurs. h is equal to zero; therefore, there is no convection con­
tribution to k. 

The el~ment force matrices are given by Eq. (13.4.26). With Q = 400 W/m3, 
q = 0, and h = 0, Eq. (13.4.26) becomes 

{f} = Q~L { ; } (13.455) 

EV'11uating Eq. (13.4.55) for a typical element, such as element 1, we obtain 

{fix} = (400 W jm
3
)(1 m2)(0.25 m) { 1 }" = {50} W 

f2y 2 1 50 
(13.4.56) 

The force matrices for all other elements are equal to Eq. (13.4.56). 
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The assemblage of the element matrices, Eqs. (13.4.54) and (13.4.56) and the 
other force matrices similar to Eq. (13.4.56), yields 

1 -1 0 0 0 rl r+1:1 -1 2 -1 0 0 

100 0 -1 2 -1 0 13 = 100 (13.4.57) 
0 0 -1 2 -1 14 100 
0 0 0 -I 1 ts 50 

Substituting the known temperature tl = 200°C into Eq. (13.4.57), dividing 
both sides of Eq. (13.4.57) by 100, and transposing known terms to the right side, 
we have 

[! -~ ~l ~l-! [J = l;t,:CI (13.4.58) 

The second through fifth equations of Eq. (13.4.58) can now be solved simultaneously 
to yield 

Using the first of Eqs. (B.4.57) yields the rate of heat flow out the left end: 

Fl = 100(t1 - (2) - 50 

F, = 100(200 - 203.5) - 50 

F, = -4ooW 

(13.4.59) 

The closed-form solution of the differential equation for conduction, Eq. (13.1.9), 
with the left-end boundary condition given by Eq. (13.l.IO) and the right-end boundary 
condition given by Eq. (13.1.11), and with q; = 0, is shown in Reference [2] to yield a 
parabolic temperature distribution through the wall. Eva1uating the expression for 
the temperature function given in Reference [2] for values of x corresponding to the 
node points of the finite element modeJ, we obtain 

12 203.5"C ts = 208°C (13.4.60) 

Figure 13-15 is a plot of the closed-form solution and the finite element solution 
for the temperature variation through the wall. The finite element nodal values and 
the closed-form values are equal, because the consistent equivalent force matriX: 
has been used. (This was also discussed in Sections 3.10 and 3.11 for the axial bar sub­
jected to distributed loading, and in Section 4.5 for the beam subjected to distributed 
loading.) However. recall that the finite element model predicts a linear temperature 
distribution within each element as indicated by the straight lines connecting the 
nodal temPerature values in Figure 13-15. 
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Closed-form solution (from Reference {2n. 

210 T(x) "" ~(l -...£) + T(O) 
/ KJtZ 2L 

.--==-
205 Finite element solution 

200 LL-__ .L...... __ ..I.-__ ..-L----.l.-__ ... .x. m 
0.25 0.50 0.75 1.00 

Figure 13-15 Comparison of the finite element and dosed-form solutions for 
Example 13.3 

Example 13.4 

• 

The fin shown in Figure 13-16 is insulated on the perimeter. The left end has a con­
stant temperature of 100 (Ie. A positive heat flux of q = 5000 W 1m2 acts on the right 
end. Let Kxx = 6W/(m-OC) and cross-sectional area A = 0.1 m2. Detennine the tem­
peratures at 1J4, U2, 3L/4. and L, where L = 0.4 m. 

T=lOO'C -_{::::(:::: 1:::::r:::: Eq=~Wfm' (j0'! m' 

Figure 13-16 Insulated fin subjected to end heat flux 

Using Eq. (13.4.22), with the second term set to zero as there is no heat transfer by 
convection from any surfaces due to the insulated perimeter and constant temperature 
on the left end and constant heat flux on the right end, we obtain 

k(l) = k(2) = k(3) = AKxx [' 1 -1] 
- - - L -1 1 

(0.1 m2)(6 W /(m- (lC) [ 1 -1] 
O.lm -1 1 

,[ 6 -6]wr C 
-6 6 

(13.4.61) 

If(4) = 1£(1} also 

/(1) ,= 1-2) =/(3) = {O} as, Q = 0 (no internal heat source) and q* = 0 (no surface 
- - - 0 

heat flux) 

1'4) = qA{ ~} = (5000 W /m2)(0.1 m2){ ~} = { 5~ } W (13.4.62) 
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Assembling the global ,stiffness matrix from Eq. (13.4.61), and the global force mal,ra 
from Eq. (13.4.62), we obtain the global equations as ' 

[

6 

-6 0 0 0 11 t1 ) 1 FIx ) 12 -6 0 0 12 0 
12 -6 0 13 = 0 

12 -6 14 0 
Symmetry 6 ts 500 

(I3.4.63) 

Now applying the boundary condition on temperature, we have 

tl = 100°C (13.4.64) 

S~bstjtuting Eq. (13.4.64) for 11 into Eq. (13.4.63), we then solve the second through 
fourth equations (associated with the unknown temperatures t2 - (5) simultaneously 
-to obtain 

t2 = 183.33°C, 13 = 266.67°C1 14 = 350°C, 15 = 433.33°C (13.4.65) 

Substituting the nodal temperatures from Eq. (13.4.65) into the first of Eqs. (13.4.63), 
we obtain the nodal heat source at node 1 as 

FIx = 6(lOO°C - 183.33°C) = -500 W (13,4.64) 

The nodal heat source given by Eq. (13.4.66) has a negative value,' which means the .~ 
heat is leaving the left end. This .source is the same as the source coming into the :fin 
at the right end given by qA ::: (5000)(0.1) = SOOW. • 

Finally, remember that the most important advantage of the finite element method 
is that it enables us to approximate, with high confidence, more complicated prOblems, 
such as those with more then one thermal conductivity, for which closed-form solutions 
are difficult (if not impossible) to obtain. The automation of the finite element method 
through general computer programs makes the method extremely powerful. 

A 13.5 Two-Dimensional Finite Element 
Formulation 

Because many bodies can 'be modeled as two-dimensional heat-transfer problems, we 
now develop the equations for an element appropriate for these problems. Examples 
using this ,element then follow. ' 

Step 1 Select Element Type 

The three-noded triangular element with nodal temperatureS shown in Figure 13-17 is 
the basic element for solution of the two-dimensional heat-transfer problem. 

1m 

,~m(x",y.,) 

4 9 
i j 

Figure 13-17 Basic triangular element with nodal 
temperatures 

(X,, .~',) (Xi' )'i) 
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Step 2 Select a Temperature Function 

The temperature function is given by 

(13.5.1) 

where ti, tj> and 1m are the nodal temperatures, and the shape functions are again given 
by Eqs. (6.2.18); that is, 

(13.5.2) 

with similar expressions for Nj and Nm • Here the o:'s, {fs, and is are defined by Eqs. 
(6.2.10). 

Unlike the CST element of Chapter 6 where there are two degrees of freedom 
per node (an x and a y displacement), in the heat transfer three-noded triangular ele­
ment only a single scalar value (nodal temperature) is the primary unknown at each 
node) as shown by Eq. (13.5.1). This ho1ds true for the three-dimensional elements as 
well, as shown in Section 13.7. Hence, the heat transfer problem is sometimes known 
as a scalar-valued bOlll1dary value problem. 

Step 3 Define the Temperature Gradient/Temperature 
and Heat flux/Temperature Gradient Relationships 

We define the gradient matrix ana1ogous to the strain matrix used in the stress analysis 
problem as . 

{g} E~l 
Using Eq. (13.5.1) in Eq. (13.5.3), we have 

[

aNi oN] 
ax ox 

{g} = aNi oN] 

oy .oy 

(13.5.3) 

(13.5.4) 

The gradient matrix {g}, written in compact matrix form analogously to the strain 
matrix {8} of the stress analysis problem, is given by 

{g}= [B]{t} (13.5.5) 

where the [B] matrix is obtained by substituting the three equations suggested by 
Eq. (13.5.2) in the rectangular matrix on the right side of Eq. (13.5.4) as 

[B]=~[Pi Pj Pm) (13.5.6) 
2A Yi Yj Ym 
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The heat flux/temperature gradient relationship is now 

{:;} = -[Dl{g} 

where the material property matrix is 

[D] = [K;x ;yJ 
Step 4 Derive the Element Conduction Matrix and Equations 

The element stiffness matrix from Eq. (13.4J7) is 

[ic] = I I I [Bf[D][BJ dV + I J h[Nf[NJ dS 
v 83 

where [kc] = III [B] T[D][B] dV 
v 

= JII 4~2 [~; ;;] [K; :J [~: ~~:] d~ 
v ,Pm '1m 

(13.5.7) 

(13.5.8) 

(13.5.9) 

(13.5.10) 

Assuming constant thickness in the element and noting that all terms of the 
integrand of Eq. (13.5.10) are constant, we have 

[kcl III [Bf[DJ[B]dV = tA[BJT[D][BJ (13.5.11) 
v 

Equation (13.5.11) is the true conduction portion of the total stiffness matrix 
Eq. (13.5.9). The second integral of Eq. (13.5.9) (the convection portion of the total 
stiffness matrix) is defined by 

[khI = II h[NJT[NJdS (13.5.12) 

83 

We can explicitly mUltiply the matrices in Eq. (13.5.12) to obtain 

Nj~ NiNm] 
NjNj ~Nm dS 
NmNj NmNm 

(13.5.13) 

To illustrate the use of Eq. (13.5.13), consider the side between nodes i andj of the 
triangular element to be subjected to convection (Figure 13-18). Then Nm 0 along 
side i-j, and we obtain 

[kh] = hLi-jl [~ ~ ~] 
6 0 0 0 

(13.5.14) 

where L i -j is the length of side i-j. 
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m 

Figure 13-18 Heat loss by convection from side i-j 

The evaluation of the force matrix. integrals in Eq. (13.4. I 6) is as follows: 

{fQ} JIJ Q[N]~ dV = Q IJI [NJT dV (13.5.15) 
v v 

for constant heat source Q. Thus it can be shown (left to your discretiol,l) that this in· 
tegral is equal to 

{/Q} = Q; {:} (13.5.16) 

where V = At is:the volume of the element. Equation (13.5.16) indicates that heat is 
generated by the body in three equal parts to the nodes (like body fOIres in the elastic- . .~ , 
ity problem). The second force matrix in Eq. (13.4.16) is 

{/q} = JIq·[NJT dS= JJq-{ ~ }dS (13.5.17) 
~ ~ Nm 

This reduces to 

on side i-j (13.5.18) 

on sidej-m (13.5.19) 

on side m-i (13.5.20) 

where Li-bLj -m, and Lm-i are the lengths of the sides of the element, and q* is assumed 
constant over each edge. The integral I Is) hTco[NJ T dS can be found in a manner sim­
ilarto Eq. (13.5,17) by simply replacing q~ with hTco in Eqs. (13.5.18)-(13.5.20). 

Steps 5-7 

Steps 5-7 are identical to those described in Section 13.4. 
To illustrate the use of the equations presented in Section 13.5, we will now solve 

some two-dimensional heat-transfer problems. 
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Example 13.5 

For the two-dimensional body shown in Figure 13-19, determine the temperature dis­
tribution. The temperature at the left side of the body is maintained at IOO"F. 
The edges on the top and bottom of the body"are insulated. There is heat convection 
from the right side with convection coefficient h = 20 BtuJ(h-ft2."F). The free­
stream temperature is Too = 50 of. The coefficients of thenna) conductivity are 
K:xx = Kyy = 25 Btu/(h-ft-OP). The dimensions are shown in the figure. Assume the 
thickness to be 1 ft. 

T;: 1000F, 

2ft 

2ft 

h = 20 

T". = 5O"F 

Figu~ 13-19 Two-dimensional body 
subjected to temperature variation and 
convection 

y. 

4~----..". 

2 "'----__ .....;a.. __ x 

2ft 

Figure 13-20 Discreti"zed 
two-dimensional body of 
Figure 13-19 

The finite element discretization is shown in Figure 13-20. We 'will use four tri­
angular elements of equal size for simplicity of the longhand solution. There will be 
convective heat loss only over the right side of the body because the other faces are 
insulated. We now calculate the element stiffness matrices using Eq. (13.5.11) applied 
for all elements and using Eq. (13.5.14) applied for element 4 only, because convection 
is occurring only across one edge of element 4. 

Element 1 

The coordinates of the element I nodes are XI = 0, YI = 0, X2 = 2, Y2 = 0, Xs = 1, 
and Ys = 1. Using these coordinates and Eqs. (7.2.10), we obtain 

PI = 0 - I = -1 P2 = I - 0 = 1 "Ps = 0 - 0 = 0 

1'1 = 1 - 2 = -1 1'2 = 0 - I = -1 Ys = 2 -0= 2 
(13.5.21 ) 

Using Eqs. (13.5.21) in Eq. (13.5.1 I), we have 

Ik('») =.!.ill [-! =! 1 [25 0] [-1 _11 °2] 
c 2(2) 0 2 0 25 -I 

(13.5.22) 
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Simplifying Eq. (13.5.22), we obtain 

1 2 5 

[ 

12.5 0 
[k~l)] == 0 12.5 

-12.5 -'12.5 

-12.5] 
-12.5 Btuj(h-OP) 

25 

(13.5.23) 

where the numbers above the columns indicate the node numbers associated with the 
matrix. 

Element 2 

The coordinates of the e1ement 2 nodes are Xl = 0, YI = 0, Xs = I, Ys = I, X4 = 0, 
and Y4 = 2. Using these coordinates, we obtain 

/3} = 1 - 2 = -1 /35 = 2 - 0 = 2 /34 = 0 - I = ~ 1 

'1 = 0 - 1 = -1 "is = 0 - 0 = 0 1'4 = 1 - 0 = 1 

Using Eqs. (13.5.24) in Eq. (13.5.11), we have 

'[k~2)1 =~ [-~ -~] [250 0] [-1 
-1 1 25-1 

Simplifying Eq. (13.5.25), we obtain 

1 5 

[ 

12.5 -12.5 
[k~2)] = -12.5 25 

o -12.5 
Element 3 

4 

-l~.5l Btu/(h-OP)' 
12.5 

(13.5.24) 

(13.5.25) 

(13.5.26) 

The coordinates of the element 3 nodes are X4 = 0, Y4 = 2, Xs = 1, Y5 = 1, Xl = 2, 
and Y3 = 2. Using these coordinates, we obtain 

/34 = 1 - 2 = -1 /35 = 2 - 2 = 0 /33 = 2 - 1 = 1 
(13.5.27) 

1'4 = 2 - 1 = 1 )15 = 0 2 = -2 1'3 = 1 - 0 :: 1 

Using Eqs. (13.5.27) in Eq. (13.5.11), we obtain 

453 

[ 

12.5 -12.5 0 1 
(k~3)J = -12.5 25' -12.5 Btu/(h-OF) 

o -12.5 12.5 
(13.5.28) 

Element 4 

The coordinates of the element 4 nodes are x2 = 2, Y2 = 0, X3 = 2, yj = 2, Xs = 1, 
and Ys = L Using these coordinates, we obtain 

P2 = 2 - 1 = 1 P3 = 1 - 0 = 1 fJs = 0 - 2 = -2 

Y2:: 1 - 2:: -1 13 = 2 - 1 = 1 Ys = 2 - 2 = 0 
(13.5.29) 
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Using Eqs. (13.5.29) in Eq. (13.5.11), we obtain 
235 

[ 

12.5 0 -12.5] 
[k!4) 1 0 12.5 -12.5 Btu/(h-OF) 

-12.5 -12.5 25 
(13.5.30) 

For element 4, we have a convection contribution to the total stiffness matrix 
because side 2-3 is exposed to the free-stream temperature. Using Eq. (13.5.14) with 
i = 2 and j = 3, we obtain 

[kl4)1 = (20)(2)(1) [~ ~ ~] (13.5.31) 
6 0 0 0 

Simplifying Eq. (13.5.31) yields 
2 3 5 

[

13.3 6.67 0] 
[ki

4
)] = ~.67 1~.3 ~ Btu/(h-OF) (13.5.32) 

Adding Eqs. (13.5.30) and (13.5.32), we obtain the element 4 total stiffness matrix as 
2 3 5 

[ 

25.&3 6.67 -12.5] 
Ik(4)] = . 6.67 25.83 -12.5 Btu/(h-OF) 

-12.5 -12.5 25 

(13.5.33) 

Superimposing the stiffness matrices given by Eqs. (13.5.23), (13.5.26), (13.5.28)} and 
(13.5.33), we obtain the total stiffness matrix for the body as 

2~ 3~.33 ~.67 ~ =~~l 
K = 0 6.67 38.33 0 -25 Btu/(h-OF) 

o 0 0 25 -25 

-25 -25 -25 -25 100 

(13.5.34) 

Next, we determine the element force matrices by using Eqs. (13.5.18)-(13.5.20) 
with q" replaced by hToo • Because Q = 0, q. = 0, and we have convective heat trans­
fer only from side 2-3, element'4 is the only one that contributes nodal forces. Hence, 

{I')} = {~} hT~~Bt {i} (13.5.35) 

Substituting the appropriate numerical values into Eq. (13.5.35) yields 

{I'l} = (20)(~(2)(I) {n = {:~} B~U (13.5.36) 
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Using Eqs. (13.5.34) and (13.5.36), we find that the total assembled system of 
equations is 

o 
o 38.33 

[ 

25 

o 6.67 
o 0 

-25 -25 

o 
6.67 

38.33 
o 

-25 

o - 2S I II ) I F) ) o -25 12 1000 
o -25 13 1000 

25 -25 t4 F4 

-25 100 Is 0 

(13.5.37) 

We have known nodal temperature boundary conditions of tl = lOO°F and t4 = 
lOO°F. We again modify the stiffness and force matrices as fonows: 

[~ 3;:!~ 3:::~ ~ =~~l [:: ) = [ ::) (13.5.38) 
o 0 0 1 0 14 100 
o -25 -25 0 100 ts 5000 

The tenns in the first and fourth rows and columns corresponding to the known tem­
perature conditions tt = 100 OF and t4 lOO°F have been set equal to zero except 
for the main diagonal, which has been set equal to one, and the first and fourth rows 
of the force matrix have been set equal to the known nodal temperatures. Also, the 
term {-25) (100 OF) + (-25) x {100°F) = -5000 on the left side of the fifth equation 
of Eq. (13.5.37) has been transposed to the right side in the fifth row (as +5000) of 
Eq. (13.5.38). The second, third and fifth equations of Eq. (13.5.38), corresponding 
to the rows of unknown nodal temperatures, can now be solved in the usual manner. 
The resulting solution is given by 

t2 = 69.33 OF t3 = 69.33 OF ts 84.62 OF (13.5.39) 

• 
Example 13.6 

For the two-dimensional body shown in Figure 13-21~ detennine the temperature dis­
tribution. The temperature of the top side of the body is maintained at lOO°,C. 
The body is in,sulated on the other edges. A uniform heat source of Q = 1000 W/m3 

acts over the whole plate, as shown in the figure. Assume a constant thickness of 
I m. Let Kxx = Kyy 25 W/(m . 0c). ' 

We need consider only the left half of the body. because we have a vertical 
plane of symmetry passing through the body 2 m from both the left and right edges. 
This vertical plane can be considered to be an insulated boundary. The finite element 
model is shown in Figure 13-22. 

T= 1000Cl 

4m 

2 m Figure 13-21 Two-dimensional body subjected 
to a heat source 
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y 

5 
2m 

I '~w;mm;~'~2--.x 
2m 

Figure '13 - 22 Discretized body of Figure 13-21 

We will now calculate the element stiffness matrices. Because the magnitudes of 
the coordinates are the same as in Example 13.5, the element stiffness matrices are the 
same as Eqs. (13.5,23), (13.5.26), (13.5.28) and (13.5.30). Remember that there is no 
convection from any side of an element, so the convection contribution {kbJ to the 
stiffn~ss matrix is zero. Superimposing the element stiffness matrices, we obtain the 
total stiffness matrix as 

[ 

25 
o 25 

K= 0 0 
o 0 

-25 -25 

o o 
o 

25 
o 

-25 

o -25] o -25 
o -25 WrC 

25 -25 
-25 100 

(13.5.40) 

Because the heat source Q is acting uniformly over each element, we use Eq. (13.5.16) 
to evaluate the nodal forces for.each element as 

{j<e)} = QV { ! } = lOoo~l m3
) { ~ } = { ~~~ } W (13.5.41) 

3 1 1 333 

We then use Eqs. (13.5.40) and (13.5.41) applied to each element, to assemble the total 
system of equations as . . 

[ 

2~ 2~ ~ 
o 0 25 
000 

-25' -25 -25 

o _25] (tl I ( 666 I o -25 t2 666 
o -25 t3 = 666 + F3 

25 -25 t4 666 + F4 
-25 100 ts 1333 

(13.5.42) 

We have known nodal temperature boundary conditions of 13 = loo"C and l4 = 
100°C. In the usual manner, as was shown in Example 13.4, we modify the stiffness 
and force matrices ofEq. (13.5.42) to obtain 

2~ 2~ ~ ~ =~~l! ':~ I ! ::: I o 0 1 0 0 13 = 100 
o 0 0 1 0 14 100 

-25 -25 0 0 100 Is 6333 

(13.5.43) 

Equation (13.5.43) satisfies the boundary temperature conditions and is equivalent to 
Eq. (13.5.42); that is, the first, second, and fifth equations of Eq. (13.5.43) are the 
same as the first, second, and fifth equations of Eq. (13.5.42), and th~ third and fourth 
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equations of Eq. (13.5.43) identically satisfy the boundary temperature conditions 
at nodes 3 and 4. The first, second, and fifth equations ofEq. (13.5.43) corresponding 
to the rows of unknown nodal temperatures, can now be solved simultaneously. The 
resulting solution is given by 

II = 180°C t2 180°C t5 = 153°C (13.5.44) 

• 
We then use the results from Eq. (13.5.44) in Eq. (13.5.42) to obtain the rates of 

heat flow at nodes 3 and 4 (that is, F3 and F4). 

ji\, 13.6 line or Point Sources 

A common practical heat-t"ransfer problem is that of a source of heat generation pres­
ent within a very small volume or area of some larger medium, When such heat sources 
exist within small volumes or areas~ they may be idealized as line or-point sources. 
Practical examples that can be modeled as line sources include hot-water pipes 
embedded within a medium such as concrete or earth~ and conducting electrical 
wires embedded within a material. 

A line or point source can be considered by simply including a node at the location 
of the source when the discretized finite element model is created. The value of the line 
source can then be added to the row of the global force matrix corresponding to the glob­
al degree of freedom assigned to the node. However, another procedure can be used to 
treat the line source when it is more convenient to leave the source within an element. 

We now consider the line source of magni tude Q. , with typical units of BtuJ(h-ft), 
located at (xo,Yo) within the two-dimensional element shown in Figure 13-23. 
The heat source Q is no longer constant over the element volume. 

Y 
m (x .. ,y..,.) 

Q.*. 

-:-----~j 

(xi>Yj) 

Figure 13-23 Line source located 
within a typical triangular element 

L--__________ x 

Using Eq. (13.4.16), we can express the heat source matrix as 

{ 
Ni} Q 

{fQ} = JII Hj. - A: dV 
v Nm 

,'C=XO,Y=YD 

(13.6.1) 

where A· is the cross-sectional area over which Q~ acts) and the N's are evaluated at 

x Xo and y = Yo' Equation (l3'6':{) ~ be} rewritten as 

{fQ} = JJ L Nj ~: dAdz (13.6.2) 
A' Nm x=x,,,y==y. 
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Because the N's are evaluated at x = Xo and y = Yo, they are no longer functions of x 
a~d y. Thus, we can simplify Eq. (13.6.2) to 

If(!} = { 2} _'.,Y~Y. Q" t Biujb 
(13.6.3) 

From Eq. (13.6.3); we can see that the portion of the line source Q. distributed to 
each node is based on the values of Ni"N,h and Nm, which are evaluated using the 
coordinates (xc,Yo) of the line source. Recalling that the sum of the N's at any point 
within an element is equal to one [that is, Ni(xo,yo) + Nj(xo,yo) + Nm(xc"Yo) = lL 
we see that no more than the total amount of Q" is distributed and that 

Q; + Qj + Q~ = Q" (13.6.4) 

Example 13.7 

A line source Q* = 65 Btu/(h-in.) is located at coordinates (5,2) in the element shown 
in Figure 13-24. Determine the amount of Q* allocated to each node. An nodal ' 
coordinates are in units of inches;,Assume an element thickness of t = I in. 

y 

(1.0) ~ __________ ~~ ____ ~x 

Figure 13-24 Line source located 
within a triangular element 

We first evaluate the ct's. /fs, and y's, defined by Eqs. (6.2.10), associated with 
each shape function as follows: 

(Xi = XjYm - xmYj = 7(4) - 6(0) = 28 

(Xj = XmYi - XiYm = 6(3) - 3(4) = 6 

Cl.m = XiY) - XjYi = 3(0) - 7(3) = -21 

Pi = Yj Ym = 0 4 = -4 

Pj = Ym - Yi = 4 - 3 = I 
Pm = Yi - Yj = 3 - 0 = 3 

Yi = Xm - Xj = 6 -7 = -1 

Yj=x;-xm =3 6=-3 

'Ym = Xj - Xi = 7 3 = 4 

(13.6.5) 
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Xi Yi 3 3 
Also, 2A = 7 0 = 13 

Xm Ym 6 4 

Substituting the results of Eqs. (13.6 . .5) and (13.6.6) into Eq. (13.5.2) yields 

Ni = n (2S - 4x - I y] 

Nj =b[6+x-3y] 

Nm = 13[-21 + 3x+4y] 

Equations (13.6.7) for Nil Nj , and Nm evaluated at x = 5 and y = 2 are 

Ni = n [28 4(5) - 1(2)] = -& 

NJ = 13[6+ 5 3(2)) = fJ 
Nm = b [-21 + 3(5) + 4(2)] = i3 

Therefore, using Eq, (13.6.3), we obtain 

Q*t{ ~ } == 6~~1) {~} = {~~} Btujh 
Nm x=xo=5 2 10 

Y=Yo=2 

A. 13.7 Three-Dimensional Heat Transfer 
Finite Element Formulation 

(1-3.6.6) 

(13.6.7) 

(13.6.S) 

(13.6.9) 

When the heat transfer is in an three directions (indicated by qX) qy and q:z in Figure 
13-25); then we must model the system using three-dimensional elements to account 
for the heat transfer. Examples of heat transfer that often is three~dimensional are 
shown in Figure 13-26. Here we see in Figure 13-26(a) and (b) an electronic 
component soldered to a printed wiring board [11]. The model includes a silicon 
chip, silver-eutectic die, alumina carrier, solder joints~ copper pads, and the printed 
wiring board. The model actuaUY,consisted of 965 S-noded brick elements with 1395 
nodes and 216 thermal elements and was modeled in Algor flO}. One-quarter of the 

q .. +dr Figure 13-25 Three-dimensional heat 
transfer 
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actual device was modeled. Figure 13-26(c) shows a heat sink used to cool a personal 
computer microprocessor chip (a two-dimensional model might possibly be used with good 
results as well). Finally, Figure 13-26(d) shows an engine block, which is an irregularly 
shaped three-dimensional body requiring a three-dimensional heat transfer analysis. 

The elements often included in commerdal computer programs to analyze three­
dimensional heat transfer are the same as those used in Chapter 1 I for three­
dimensional stress analysis. These include the four-noded tetrahedral (Figure 11-2). 
the eight-noded hexahedral (brick) (Figure 11-4), and the twenty-noded hexahedral 
(Figure 11-5), the difference being that we now have only one degree of freedom at 
each node, namely a temperature. The temperature functions in the x, y, and z direc­
tions can now be expressed by expanding Eq. (13.5.2) to the third dimension or 
by using shape functions given by Eq. (11.2.10) for a four-noded tetrahedral element 
or by Eqs. {I 1.3:3) for the eight-noded brick or the Eqs. (11.3.11)-(11.3.14) for the 
twenty-noded brick. The typical eight-noded brick element is shown in Figure 13-27 
with the nodal temperatures included. 

FE;\. model of 68-pinSMT component 

(a) Electronic component soldered to printed circuit board 

(M) Carrier of the FEA model (b2) Silicon chip (Iefe side portion) and Au-Eutectic of 
FEA model 
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(b3) Solder joints and copper pads of FEA model , (b4) Close-up of solder and copper pad 

(b) finite element model (quarter thennal model) showing the separate components 

(c) Heat sink possibly used to cool a computer microchip (d) Engine block 

Figure 13-26 Examples ofthree-dimensional heat transfer 

Figure 13-27 Eight-noded brick element showing nodal temperatures 
for heat transfer 

• 
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A 13.8 One-Dimensional Heat Transfer 
with Mass Transport 

We now consider the derivation of the basic differential equation for one-dimensional 
heat flow where the flow is due to conduction, convection, and mass transport (or 
transfer) of the fluid. The purpose of this derivation including mass transport is to 
show how Galerkin's residual method can be directly applied to a problem for which 
the variational method is not applicable. That is, the differential eqllation will have 
an odd-numbered derivative and hence does not have an associated functional of the 
form ofEq. (1.4.3). 

The control volume used in the derivation is shown in Figure 13-28. Again, 
from Eq. (13.1.1) for conservation of energy, we obtain 

qxAdt+ QA dxdt = cpA dxdT + qx+d.~A dt+ qhPdxd1+ qmdt (13.8.1) 

All of the terms in Eq. (13.8.1) have the same meaning as in Sections 13.1 and 13.2, 
except the additional mass-transport term is given by [1] 

(13.8.2) 

where the additional variable m is the mass flow rate in typical units of kglh or sluglh. 

/ 

,; 
/ 

/ 

/ ax 

t 
J------

A 

Figure 13-28 Control volume for one-
'I .. .,d,r dimensional heat conduction with convection 

and mass transport 

Again, using Eqs. (13J.3)-{I3.l.6), (13.2.2), and (13.8.2) in Eq. (13.8.1) and dif­
ferentiating with respect to x and t, we obtain 

a (aT) meaT hP aT ax Kxx ax + Q= A ax +-X(T - Too) + pear (13.8.3) 

Equation (13.8.3) is the basic one-dimensional differential equation for heat transfer 
with mass transport. 

A 13.9 Finite Element Formulation 
of Heat Transfer with Mass Transport 
by Galerkin's Method ' 

Having obtain~d the differential equation for heat transfer with mass transport, 
Eq. (13.8.3), we now derive the finite element equations by applying Galerkin's re­
sidual method, as outlined in Section 3.12, directly to the differential equation. 
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We assmne here that Q = 0 and that we have steady-state conditions so that differen­
tiation with respect to time is zero. 

The residual R is now given by 

R(T} = _!.- (Kxx dT) +mcdT + hP (T - Too) 
dx dx Adx A 

(13.9.1) 

Applying Galerkin's criterion, Eq. (3.12.3), to Eq. (13.9.1), we have 

l
L [-{(Kxx dT) + mcdT + hP(T_ Teo)]Nidx=O (i= 1,2) (13.9.2) 
o dx dx A dx A 

where the shape functions are given by Eqs. (13.4.2). Applying integration by parts to 
the first term of Eq. (13.9.2), we obtain 

dT 
V= -Kxx­

dx 

(13.9.3) 

Using Eqs. (13:9.3) in the general formula for integration by parts [see Eq. (3.12.6}1. 
we obtain . 

J: [:-! ( Kxx !) ]N'dx = -Kn ~ N{ + 1: Kxx ! ~i dx (13.9.4) 

Substituting Eq. (13.9.4) into Eq. (13.9.2), we o\:)tain 

J: (Kxx !:) dx+ n:c! + ':: (T- T,,)] Ntdx = Kn !Ntl: (\3.9.5) 

Using Eq. (13.4.2) in (13.4.1) for T;we obtain 

From Eq. (13.4.2), we obtain 

dT tl t2 
fix = -L+L . (13.9.6) 

dN1 1 dN2 1 
dx = -L (jX= L (13.9.7) 

By letting Ni = NI = 1 - (xl L) and substituting Eqs. (13.9.6) and (13.9.7) into 
Eq. (13.9.5), along with Eq. (13.4.1) for T, we obtain the first finite element equation 

(13.9.8) 

where the definition for qx given by Eq. (1~.1.3) has been used in Eq. (13.9.8). JEqua­
tion (13.9.8) has a boundary condition q;l at x = 0 only because N, = I at x = 0 and 
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NI = 0 at x = L. Integrating Eq. (13.9.8), we obtain 

(
K::rxA me hPL) (KxxA me hPL) . .. hPL T,... -Y--T+-3- tl + ---Y-+T+T t2 =qxl ~ (13.9.9) 

where q;1 is defined to be qx evaluated at node 1. 
To obtain the second finite element equation, we let Ni = N2 = xjL in 

Eq. (13.9.5) and again use Eqs. (13.9.6), (13.9.7)~ and (13.4.1) in Eq. (13.9.5}.to obtain 

( 
KxxA me hPL) (KxxA me hPL) * hPL T, (13 910) --Y--T+T tl + -Y-+T+-3- t2 = q;rc2 +2 00 •• 

where q;2 is defined to be qx evaluated at node 2. Rewriting Eqs. (13.9.9) and (13.9.10) 
in matrix fonn yields 

[K~A [ _ ~ -;] + ~e [ =! ~] + h~ L [~ ~ ]] { ;~ } 

= hP~Too { ~ } + { :t } (13.9.11) 

Applying the el~ent equation {J} = [k]{t} to Eq. (13.9.11), we see that the element 
stiffness (conduction) matrix is now composed of three parts: 

(13.9.12) 

where 

[kcJ = K~A [ _ ~ - ~ ] 
and the element nodal force and unknown nodal temperature matrices are 

{f} = hP~Too { ~ } + {:~} {t} = { ;~ } (13.9.14) 

We observe·. from Eq. (13.9.13) that the mass transport stiffness matrix [km ] is asym­
metric and, hence, [k] is asymmetric. Also, if heat flux exists, it usually occurs across 
the free ends of a system. Therefore, qx~ and Qx2 usually occur only at the free eo<~s 
of a system modeled by this element. When the elements are assembled, the heat fluxes 
qxl and Qx2 are usually equal but opposite at the node common to two elements, un­
less there is an internal concentrated heat flux in the system. Furthermore, for insu­
lated ends, the q;'s also go to zero .. 

To illustrate the use of the finite element equations developed in this section for 
heat transfer with mass transport, we will now solve the following problem. 

Example 13.8 

Air is flowing at a rate of 4.721b/h inside a round tube with a diameter of 1 in. and 
length of 5 in., as shown in Figure 13-29. The initial temperature of the air entering 
the tube is lOO°F. The wall of the tube has a uniform constant temperature of 
200t>F. Thes~ific heat of the air is 0.24 Btul(lb-OP), the convection coefficient 
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5 

h 
4 

5 in. 

o 
CD 

CD 
CD 

3 Figure 13-29 Air flowing through a tube, and 
the finite element model 

2 

~ 
T"" 10000F 

between the air and the inner wall of the tube is 2.7 BtuJ(h-ft2_OF), and the thermal 
conductivity is 0.017 BtuJ(h-ft-OF). Determine the temperature of the air along the 

. length of the .tube and the heat flow at the inlet and outlet of the tube. Here the flow 
rate and specific heat are given in force units (pounds) instead of mass units (slugs). 

, This is not a problem because the units cancel in the me product in the formu1ation 
of the equations. 

We first determine the element stiffness and force matrices using Eqs. (13.9.13) 
and (13.9.14). To do this, we evaluate the following factors: 

(0.017) [3!.L]' 
= 4(144) = 0 89' X 10-3 Btuj(h-OF} 

1.25/12 . ~ 

me = (4.72)(0.24) 1.133 Btu/{h-OF) 

hPL (2.7)(0.262)(0.104) 
6 6 0.0123 Btu/{h-OP) 

hPLTco = (2.7)(0.262)(0.104)(200) = 14.71 Btu/h 

( 13.9.15) 

We can see from Eqs. (13.9.15) that the conduction portion of the stiffness matrix is 
negligible. Therefore, we neglect this contribution to the total stiffness matrix and 
obtain 

k(l) 1.133[-1 1] 00123[21]=[-0.5420.579] 
-1 1 +. 1 2 -0.554 0.591 

(13.9.16) 

Similarly, because all elements have the same properties~ 

k(2) = k(3) !s(4} = !sO) (13.9.17) 

Using Eqs. (13.9.14) and (13.9.15), we obtain the element force matrices as 

t) =/2) =/3) = [(4) {7.35} (13.9.18) 
7.35 
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Assembling the global stiffness matrix u$ing Eqs. (13.9.16) and (13.9.17) and the 
global force matrix using Eq. (13.9.18)) we obtain the global equations as 

-0.542 0.579 0 0 0 

r~j 
-0.554 0.591 - 0.542 0.579 0 0 

0 -0.554 0.591 - 0.542 0.579 0 

0 0 -0.554 0.591 - 0.542 0.579 
0 0 0 -0.554 0.591 

r+ 7

.

35j 14.7 

= 14.7 (13.9.19) 

14.7 

7.35 

Applying the boundary condition t\ = 100°Fl we rewrite Eq. (13.9.19) as 

I 0 0 0 0 

!!J 1
100 

j 
0 0.049 0.579 0 0 14.7 + 55.4 

0 -0.554 0.049 0.579 0 14.7 (13.9.20) 
0 0 -0554 0.049 0.579 14.7 

0 0 0 -0.554 0.591 7.35 

Solving the second through fifth equations of Eq. (13.9.20) for the unknown tempera~ 
tures, we obtain 

12 106.1 of t3 '= 112.1 of t4 117.6 of ts 122.6 of (13.9.21) 

Using Eq. (13.8.2), we obtain the heat flow into and out of the tube as 

qin = met, = (4.72)(0.24)(100) = 113.28 Btu/h 
(13.9.22) 

qout = mets = (4.72)(0.24)(122.6) 138.9 Btu/h 

where, again, the conduction contribution to q is negligible; that is, -kAIlT is negligi­
ble. The analytical solution in Reference [7] yields 

qout 139.33 Btu/h (13.9.23) 

The finite element solution is then seen to compare quite favorably with the analytical 
solution. II 

The element with the stiffness matrix given by Eq. (13.9.13) has been used in 
Reference iSl to analyze heat exchangers. Both double-pipe and shell-and-tube heat 
exchangers were modeled to predict the length of tube needed to perfonn the task of 
proper heat exchange between two counterflowing fluids. Excellent agreement was 
found between the finite element solution and the analytical solutions described in 
Reference [9 J. 
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Finally, remember that when the variational fonnulation of a problem is diffi.~ 
cult to obtain but the differential equation describing the problem is available, a resid~ 
ual method such as Galerkin's method can be used to solve the problem. 

1: 13.1 0 Flowcha~ and Examples of a Heat-Transfer Program .A 
Figure 13-30 is a flowchart of the finite element process used for the analysis of two­
dimensional heat-transfer problems. 

Figures 13-31 and 13-32 show examples of two-dimensional temperature distri­
bution using the two-dimensional heat transfer element of this chapter (results 
obtained from ,Algor (101). We assume that there is no heat transfer in the direction 
perpendicular to the plane. 

( START ') 

~ 

I 
Draw the geometry and apply any beat 

1 sources., fluxes, and boundary temperatures 

~ 

I 
Define the element type and properties 

I (here the heat-transfer element is used) 

t 
I DOlE= l,NE I 

~ 

Compute the element stiffness matrix/$. and nodal load 
matrix/in global coordinates (both conduction and/or 

- convection portions of! and[) 

Use the direct stiffness procedure to add! and f to the proper 
locations in the assemblage stiffness matrix K. and load matrix E 

Account for known temperature boundary conditions and modify 
the global stiffness matrix and force matrix accordingly 

I 

, \ 

I Solve K1 = E for 1. I 

Compute the element temperature gradients I 
and heat fluxes 

I Output results I 

( END 

Figure 13-30 Flowchart of two-dimensional heat-transfer process 

, ;" .. ;?:~'~ 
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500"F 

lOO"F 

1ft 

lOO"F 

(a) 

(b) 

1 ft IOO"F 

Temperature 
deg F 

!SOD 
.qeo 
420 
3SO 
:340 
300 
260 
220 
180 
140 
100 

Figure 13-31' (a) Square plate subjected to temperature distribution and (b) finite 
element model with resulting temp'erature variation throughout the plate 
«b) Courtesy of David Walgrave} . 
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570"F 

(a) 

(b) 

T,,=lIO"F 
h = 5 Btu/(h-ft2_0F) 

4ft 

Insulation 
(K = 0.020 Btu/(h-ft-OF)} 

~.­
I .... , 

Figure' 13-32 '(a) Square duct wrapped by insulation and (b) the finite element 
model with resulting temperature variation through the insulation 

Figure 13-31 (a) shows a square plate subjected to boundary temperatures. 
Figure 13-31(b) shows the finite element model, along with the temperature distribu­
tion throughout the plate. 

Figure 13-32(a) shows a square duct that carries hot gases such that its surfa(:e 
temperature is 570°F. The duct is wrapped by a layer of circular fiberglass. The finite 
element model, along with the temperature distribution throughout the fiberglass is 
shown in Figure 13-32{b). 
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.A. Problems 

13.1 For the one-dimensional composite bar shown in Figure P13-1, determine the inter­
face temperatures. For element 1, let Kxx = 200 W/(m. 0C); for element 2, let 
Kxx = 100 W/(m· °C); and for element 3, let Kxx = 50 W/(m· °C). Let A = 0.1 m2, 

The left end has a constant temperature of 100 °C and the right end has a constant 
temperature of 300°C. 

loo~,c::rt=::ir:::~:m~ 
I· 2m 't--lm-~O.5m~ 

Figure Pt3-1 

13.2 For the one-dimensionaI rod shown in Figure P13-2' (insulated except at the ends), 
determine the temperatures at U3, 2U3, and L. Let Kxx = 3 BtU/(h.-in.-°F). h = 1.0 
Btul(h-in2~OF), and Too = O°F. The temperature at the left end is 200°F. 
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I L = 9in 

Figure P13-2 

133 A rod with uniform cross-sectional area of 2 in2 and thennal conductivity of 3 Btnl 
(h.in.~OF) has heat flow in the x direction only (Figure P13-3). The right end is insulated. 
The left end is maintained at 50 of, and the system has the linearly distributed heat 
flux shown. 

Use a two--element model and estimate the temperature at the node points and the 
heat flow at the left boundary. 

T(O) == 5O"F Area 
Figure P13-3 

q"'(O) 0 q*(2) 3 q"'(3) = 6 

It CD 26 
® t3 

30in.-1 

13.4 The rod of I-in. radius shown in Figure PI 3-4 generat~s heat internally at the rate of 
uniform Q = I 0,000 Btul(h~ft3) throughout the rod. The left edge and perim/et6- of the 
rod are insulated, and the right edge is exposed to an environment of r,;, = 100 of. 
The convection heat-transfer coefficient between the wall' and the enviroftment is 
h = 100 BtU/(h-ft2-0F). The thermal conductivity of the rod is Kn = 12 BtU/(h-ft-OF). 
The length of the rod is 3 in. Calculate the temperature distribution in the rod. Use at 
least three elements in your finite element model. 

I-in. radius I L=3in 

::::: :: ::~:::::::: :: 1 T<o = lOO"F o 
Figure P13-4 

135 The fin shown in Figure P13-5 is'insulated on the perimeter. The left end has a con­
stant temperature of 100°C. A positive heat flux of qW = 5000 Wlm2 acts on the right 
end. Let Kxx 6 W/(m' 0C) and cross-sectional area A = 0.1 m2. Determine the 
temperatures at U4, LI2, 3LJ4, and L, where L = 0.4 m. 
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T = '~ j" "'" ,n rr, "(yen 1::- q _ ,OOOW/m' 

• #//?Ji/<!'jJ'AJ'_. 

L == 0.4 m 

Figure P13-5 

13.6 For the composite wall shown in Figure P13-6, determine the interface temperatures. 
What is the heat flux through the 8-cm portion? Use the finite element method. Use 
three elements with the nodes shown, 1 em = O.Ot m. 

K = 5 W/m''''C K 15W/m''''C 

K = 0,8 WJm . QC 

Figure P13-6 

13.7 For the composite wall idealized by the one-dimensional model shown in Figure P13-7, 
determine the interface temperatures. For element 1, let Kxx = 5 W/(m· °C}; for ele­
ment 2, Kxx = 10 W/(m· 0C); and for element 3, Kxx = 15 W/(m: 0C). The left end 
has a constant temperature of 200°C and the right end has a constant temperature of 
600°C. 

T = 2000c "[ ( r ~ , ( T r ' ; r : l' , ,; r r J __ T == 6OO"C 

; ; ) j ? t J J j j) ? ?} / r< 

!-O,I m+o.l m+o., m-j 

Figure P13-7 

13.8 A double-pane glass window shown in Figure P13-g, consists of two 4 mm thick 
layers of glass with k = 0.80 W/m-oC separated by a 10 mm thick stagnant air space 
with k = 0.025 W/m_°C. Determine (a) the temperature at both surfaces of the inside 
layer of glass and the temperature at the outside surfaces of glass, and (b) the steady 
rate of heat transfer in Watts through the double pane. Assume the inside room tem­
perature Tioo = 20°C with hi = 10 W/m2.oC and the outside temperature Tooo = O°C 
with ho = 30 W/m2•0 C. Assume one-dimensional heat flow through the glass. 



580 .. 13 Heat Transfer and Mass Transport 

Glass Glass 

Figure P13-8 

Fiberglass 
insulation 

Plywood 

2.5 em -I r-- 9 em ---1 I--1.25 em 

Figure P13-9 

13.9 For the composite wall of a house, shown in Figure P13-9, determine the temper­
atures at the inner and outer surfaces and at the interfaces. The wall is composed 
of 2.5 em thick plaster wall (k = 0.20W/m-OC) on the inside, a 9 em thick layer 
of fiber glass insulation (k = 0.038 W/m·oC), and a 1.25 em plywood layer 
(k 0.12W/m·oC) on the outside. Assume the inside room air is 20°C with convec­
tion coefficient of lOW/m2.cC and the outside air at -lOoC with convection coeffi­
cient of 20W/m2.oC. Also, determine the rate of heat transfer through the wall in 
Watts. Assume one-dimensional heat flow through the wall thickness. 

13.10 Condensing steam is used to maintain a room at 20°C The steam flows through pipes 
that keep the pipe surface at 100°C. To increase heat transfer from the pipes, stainless 
steel fins (k = lSW/m-OC), 20 em long and 0.5 em in diameter, are welded to the pipe 
surface as shown in Figure PI3-10. A fan forces the room air over the pipe and fins, 
resulting in a heat transfer coefficient of 50W/m2.oC at the base surface of the fin 
where it is welded to the pipe. However, the air flow distribution increases the heat 
transfer coefficient to 80W/m2_oC at the fin tip. Assume the variation in heat transfer 
coefficient to then vary linearly from left end t6 right end of the fin surface. Determine 

. the temperature distribution at U4 locations along the fin. Also determine the rate of' 
heat loss from each fin. 

Pipe 

Figure P13-10 
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13.11 A tapered aluminum fin (k = 200W/m-OC), shown in Figure P13-11, has a circular 
cross section with base diameter of 1 em and tip diameter of 0.5 em. The base is 
maintained at 200 ':.lC and looses heat by convection to the surroundings at Too 
lOoe, h = 150W/m2-c C. The tip of the fin is insulated. Assume one-dimensional heat 
flow and determine the temperatures at the quarter points along the fin. What is the 
rate of heat loss in Watts through each element? Use four elements with an average 
cross-sectional area for each element. 

Figure P13-11 

13.12 A wall is constructed of an outer layer of 0.5 inch thick plywood (k = 0.80 Bfli/h-ft-°F), 
an inner core of 5 inch thick fiberglass insulation (k = 0.020 BtuIh-ft-OF), and an inner 
layer of 0.5 inch thick sheetrock (k 0.10 BtuIh-ft_°F) {Figure PI3-12}. The inside 
temperature is 65 OF with h = 1.5 Btu/h-ft2•op, while the outside temperature is oop with 
h = 4 BtuIh-ft2_°F. Determine the temperature at the interfaces-of the materials and the 
rate of heat flow in Btulh through the wall. 

Fiberglass 
insulation 

Plywood 

O.S in. -I I--- 5 in. --I I-- 0.5 in. 

Figure P13-12 

13.13 A large plate of stainless steel with thickness of 5 em and thermal conductivity of 
k = ISW/m-oC is subjected to an internal uniform heat generation throughout the 
plate at constant rate of Q = lOx 106 WI m3• One side of the plate is maintained at 
Oee by ice water, and the other side is subjected to convection to an environment at 
Too = 35 °e, with heat transfer coefficient h = 40 W/m2_oC, as shown in Figure Pl3-13. 
Use three elements in a finite eletnent model to estimate the temperatures at each 
surface and in the middle of the plate'S thickness. Assume a one-dimensional heat 
transfer through the plate. 
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Stainless steel 

W 
Q=lOx 106 ,,{J 

h 

T .. 

L 
O~O~.-----.. ~1------~2~-'x 

t---5cm---""i 

Figure P13-13 

13.14 The base plate of an iron is 0.6 cm thick. The plate is subjected to 600 W of power 
(provided by resistance heaters inside the iron, as shown in Figure P1.3-14), over a 
base plate cross-sectional area of 150 cm2, resulting in a uniform flux generated on the 
inside surface. The thermal conductivity of the metal base plate is k 20 W/m-°C. 
The outside temperature of the plate is 80"C at steady state conditions. Assume one­
dimensional heat transfer through the plate thickness. Using three elements, model the 
plate to determine the temperatures at the inner surface and interior one-third points. 

lnsuiation 
/ Resistance heater 600 W 

Baseplate 

-80"C 

Figure P13-14 

2 3 

13.15 A hot surface is cooled by attaching fins (called pin fins) to it, as shown in Figure 
P13-15. The surface of the plate (left end of the pin) is 90°C. The fins are 4 em long 
and 0.25 cm in diameter. The fins are made of copper (k == 400 W/m-"C). The tem M 

perature of the surrounding air is Too = 25°C with heat transfer coefficient on the 
surface (including the end surface) of h = 30 W/ml.-°C. A model of the typical fin is 
also shown in Figure P13-·15. Use four elements in your finite element model to de· 
tennine the temperatures along the fin length. 



90°C r 
I-

4
4Cm7 

T 
0.8 em 

;::-.:.;. ·1IiIIIIa::::7I, -L 

-L 
; O.25cm 
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""T ... h "" 

f f t---.( 

4cm ·1 
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Figure P13-1S 

13.16 Use the direct method to derive the element equations for the one--<iimensional steady­
state conduction heat-transfer problem shown in Figure PI3-16. The bar is insulated 
aU around and has cross-sectional area A, length L, and thermal conductivity 1('(.'1:' 
Determine the relationship between n,pdal temperatures tl and t2 (OF) and the thermal 
inputs Fr and F2 (in Btu). Use Fourier's law of heat conduction for this case. 

It--X 2 

fl. FI-t:=:::::::::;:;;:}- F2 • (2 Figure P13-16 

I· L .j 

13.17 Express the stiffness matrix and the force matrix for convection from the left end of a 
bar, as shown in Figure P13;-17. Let the cross-sectional area of the bar be A, the 
convection coefficient be h and the free stream temperature be T x' 

h. T.,. Figure P13-17 

13.18 For the element shown in Figure P13-18, determine the 1:5; and! matrices. The con­
ductivities are K"x = Ky.l' = 15 Btul(h-ft-OF) and the convection coefficient is h == 20 
Btul(h-ft2.oF). Convection occurs across the i-j surface. The free-stream temperature is 
T:t: = 70°F. The coordinates are expressed in units of feet. Let the line source be 
Q" = 150 Btul{h-ft) as located in the figure. Take the thickness of the element to be 1 ft. 
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y 

(4.0) 
--~~----~~----·X 

j 

(-2, -2) i 

Figure P13-18 Figure P13-19 

13.19 Calculate the Ii and f matrices for the element shown in Figure P13-19. The 
conductivities are Kxx -= Kyy = 15 W/(m 0C) and the convection coefficient is h = 
20 W/{m2 .0C). Convection occurs across the i-m surface. The free-stream tempera­
ture is Too = 15°C. The coordinates are shown expressed in units of meters. Let the 
line sO'Qrce be Q* = 100 W/m as located in the figure. Take the thickness of the ele-
ment to be 1 m. . 

13.20 For the square two-dimensional body shown in Figure P13-20, detennine the tem­
perature distribution. Let Xx;,: = Kyy = 25 BtU/(h-ft-OF) and h = 10 BtU/(h-ft2-0F). 
Convection occurs across side 4-5. The free-stream temperature is Ta:; = 50°F. The 
temperatures at nodes 1 and 2 are 100 of. The dimensions of the body are shown in 
the fi~. Take the thickness of the body to be I ft. 

lOO"F 
2ft 

y 

2~'~~~~~~4~~-' 
2ft 

Figure P13-20 Figure P13-21 

1=IOmm 
Tal= 5O"C 

13.21 For the square plate shown in Figure P13-21, detennine th~ temperature distribution. 
Let Kxx = Kyy ~ to W/(m .oC) and h = 20 W/(m2 .oC). The temperature along the 
left side is Illaintained at 100°C and that along the top side is maintained at 200"'C. 
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Use a computer program to calculate the temperature distribution in the {oRowing two­
dimensional bodies. 

13.22 For the body shown in Figure P13-22, detennine the temperature distribution. Sur­
tl face temperatures are shown in the figure. The body is insulated along the top and 

Jill' bottom edges, and Kxx Kyy = 1.0 Btu/(h-in.-OF). No internal heat generation is 
present. 

6~/~~4ca~~~5~~ ", 

100°F O"F 2 in. 

I 2 "3~ 
t-1.5 in.-+-1.5 in.-I 

Figure P13-22 

SOOOF 

ItXfF Dft JOO"F 

1ft 

fOO"f 

Figure P13-23 

13.23 For the square two-dimensional· body shown in Figure P13-23, determine the tem­
ft perature distribution. Let Kxx = Kyy = 10 BtU/(h-ft-OF). The top surface is maintained 

#i? at SOoop and the other three sides are maintained at 100 cF. Also, plot the tempera-

13.24 

~ 

13.25 

» 

ture contours on the body. 

For the square two-dimensional body shown in Figure P13-24, determine the tem­
perature distribution. Let Kxx = Kyy = 10 BtU/(h-ft-OP) and h = 10 BtU/(h-ft2-0P). The 
top face is maintained at 500°F, the left face is maintained at 100°F, and the other 
two faces are exposed to an environmental (free-stream) temperature of lOO°F. Also, 
plot the temperature contours on the body. 

5000F 

100"1' II ft cb To= 100" Ftgure P13-24 

t fl 

Hot water pipes are located on 2.O-ft centers in a concrete slab with Kxx = K)1Y = 0.80 
Btu/(h-ft_°F), as shown in Figure P13-2S. If the outside surfaces of the concrete are at 
85 OF and the water has an average temperature of 200 OF, determine the temperature 
distribution in the concrete slab. Plot the temperature contours through the concrete. 
Use symmetry in your finite element modeL 
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SS"F 

\ (3 011 
\ 85"F 

Figure P13-2S 

13.26 The cross section of a tall chimney shown in Figure P13-26 has an inside surface 
ft temperature of 33()OF and an exterior temperature of 130°F. The thermal conductiv­

JW ity is K = 0.5 Btul(h-ft-OF). Determine the temperature distribution within the chim-
ney per unit length. ' 

13.27 • 

13O"F 

T 1 i.....-__ E?G>_30"_F __ H_t __ ....I 

570°F 

14----+-4 ft -+---.; 

~ 10 it ---IIol./ ~2ft--1 

Figure P13-26 Figure P13-27 

The square duct shown in Figure P13-27 carries hot gases such that its surface tem­
perature is 570°F. The duct is insulated by a layer of circular fiberglass that has 
a thermal conductivity of K = 0.020 Btul(h-ft-OF). The outside surface temperature of 
the fiberglass is maintained at 110°F. Determine the temperature distribution within 
the fiberglass. 

13.28 The buried pipeline in Figure P13-28 transports oil with an average temperature of 
ft- 60°F. The pipe is located 15 ft below the surface of the earth. The thermal conduc-

4i!!I' tivity of the earth is 0.6 BtuJ(h-ft-OF). The surface of the earth is 50 of. Determine the 
temperature distribution in the earth. 

SOCF 

Figure P13-28 
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A 10-in.-thick concrete bridge deck is embedded with heating cables, as shown in 
Figure P13-29. If the lower surface is at O°F, the rate of heat generation (assumed to 
be the same in each cable) is 100 Btul(h-in.) and the top surface of the concrete is at 
35 of. The thermal conductivity of rhe concrete is 0.500 Btul(h~ft-OF). What is the 
temperature distribution in the slab? Use symmetry in your model. 

35
Q
F ~ 

~-~-~----. ~n. t 
• • • .--r-: L + + ---t r' lOin. t-· I ft I ft I ft 1 * 

O"F 

Figure P13-29 

13.30 For the circular body with holes shown in Figure P13-30, detennine the temperature 
ft distribution. The inside surfaces of the holes have temperatures of 150 "C. The outside 

JIll' of the circular body has a temperature of 30 "c. Let Kxx = Kyy = 10 W/(m . "C). 

13.31 

S 

13.32 

» 

lOOOC 

O'C 1m 
1;.. == O°C 

1m 

Figure P13-30 Figure P13-31 

For the square twb-climensional body shown in Figure P13-31, detennine the tem­
perature distribution. Let Kxx = Kyy = 10 W/{m· °C) and h = 10 W/(m2 .oC). The 
top face is maintained at 100 ec, the left face is maintained at 0 "C~ and the other two 
faces are exposed to a free-stream temperature of 0 "c. Also, plot the temperature 
contours on the body. 

A 200-mm-thick concrete bridge deck is embedded with heating cables as shown 
in Figure P13-32. If the lower surface is at -10 °c and the upper surface is at 5°C, 
what is the temperature distribution in the slab?,'The heating cables are line sources 
generating he!lt of Q'" = 50 W/m: The thennal conductivity of the concrete is 1.2 WI 
(m . QC). Use symmetry in your model. 
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-IQ"C 

Figure P13-32 

13.33 For the two-dimensional body shown in Figure P13-33, detennine the temperatur 
distribution. Let the left and right ends have constant temperatures of 200°C an. 
lOO°C~ respectively. Let Kxx = Kyy = 5 W/(rn 0q. The body is insulated along tho 
top and bottom. 

200·C --'0, n: 

1m 
,I 

__ IOO"C 
Figure P13-33 

13.34 For the two-dimensional body shown in Figure P13-34, detennine the ternperatur4 
distribution. The top and bottom sides are insulated. The right side is subjected to hea 
transfer by convection. Let Kxx == Kyy = 10 W/(m . ce). 

SOO"C 

10000C __ T 
1m 

2m ~ 
~~'/ 

100"<: 

Figure P13-34 

T ... =20"C 
h=20W/(m'l·"q, 

13.35 For the two-dimensional body shown in Figure P13-35, detennine the temperaturl 
ft distribution. The left and right sides are insulated. The top surface is subjected to hea 

JIll' transfer by convection. The bottom and internal portion surfaces are maintained a 
300°C. 
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TaJ =40"C 
h 50 W I(m" . 0c) 

300"C 
'1 

0.4m 

O.2m 

300"C ~ 3000C 1 
~ 0.3 m-+o.2 m-l- 0.3 m ~ 

Figure P13-35 

13.36 Determine the temperature distribution and rate of heat flow through the plain carbon 
ft steel ingot shown in Figure P13-36. Let k = 60 W/m-K) for the steel. The top surface 

Ill? is held at 4O"C, while the underside surface is held at 0 0c. Assume that no heat is lost 
from the sides. 

Insulated 

T= l(fC 

Figure Pt3-36 

13.37 Determine the temperature distribution and rate of heat flow per foot length from a 
E"l... 5 em outer diameter pipe at 180°C placed eccentrically within a larger cylinder of in­

J!J? sulation (k = 0.058 WI m_OC) as shown in Figure P13-37. The diameter of the outside 
cylinder is 15 em; and the surface temperature is 20°C. 

Figure P13-37 • 

2.5 em 
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13.38 Determine the temperature distribution and rate of heat flow per foot length from the 
inner to the outer surface of the mold.ed foam insulation (k = 0.17 Btu/b-ft-OF) shown 
in Figure P13-3.S. 

13.39 

S 

l{){)"F 

2 in. rad. 

2in. ! 
500°F 

2 in. rad. ! 2 in. 

T 
8 in. 

l~F 1 
"- Insulated 

t---~-- 16 il). ---~."""I bottom face 

Figure P13-38 

For the basement wall shown in Figure P13-39, determine the temperature distribu­
tion and the heat transfer through the wall and soil. The wall is constructed of con­
crete (k = 1.0 Btulh-ft-OF). The sO.n has an average thermal conductivity 'of k = 0.85 
Btulh-ft_oF. The inside aids maintained at 70 OF with a convection coefficient h = 2.0 
Btulh-ft2_oF. The outside air temPerature is 10 OF with a heat tr-ansfer coefficient of 
h = 6 BtuJh-ft2.0F. Assume a reaso~able distance from the wall of five feet that the 
horizontal component of heat transfer becom~s negligibl~~ Make'sure this"assumption 
is correct. 

T ... =70"F 
h :: 2.0 Btu/h-fc-oF 

J,. '?" 7"', ? ? .,.. ~ ?-

C) :-.} 1-") t'*""'} .--:),,--) .-"') 
.~ ;.,... . .,....,.. '?'-

_t ....... l _~ __ , .-l _, 
~ ,I, ,. I ~ ) ~ /-. I' 

,.. ?'" -:>- ..,... .,. ~. .,.. ~.,.. 

.-") ,-) j-)~" Soil it ~-,) ,"""'} .-) 
'?" ? .,.. ., .... .,.. "7- .,.. 

_L _t _1 ...... l __ t ........ t -'~ ...... t 
~'t. 1'. tI.,. 1'.,. /f) 
~ ? -> ? ,.. ..,. ..,.. -:> 

_l-"",! _I _' ....... t _j ...... \ ....... 1 
• I' t ,. ,. ,I, / t I j ! j / 

.,.. .,.. -;:/I" ? .,.. ? ?' ,.. 

r--) ~-) 1-) ).-) .-) ....... ) ,-) ,-j 
?" ,.. .,.. ..,.. ? ?- ""> ";ill" 

_t ......... _( _, ........ ' _, 

~-------5ft------~'~1 

Figure P13-39 

~gin. 
-*-
2ft T. T_ = l~F.h = 6 BroM·'. 

6ft 

1 
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<13.40 Now add a 6 in. thick concrete floor to the model of Figure P13-'-39 (as shown in 
ft Figure PI 3-40). Detennine the temperature distribution and the heat transfer through 

JjfJJ1 the concrete and soil. Use the same properties as shown'in P13-39. 

:.':::J:: ~ S~iI ~~":):::::;:l;::::::}:l;);;;; 
...... }.,.,i'),-).-l. J .. I .... ,:.-} . .,.,;,-: . .,,}.-),-,.."""}.-}~-)'-)I-}I .... ).­
• p - ~ - ~ - - ~ • ~ ~ ~ - • - - - p -

._} ,_,: ..... ) ._} ._,'._} ...... ) ._} /"""} ...... /~ ._,,' ,-11 ...... ,1 .-) ,-) .-) ,--} ...... ) .-) ..... } 

• - • ~ • ~ ~ ~ ? ~ - ~ - - • ~ ? , - ~ 
.-) t_~1 ,_) ._) ,"") ._; ,_) ."""') ,_) ._.,' .', .... ,: ..... ) .-1' ._} ,-.: ,_) ,_,,1 ..... )._; ._.;-t 

/---5 ft---1-" ----10 ft ~--+-I.I 

Figure P 13-40 

-*-6 in. 

T 
4ft 

1 

13.41 Aluminum fins (k = 170W/m-K) with triangular profiles shown in Figure P13-41 are 
It used to remove heat from a surface with a temperature of 160°C. The temperature of 

JrfJi' the surrounding air is 25°C. The· natural convection coefficient is h = 25 WI m2-K. 
Determine the temperature distribution throughout and the heat loss from a typical fin. 

\-+------ 100 mm-----iooo1 

Figure P13-41 
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13A2 Air is flowing at a rate of IOlblh inside a round tube with diameter of 1.5 in. and 
length of lOin., similar to Figure 13-29 on page 572. The initial temperature of the air 
entering the tube is 50°F. The wall of the tube has a unifonn constant temperature of 
200°F. The specific heat of the air is 0.24 Btul(lI>-,oF). the convection coefficient ~ 
tween the air and the inner wall of the tube is 3.0 Btu/(h-ft2.oF), and the thermal 
conductivity is 0.017 BtU/(h-ft-OF). Determine the temperature of the air along the 
length of the tube and the heat flow at the inlet and outlet of the tube. 



Introduction 
In this chapter, we consider the ,t)ow of fluid through porous media, such as the flow 
of water through an earthen dam, and through pipes or around solid bodies. We will 
observe that the fonn of the equati6ns is the same as that for heat transfer described 
in Chapter 13. 

We begin with a derivation of the basic differential equation in one dimension 
for an ideal fluid in a steady state, not rotating (that is, the fluid particles are translat­
ing only), incompressible (constant mass density), and inviscid (having no viscosity). 
We then extend this derivation to the two-dimensional case. We also consider the 
units used for the physical quantities involved in fluid flow. For more advanced topics, 
such as viscous flow, compressible flow, and three-dimensional problems, consult 
Reference [1}. 

We will use the same procedure to develop the element equations as in the heat­
transfer problem; that is, we define an assumed fluid head for the flow through porous 
media (seepage) problem or velocity potential for flow of fluid through pipes and 
around solid bodies within each element. Then, to obtain the element equations, we 
use both a direct approach similar to that used in Chapters 2, 3, and 4 to develop 
the element equations and the minimization of a functional as used in Chapter 13. 
These equations result in matrices analogous to the stiffness and force matrices of the 
stress analysis problem or the conduction and associated force matrices of the heat­
transfer problem. 

Next, we consider both one- and two-dimensional finite element fonnulations of 
the fluid-flow problem and provide examples of one-dimensional fluid flow through 
porous media and through pipes and of flow within a two-dimensional region. 

Finally, we present the results for a two-dimensional fluid-flow problem. 
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Impenneab1e boundary 

A 

-t--- 11 .. +4 .. 
Figure 14-1 Control volume for one­
dimensional fluid flow 

Impermeable boundary 

... 14.1 Derivation of the Basic Differential Equations 

Fluid Flow through a Porous Medium 

Let us first consider the derivation of the basic differential equation for the one­
dimensional problem of fluid flow through a porous medium. The purpose of this der­
ivation is to present a physical insight into the fluid-flow phenomena, which must be 
understood so that the finite element formulation of the problem can be fully compre­
hended. (For additional information on fluid flow, consult References [2] and [31). 
We begin by considering the control volume shown in Figure 14-1. By conservation of 
mass, we have 

Min + Mgenerated M out 

or pVxA dt + pQ dt = PVx+dxA dt 

where 

Min is the mass entering the control volume, in units of kilograms or slugs. 

MgeneraU:d is the mass generated within the body. 
Mout is the mass leaving the control volume. 

Vx is the velocity of the fluid flow at surface edge x, in units of mls or inis. 

Vx+dx is the velocity of the fluid leaving the control volume at surface 
edge x+dx. 
t is time, in s. 

Q is an internal fluid source (an internal volumetric flow rate), in m3/s or 
in3/S. 

p is the mass density ofthe fluid, in kgfm3 or slugs/inl. 

A is the cros.~sectional area perpendicular to the fluid flow, in m2 or inl. 

(14.lJ) 

(14.1.2) , 

'By Darcy's law, we relate the velocity offiuid flow to the hydraulic gradient (the 
change in fluid head with respect to x) as 

where 

Kxx is the permeability coefficient of the porous medium in the x 
direction, in mis or inis. 

(14.1.3) 
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¢J is the fluid head, in m or in. 

d~/dx = gx is the fluid head gradient or hydraulic gradient, which is a 
unitless quantity in the seepage problem. 

Equation (14.l.3) states that the velocity in the x direction is proportional to the gra­
dient of the fluid head in the x direction. The minus sign in Eq. (14.1.3) implies that 
fluid flow is positive in the direction opposite the direction of fluid head increase, or 
that the fluid flows in the direction oflower fluid head. Equation (14.1.3) is analogous 
to Fourier's law of heat conduction, Eq. (13.1.3)'. 

Similarly, 

(14.1.4) 

where the gradient is now evaluated at x + dx. By Taylor series expansion, similar to 
that used in obtaining Eq. (13.1.5), we have 

[ 
d¢J d ( d¢J) 'J 

Vx+dx = - Kxx dx + dx Kxx dx dx (14.1.5) 

where a two-term Taylor series has been used in Eq. (14.1.5). On substituting Eqs. 
(14.1.3) and (14.1.5) into Eq. (14.1 .2), dividing Eq. (14.1.2) by pA dx dt, and simplify­
ing, we have the equation' for one-dimensional fluid flow through a porous medium as 

- Kxx - + Q=O d ( dt/» -
dx d;x 

(14.1.6) 

where Q = Q/ A dx is the volume flow rate per unit volume in units lis. For a constant 
permeability coefficient, Eq. (14.1.6) becomes ' 

42tjJ _ . 
K= dx2 +Q=O (14.1.7) 

The boundary conditions are of the form 

(14.1.8) 

where t}B represents a known boundary fluid head and Sl is a surface where this head 
is known and 

• K dt} v = - xx - = constant 
x dx 

(l4.1.9) 

where S2 is a surface where the prescribed velocity v; or gradient is known. On an im-
permeable boundary, v; = o. , . I 

Comparing this derivation to that for the one-dimensional heat conduction 
problem in Section 13.1, we observe' numerous analogies among the variables; that 
is, 4; is analogous to the temperature function T, VX is analogous to heat flux, and 
Kxx is analogous to thennaI conductivity. 
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v" 

v, 

")I...... Figure 14-2 Control volume for two­
dimensional fluid flow 

Now consider the two-dimensional fluid flow through a porous medium; as 
shown in Figure 14-2. As in the one-dimensional case, we can show that for material 
properties coinciding with the global x and y directions, 

:x ( Kxx ~~) 0 (Kyy ~~) + Q = 0 (14.1.10) 

with boundary conditions 

~ =.·tPB onSI (14.1.11) 

and -otP otjl 
Kxx ax ex + Kyy oy Cy constant (14.1.12) 

where C~ and Cy are direction cosines of the unit vector nonnal to the surface S2) as 
previously shown in Figure 13-4. 

Fluid Flow in Pipes and Around Solid Bodies 

We now consider the steady~state irrotational flow of an incompressible and inviscid 
fluid. For the ideal fluid, the fluid particles do not rotate; they only translate, and the 
friction between the fluid and the surfaces is ignored. Also, the fluid does not penetrate 
into the surrounding body or separate from the surface of the body, which could 
cfeate, voids. 

The equations for this fluid motion can be expressed in terms of the stream func­
tion or the velocity potential function. We will use the velocity potential analogous to 
the fluid head that was used for the derivation of the differential equation for flow 
through a porous medium in the preceding subsection. 

The velocity v of the fiuid is related to the velocity potential function tjI by 

a" v =--}' oy (14.1.13) 

where Vx and Vy are the velocities in the x and y directions, respectively_ In the absence 
of sources or sinks Q) conservation of mass in two dimensions yie1ds' the two­
dimensional differential equation a,s 

(14.1.14) 
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D 

Figure 14-3 Boundary conditions for 
fluid flow 

B_~l X 

Figure 14-4 Known velocities at left and right edges of a pipe 

Equation (14.1.14) is analogous to Eq. (14.1.10) when we set Kxx = Kyy = I and 
Q = O. Hence, Eq. (14.1.14) is just a special fonn of Eq. (14.1.10). The boundary 
conditions 'are 

(14.1.15) 

and 0, otP 
ax Cx + oy Cy = constant (14J.i6) 

where Cx and Cy are again diredion cosines of unit vector n nonnal to surface S2. 
Also see Figure 14-3. That is, Eq. (14.1.15) states that the velocity potential tPB is 
known on a boundary surface Sl, whereas Eq. (14.1.16) states that the potential gradi­
ent or velocity is known nonnal to a surface S2> as indicated for flow out of the pipe 
shown in Figure 14-3. 

To clarify the sign convention on the S2 boundary condition, consider the case 
of fluid flowing through a pipe in the positive x direction, as shown in Figure 14-4. 
Assume we know the velocities at the left edge (1) and the right edge (2). By Eq. 
(14.1.13) the velocity of the fluid is related to the velocity potential by 

otP 
Vx = - ax 

At the left edge (I) aSSUJ."l1e we know Vx = Vx!' Then 

o¢ 
Vxl =-­ax 

But the normal is always positive away, or outward, from the smface. Therefore, pos­
itive nl is directed to the left, whereas positive x is to the right, resulting in 
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o,p O,p 
-= --=V;d =Vnl anI ax 

At the right edge (2) assume we know Vx = Vx2. Now the normal n2 is in the same 
direction as x. Therefore, 

We conclude that the boundary flow velocity is positive if directed into the surface (re­
gion), as at the left edge, and is negative if directed away from the surface, as at the 
right edge. 

At an impermeable boundary, the flow velocity and thus the derivative of the ve­
locity" potential nornial to the boundary must"be zero. At a boundary of unifonn or 

. constant velocity, any convenient magnitude of velocity potential ,p may be specified 
as the gradient of the potential function; see, for instance, Eq. (14.1.13). This idea is 
also illustrated by Example 14.3. 

.. 14.2 One-Dimensional Finite Element 
Formulation 

We can proceed directly LO tbe one-dimensional finite element formulation of the 
fluid-flow problem by now realizing that the fluid-flow problem is analogous to the 
heat-conduction problem of Chapter 13. We merely substitute the fluid velocity poten­
tial function fjJ for the temperature function T, the vector of nodal potentials denoted 
by .{p} for the nodal temperature vector {t}, fluid velocity v'for.,heat flux q, and per­
meability coeffieient K for flow through a porous medium instead of the conduction 
coefficient K. If fluid Bow through a pipe or around a solid body is considered, then 
K is taken as unity. The steps are as follows. 

Step 1 Select Element Type 

The basic two-node element is again used, as shown in Figure 14-5. with nodal fluid 
heads, or potentials. denoted by PI and P2. 

Step 2 Choose a Potential Function 

We choose the potential function; similarly to the way we chose the temperature 
function of Section 13.4, as 

(14.2.1) 

where PI and P2 are . the nodal potentials (or fluid heads in the case of the seepage 
problem) to be determined, and 

L 
PI ... -------..:..-' P2 

I 2 

i 
Nt = 1-­

L 

Figure 14-5 Basic one..ctimensional 
fluid-flowefement 

(14.2.2) 

,,'" 
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Table 14-1 Permeabilities 
of granular materials 

Material 

Clay 
Sandy clay 
Ottawa sand 
Coarse 

K (em/s) 

1 x 10-8 

1 x 10-3 

2-3 x 10-.2 
1 

are again the same shape functions used for the temperature element. The matrix [NJ 
~~ . 

[

A LX] [NJ = I-I 
Step 3 Define the Gradient/Potential 

and Velocity/Gradient Relationships 

The hydraulic gradient matrix {g} is given by 

{g} = {~~} = [B]{p} 

where [B] is identical to Eq. (13.4.7), given by 

fB] = [-± ±] 
and {p} = {;:} 

The velocity/gradient relationship based on Darcy's law is given by 

Vx = -[D]{g} 

where the material property matrix is now given by 

[DJ = [KxxJ 

(14.2.3) 

(14.2.4) 

(14.2.5) 

(14.2.6) 

(14.2.7) 

(14.2.8) 

with Xxx the permeability of the porous medium in the x direction. Typical permeabil­
ities of some granular materials are listed in TabJe 14-1. High penneabilities occur 
when K > 10-1 cmls, and when K < 10-7 the material is considered to be nearly imper­
meable. For ideal flow through a pipe or over a solid body, we arbitrarily-but con­
veniently-let K = 1. 

Step 4 Derive the Element Stiffness Matrix and Equations 

The fluid-flow problem has a stiffness matrix that can be fOtu;l.d using the :first term on 
the right side ofEq. (13.4.17). That is, the fluid-flow stiffness matrix is analogous to the 
conduction part of the stiffness matrix in the .heat-transfer problem. There is no 
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VI· -----'L.. ________ +___ IIl* 

PhJi.-.!:- L ~ PZ'/2 

Figure 14-6 Fluid element subjected to nodal velocities 

comparable convection matrix to be added to the stiffness matrix. However, we will 
choose to use a direct approach similar to that used initially to develop the stiffness 
matrix for the bar element in Chapter 3. 

Consider the fluid element shown in Figure 14-6 with length Land unifonn 
cross-sectional area A. Recall that the stiffness matrix. is defined in the structure prob­
lem to relate nodal forces to nodal displacements or in the temperature problem to re­
late nodal rates of heat flow to nodal temperatures. In the fluid-flow problem, we define 
the stiffness matrix to relate nodal volumetric fluid-flow rates to nodal potentials or 
fluid heads as [ = Ifl!' Therefore, 

!=v"A (14.2.9) 

defines the volumetric flow rate! in units of cubic meters or cubic inches per second. 
Now,using Eqs. (14.2.7) and (14.2.8) in Eq. (14.2.9), we obtain 

(14.2.10) 

in scalar form; based on Eqs. (14.2.4) and (14.2.5), g is given in explicit form by 

P2-PI 
g=--

L 
Applying Eqs. (14.2.10) and (14.2.11) at nodes 1 and 2, we obtain 

and 

P2 -PI h =-KxxA-
L
-

I" - K AP2 -PI n- xx L 

(14.2.11) 

(14.2.12) 

{14.2.13} 

where Ii is directed into the eleme~t, indicating fluid flowing into the element (PI 
must be greater than P2 to push th~ fluid through the element, actually resulting in 
positive fi), whereas h is directed away from the element~ indicating fluid flowing 
out of the element; hence the negative sign changes to a positive one in Eq. (14.2.13). 
Expressing Eqs. (14.2.12) and (14.2.13) together in matrix form, we have 

{ fi} = AKxx [ 1 -1 ] { PI } 
12 L -1 1 Pl 

(14.2.14) 

The stiffness matrix is then 

k=A1xx[_! -~] ml/sori~2/s (14.2.15) 

for flow through a porous medium. 
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q* ---- --II -t " 1---- f2 
1 \Q 2 

Figure 14-7 Additional sources of volumetric fluid·flow rates 

Equation (14.2.15) is analogous to Eq. (13.4.20) for the heat--conduction element 
or to Eq. (3.1.14) for the one.:.dimensiona! (axia! stress) bar element. The permeability 
or stiffness matrix will have units of square meters or square inches per second. 

In general, the basic element may be subjected to internal sources or sinks, such 
as from a pump, or to surface-edge flow rates, such as from a river or stream. To in­
elude these or similar effects, consider the element of Figure 14-6 now to include a 
uniform internal SOurce Q acting over the whole element and a unifonn surface flow­
rate source q* acting over the surface, as shown in Figure 14-7. The force matrix 
tenns are 

{fa} = III [N]T QdV = Q~L { ~ } 'm3/s or in' /s (14.2.16) 
v 

where Q will have units of m3 j.(m' . s), or lIs, and 

{.4} = JJ q"[Nf dS = q~Lt {~} m3/s or in3 Is 
~ -

(14.2.17) 

where q* will have units ofmls or inJs. Equations (14.2.16) and (14.2.17) indicate that 
one-half of the uniform volumetric flow rate per unit volume Q (a source being posi­
tive and a sink being negative) is allocated to each node and one-half the surface 
flow rate (again a source is positive) is allocated to eac:;h node. 

Step 5 Assemble the Element Equations to Obtain 
the Global Equations and Introduce Boundary Conditions 

We assemble the total stiffness matrix [K'}, total force matrix {F}, and total set of 
equations as 

and 

[K] = L)k(t»J 

{F} = [KJ{p} 

{F} = L{f(e)} (14.2.18) 

(14.2.19) 

The assemblage procedure is similar to the direct stiffness approach, but it is now 
based on the requirement that the potentials at a common node between two elements 
be equal. The boundary conditions on nodal potentials are given by Eq .. (14.1.15). 

Step 6 Solve for the Nodal Potentials 

We now solve for the global nodal potentials, {p}, where the appropriate nodal 
potential boundary conditions, Eq. (14.1.15), are specified. 
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Step 7 Solve for the Element Velocities and Volumetric 
Flow Rates 

Finally, we caiculat,e the element velocities from Eq. (14.2.7) and the volumetric fiow 
rate Qj as ' ,-

Qj = (v)(A) m3/s or in3/s (14.2.20) 

Example 14.1 

Detennine (a) the fJuid head distribution along the length of the coarse gravelly medium 
shown in Figure 14-8, (b) ~e velocity in,the upper part, and (c) the volumetric flow 
rate in the upper part. The fluid head at the top is 10 in. and that at the bottom is 
1 in. Let the permeability coefficient be Kxx = 0.5 in.ls. Assume a cross-sectional 
area of A = 1 in2• 

The finite element discretization is shown in Figure 14-9. For simplicity, we will 
use three elements, each lOin. long. 

We calculate the stiffness matrices for each element as follows: 

AKa (1 inl) (0.5 in./s) 
0.05 in2/s -y;- 10 in . 

. Using Eq. (14.2.15) for elements 1, 2, ang 3, we have 

[k(l)] = [k(2)] = [k{3)1 = 0.05 [ _ ~ - ~] in2/s (14.2.21) 

In general, we would use Eqs. (14.2.16) and (14.2.17) to obtain element forces. How­
ever, in this example Q = 0 (no sources or sinks) and q. 0 (no applIed surface flow 
rates). Therefore, 

T 
30 in. 

1 
10 in. 

Figure 14-8 One-dimensional fluid 
flow in porous medium ' 

10 in. Figure 14-9 Finite element discretized 
porous medium 

to in. 

(14.2.22) 

,:,~ 
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The assembly of the element stiffness matrices from Eq. (14.2.21), via the direct 
stiffness method, produces the following system of equations: 

0'05[-~ -~ -~ ~ll;:l=l~l o -1 2 -1 P3 0 
o 0 -1 1 P4 0 

(14.2.23) 

Known nodal fluid bead boundary c;onditions. are PI = lOin. and P4 = 1 in. These 
nonhomogeneous' boundary· conditions are treated as described for the stress analysis 
and beat-transfer problems. We modify the stiffness (permeability) matrix and force 
matrix as follows: 

[ O~l ~.1 
-0.05 
o 

-~.05 ~ll;: 111~'51 
~J ~ ~: = ~05 

(14.2.24) 

where the tenus in the first and fourth rows and columns of the stiffness matrix corre­
sponding to the known fluid heads PI = 10 in. and P4 = 1 in. have been set equal to 0 
except for the main diagonal, which has been set equal to 1, and the first and fourth. 
rows of the force matrix have been set equal to the known nodal fluid heads at nodes 
1 and 4. Also the terms (-0.05) x (lOin.) = -0.5 in. on the left side of the second 
equation ofEq. (14.2.24) and (-0.05) x (1 in.) = -0.05 in. on the left side of the 
third equation of Eq. (14.2.24) have been transposed t6 ·the right side in the second 
and third rows (as +0.5 and +0.05). The second and third equations ofEq. (14.2.24) 
can now be solved. The resulting solution is given by 

P2 = 7 in. P3 = 4 in. 

Next we use Eq. (14.2.7) to determine the fluid velocity in element 1 as 

v~l} = -K:u-[Bl{p(l)} 

or 

(14.2.25) 

(14.2.26) 

(i4.2.27) 

(14.2.28) 

You can verify .~at the velocities in the other elements are also O. I 5 in./s because the 
cross section:lft-'bnstant and the material properties are uniform. We then determine 
the volumetric flow rate Qf in element I using Eq. (14.2.20) as 

Qj = (0.15 in./s)(l in2) = 0.15 in3/s (14.2-29) 

This volmnetric flow rate is constant throughout the length of the medium. • 
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Exarmple 14.2 

For the smooth pipe of variable cross section shown in Figure 14-10, determine the 
potential at the junctions, the velocities in each section of pipe and the volumetric flow rate. 
The potential at the left end is PI = 10 m 2/s and that at the right end is P4 = 1 mlls. 

For the fluid flow through a smooth pipe, Kxx = 1. The pipe has been discretized 
into three elements and four nodes, as shown in Figure 14-11. Using Eq. (14.2.15), we 
find that the element stiffness matrices are 

k(l) = ~ [ 1 -1] 
- 1 _11 m k_(2) ~ [ 1 - I ] 

1 __ 11 m k(3) = ! [ 1 -1 ] 
- 1 -1 I m 

(14.2.30) 
where the units on Is: are now meters for fluid flow through a pipe. 

There are no applied fluid sources. Therefore, f(I) = f(2) = /(3) = O. The as­
sembly of the element stiffness matrices produces the full owing system of equations: 

. (14.2.31) 

Solving the second and third of Eqs. (14.2.31) for P2 and P3 in the usual manner, we 
obtain 

P2 = 8.365 m2 Is (14.2.32) 

Using Eqs. (14.2.7) and (14.2.20), the velocities and volumetric flow rates in each ele-
ment are 

v~1) = -[B]{p{!)} 

= -[-I ~J{'~.365} 
= 1.635 mls 

,I Al = 3 m2 2; A2 = 2 ~2 ;3 A3':::: 1 m2 14 
1m 1m 1m 

Figure 14-10 Variable-cross-section pipe subjected to fluid flow 

, j cD 2; ® 3; ® 14 
1m 1m t m 

Figure 14-11 Discretized pipe 
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QY) Avil ) = 3(1.635) = 4.91 m3 Is 
v~2) = -(-8.365 + 5.91) 2.455 mls 

Qf> = 2.455(2) = 4.91 mJ Is 

u;) = -( -5.91 + I) = 4.91 mls 

Qj) =4.91(1) =4.91 ml/s 

The potential, being higher at the left and decreasing to the right, indicates that the 
velocities are to the right. The volumetric flow rate is constant throughout the pipe, 
as conservation of mass would indicate. • 

We now illustrate how you can solve a fluid-flow problem where the boundary 
condition is a known fluid velocity, but none of the p's are initially known. 

Example 14.3 

For the smooth pipe shown discretized in Figure 14-12 with unifonn cross section of 
I jn2, detennine the flow velocities at the center and right end, knowing the velocity 
at the left end is Vx = 2 in.ls. 

Using Eq. (14.2.15), the element stiffness matrices are 

k(l) =-.!..[ I -1] .. 
- 10 -1 1 In 

where now the units on Is: are inches for fluid flow through a pipe. 

(14.2.33) 

Assembling the element stiffness matrices produces the following equations: 

l~[-; -~ -~]{;:} {~} 
o -1 I P3 13 

(14.2.34) 

The specified boundary condition is Vx 2 in.ls, so that by Eq. (14.2.9), we have 

fi VIA = (2 in./s)(l in2
) = 2 in3/s (14.2.35) 

Because PI ,P2, and P3 in Eq. (14.2.34) are not known, we cannot determine these 
potentials directly. The problem is similar to that occurring if we try to solve the struc· 
tural problem without prescribing displacements sufficient to prevent rigid body mo­
tion of the structure. This was discussed in Chapter 2. Because the p's correspond 

10 in. to in. 

Figure 14-12 Discretized pipe for fluid-flow problem 
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to displacements in the structural problem, it appears that we must specify at least one 
value of P in order to obtain a solution. We then proceed as follows. Select a conve­
nient value for P3 (for instance set P3 = 0). (The velocities are functions of the deriv­
atives or differences in p's, so a value of P3 = 0 is acceptable.) Then PI and P2 are the 
unknowns. The solution will yield PI and P2 relative to P3 = O. Therefore, from the 
first two of Eqs. (14.2.34), we have 

1 [ 1 -1] {PI} { 2 } 
10 -1 2 P2 = 0 

(14.2.36) 

where fi = 2 inJ/s from Eq. (14.2.35) and fi 0, because there is no applied fluid 
force at node 2. 

Solving Eq. (14.2.36), we obtain 

PI 40 P2 =20 (14.2.37) 

These are not absolute values for PI and P2; rather, they are relative to P3. The fluid 
velocities in each element are absolute values, because velocities depend on the differ­
ences in p's. These differences are the same no matter what value for P3 was chosen. 
You can verify this by chooSingp3 10, for instance, and re-solving for the velocities. 
[You woul~ find PI = 50 andp2 = 30 and the same v's as in Eq. (14.238).] 

v~)=-[-r ±J{:}=2in.fs 

and 

A 14.3 Two-Dimensional Finite Element 
Formulation 

(14.2.38) 

• 

Because many fluid-flow problems can be modeled as two--dimensional problems, we 
now develop the equations for an element appropriate for these problems. Examples 
using this element then follow. 

Step 1 

The three-node triangular element in Figure 14-13 is the basic element for the solu­
tion of the two-dimensional fluid-flow problem. 

m pm 

P,,6iPi Figure 14-.13 Basic triangular element 
with nodal potentials 
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Step 2 

The potential function is 

(14.3.1) 

where Pi>Pj. and Pm are the nodal potentials (for groundwater flow, ¢ is the piezome­
tric fluid pead function, and the p's are the nodal heads), and the shape functions are 
again given by Eq. (6.2.18) or (13.5.2) as 

1 
Ni = 2A (ar + PiX + YiY) (14.3.2) 

with similar expressions for Nj and Nm• The lX'S, /J's, and y's are defined by Eqs. 
(6.2.10). 

Step 3 

The gradient matrix {g} is given -by 

{g} = [B){p} (l4.3.3) 

where the matrix [B] is again given by 

[BJ =2- [Pi Pj Pm] (14.3.4) 
2A Yi Yj I'm 

and {g} = {:;} '(14.3.5) 

with at/J otP (14.3.6) gx=- gy = ay ax 

The velocity/gradient matrix relationship is now 

{~ } = -IDJ{g} (14.3.7) 

where the material property matrix is 

[DJ = [Koxx 0] 
Kyy 

(14.3.8) 

and the K's are permeabilities (for the seepage problem) of the porous medium in the 
~ and y directions. 'For -:fluid flow around a solid object or through a smooth pipe, 
Kxx = Kyy = 1. 
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Step 4 

The element stiffness matrix is given by 

[kJ = III [Bf[DHBJ dV (14.3.9) 
v 

Assuming constant-thickness (t) triangular elements and noting that the integrand' 
terms are constant, we have 

[kl = tA[B] T[D][B] m 2/s or inl/s (14.3.10) 

which can be simplified to 

(14.3.11) 

{fa} = IiI QfNlT dV = Q JlI [Nf dV (14.3.12) 
v v 

. for constant volumetric flow rate per unit volume over the whole element. On evaluat­
ing Eq. (14.3.12). we obtain 

QV{ I} m3 in) {fa} = - 1 - or -
, 3 1 s S 

(14.3.13) 

We find that the second force matrix is 

(14.3.14) 

This reduces to 

q*L._.t {I} m3 in3 

{fq} =f ~ S or S on side i-j (14.3.15) 

with similar terms on sidesj-m and m-z'[see Eqs. (13.5.19) and (13.5.20)]. Here Li- j is 
the length of side i1 of the element and q* is the assumed constant surface flow rate. 
Both Q and q* are positive quantities if fluid is being added to the element. The 
units on Q and q'" are m 3/(m3 • s) and mls. The total force matrix is then the sum of 
{fa} and {/q}. 

Example 14.4 

For the two-dimensional sandy soil region shown in Figure 14-14, determine the 
potential distribution. The potential (fluid head) on the left side is a constant 10.0 m 
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y 
3 

<D 
1 """"'''''''''''~2 --'--- x 
\--2m-1 

Figure 14-14 Two-dimensional porous 
medium 

and that on the right side is 0.0. The upper and lower edges are impenneable. The per­
meabilities are Kxx = Kyy = 25 x 10-5 m/s. Assume unit thickness. 

The finite element model is shown in Figure 14-14. We use only the foUr triangUlar 
elements of equal size for simplicity of the longhand solution. For increased accuracy 
in results, we would need to refine the mesh. This body has the same magnitude 
of coordinates as Figure 13-20. Therefore} the total stiffness matrix is given by 
Eq. (13.5.40) as 

25 ~O 0 0 -25 
0 25 0 0 -25 2 

K= 0 0 25 0 -25 'x 10-5 ~ (14.3.16) 
0 0 0 ·25 -25 

s 

-25 -25 -25 -25 100 

The force matrices are zero, because Q = 0 and q* = O. Applying the boundary 
conditions, we have 

PI = PI, == 10.0 m P2 = P3 = 0 

The assembled total system of equations is then 

25 0 0 0 -25 

Gl=lll 
0 25 0 0 -25 

10-5 ' 0 0 25 0 -25 
0 0 0 25 -25 

-25 -25 -25 -25 100 

(14.3.17) 

Solving the fifth of Eqs. (14.3.17) for Ps, we obtain 

ps=5m 

Using Eqs. (14.3.7) and (14.3.3) we obtain the velocity in element 2 as 

{ V~2)} [+25 0] -5 1 [-1 2 -1] {PI} 
of) = 0 + 25 x 1

0 
2A -1 0 I ~: (14.3.18) 
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where PI = -I, Ps 2, P4 = -1, Y1 = -1, Y5 0, and Y4 = I were obtained from 
Eq. (13.5.24). Simplifying Eq. (14.3.18), we obtain 

viZ) = 125 x 10-5 m/s • 
A line or point fluid source from a pump, for instance, can be handled in the 

same manner as described in Section 13.6 for heat sources. If the source is at a node 
when the discretized finite element model is created, then the source can be added to 
the row of the global force matrix corresponding to the global degree of freedom 
assigned to the node. If the source is within an element, we can use Section 13.6 to al­
locate the source to the proper nodes, as illustrated by the following example. 

Example 14.5 

A pump, pumping fluid at 'Q* 6500 m 2/h, is located at coordinates (5) 2) in 
the element snown in Figure 14-15. Detennine the amount of Q* allocated to 
each node. All nodal coordinates are in units of meters. Assume unit thickness of 
t = 1 mm. 

Figure 14-15 Triangular element with 
pump located within element 

The magnitudes of the numbers are the same as in Example 13.7. Therefore, the 
shape fWlctions are identical to Eq. (13.6.7); when e.valuated at the source x = S m, 
y = 2 m, they are equal tq Eq. (13.6.8). Using Eq. (13.6.3), we obtain the amount of 
Q* allocated to each node or equivalently the force matri~ as 

{ ;: } = Q+t{ :; } Ix = xo = 5 m 
f am Nm Y = Yo = 2 m 

= (6500 m1jh)(1 mm) { ~ } = { ~:~} 00
3 

(13)(lOOOmm) h 
1 m 2 1.0 

• 
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1: 14.4 Flowchart and Example of a Fluid-Flow Program 

Figure 14-16 is a flowchart of a finite element process used for the analysis of two­
di:atensional steady-state fluid flow through a porous medium or through a pipe. Recall 
that flow through a porous medium is analogous to heat transfer by conduction. For 
more complicated fluid flows, see Reference [6J. 

We now present computer program results for a two-dimensional steady-state, in­
compressible fluid flow. The prograni'is based on the flowchart of Figt;tre 14-16. 

For flow through a porous medium, we recall the analogies between conductive 
heat transfer and flow through a porous medium and use the heat transfer processor 
from Reference [4) to solve the probJem shown in Figure 14-17. The fluid flow prob-
1em shown discretized in Figure 14-17 has the top and bottom sides impervious,< 

Draw the geometry and apply 
• ~ any boundary potentials 

Define the element type and properties 
(here the 2-0 element is used) 

Compute the element stiffuess matrix.kand nodal load 
matrixjin global coordinates 

Use the direct stiffuess procedure to add! and[to the proper 
locations in the assemblage stiffness matrix K and load matrix E. 

Account for known potential boundary conditions and modify 
the global stiffuess matrix and force matrix accordingly 

Compulc the element velocities 
and volumetric flow rates 

Figure 14-16 Flowchart of two-dimensional fluid-flow process 
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2cm 
"I 

2cm 

p = 4cm Impervious 7 

I 
6 8 t CY @ ® lem , 
4 5 f 

CD ® ® 
lem 

Impervious 2 '3 

Kn "" K:. = 1 em/s 

Figure 14-17 Two-dimensional fluid·f1ow 'problem 

Table 14-2 Nodal potentials 

Node Number 

1 
2 
3 
4 
5 
6 
7 
8 

Potential' 

4.ooo0D+00 
3. 5000D +00 
3.00000+00 
4.ooooD+00 
3.00000+00 
4.00000+00 
3.5OOOD+00 
3.0000D+00 

p = 3 em 

I 

whereas the right side has a constant head of 3 em and the left side has a constant 
head of4 em. 

Results for the nodal potentials obtained using {4} are shown in Table 14-2. 
They compare exactly with solutions obtained using another computer program (see· 
Reference [5)). 

.. References 

[Ij Chung, T. J., Finite Element Analysis in Fluid Dynamics. McGraw-Hill, New York, 1978. 
(21 John, J. E. A., and Habennan, W. L., in.troduction to Fluid Mechanics, Prentice-Hall, 
. Englewood Cliffs, NJ, 1988. 
[3] Harr, M. E., Ground Water and Seepage, McGraw-Hill, New York. 1962. 
[4] Heat Transfer Reference Division, Algor, Inc., Pittsburgh, PA, 1999. 
{5] Logan, O. L., A First Course in the Finite Element Method, 2nd ed., PWS-Kent Publishers. 

Boston, MA, 1992. 
{6j Fluid Flow Reference Division, Algor, Inc., Pittsburgh, PA, 1999. 
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:i Problems 

14.1 For the -one..<Jimensional flow through the porous media shown in Figure Pl4-1, 
determine the potentials at one-third and two-thirds of the length. Also determine the 
velocities in each element. Let A =' 0.2 m2• 

K!'= 2m1s K!= 4m/s ,K;=- 6 mIs 

'1 = 10 m'f 1 CD )2 ® 13 G:> 4 t,. = 0 m 

1m 1m 1m 

Figure Pl4-1 

14.2 For the one-dimensional flow ,through the porous medilitn shoWn in Figure Pl4-2 
with fluid flux at the right end, determine the potentials at the third poitUs. Also 
determine the velocities in each element. Let A = 2 m2. 

K:JI}t= 1 rills 

PI"" 10 In J'-_______ -----~---..... BI.--...... · q" ... 25 m/s 

3m 

Figure Pl4-2 

14.3 For the one-dimensional fluid flow through the stepped porous mediwn shown in 
Figure Pl4-3) determine the potentials at the jUilction of each area. Also determine 
the velocities in: each element. Let K~ = 1 inis. 

p, = 10 ;",1\ AI = 6in.2 .; A: = '" in2 3; AJ "" 2 in1 41 P. == 0 

10 in. to in. 10 in. 

Figure Pl4-3 

14.4 For the one-dimensional fluid-flow problem (Figure Pl4-4) with velocity known at 
the right end, determine the velocities and the volumetric flow rates at nodes 1 and 2. 
Let Kxx = i em/s. . 

If A,~S"" .; .. =3 .... 3,8 .;=2",,/, 
San Scm 

Figure Pl4-4 
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14.5 Derive the stiffness matrix, Eq. (14.2.15), using the first term on the right side ofEq. 
(13.4.17). ' 

14.6 For the one-dimenslonal fluid-flow problem in Figure Pl4-6, detennine the velocities 
and volumetric flow rates at nodes 2 and 3. Let K;o:. = 10-1 inJs. 

VI 2 in,I. t' AI = 2 inl 2; A2 = J inl 13 

I in. I in. 

Figure P14 .. 6 

14.7 For. the triangular element subjected to a fluid source shown in Figure Pl4-7, deter­
mine the amount of Q* allocated to each node. 

y 

(2,7) (All units meters) 

Q* = 100 m''/$ 

• (4, 2) 
(2.1) '------.-..(9, 1) 

~------------------.X 

Figure Pl4-7 

14.8 For the triangular element subjected to the surface fluid source shown in Figure PI4-8, 
detennine the 'amount of fluid force at each node .. 

y 
q* = 5 in./S 

~. ~ (All unils Uo<hes) . 

(2, I) (4, 1) 
~----------__ x 

Figure P14-8 

14.9 For the two-dimensional fluid flow shown in Figure Pl4-9, determine the potentials 
at the center and right edge. 
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T 
p= 10m 2m 

1 
t----- 2m-1' 

• , 1-'. ~ 

Figure Pl4-9 

14.10- Using a computer program). determine the potential distribution in the two-dimensionaJ 
14.15 bodies shown in Figures Pl4-lO-Pl4-lS . • 

L p = 500 m away from pump 
pumping rate = 5000 m1day 

Pump x 

K"", :: Kyy = 40 m)day 

Figure Pl4-10 

5 
3 ' 

® 
'@" 

p 6cm 2 

CD 
CD 

2cm 4 2cm 

K_ = Kyy = 2 cm/s 

Figure Pl4-11 

8 

® .1 em. 

7 p = 3 em 

® 1 ern 

6 
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400m 

p = 100 m 200m • Puinp 

Figure P14-12 

0.5 m/s I 
1m 

1 

Figure P14-13 

t': 

O.S m/s T 
1m 

! 
Figure P14-t4 

Figure Pl4-1S 

Kx;r = Kyy "" 100 m/day 

t 
O.S m j 'WA-..,.. ~O.2m 

-t I-t 
O.2..-a 

_f Elr 
o.s~~ 1.- 0.2 m 

lOAmi T 

) 

~ 

1 
) 

~.5m 

p 100m 
Pumping rate = SOl) rrltday 

} 

I 

I' 



Introduction 

In this chapter, we consider the problem of thermal stresses within a body. First, we 
will discuss the strain energy due to thermal stresses (stresses resulting from the con- ". 
strained motion of a body or part of a body during a temperature change in the body): 

The minimization of the thermal strain energy equatiop is shown to result in the 
thermal force matrix. We will then develop this thermal-force matrix for the one­
dimension3J bar element and' the two-dimensional plane stress and plane strain 
elements. 

We will outliQe the procedures for solving both one- and two-dimensional prob­
lems and then provide solutions of specific problems, including illustration of a com­
puter program used to solve thermal stress problems for two-dimensional plane stress. 

1" 15.1 Formulation of the Thermal Stress 
Problem and Examples 

In addition to the strains associated with the displacement functions due to mechanical 
loading, there may be other strains withln a body due to temperature variation~ swelling 
(moisture differential), or other causes. We will concern ourselves only with the strains 
due to temperature variation, 8r, and will consider both one- and two-dimensional 
problems. 

Temperature changes in a structure can result in large stresses if not considered 
properly in design. In bridges, improper constraint of beams and slabs can result in 
large compressive stresses and resulting buckling failures due to temperature changes. 
In statically indeterminate trusses, members subjected to large temperature changes 
can result in stresses induced in members of the truss. Similarly. machine parts con· 
strained from expanding or contracting may have large stresses induced in them due 
to temperature changes. Composite members made of two or more different materials 
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(a) 

(b) 

Figure 15-1 Composite member composed of two 
materials with different coefficients of thermal 
expansion 

Figure 15-2 (a) Unconstrained 
member, and (b) same member 
subjected to uniform temperature 
increase 

may experience large stresses due to temperature change if they are not thennal1y com­
patible; that is, if the materials have large differences in their coefficients of thermal 
expansion, stresses may be induced even under free expansion (Figure 15-1) 

When a member undergoes a temperature change the member attempts to 
change dimensions. For an unconstrained member AB (Figure 15-2) undergoing uru­
fonn change in temperature T, the change in the length ~ is given by 

OT rJ.TL (15.1.1) 

where tX is caned the coefficient of thermal expansion and T is the change in tempera­
ture. The coefficient a. is a mechanical property of the material having units of 11°F 
(where OF is degrees Fahrenheit) in the USCS of units or IrC (where °C is degrees 
Celsius) in the SI system. In Eq. (15.1.1), JT is considered to be positive when expan­
sion occurs and negative when contraction occurs. Typical values of a. are: for struc­
tural steel a = 6.5 x 1O-6/oF (12 x 1O-6)/ OC and for aluminum alloys a. 13 x 
1O-6/°F (23 x 1O-6)/°C. 

Based on the definition of normal strain, we can determine the strain due to a 
uniform temperature change. For the bar subjected to a unifonn temperature change 
T (Figure 15-2), the strain is the change in a dimension due to a temperature change 
divided by the original dimension. Considering the axial direction, we then have 

(15.1.2) 

Since the bar in Figure 15-2 is fr~e to expand, that is, it is not constrained by other 
members or supports, the bar will not have any stress in it. In general, for statically de~ 
terminate structures, a uniform temperature change in one or more members does not 
result in stress in any of the members. that is, the structure will be stress-free. For 
statical1y indeterminate structures, a uniform temperature change in one or more 
members of the structure usually results in stress (JT in one or more members. 
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u 

Figure 15-3 Linear stress/strain law with initial 
thermal strain 

E 

We can have strain due to temperature change GT without stress due to temperature 
change, and we can have lJT without any actual change in member lengths or without 
strains. 

We will now consider the one-dimensional thennal stress problem. The linear 
stress/strain diagram with initial (thennal) strain (eo = eT) is shown in Figure 15-3. 

For the one~dimensional problem, we have, from Figure 15-3, 

(15.1.3) 

If, in general, we let liE:: IT', then in general matrix fonn Eq. (15.1.3) can be writ­
ten as 

§ = {Dr1Q+§T 

From Eq. (15.1.4)) we solve for Q as 

Q = !2(f: - f;T) 

( 15.1.4) 

(15.1.5) 

The strain energy per unit volume (called strain energy density) is the area under 
the (j - e diagram in Figure 15-3 and is given by 

Uo = tQ(!! - §T) 

Using Eq. (15.1.5) in Eq. (15.1.6), we have 

Uo = ~ (§ - §T) T !2(§ - gr) 

(15.1.6) 

(15.1.7) 

where, in general, the transpose is needed on the strain matrix to multiply the matrices 
properly. 

The total strain energy is then 

U = Iv uodV (15.1.8) 

Substituting Eq. (15.1.7) into Eq. (15.1.8)) we obtain 

u = L~C~-§T)Tll(§-{;T)dV 

Now, using§ = Of!. in Eq. (15.1.9), we obtain 

(15.1.9) 

(15.1.10) 
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Simplifying Eq. (15.1.10) yields 

U = ~ J V (r!.T l!.Tlll!.ri - tiT JlT !2~T - ~~Jll!.4 + ~J!2§T) dV (15.1.11) 

The first term in Eq. (15.1.11) is the usual strain energy due to stress produced from 
mechanical loading-that is) . 

UL ~ J V riTJlT !2Jlri dV (15.1.12) 

Terms 2 and 3 in Eq. (15.1.11) are identical and can be written together as 

UT L/4TBTl!~TdV (15.1.13) 

The last (fourth) term" in Eq. (15.1.11) is a constant and drops out when we apply the 
principle of minimum potential energy by setting 

'. (15.1.14) 

Therefore, letting U = UL + OT and substituting Eqs. (15.1.12) and (15,1.13) into 
Eq. (15.1.14), we obtain two contributions as' 

ao~L = L. BT12BdV4 (15.1.15) 

and (15.1.16) 

We the integral term in Eq. (15.1.15) that multiplies by the displacement 
'matrix as the general form or'the element stiffness matrix k, whereas Eq. (15.1.16) 
is the load or force vector due to temperature change in the element. 

We will now consider the one-dimensional thermal stress problem. We define the 
thermal strain matrix for the one-dimensional bar made of isotropic material with co­
efficient of thermal expansion (x, and SUbjected to a unifonil temperature rise T, as 

(15.1.17) 

where the units on (f. are typically (in.lin.)JQF or (mm/mm)/QC. 
For the simple one-dimensional bar (with a node at each end), we substitute 

Eq. (15.1.17) into Eq. (15.1.16) to obtain the thermal force matrix as 

{IT} = A J:[BIT[D]{ClT}dx (15.1.18) 

Recall that for the one-dimensional case, from Eqs. (3.10.15) and (3.10.13), we have 

[DJ=[Ej [ I· 1] [B]= -Z Z (15.1.19) 
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[J~ 
7)7/~ 

(3) 

Ody+;Tdy 
~dx+£xrdx 

(b) 

Figure 15-4 Differential two-dimensional element (a) before and (b) after being 
subjeaed to uniform temperature change for an anisotropic material 

Substituting Eqs. (15.1.19) into Eq. (15.1.18) and simplifying> we obtain the thermal 
forre matrix as 

{f } = {iT!} = {-Eet.TA} 
T iT2 EaTA 

(15.l.20) 

For the two-dimensional thermal stress problem, there will be two normal 
strains, exT and eyT along with a shear strain YxyT due to the change in temperature 
because of the different mechanic'!) properties (such as E.T: 1= Ey) in the x and y direc­
tions for the anisotropic material (See Figure 15-4). The thermal strain matrix for an 
anisotropic rna terial is then 

{ar} {:;;} 
Y:cyT 

(15.1.21) 

For the case of plane stress in an isotropic material with coefficient of thermal 
expansion 11 subjected to a temperature rise T, the thennal strain matrix is 

(15.1.22) 

No shear strains are caused by a change in temperature of isotropic materials, onlyex­
pansion or contraction. 

For the case of plane strain in an isotropic material I the thermal strain matrix is 

{eT}= (1 +v>{:f} (15.1.23) 

For a constant-thickness (t), constant-strain triangular element) Eq. (15.1.14) 
can be simplified to 

(15.1.24) 

The forces in Eq. (15.1.24) are contributed to the nodes of an element in an unequal 
manner and require precise evaluation. It can be shown that substituting Eq. (6.1.8) 
for [D], Eq. (6.2.34) for [BL and Eq. (15.1.22) for fer} for a plane stress condition 



622 A 15 Thermal Stress 

into Eq. (15.1.24) reveals the constant-strain triangular element thermal force matrix 
to be 

Pi 

rn'l 'Yi 
lTiy aEtT Pj (15.1.25), {IT} = : ;:: 2( 1 - v) Yj 

1Tmy Pm 
I'm 

where the fl's and 1's are defined by Eqs. (6.2.10). 
For the case of an axisymmetric triangular element of isotropic material sub­

Jected to unifonn temperature change, the thermal strain matrix is 

{eT} = ( ~~ ) = ( :~ ) 
tOT (XT 

YnT 0 

(15.1.26) 

The .thermal force matrix for the three-noded triangular element is obtained by substi· 
tuting the ~ from Eq. (9.1.19) and Eq. (9.1.21) into the following: 

[ T = 21t I §.T lJerrdA 
A 

(15.1.27) 

For the element stiffness matrix evaluated at the centroid (r, z), Eq. (15. t .25) becomes 

-T 
[T = 21tfAB lJ§.T (15.1.28) 

where II is given by Eq. (9.2.3), A is the surface area of the element which can be 
found in general from Eq. (6.2.8) when the coordinates of the element are known 
and lJ is given by Eq. (9.2.6). 

We will now describe the solution procedure-for both one- and two-dimensional 
thennal stress problems. 

Step 1 

Evaluate the thennal force matrix, such as Eq. (15.1.20) or Eq. (15.1.25), Then treat 
this force matrix as an equivalent (or initial) force matrix Eo analogous to that 
obtained when we replace a distributed load acting on an element by equivalent 
nodal forces (Chapters 4 and 5 and Appendix D). 

Step 2 

Apply f = Kg - f o. where if only thermal loading is copsidered, we solve Eo = K4 
for the nodal displacements. Recall that when we fonnulate the set of simultaneous 
equations, F. represents the applied nodal forces, which here are assumed to be zero. 
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Step 3 

Back·substitute the now known d. into step 2 to obtain the actual nodal forces, 
E(= Kfl -Eo). 

Hence, the thermal stress problem is solved in a manner similar to the distributed 
load problem discussed for beams and frames in Chapters 4 and 5. We will now solve 
the following examples to illustrate the general procedure. 

Example 15.1 

For the one·dimensional bar fixed at both ends and subjected to a uniform tempera­
ture rise T = 50°F as shown in Figure 15-5, determine the reactions at the fixed 
ends and the axial stress in the bar. Let E = 30 X 106 psi, A = 4 in 2, L = 4 ft, and 
fJ.:: 7.0 X 10-6 (in.Jin.W'F. 

Two elements wi]] be sufficient to represent the bar because internal nodal dis­
placements are not of importance here. To solve fo :: Kfl, we must determine the 
global stiffness matrix for the bar. Hence, for each element, we have 

2 

k(\) = AE [ 1 -IJ-lb 
- Lj2 -1 I in. 

2 

k(2) = AE [ 1 
- L/2-1 

3 

-I].!!: 
I in. 

(15.1.29) 

where the numbers above the columns in the k's indicate the nodal displacements 
associated with each element. 

Step 1 

Using Eq. {I 5.1.20), the thennal force matrix for each element is given by 

1(1):= {-Eet.TA} 1(2) = {-Eet.TA} 
- Eet.TA - EaTA (1.5.1.30) 

where these forces are considered to be equivalent nodal forces. 

Step 2 

Applying the direct stiffness method to Eqs. (15.1.29) and (15.1.30), we assemble the 
global equations as 

(15.1.31) 

I ~r--_CD __ T_;_:_O"F __ ® __ -l\~ 3 _" 

Figure 15-5 Bar subjected to a uniform temperature rise 
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42'~,-__ Q)_' ___ 2 _. __ 0_2 __ --'~OOOJb 

Figure 15-6 Free-body diagram of the bar of Figure 15-5 

Applying the boundary conditions d1x = 0 and d3x = 0 and solving the second of 
Eq. (15.1.31), we obtain 

d2x=O (15.1.32) 

Step 3 

Back-substituting Eq. (15.1.30) into the global equation (Eq. (15.1.31)) (step 2) for the 
nodal forces, we obtain 

{
;: } == {~} _ { -Ea; A } = { Ea; A } 

Flx ° EaTA -EaTA 

(15.1.33) 

Using the numerical quantities for E, a) T, and A in Eq. (15.1.33), we obtain 

Fix = 42,000 Ib F2x = 0 F3x = -42,000 Ib 

as shown in Figure 15-6. The stress in the bar is then 

(J = 42,000 = 10 500 psi 
4 ) (compressive) (15.1.34) • 

Example 15.2 

For the bar assemblage shown in Figure 15-7, determine the reactions at the fixed 
ends and the axial stress in each bar. Bar 1 is subjected to a temperature drop 
of 10°C. Let bar 1 be aluminum with E = 70 GPa, a = 23 x 10-6 {mmlmm)/OC, 
A = 12 X 10-4 ml, and L = 2 m. Let bars 2 and 3 be brass with E = 100 GPa, 
a = 20 x 10-6 {mmlmm)/oC, A = 6 X 10-4 m2, and L = 2 m. 

f..:::+-------"~ 

~-----,---..,. -2" 
~-.......;:"""-~-I--:., 

~::-I-----~ 
Rigid bar 

-x 

Figure 15-7 Bar assemblage for thermal stress analysis 
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We begin the solution by determining the stiffness matrices for each element. 

Element 1 

1 2 

k(l) = (12 x 10-
4
)(70 x 10

6
) [ 1 -1] = 42000 [ 1 -1] kN 

- 2 -1 1 ) -11m 

Elements 2 and 3 

2 3 
2 4 

(15.1.3S) 

k(2) = k(3) = (6 x 10-4)(100 x 10
6

) [ 1 -I] [ 1 -1] kN 
- - 2 -1 1 = 30,000 -11m 

(15.1.36) 

Step 1 

We obtain the element thennal force matrices by evaluating Eq. (15.1.20). First, 
evaluating - Ea.T A for element 1, we have 

-Ea.TA = -(70 x 106)(23 x 10-6)(-10)(12 x 10-4) = 19.32 kN (15.1.37) 

where the -10 term in Eq. (15.1.37) is due to the temperature drop in element 1. 
Using the result ofEq. (15.1.37) in Eq. (15.1.20» we obtain 

fl) = {fix} = { 19.32} kN 
- flx -19.32 

(15.1.38) 

There is no temperature change in elements 2 and 3} and so 

f(2) = fP) = {O } 
- - 0 

(15.1.39) 

Step 2 

Assembling the global equations using Eqs. {15.1.35}, (15.1.38), and (15.1.39), we 
obtain 

2 3 4 

-3~l !~: 1-! Fix ~ !:~~~ 1 (15.1.40) o d3x, - F3x 

30 tL.:x, F4:x 

[ 42 
-42 0 

-42 42 + 30 + 30 -30 
1000 0 -30 30 

0 -30 0 

where the right-side thermal forces are considered to be equivalent nodal forces. Using 
the boundary conditions 

(15.1.41) 
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we obtain, from the second equation of Eq. {IS. lAO), 

1000(102)d2;c = -19.32 

Solving for d2x, we obtain 

d2x -1.89 X 10-4 m (15.L42) 

Step 3 

Back-substituting Eq. (15.1.42) into the global equation for the nodal forces, 
f = Kg - fo, we have 

Simplifying Eq. (15.1.43), we obtain 

FIx = -11.38 kN 

Fh 0.0 kN 

F3:x. = 5.69 kN 

F4:x. = 5.69 kN 

(15.1.43) 

(15.1.44) 

A free-body diagram of the bar assemblage is shown in Figure 15-8. The stresses in 
each bar are then 

(1) 11.38 3 2 
a 12 x 10-4 = 9.48 x 10 kN/m (9.48 MPa) 

(2) (3) 5.69 3 / 2 a = a 6 x 10-4 = 9.48 x 10 kN m (9.48 MPa) 

I ,--------' 

I L38kN '--------, 

S.69kN 
3 

'------""'L--~5.69kN 

4 

Figure 15-8 Free-body diagram of the bar assemblage of Figure 15-7 

(15.1.45) 
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Example 153 

For the plane truss shown in Figure 15-9, determine the displacements at node 1 and 
the axial stresses in each bar. Bar ~ is subjected to a temperature rise of 7S oP. Let 
E = 30 X 106 psi, a = 7 x 10-6 (in.lin.)/op, and A = 2 in2 for both bar elements. 

y 

8ft Q)' 
Figure 15-9 Plane truss for thermal stress analysis 

Jt 

6ft 
3 

First, using Eq. (3.4.23), we determine the sti!fness matrices for each element. 

Element 1 

Choosing x from node 2 to node I, (J = 90°, and so cosf) = 0, sinf} = 1, and 

2 1 

[

0 0 0 0] 
k(l) = (2)(30 x 106

) 1 0 -1, Ib 
- (8 x 12) 0 0 in. 

Symmetry 1 

(15.1.46) 

Element 2 

Choosing x from node 3 to node 1, 0 = 180" - 53.13° = 126.87°, and so cosf} = 
-0.6; sin 0 = 0.8, and 

3 

[

0.36 -0.48 

k(2) = (2)(30 x 106
) 0.64 

- (10 x 12) 
Symmetry 

Step 1 

1 

-0.36 0.48] 
0.48 -0.64 Ib 
0.36 -0.48 in. 

0.64 

(15.1.47) 

We obtain the element thermal force matrices by evaluating Eq. (lS.1.20) as foUows: 

-EaTA = -(30 x 106)(7 x 10-6)(75)(2) == -31,500 Ib (15.1.48) 
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Using the result ofEq. (15.1.48) for element I, we then have the local thermal 1 
matrix as 

{~2x} = { -31,500} Ib 
fIx 31,500 

(15.1 

There is no temperature change in element 2, so 

jl2) = U:} = { ~ } (15.1 

Recall that by Eq. (3.4.l6),j = If. Since we have shown that r-I = rT, we car 
tain the global forces by premuiiiplying Eq. (3.4.16) by IT to obtain the eler 
nodal forces in the global reference frame as 

[= rTj (l5.1 

Using Eq. (15.1.51), the element 1 global nodal forces are then 

I fa I [C -S 0 0 Ili2x) hy =S COO ~1 
fix 0 0 C -S fix 
fi, 0 0 S C .lty 

(IS.! 

where the order of terms in Eq. (15.1.52) is due to the choiCe of the x axis from no 
to node 1 and where [, given by Eq. (3.4.15), has been used. 

Substitutin~ the numeric!lI quan!ities C = 0 and S =: 1 (consistent with j 

element 1), and fix = 3I,500,fiy O,flx -31,500) and.l2y = 0 into Eq. (15.1 
we obtain 

f2x = 0 f2y -31,5001b fix = 0 .Ii, = 31,500 Ib (15.1 

These element forces are now the only equivalent global nodal forces, because eler 
2 is not subjected to a change in temperature. 

Step 2 

Assembling the global equations using Eqs. (15.1.46), (15.1.47). and (15.1.53) 
obtain 

0.36 -0.48 0 0 0 0 db: Flx+ O 
1.89 ()"" -1.25 0 0 d1, 31,500 

0.50 x 106 0 0 0 0 d2x Flx+ O 

1.25 0 0 d2y -31,500+F2 

0.36 -0.48 d3x F3J:+O 
Symmetry 0.64 d3y F;y+O 

(15.1 
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The boundary conditions are given by 

db: 0 d2x = 0 ~y = 0 d3x = 0 d3y = 0 (15.1.55) 
Using the boundary condition Eqs. (15.1.55) and the second equation ofEq. (15.1.54), 
we obtain 

or 

Step 3 

(0.945 X 106)d1y 31,500 

d1y = 0.0333 in. (15.1.56) 

We now i1lustrate the procedUre used to obtain the local element forces in local coor­
dinates; that is, the local element forces are 

(15.1.57) 

We determine the actuallocaI element nodal forces by using the relationship lJ. = r"!l, 
the usual bar element k matrix [Eq. (3.i.14)], the transformation matrix r* [Eq. 
(3.4.8)], and the calculated disp1acements and initial thermal forces applicable for the 
element under consideration. Substituting the numerical quantities for element I, 
from Eq. (15.1.57), we have 

{~2x} = 2(30 x 10
6

) [ 1 -II] [00 1 0 o d2y = 0 -31,500 I
d
2x=O I 

1 ] db: = 0 - { 31,500} fix 8 x 12 -1 0 0 

dly = 0.0333 

(15.1.58) 

Simplifying Eq~ (15.1.58), we obtain 

J2x = 10,700 Ib fix = -10,700 lb (15.1.59) 

Dividing the local element force itx (which is the far-end force consistent with the con­
vention used in Section 3.5) by the cross-sectional area, we obtain the stress as 

q(l) = -102700 = -5350 psi (15.1.60) 

Similarly, for element 2, we have 

{~x} = 2(30 X 10
6

) [ 1 -It] [-0
0

.6 0.8 0 0] I~ I 
fix 10 x 12 -1 0 -0.6 0.8 0 

0.0333 

(15.1.61) 

Simplifying} Eq. (15.1.61), we obtain 

Ax = -13,310 Ib fix = 13)310 lb (15.1.62) 

where no initial thermal forces were present for element 2 because the element 
was not subjected to a temperature change. Dividing the far-end force fix by the 
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cross-sectional area results in 
0"(2) = 6660 psi (15.1.63) 

For two-:: and three-dimensional stress problems, this direct division of force by 
cross-sectional area 'is not permissible. Hence, the total stress due to both applied load­
ing and temperature change must be determined by 

!I !IL !IT (15.1.64) 

We now illustrate Eq. (15.1.64) for bar element 1 of the truss of Example 15.3. 
For the bar, O"L can be obtained using Eq. (3.5.6), and O"T is obtained from 

uT J2§.T EctT (15.1.65) 

because 12 = E and GT = aT for the bar element. The stress in bar element t is then 
determined to be 

U(I) = ~[-C -S C Sll~: 1 EaT 
L ~x 

d\y 

(i5.1.66) 

Substituting the numerical quantities for element 1 into Eq. (15.1.66), we obtain 

u(l) = 3~: !~6 [0 _ I 0 1]1 ~ 1- ~30 x 106)(7 x 10-6)(75) (15,1,67) 

0.0333 

or u(l) = -5350 psi (15.1.68) • 

We will now illustrate the solutions of two plane thermal stress problems. 

Example 15.4 

For the plane stress element shown in Figure 15-10, determine the element equations. 
The element has a 2000-lb/in2 pressure acting perpendicular to side j-m and is sub­
jected to a 30°F temperature rise. 

and 

and 

,Recall that the stiffness matrix is given by [Eq. (6.2.52) or .(6.4.1)J 

[k] = [B] T[D} [B]tA (15.1.69)" 

Pi = Yj - Ym = -3 

Pj =Ym - Yi = 3 

Pm = Yi - Yj = '0 

)Ii = Xm - Xj = -1 

Yj = Xi - Xm = -1 

Ym =Xj -Xi = 2 

A = (3)(2) = 3 in2 

2 

(lS.L70) 
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1= 1 in. 
E = 30 x l06psi 
1% ::: 7 X JO-6 (in.{m.)fF 
,,= 0.25 

Figure 15-10 Plane stress element subjected to mechanical loading and a 
temperature change 

Therefore, substituting the results of Eqs. (15.1.70) into Eq. (6.2.34) for [Bl. we obtain 

(Bl =~ [-~ -~ ~ -~ ~ o~] 
-1 -3 -1 3 2 

(15.1.71) 

Assuming plane stress conditions to be valid, we have 

[Dl=~[: ; 
1 - \/2 

o 0 

o 1 6 1 
o = 30 x 10 2 0.25 

1 ; v 1 - (0.25) [0 
0.25 0 ] 

~ ~.375 

[8 2 0] = (4 x 106) 2 8 0 psi 
003 

(15.1.72) 

-3 0 -1 

0 -1 -3 

(4 x 10') [~ 
2 

~l [BJT{DJ =! 3 0 -1 
Also, 0 3 

8 
6 -1 

0 
0 0 2 

( 15.1.73) 

0 2 0 
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Simplifying Eq. (IS.I.73), we obtain 

-24 -6 -3 
-2 -8 -9 

[Bf[D] = 4 X
6
10

6 24 6 -3 
(15.1.74) 

-2 -8 9 

0 0 6 

4 16 0 

Therefore, substituting the results of Eqs. (I5.l.71) and (15.1.74) into Eq. (15.1.69) 
yields the element stiffness matrix as 

-24 -6 -3 
-2 -8 -9 

[-~ 0 3 0 0 

~] [k1 = (1 in.) (3 ~n2) 4 x 6106 24 6 -3 
-1 '0 -1 0 

-2 -8 9 
-1 -3 -1 3 2 

0 0 6 

4 16 0 
(15.1.75) 

Simplifying Eq. (15.1.75), we have the element stiffness matrix as 

75 15 -69 -3 -6 -12 

15 35 3 -19 -18 -16 

[kJ = 1 x 10
6 -69 3 75 -15 -6 12 lb 

(15.1.76) 
3 -3 -19 -15 35 18 -16 in. 

-6 -18 -6 18 12 0 

-12 -16 12 -16 0 32 

Using Eq. (15.1.25), the thennal force matrix is given by 

fii -3 -3 

"Ii -1 -1 
(tEtT Pj = (7 x 10-6)(30 x 106)(1)(30) 3 3 

{IT} = 2(1 - v) =4200 
1j 2(1- 0.25) -1 -1 

Pm 0, 0 

"1m 2 2 

-12,600 

-4200 

or {IT} = 
12,600 

lb (15.1.77) 
-4200 

0 
8400 
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The fon::e matrix due to the pressure applied alongside j-m is determined as foUows: 

Lj-m = ({2 _1)2 + (3 - 0)2} 1/2 = 3.163 in. 

px = peosO = 2000 (3}63) = 18961b/in
2 

Py =psin8= 2000(3.:63) = 632 Ib/in
2 

(15.1.78) 

where fJ is the angle measured from the x axis to the nonnal to surface j-m. Using Eq. 
(6.3.7) to evaluate the surface forces, we have 

{/d = 11 [Nsf {;;}dS 
Sj ..... 

Ni 0 0 0 
0 N; 0 0 

= 11 
Nj 0 {px } dS = tLj-m 1 0 {~:} (15.1.79) 
0 M py 2 0 1 

S.I-'" Nm 0 0 
0 Nm evaluated 0 

alongside j-m 

Evaluating Eq. (15.1.79), we obtain 

0 0 0 
0 0 0 

{I
L

} = (1 in.)(3.163 in.) 0 {1896} = 3000 
Ib (15.1.80) 

2 0 1 632 1000 
1 0 3000 
0 1000 

Using Eqs. {I 5.1.76), ,(15.1.77). and (IS.l.80). we find that the complete set of element 
equations is 

75 15 -69 -3 -6 -12 Uj -12,600 
35 3 -19 -18 -16 Vi -4200 

1 x 106 75 -15. -6 12 Uj 15,600 
(15.1.81) -3- 35 18 -16 Vj -3200 

12 0 Um 3000 
Symmetry 32 Vm '9400 

where the force matrix is {IT} + {iLlt obtained by adding Eqs. (15.1.77) and 
(15.l.80). • 
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Example 15.5 

For the plane stress plate fixed along one edge and subjected to a uniform temperature 
rise of 50°C as shown in Figure 15-11, determine the nodal displacements and the 
stresses in each element. Let E = 210 .GPa, v = 0.30, t = 5 mm, and Ci. = 12 X 10-6 

(mmlmm)rc. . 
The discretized plate is shown in Figure 15-11. We begin by evaluating the stiff­

ness matrix of each element using Eq. (6.2.52). 

4 3 

'~T 
@ SOOmm 

<D 1 
l/--soomm-/

2 

Element 1 

Figure 15-11 Discretized plate subjected to a 
temperature change 

Element 1 has coordinates XI = 0, YI = 0, X2 = 0.5, Y2 = 0, Xs = 0.25, and Ys = 0.25. 
From Eqs. (6.2.10), we obtain 

PI = Y2-YS = -0.25 m P2 = YS-YI = 0.25 m Ps = YI-Y2 = 0 

1'. = XS-X2 == -0.25 m )'2 = XI-XS = -0.25 m }Is = X2-XI = 0.5 m 

(15.1.82) 

Using &is. (6.2.32) in Eq. (6.2.34), we have 

!r 0 /12 0 Ps 

~l [B]=- 0 YI 0 )'2 0 
2A 

Pt 1'1 )'2 P2 Ys Ps 

! [-0.25 0 0.25 0 0 

~.+--~ 0 -0.25 0 -0.25 0 
- 0.125 -0.25 -0.25 -0.25 0.25 0.5 o m 

(15.1.83) 

For plane stress, [D] is given by 

[

Iv 

D=_E __ v 1 
- (1 - v2 ) 

o 0 
! ~ ·1 

210 X 10
9 [~.3 0.3 ~ 1 ~ 

0.91 0 () 0.35 m
2 (15.1.84) 
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We obtain the element stiffness matrix using 

[kJ == tA[B} T[D][B] (15.1.85) 

Substituting the results of Eqs. (15.1.83) and (15.1.84) into Eq. (15.1.85) and carrying 
out the multiplications, we have 

& = 4.615 X 107 

Element 2 

db dly d2x d2y ds.-.: dsy . 

8.4375 4.0625 -4.0625 -0.3125 -4.375 -3.75 
4.0625 8.4375 0.3125 

-4.0625 0.3125 8.4375 
-0.3125 4.0625 -4.0625 
-4.375 -4.375 -4.375 
-3.75 -12.5 3.75 

4.0625 
-4.0625 

8.4375 
4.375 

-12.5 

-4.375 
-4375 

4.375 
8.75 
0 

-12.5 
3.75 

-12.5 
0 

25 

N 
m 

(15.1.86) 

For element 2, the coordinates are Xl = 0.5, Y2 ~ 0, X3 = 0.5, Y3 = 0.5, Xs = 0.25, 
and Ys = 0.25. Proceeding as for element 1, we obtain.. 

/32 = 0.25 m /13 = 0.25 m /15 = -0.5 m 

Y2 = -0.25 m Y3 =0.25 m Ys =0 

The element stiffness matrix then becomes 

d2x d2y d3x d3y dsx dsy 

8.4375 -4.0625 4.0625 -0.3125 -12.5 4.375 
-4.0625 8.4375 0.3125 -4.0625 3.75 -4.375 

If = 4.615 X 107 
4.0625 0.3125 8.437 4.0625 -12.5 -4.375 N 

-0.3125 -4.0625 4.0625 8.4375 -3.75 -4.375 m 
-12.5 3.75 -l2.S -3.75 25 0 

4.375 -4.375 -4.375 -4.375 0 8.75 

(15.1.87) 
Element 3 

For element 3, using the same steps as for element 1, we obtain the stiffness matrix as 

~x d~ ~x d~ ~x d~ 

8.437 4.0625 -4.0625 -0.3125 -4.375 -3.75 
I.; 4.0625 8.437 0.3125 4.0625 -4.375 -12.5 

-4.0625 -4.375 3.75 N 
8.4375 4.375 -12.5 m if = 4.615 X 107 

-4.0625 0.3125 8.437 
-0.3125 4.0625 -4.0625 
-4.375 -4.375 -4.375 4.375 8.75 0 
-3.75 -12.5 3.75 -12.5 0 25 

(15.1.88) 
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Element 4 

Finally, for element 4, we obtain 

d4x d4y db d1y dsx dsy 

8.437 -4.0625· 4.0625 -0.3125 -12.5 4.375 

-4.0625 8.4315 0.3125. -4.0625 3.15 -4.375 

k = 4.615' X 10' 
4.0625 0.3125 8.437 4.0625 -12.5 -4.375 N 

-0.3125 -4.0625 4.0625 8.431 -3.75 -4.375 m 
-12.5 3.75 -12.5 -3.75 25 0 

4.375 -4.375 -4.375 -4.375 0 8.75 

(15.1.89) 

Using the direct stiffness method, we assemble the element stiffness matrices, Eqs. 
(15.1.86)-(15.1.89), to obtain the global stiffness matrix as 

K:= 4.615 X 107 

o 

16.814 

8.125 

-4.0625 

-0.3125 

o 
o 
4.0625 

0.3125 

dIy 

8.125 

16.874 

0.3125 

4.0625 

o 
o 

-0.3125 

-4.0625 

d2x 

-4.0625 

0.3125 

16.874 

-8.125 

4.0625 

d2y 

-0.3125 

4.0625 

-8.125 

16.815 

0.3125 

-0.3125 -4.0625 

o 0 
o 0 

-16.875 -8.125 -16.815 8.125 

-8.125 ·-16.875 8.I25 -16.875 

tL,y dsx dsy 

0.3125 -16.875 -8.125 

o 
4.0625 

0.3125 

d3y 

o 
o 

-0.3125 

-4.06:25 

tL,x 

4.0625 . 

-0.3125 

o 
-4.0625 -8.125 -16.875 
o -16.875 8.125 

o 8.125 -16.875 

16.875 

8.125 

-4.0625 

8.125 

16.875 

0.3125 

4.0625 

-8.125 

o 
-4.0625 

0.3125 

16.875 

-8.125 

-0.3125 -16.875 -8.125 N 
4.0625 

-8.125 

16.875 

8.125 

-16.875 

-8.125 -16.875 m 
-16.875 8.125 

-0.3125 8.125 -16.875 

-16.875 -16.875 67.5 . 0 

-8.125 -16.&75 8.125 o 67.5 

(15.1.90) 

Next, we determine the thermal force matrices for each element by using Eq. (15.1.25) 
as follows: 
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Element 1 

PI 
YI 

-0.25 
-0.25 

aEtT /32 
{IT} = 2(f0 12 

(12 x 10-6)(210 x 109}(0.005 m)(50) 
2(1 - 0.3) 

0.25 
-0.25 
o 
0.5 

EJement2 

Element 3 

Element 4 

Ps 
1s 

-0.25 
-0.25 

0.25 
::: 450,000 -0.25 

° 0.5 

{IT} = 450,000 

0.25 
-0.25 

0.25 
0:25 

-0.5 
o 

0.25 
0.25 

-0.25 
{IT} = 450,000 

0.25 
o 

-0.5 

-0.25 
0.25 

-0.25 
{IT} = 450,000 .--0.25 

0.5 

° 

IT4x 
IT41 

ITlx 
I Tly 

IT5x 

ITSy 

-112,500 
-112,500 

112,500 N 
. -112,500 

o 
225,000 

112,500 
-112,500 

112,500 N 
112,500 

-225,000 
o 

(15.1.91) 

(15.1.92) 

112,500 
112,500 

-112,500 N 
112,500 (15.1.93) 

o 
-225,000 

-112,500 
112,500 

-1l2,500 N 
-112,500 (15.1.94) 

225,000 
o 
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We then obtain the global thennal force matrix by direct assemblage of the element 
force matrices (Eqs. (15.L91)-(15.1.94)). The resulting matrix is 

ITlx -225,000 

ITI1 -225,000 

In.. 225,000 

fn.y -225,000 

fnx 225,000 
N (15.1.95) 

Iny 225,000 

IT4x -225,000 

IT4y 225,000 

ITSx 0 

ITS! 0 

Using Eqs. (15.1.90) and (15.1.95) and imposiI1g the boundary conditions d1x = 
d l)' :: t:4x d4y = 0, we obtain the system of equations for solution as 

I Tlx 225,000 

In.y = -225,000 

In."t = 225,000 

Iny = 225,000 

Inv: = 0 
fTSy = 0 

16.874 

-8.125 

4.0625 

-0.3I25 

-16.875 

8.125 

= 4.615 X 107 

-8.125 4.0625 

16.875 0.3125 

0.3125 16.875 

-4.0625 8.125 

8.125 -16.875 

-16.875 -8.125 

-0.3125 -16.875 8.125 
-4.0625 8.125 -16.875 

8.125 -16.875 -8.125 

16.875 -8.125 -16.875 

-8.125 67.5 0 

-16.875 ° 67.5 

Solving Eq. (15.1.96) for the nodal displacements, we have 

dl'C 3.327 X 10-4 

d2y -1.911 X 10-4 

d3x 3.327 X 10-4 

d3y 1.911 X 10-4 m 

ds:t. 2.123 X 10-4 

ds)' 6.654 X 10-9 

d2x 

d2y 

d3.v,; 

d3y 

dsx 
dsy 

(15.1.96) 

(15.1.97) 
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We now use Eq. (15.1.64) to obtain the stresses in each element. Using Eqs. (6.2.36) 
and (15.1.65), we write Eq. (15.1.64) as 

{Q"} = (DJ[B]{d} - [DHer} (15.1.98) 

Element 1 

Using Eqs. (15.1.82) and {I 5. 1.97) along with the mechanical properties E: v, and ct in 
Eq. (15.1.99), we obtain 

{ 

Q"x } _ 210 X 109 [1 0.3 0 ] 
Q"y - 0.91 0.3 1 0 
Txy . 0 0 0.35 

0 

1 (-0.25 0 0.25 0 0 

~.5 ] 
0 

3.327 X 10-4 
x-- 0 -0.25 0 -0.25 0 

-1.911 x 10-4 
0.125 -0.25 -0.25 -0.25 0.25 0.5 O· 

2.123 x 10-4 

6.654 X 10-9 

_ 210 x 10 0.3 1 0 (12 x 10-6)(50) 
9 [1 0.3 0 ] { (12 x 10-

6
)(50) } 

0.91 0 0 0.35 0 
(15.1.100) 

Simplifying Eq. (lS.lJOO) yields 

{
ax} { 1.800 X 10

8 

} {1.8 x 10
8 

} { O}' 
(jy = 1.342 X 108 - 1.8 X 108 = -4.57 X 10

' 
Pa 

,1'xy. -1.600 X 107 0 -1.60:x 107 

(15.1.101) 
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Figure 15-12 Discretized plate showing displaced ptate superimposed 
with maximum principal stress plot in Pa 

Similarly, we obtain the stresses in tne other elements as follows: 

Elel1"ent 2 

{ 
:: } = {~:~~: ;~:} - { :~!: ~~: }'= {;~~~: ~~~ } Pa 
Lxy -2150 0 -2150 

(15.1.10: 

The clamped plate subjected to uniform heating (see the longhand solutio] 
Example 15.5) was also solved using the Algor computer program from Referen< 
[1]. The plate was discretized using the ·'automesh" feature of[1]. These results are sin 
ilar to those obtained from the longhand solution of Example 15.5 using the vel 
coarse mesh. The computer program solution with 342 elements is naturally more a4 
curate than the longhand solution with only 4 elements. Figure 15-12 shows the di: 
cretized plate with resulting displacement superimposed on the maximum princip. 
stress plot. I 

1 Reference 

[IJ Linear Stress and Dynamics Reference Division, Docutech On-line Documentation, Algo 
Inc., Pittsburgh, PA. 



, ~'" 

~~ 

~) 

11, 

~e 

l~ 

'Y 
: -
S-

~I 

• 

r, 

Problems ... 641 

... Problems 

15.1 For the one-dimensional steel bar fixed at the left end, free at the right end, and sub­
jected to a uniform temperature rise T = 50 0 P as shown in Figure PI5-I, determine 
the free-end displacement, the displacement 60 in. from the fixed end, the reactions at 
the fixed end, and the axial stress. Let E = 30 X 106 psi, A = 4 in2, and ct 7.0 x 10-6 

(inJin.)/oF. . 

~ 
T = SO"F 

~ 
T""-2()OC 

~ 120 in. 3m 

Figure P15-1 Figure P15-2 

15.2 For the one-dimensional steel bar fixed at,each end and subjected to a uniform tem­
perature drop of T = 20 0 e as shown in Figure P15-2, determine the reactions at the 
fixed ends and the stress in the bar. Let E = 210 GPa, A = 1 X 10-2 m 2, and 
lX = 11.7 X 10-6 (mmlmm)/oC. 

15.3 For the plane truss shown in Figure PI 5-3,· bar element 2 is subjected to a uniform 
temperature rise of T = 50°F: Let E = 30 X 106 psi, A = 2 in2, and lX = 7.0 X 10-6 

(infm.)/ ° F. The lengths -of the truss elements are shown in the figure. Determine the 
stresses in each bar. {Hint: See Eqs. (3.6.4) and (3.6.6) in Example 3.5 for the global 
and reduced K matrices.} 

15.4 

/ 
3 • 

T'~ 
10ft ® 

~ CJ-4_S_

0 

-'---~--EK' 

4 3 2 

10ft 

I 

I 
Figure P15-3 Figure P15-4 

For the plane truss shown in Figure PI5-4, bar element I is SUbjected to a unifom 
temperature rise of 30 0 E Let E = 30 X 106 psi, A = 2 in2, and ct 7.0 x 10-6 (in~ 
in.)/oF. The lengths of the truss elements are shown in the figure. Determine the 
stresses in each bar. (Hint: Use Problem 3.21 for K.) 

15.5 For the structure shown in Figure PI5-5, bar element I is subjected to a unifom 
temperature rise of T = 20 Ge. Let E = 210 GPa, A = 2 X 10-2 m2, and lX = 
12 X 10-6 (mmlmm)rC. Determine the stresses in each bar. 
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• 3 4 • 

I ® CD 3m 
/. 

4 2 
Rigid bar 

® CD 

1m 

! 

Figure P1S-S Figure P1S-6 

15.6 For the plane truss shown in Figure P15-6, bar element 2 is subjected to a uniform 
temperature drop of T = 20°e. Let E = 70 GPa, A = 4 X 10-2 m2, and (l = 
23 X 10-6 (mmlmm)/°C. Determine the stresses in each bar and the displacement of 
node 1. 

15.7 For the bar structure shown in Figure P15-7, element 1 is subjected to a uniform 
temperature rise of T 30°C. Let E = 210 GPa, A = 3 X 10-2 m2, and (l = 
12 X 10-6 (mmlmm)rc. Detennine the displacement of node I and the stresses in 
each bar. 

2 

CD 1m 

3 ' 

1m 

Figure P15-7 

~*-------------+----~ 
Steel o 

//h~-------B-~-------+----' 2 
ijh~-------~=-----~--~J 

Figure Pl 5-8 

15.8 A bar assemblage consists of two outer steel bars and an inner brass bar. Tl').e three~ 
bar assemblage is then heated to raise the temperature by an amount T = 40°F. 
Let all cross-sectional areas be A = 2 in2 and L = 60 in., Esceel = 30 X 106 psi, 
Ebrass 15 X 106 psi, (lsteel 6.5 x 1O-6rF, and (lbrass 10 x 1O-6/<>F. Determine (a) 
the displacement of node 2 and (b) the stress in the steel and brass bars. See Figure 
PIS-8. 

15.9 It has been a practice on some trucks to have an intake manifold made of an alumi-
num aHoy (ex 22.7 x lO-6/<>C) bolted to a plate made of steel (not shown) "j. 
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(Cl = 11.7 x W-6/ oC) with a gasket separating the two materials. Assume a model as 
shown in Figure PIS-9. If the temperature of the aluminum is increased by 40~C, 
what is the y displacement of the system and stress in each material? Also, what shear 
stress is induced in the bolted connection (assume two bolts in the connection)? 
Neglect the thin gasket in your model and assume the simplified model looks like 
Figure PIS-II below. 

Figure P1 5-9 

15.10 When do stresses occur in a body made of a single material due to uniform tempera­
ture change in the body? Consider problem 15.1 and also compare the solution to 
Example 15.1 in this chapter. 

15.11 Consider two thermally incompatible materials, such as steel and aluminum, attached 
together as shown in Figure PIS-II. Will there be temperature-induced stress in each 
material upon uniform heating of both materials to the same temperature when the 
boundary conditions are simple supports (a pin and a roller such that we have a stat­
ically determinate system)? Explain? Let there be a uniform temperature rise of 
T = 50°F. 

< < L 

Figure P1S-11 

~ St<el, E" 30 x .0' ".;, • = 6.5 x urn 
Aluminum, E= 10 x 106 psi, ex= 13 x 10-6/<7f 

15.12 A bimetallic thermal control is made of a cold-rolled yellow bra,ss and a magnesium 
alloy bar. The bars are arranged with a gap of 0.005 in. between them at nOF. The 
brass bar has a length of 1.0 in. and a cross-sectional area of 0.10 in.2, and the mag­
nesium bar has a length of 1.5 in. and a cross-sectional area of 0.15 in.2• Determine 
(a) the. axial displacement of the end of the brass bar and (b) the stress in each bar 
after it has closed up due to a temperature increase of WO°F. Use at least one element 
for each bar in your finite element model. 

15.13 For the plane stress element shown in Figure P15-13 subjected to a uniform 
temperature rise of T = 50 "F, determine the thermal force matrix {IT}' 
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Figure P15-12 

y 

3 

(2,1) 

(0,0) 1£-______ ...iiIao...::2_ ... 
I (4.0) 

Figure P15-13 

Let E = 10 X 106 psi, v=: 0.30, and ct. = 12.5 X 10-6 (inJin.)/oF. The coordinates (in 
inches) are shown in the figure. The element thickness is t = 1 in. 

15.14 For the plane stress element shown in Figure P15-14 subjected to a uniform temper­
ature rise of T = 30 Ge, determine the thermal force matrix {iT}' Let E = 70 GPa, 
v 0.3, ct. = 23 X 10-6 (mmlmm)/"'C, and t = 5 mm. The coordinates (in millimeters) 
are shown in the figure. 

y 

(500.250) 
3 

1~ _________ ~2 ____ x 

(0,0) (500.0) 

Figure P15-14 

y 

3 (0.4) 

1~ ___________ ~2 __ .x 

(0,0) (6,0) 

Figure P15-15 

15.15 For the plane stress element shown in Figure P15-I5 SUbjected to a uniform temper­
ature rise of T = 100°F, determine the thern;laI force matrix {iT}' Let E = 30 X 106 

psi, v = 0.3, ct. = 7.0 X 10-6 (inJin.)/",F, and i 1 in. The coordinates (in inches) are 
shown in the figure. 

15.16 For the plane stress element shown in Figure P15-16 subjected to a uniform temper­
ature drop of T = 20 GC, determine the thermal force matrix {IT}' Let E = 210 GPa, 
v = 0.25, and ct. = 12 X 10-6 (mmlmm)/oC. The coordinates (in millimeters) are 
shown in the figure. The element thickness is 10 mm. 

15.17 For the plane stress plate fixed along the left and right sides and subjected to a uniform 
temperature rise of 50°F as shown in Figure PI5-17) determine the stresses in each 
element. Let E = 10 x 106 psi) v = O.3Q)" IX = 12.5 X 10-6 (inJin.)fOF, and t =! in. 
The coordinates (in inches) are shown in the figure. (Hint: The nodal displacements are 
all equal to zero. Therefore, the stresses can be determined from {o) =. - [D}{ eT }.} 
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y 
y 

3 
4 " 

(0,400) CD 
0 

5 
® 20m. 

Q) L, 
x I "I. 

40 in. .1
2 1 2 

(0.0) (400.0) 

Figure P15-16 Figure P15-17 

15.18 For the plane stress plate fixed along all edges and subjected to a uniform temperature 
decrease of 20 °C as shown in Figure PIS-IS, determine the stresses in each element. 
Let E 210 GPa, v =0.25, and IX = 12 X 10-6 (mrnlmm)J°C. The coordinates of 
the plate are shown in the figure. The plate thickness is 10 mm. (Hint: The nodal 
displacements are all equal to zero. Therefore, the stresses can be deternlined from 
{O'} = -[D}{er}.) 

4 3 

~~~'l 

'0 1m 

Q) I 
''»77777777777;~; --L- ~ 
1\ """.----2m ____ ~ .... 2 

Figure P15-18 

15.19 ]f the thermal expansion coefficient of a bar is given by IX = iXQ{l + xIL), determine 
the thermal force matrix. Let the bar have length L, modulus of elasticity E, and 
cross-sectional area A. 

15.20 Assume the temperature function to vary linearly over the length of a bar as T = 
at + a2X; that is, express the temperature function as {T} = [Nj{t}, where [N] is the 
shape function matrix for the two-node bar element. In other words, [N) = 
[1- xlL xILJ. Determine the force matrix in terms of E,A,IX,L,tl, and t2. [Hint: 
Use Eq. (IS.LIg}.} 

15.21 Derive the thennal force matrix for the axisymmetric element of Chapter 9. (Also see 
Eq. (15.1.27).) 
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Using a computer program, solve the following problems. 

15.22 The square plate in Figure P15-22 is subjected to uniform heating of gooF. Deter­
fi m

t 
ine the nodal displacements and element stresses. Let the element thickness be 

JtfII' 0.1 in., E = 30 x 106 psi, v = 0.33, and CJ: = 10 x 1O-6/ o F. 

15.23 

~ 

~ ___ --r4 
_------.4 

1 in. I in. 

CD CD 

Figure P15-22 Figure P15-23 

The square plate in Figure P15-23 has element 1 made of steel with E = 30 x 106 psi) 
v = 0.33, and ct = 10 x 1O-6JOF and element 2 made of a material with E = 15 X 106 

psi, v = 0.25, and ct = 50 x 1O-6/ 0 F. Let the plate thickness be t 0.1 in. Determine 
the nodal displacements and element stresses for element 1 subjected to an 80 OF 
temperature increase and element 2 subjected to a 50 of temperature increase. 

15.24 Solve Problem 15.3 using a computer program. 

S 
15.25 Solve Problem 15.6 using a computer program. 

~ 
15..26 The aluminum tube shown in Figure P15-26 fits snugly into a hole at room temper­
ft ature; If the temperature of the tube is then increased by 40°C, determine the de­

J!i? formed configuration and the stress distribution of the tube. Let E = 70 GPa) 
v = 0.33, and IX = 23 x 1O-6rC for the tube. 

50·mm diameter 

30-mm diameter 

Figure P15-26 
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Introduction 

This chapter provides an elementary introduction to time-dependent problems. We 
will introduce the basic concepts using the single-degree-of-freedom spring-mass 
system. We will include discussion of the stress analysis of the one~dimensional bar, 
beam, truss, and plane frame. This is followed by the analysis of one~imensional 
heat transfer. 

We witl provide the basic equations necessary for structural dynamics analysis 
and develop both the lumped- and the consistent-mass matrices involved in the ana­
lyses of the bar, beam, truss, and plane frame. We will describe the assembly of the 
global mass matrix for truss and plane frame analysis and then present numerical in­
tegration methods for handling the time derivative. We also present the mass matrices 
for the constant strain triangle and quadrilateral plane elements, for the axisymmetric 
element, and for the tetrahedral solid element. 

We will provide longhand solutions for the determination of the natural frequen­
cies for bars and beams and then illustrate the time-step integration process involved 
with the stress analysis of a, bar subjected to a time-dependent forcing function. 

We will next derive the basic equations for the time-dependent one~mensional 
heat-transfer probJem and discuss their applications. This chapter provides the basic 
concepts necessary for the solution of time-depen~ent problems. We conclude with 
a section on some computer program results for structural dynamics and time-dependent 
heat-transfer problems . 

.A 16.1 DynamiCS of a Spring-Mass System 

In -this sec-tion, we discuss the motion of a single-degree-of-freedoJ:ll spring-mass 
system to introduce the important concepts necessary for the later study of con­
tinuous'systems such as bars, beams, and plane frames. In Figure 16-1, we show the t 
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~/'-~-'//,-:""'~-;--_ • .r 

Figure 16-1 Spring-mass system subjected to a time-dependent force 

singJe-degree-of-freedom spring-mass system subjected to a time-<iependent force F(t). 
Here k represents the spring stiffness or constant, and m represents the mass of the 
system. 

The free-body diagram of the mass is shown in Figure 16-2. The spring force 
T = lex and the applied force F(t) act on the mass, and the mass-times-acceleration 
term is shown separately. 

Applying Newton)s second law of motion, f = rna, to the mass, we obtain the 
equation of motion in the x direction as 

F(t) - kx= mx (l6.Ll) 

where a dot over a variable denotes differentiation with respect to time; that is, 
(") = dO/dt. Rewriting Eq. (16.1.1) in standard form, we have 

mx+kx= F(t) (16.1.2) 

Equation (16.1.2) is a linear differential equation of the second order whose standard 
solution for the displacement x consists of a homogeneous solution and a particular 
solution. Standard analytical solutions for this forced vibration can be found in texts 
on dynamics or vibrations such as Reference [1]. The analytical solution will not be 
presenteq here as our intent is to introduce basic concepts in vibration behavior. How­
ever, we will solve the problem defined by Eq. (16.1.2) by an approximate numerical 
technique in Section 16.3 (see Examples 16.1 and 16.2). 

The homogeneous solution to Eq. (16.1.2) is the solution obtained when the right 
side is set equal to zero. A number of useful concepts regarding vibrations are obtained 
by considering this free vibration of the mass-that is, when F(t) = O. Hence, defining 

and setting the right side ofEq. (16.1.2) equal to zero, we have 

x+clix = 0 

T=Ju~F(t) 

Figure 16-2 Free-body diagram of the mass of Figure 16-1 

(16.1.3) 

(16.1.4) 
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x 

I· 
x'" 

Figure 16-3 Displacement/ time curve for simple harmonic motion 

where w is called the natural circular frequency of the free vibration of the mass, 
expressed in units of radians per second or revolutions per minute (rpm). Hence, the 
natural circular frequency defines the number of cycles per unit time of the mass 
vibration. We observe from Eq. (16.1.3) that w depends only on the spring stillness k 
and the mass m of the body. 

The motion defined by Eq. (16.1.4) is called simple harmonic motion. The dis­
placement and acceleration are seen to be proportional but of opposite direction. 
Again, a standard solution to Eq.{16.1.4) can be found in Reference [1]. A typical 
displacement/time curve is represented by the sine curve shown in Figure 16-3, where 
Xm denotes the maximmn displacement (called the amplitude of the vibration). The 
time interval required for the mass to complete one full cycle of motion is called the 
period of the vibration T and is given by 

2n 
T=­

W 
(16.1.5) 

where 1: is measured in seconds. Also the frequency in hertz (Hz = lIs) is f = 
liT w/(2n). 

Finany, note that all vibrations are damped to some degree by friction forces. 
These forces may be caused by dry' or Coulomb friction between rigid bodies, by in~ 
temal friction between molecules within a deformable body, or by fluid friction 
when a body moves in a fluid. Damping results in natural circular frequencies that 
are smaller than those for undamped systems; maximum displacements also are 
smaller when damping occurs. A basic treatment of damping can be found in Refer­
ence [1] and additional discussion is included in Example 16.12. 

ltO 16.2 Direct Derivation of the Bar Element 
Equations 

We will now derive the finite element equations for the time-dependent (dynamic) 
stress analysis of the one-dimensional bar. Recall that the time-independent (static) 
stress analysis of the bar was considered in Chapter 3. The steps used in deriving 
the dynamic equations are the same as'those used for the derivation of the static 
equations. 
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Step 1 Select Element Type 

Figure 16-4 shows the typical bar element of length L, cross-sectional area A I and 
mass density p (with typical units of Ib-s2/in4

), with nodes 1 and 2 subjected to exter­
nal time-dependent loads!;(t). 

Figure 16-4 Bar element subjected to time-dependent loads 

Step 2 Select a Displacement Function 

Again~ we assume a linear displacement function along the i axis of the bar [see 
Eq. (3.l.1)]; that is, we let 

(16.2.1) 

As was shown in Chapter 3, Eq. (16.2.1) can be expressed in terms of the shape func­
tions as. 

where X 
NI = 1-­

L 

Step 3 Defioe the Strain/ Displacement and Stress/Strain 
Relationships 

Again} the strain/displacement relationship is given by 

{ex} :: = (B]{d} 

where 
[BJ= H IJ {J}= {~~} 

and the stress/strain relationship is given by 

Step 4 Derive the Element Stiffness and Mass Matrices 
and Equations 

(16.2.2) 

(16.2.3) 

(16.2.4) 

(16.2.5) 

(16.2.6) 

The bar is generally not in equilibrium under a time·dependent force; hence, fix :F 
!lX- Therefore, we again apply Newton's second law of motion,! = Ina, to each node. 
In general. the law can be written for each node as "the external (applied) force f~ 
minus the internal force is equal to the nodal mass times acceleration." Equivalently, 
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adding the internal force to the ma term, we have 
2 A 

~I! A '0 dl x 
fix = fix + ml 8i2 (16.2.7) 

where the masses ml and m2 are obtained by lumping the total mass of the bar equally 
at the two nodes such that 

pAL 
ml =-2-

In matrix form, we express Eqs. (16.2.7) as 

pAL 
m2 =-2-

{'il} = {Jj + [~I ~,l ( :~~;J 

(16.2.8) 

(16.2.9) 

Using Eqs. (3.1.13) and (3.1.14), we replace {j} with [kl{J} in Eq. (16.2.9) to obtain 
the element equations 

{je(t)} = [kl{d} + [m]{d} 

where [k] = ~ [ _! -~ ] 
is the bar element stiffness matrix) and 

(m] = P~L [~ ~] 
is called the Jumped-mass matrix. Also, 

:: . a2{d} 
{d} =a:i2 

( 16.2.10) 

(16.2.11) 

(16.2.12) 

(16.2.13) 

Observe that the lumped.mass matrix has diagonal terms only. This facilitates 
the computation of the global equations. However, solution accuracy is usually not 
as ,,good as when a consistent-mass matrix is used [2}. 

, We will now develop the consistent-mass matrix for the bar element. Numerous 
methods are available to obtain the consistent-mass matrix. The generally applicable 
virtual work principle (which is the basis of many energy principles, such as the prin.;. 
cipJe of minimum potential energy for elastic bodies previously used in this text) pr~ 
vides a relatively simple method for derivation of the element equations and is 
included in Appendix E. However, an even simpler approach is to use D'Alembert~s 
principle; thus, we introduce an effective body force x e as 

(16.2.14) 

where the minus sign is due to the fact that the acceleration produces D'Alembert's 
body forces in the direction opposite the acceleration. The nodal forces associated 
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with {xe} are then found by using Eq. (6.3.1), repeated here as 

{Jb} = IIJ [N]T{X}dV (16.2.15 

v 

Substituting {Xf} given by Eq. (16.2.14) into Eq. (16.2.15) for {X}, we obtain 

{fb} = - JIJ p[NJT{~}dV (16.2.l6~ 

v 

Recalling from Eq. (16.2.2) that {u} = [NJ{d}, we find that the first and second 
derivatives with r¢spect to time are 

(16.2.17) 

where {(I} and {d} are the nodal velocities and accelerations, respectively. Substitut­
ing Eqs. (16.2.17) into Eq. {16.2.l6}, we obtain 

{ib} = - III p[N] T[N] dV{d} = -[m]{fl} (16.2.18) 
v 

where the element mass matrix is defined as 

[m] = J J 1 p[NJ T[N] dV (16.2.19) 

v 

This mass matrix is cal1ed the consistent-mass matrix because it is derived from the 
same shape functions [N] that are used to obtain the stiffness matrix [k]. In general, 
[ml given by Eq. (16.2.19) will be a full but symmetric matrix. Equation (16.2.l9) is 
a general form of the consistent-mass matrix; that is, substituting the appropriate 
shape functions, we can 'generate the mass matrix for such elements as the bar, 
beam, and plane stress. 

We will now develop the consistent-mass matrix for the bar element of Figure 
16-4 by substituting the shape function Eqs. (16.2.3) into Eq. (16.2.19) as follows: 

(16.2.20) 

Simplifying Eq. (16.2.20), we obtain 

(16.2.21) 
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or, on multiplying the matrices ofEq. (16.2.21)~ 

(16.2.22) 

On integrating Eq. (16.2.22) tenn by tenn, we'obtain the consistent-mass matrix for a 
bar element as 

pAL [2 1] 
. 6 1 2 (16.2.23) 

StepS Assemble the Element Equations to Obtain 
the Global Equations and Introduce Boundary Conditions 

We assemble the element equations using the direct stiffness method such that interele­
ment continuity of displacements is again satisfied at common nodes and, in addition, 
interelement continuity of accelerations is also satisfied; that is, we obtain the global 
equations 

{F(t)} = [K]{d} + [M}{d} (16.2.24) 

N N 
where [K] = L:[k(e)] {F} = L{f(e)} (16.2.25) 

e=! e=l 

are the global . stiffness, mass, and force matrices, respectively. Note that the global 
mass matrix is assembled in the same manner as the global stiffness matrix. Equation 
(16.2.24) represents a set of matrix equations discretized with respect to space. To ob­
tain the solution of the equations, diScretization in time is also necessary. We will de­
scribe this process in Section 16.3 and will later present representative solutions 
illustrating these equations. 

Oil 16.3 Numerical Integration in Time 

We now introduce procedures for the discretization of Eq. (16.2.24) with respect to 
time. These procedures will enable us to detennine the nodal displacements at diff~r­
ent time increments for a given dynamic system. The general method used is called'di­
rect fnzegration. There are two c1assificatioJ?s of direct integration: explicit and 
implicit. We will fonnulate the equations fOT three direct integration methods. The 
first, and simplest, is an explicit method· known as the central difference method 
[3, 4]. The second and third, more.complicated but more versatile than the central dif­
ference method, are implicit methods known as the Newmark-Beta (or Newmark's) 
method {51 and the Wilson-Theta (or Wilson's) method [7.8]. The versatility of both 
Newmark's and Wilson's methods is evidenced by their adaptation in many commer­
cially available computer programs. Wilson's method is used in the Algor computer 
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Figure 16-5 Numerical integration (approximation of derivative at tj) 

program [16J. Numerous other integration methods are available in the literature. 
Among these are Houboldt's method [8J and the alpha method [13J. 

Central Difference Method 

The central difference method is based on finite difference expressions in time for 
velocity and acceleration at time t given by 

(16.3.1) 

(16.3.2) 

where the subscripts indicate the time step; that is) for a time increment of At, !ii = 
d(t) and Qi+l = g(l + At). The procedure used in deriving Eq. (16.3.1) is illustrated by 
use of the displacement/time curve shown in Figure 16-5. Graphically, Eq. (16.3.1) 
represents the slope of the line shown in Figure 16-5; that is, given two points at incre­
ments i-I and i + I on the curve, two At increments apart, an approximation of the 
first derivative at the midpoint i of the increment is given by Eq. (16.3.1). Similarly) 
using a velocity/time curve, we could obtain Eq. (16.3.2), or we can see that 
Eq. (16.3.2) is obtained simply by differentiating Eq. (16.3.1) with respect to time. 

It has been shown using, for instance, Taylor series expansions [3] that the 
acceleration can also be expressed in terms of the displacements by 

4;+1 - 2r!.i + gi-I 
(At) 2 (16.3.3) 

Because we want to evaluate the nodal displacements, it is most suitable to use 
Eq. (16.3.3) in the form 

(16.3.4) 
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Equation (16.3.4) will be used to determine the nodal displacements in the next time 
step i + 1 knowing the displacements at time steps i and i-I and the acceleration at 
time i. 

From Eq. (16;2.24), we express the acceleration as 

iii = M-1 (Et - K4i) (16.3.5) 

To obtain an expression for fli+!, we first multiply Eq. (16.3.4) by the mass 
matrix M and then substitute Eq. (16.3.5) for 4j into this equation to obtain 

Mfli+1 = 2M!!i':" Mfli-l + (Ei - Ktl;HM} 2 (16.3.6) 

Combining like terms of Eq. (16.3.6), we obtain 

Mdi+1 = (M)2fi + [2M - (6t)2K14i - M!li-l (16.3.7) 

To start the computations to determine 4i+I,4i+l, and ili+l, we need the displacement 
4i-1 initially, as indicated by Eq. (16.3.7). Using Eqs. (16.3.1) and (16.3.4), we solve 
fOf{b-1 as 

. (M)2 .. 
!li-I = d; - (6t)4; + -2-4i 

The proced~ for solution is then as follows: 

1. Given: 40,40, and Ei(t). 
2. If 40 is not initially given, solve Eq. (16.3.5) at t = 0 for 40; that is, 

40 = M-1 (Eo - Kdo) 

3. Solve Eq. (16.3.8) at t = -M for 4 .. 1; that is, 

. (6/)2 ._ 
4-1 = 40 - (&t)40 + -2~!lo 

4. Having solved for 4-1 in step 3, now solve for 41 using Eq. (16.3.7) as 

41 = M-I{(6t)2Eo + [2M - (6t)2KJ4o - M4-1} 
5. With 40 initially given, and 41 determined from step 4, use Eq. 

(16.3.7) to obtain 

42 = M-I{(6J)2EI + [2M - (6tfKJ41 - M!lo} 

6. Using Eq. (16.3.5), solve for ill as 

iiI = M-1(El - K4t) 
7. Using the result of step 5 and the boundary condition for 40 given in 

step I> determine the velocity at the first time step by Eq. (16.3.1) as 

... . d2 - do d - -
_1 = 2(61) 

8. Use steps 5-:7 repeatedly to obtain the displacement, acceleration, and 
velocity 'for all other time steps. 

(16.3.8) 
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Inp.ut the bound~ and initial conditions 
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of the time step or increment AI 

Evaluate rhe initial acceleration fro~ 
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Figure 16-6 Flowcha rt of the central difference method 

Figure 16-6 is a flowchart of the solution procedure using the central difference 
.equations. Note that the recurrence formulas given by equations such as Eqs. (16.3.1) 
and (16.3.2) are approximate but yield sufficiently accurate results provided the time 
step M is taken small in relation to the variations in acceleration. Methods for deter­
mining proper time steps for the numerical integration process are described in 
Section 16.5. 

We will now illustrate the central difference equations as they apply to the fol­
lowing example problem. 
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Example 16.1 

De~ennine the displacement, velocity~ and acceleration at 0.05-s time intervals up to 
0.2 s for the one-dimensional spring-mass oscillator sUbjected to the time-dependent 
forcing function shown in Figure 16-7. [Guidelines regarding appropriate time inter~ 
vals (or time steps) are given in Section 16.5.] This forcing function is a typical one 
assumed for blast loads. The restoring spring. force versus displacement curve is also 
provided. [Note that Figure 16-7 also represents a one-element bar with its left end 
fixed and right node subjected to F(t) when a lumped mass is used.] 

Because we are considering the single degree of fieedom associated with the 
mass, the general matrix equations describing the motion reduce to single scalar equa­
tions. We will represent this single degree of freedom by d. 

The solution procedure foHows the steps outlined in this section and in the flow­
chart of Figure 16-6. 

F.Jb 

tOO -----

k 

171 = 31.831b-s2 lin. 

F(t) 
l--....... --x 

~.O x. in. 

F(t)~ lb 

2000 

0.2 t, S 

Figure 16-7 Spring-mass oscillator subjeaed to a time-dependent force 

Step 1 

At time t = 0, the initial displacement and velocity are zero; therefore) 

do ='0 

Step 2 

The initial acceleration at t = 0 is obtained as 

] = 2000 - 100(0) = 62 83' / 2 
uo 31.83 . m. s 

where we have used £(0) = 2000 lb and K = 100 lb/in. 
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Step 3 

The displacement d_1 is obtained as 

d_ l 0 - 0 + (0.~5)2 (62.83) = 0.0785 in. 

Step 4 

The displacement at time t = 0.05 s is 

d1 = -3 I8 {(O.05)2(2000) + [2(31.83) - (0.05)2(100)JO- (31.83)(0.0785)) 
1. 3 

= 0.0785 in. 

StepS 

Having obtained d1) we now detennine the displacement at time t = 0.10 s as 

1 . 
d2 = 31.83 ((0.0~)\1500) + [2(31.83) (0.OS)1(100)J(O.0785) - (31.83)(0)} 

= 0.274 in. 

Step 6 

The acceleration at time t = 0.05 s is 

d1 31~83 [1500 - 100(0.0785)1 = 46.88 in./s2 

Step 7 

The velocity at time t = 0.05 s is 

0.274-0 . ' 
2(0.05) = 2.74 m./s 

StepS 

Repeated use of steps 5-7 will result in the displacement, acceleration, and velocity for 
additional time steps as desired. We will now perform one more time-step iteration of 
the procedure. 

Repeating step 5 for the next time step, we have 

d3 = 31~83 ((0.05)2(lOOO) + [2(31.83) - (0.05)2(100)](0.274) 

- (31.83)(O.0785)} = 0.546 in. 

Repeating step 6 for the next time step, we have 

- 1 
d2 = 31.83 [1000 - lOO(O.274)} = 30.56 in./s2 
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Table 16-1 Results of the analysis of Example 16.1 

t (5) F(/) (lb) 'di (in.) Q (lb) di (in./s2) d; (in.js) di (exact) 

0 2000 0 0 62.83 0 0 
0.05 1500 0.0785 7.85 46.88 2.74 0.0718 
0.10 )000 0.274 27.40 30.56 4.68 0.2603 
0.15 500 0.546 54.64 13.99 5.79 0.5252 
0.20 0 0.854 85.35 -2.68 6.07 0~8250 
0.25 0 1.154 115.4 -3.63 5.91 1.132 

Finally> repeating step 7 for the next time step, we obtain 

d· = 0.546 - 0.0785 = 4 68' / 
2 2(0.05) . m. S 

Table 16-1 summarizes the results obtained through time t = 0.25 s. In Table 16-1, 
Q = kdi is the restoring spring force. Also, the exact analytical solution for displace­
ment based on the equation in Reference 114} is given by 

y =-(l-cosrot) +- --- t Fo Fo (Sin rot ) 
k ktd ro 

where Eo = 2000 lb, k = 100 Ibjin., td = 0.2 s, and 

~ ~oo 
w = - = -- = 1.77 rad/s 

m 31.83 • 
Newmark's Method 

We will now outline Newmark's numerical method, which, because of its general ver­
satility, has bien adopted into numerous commercially available computer programs 
for purposes of structural dynamics analysis. (Complete development of the equations 
can be found in Reference [5J.) Newmark's equations are given by 

4i+t = 4i + (Al)(1 - y)di + y.4i+d (16.3.9) 

4i+1 = 4i + (At)4i + (At)2[(! - P).4i + P4i+tl (16.3.10) 

where fJ and yare parameters chosen by the user. The parameter fJ is generally chosen 
between 0 and ~ and y is often taken to be !- For instance, choosing 'Y = l and P = 0, 
it can be shown that Eqs. (16.3.9) and (16.3.10) reduce to the central difference 
Eqs. (16.3.1) and (16.3.2). Ify=!andp=!arechosen, Eqs. (16.3.9) and (16.3.1O) 
correspond to those for which a linear acceleration assumption is valid within each 
time interval. For y = ! and P = ~, it has been shown that the numerical analysis is 
stable; that is. computed quantities such as displacement and velocities do not become 
unbounded regardless of the time step chosen. Furthermore) it has been found [5J that 
a time step of approximately 10 of the shortest natural frequency of the structure being 
analyzed usual1y yields the best results. 
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. To find 4i+l, we first multiply Eq. (16.3.10) by the mass matrix M. and then sub­
stitute Eq. (16.3.5) for 4i+! into this equation to obtain 

M4i+1 = M.4i + {ilt)M4i + (Ilt)2 M(! - P)4i] + P(llt) 
2 [Ei+l - K4i+d (16.3.11) 

Combining like terms of Eq. (16.3.1 I), ~e obtain 

(M + fJ(llt)2K)d.i+1 = P(llt)2fi+l + M!i! +.(ilt)M4i + (ilt)2M(f- [J)4j 

(16.3.12) 

Finally, dividing Eq. (16.3.12) by fJ{llt)2, we obtain 

K'4i+l = E:+I 

where . 
K' = K + p(~t)2M 

f;+1 = fHl + f3(~f2 [4i + (Ilt)4i + (~- f3 ) (L\t)24;] 

The solution procedure using Newmark's equations is as follows: 

1. Starting at time t = 0, go is known from the given boundary 
conditions on displacement, and do is known from the initial velocity 
conditions. 

2. Solve Eq. (16.3.5) at 1 = 0 for 40 (unless 40 is known from an initial 
acceleration condition); that is, 

40 = M-1Cfo - K4o) 

3. Solve Eq. (16.3.13) for 41, because fHI is known for an time steps 
and !if}) do. and 40 are now known from steps 1 and 2. . 

4. Use Eq. (16.3.10) to solve for iii as 

iii = P(~t)2 [gl-g~-(llt)40-(ilt)1(r-p)4o] 
5. Solve Eq. (I6.3.9) directly for dl' 
6. Using the results of steps 4 and 5, go back to step 3 to solve for 

!i2 and then to steps 4 and 5 to solve for 42 and 42> Use steps 3-5 
repeatedly to solve for tli+h4i+l, and d.i+I. 

(16.3.13) 

(16.3.14) 

Figure 16-8 is a flowchart of the solution procedure using Newmark's equations. 
The advantages of Newmark's method over the central difference method are that 
Newmark's method can be made unconditionally stable (for instance, if fJ = 1 and 
y = !) and that larger time steps can be used with better results because, in general, 
the difference expressions more closely approximate the true acceleration and dis­
placement time behavior [8} to [Ill. Other difference fonnulas, such as Wilson's and 
Houboldt's, also yield unconditionally stable algorithms .. 

We will now illustrate the use of Newmark's equations as they apply to the fol­
lowing example problem_ 
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Figure 16-8 Flowchart of numerical integration in time using Newmark's equations 

Example t 6.2 

Detennine the displacement, velocity, and acceleration at O.I-s time increments up to a 
time of 0.5 s for the one-dimensional spring·mass oscillator subjected to the time· 
dependent forcing function shown in Figure 16-9, along with the restoring spring 
force versus displacement CUIVe. Assmne the o~llator is initially at rest. Let P = i and 
y = t, which corresponds to an assumption of linear acceleration within each time step. 

Because we are again considering the single degree of freedom associated with 
the mass, the general matrix equations describing the motion reduce to single scalar 
equations. Again, we represent this single degree of freedom by d. 

The solution procedure follows the steps outlined in this section and in the flow­
chart of Figure 16-8. 

Step 1 

At time t = 0) the initial displacement and velocity are ~ero; therefore, 

do =0 
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m = 1.77Ib-s2/in. 100 

F,lb 

70 ----- , 
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Figure 16-9 Spring-mass oscillator subjected to a time-dependent force 

Step 2 

The initial 'acceleration at t = 0 is obtained as 

.. 100 - 70(0) 
do = 1.77 56.5 in.js2 

where we have used f 0 = 100 Ib and K = 70 lbjin. 

Step 3 

We now splve for the displacement at time t = 0.1 s as 

Step 4 

K' = 70+-
1
-

1
- 2 (1.77) = 1132Ibjin. 

(6)(0.1) 

F{ = 80 +~ [0 + (0.1)(0) + (-2
1

..:. -6
1
)(0.1)\56.5)] = 280 lb 

(s)(O.l ) 

280 . 
d t = 1132 = 0.248 In. 

Solve for the acceleration at time t = 0.1 s as 

.. 1 [ 2 (1 1) ] d, = -,--2 0.248 - 0 - (0.1)(0) - (0.1) 2: - (5 (56.5) 
(6)(0.1) 
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StepS 

Solve for the velocity at time t = 0.1 s as 

Step 6 

d, = 0+ (O.l)[(I-!)(56.5) + (~)(35.4)J 

dI = 4.59 in.fs 

Repeated use of steps 3-5 will result in the displacement, acceleration, and velocity for 
additional time steps as desired. We will now perfonn one more time-step iteration. 

Repeating step 3 for the next time step (t = 0.2 s). we have 

F~ = 60 + I 1.77 2 [0.248 + (0.1)(4.59) + (-21 
- -6

1
) (0.1)2(35.4)] 

(6)(0.1) 

F; = 934lb 

.1 934 8' 
"2 = 1132 = O. 25 m. 

Repeating step 4 for time step t = 0.2 s~ we obtain 

dl = (~)(~.l)2 (0.825 - 0.248 - (0.1)(4.59) - (0.1)2 (~-~) (35.4)] 

d2 = 1.27 in./s2 

Finally, repeating step 5 for time step t = 0.2 s, we have 

til = 4.59 + (0.1)[(1 - !)(35.4) +!(1.27)] 

til = 6.42 in·/s 

Table 16-2 summarizes the results obtained through time t = 0.5 s. 

Ta&le 16-2 Results of the analysis of Example 16.2 

t (s) F(t) (tb) d; (in.) Q (lb) (in./s2) 

O. 100 0 0 56.5 
0.1 80 0.248 17.3 35.4 
0.2 60 0.825 57.8 1.27 
0.3 48.6 1.36 95.2 -26.2 
0.4 45.7 1.72 120.4 -42.2 
0.5 42.9 1.68 117.6 -42.2 

(in·/s) 

0 
4.59 
6.42 
5.17 
1.75 

-2.45 

• 



664 A 16 Structural Dynamics and Time-Dependent Heat Transfer 

Wilson's Method 

We will now outline Wilson's method (also called the Wilson-Theta method). Because 
of its genera] versatility, it has been adopted into the Algor computer program for 
purposes of structural dynamics analysis. Wilson's method is an extension of the lin­
ear acceleration method wherein the acceleration is assumed to vary linearly within 
each time interval now taken from t to t + 0M, where 0 ~ 1.0. For 0 1.0, the 
method reduces to the linear ,acceleration scheme. However, for unconditional sta­
bility in the numerical analysis, we must use 0 ~ 1.37 [7, 8J. In practice, 0 = 1.40 
is often selected. The Wilson equations are given in a form similar to the previous 
Newmark)s equations, Eqs. (16.3.9) and (16.3.10), as 

. . 0M·· .. 
di+1 = di + 2 (di+1 + di ) (16.3.15) 

(16.3.16) 

where di+I , d;+t. and di+J represent the acceleration, velocity, and displacement, re­
spectively, at time t + 0At. 

We seek a matrix equation of the form of Eq. (16.3.13) that can be solved for 
displacement !li+l. To obtain this equation, first solve Eqs. (16.3.15) and (16.3.16) 
for di+1 and di+! in tenns of di+1 as-follows: 

Solve Eq. (16.3.16) for dr+l to obtain 

(j. I =_6_(d_ I d-)-~d'-2d. 
_1+ 0 2(At)2 _1+ _I 0At-' _I 

Now use Eq. (16.3.17) in Eq. (16.3.15) and solve for 4i+l to obtain 

. 3 . eAt .. 
d-+1 = -(d-+1 - d·) - 2d- - -d­
_I 0At _I _I _I 2-1 

(16.3.17) 

(16.3.18) 

To obtain the displacement 4i+l (at time t + 0At), we use the equation of motion 
Eq. (16.2.24) rewritten as 

if=+-I = Mdi+! + Kdi+! (16.3.19) 

Now, substituting Eq. (16.3.17) for 4i+1 into Eq. (16.3.19), we obtain 

M [02(:,)2 (g,+l - g,) 0~t4, - 24.] + Kg'+1 = EI+! (16.3.20) 

Combining like tenns and rewriting in a fonn similar to Eq. (16:3.13), we obtain 

(16.3.21) 

where 

(16.3.22) 
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You will note the similarities between Wilson's Eqs. (16.3.22) and Newmark's Eqs. 
(16.3.14). Because the acceleration is assumed to vary linearly, the load vector is 
expressed as 

(16.3.23) 

where fi+1 replaces fi+l in Eq. (16.3.22). Note that ife = 1, {i+1 = fi+l. 
Also, Wilson's method (like Newmark's) is ari implicit integration method, be­

cause the displaCements show up as multiplied by the stiffness matrix and we implicitly 
solve for the displacements at time t+ edt. 

The solution procedure using Wilson's equations is as follows: 

1. Starting at time t = 0, d1) is known from the given boundary 
conditions on displacement, and ~ is known from the initial velocitY 
conditions. 

2. Solve Eq. (16.3.5) for do (unless do is known from an initial accelera­
tion condition). 

3. Solve Eq. (16.3.21) for dh because £:+1 is known for all time steps, 
and do, ~,do are now known from steps 1 and 2 ..• 

4. Solve Eq. (16.3.l7) for dl . 

S. Solve Eq. (16.3.18) for J1• 

6. Using the results of steps 4 and 5, go back to step 3 to solve for d2, 

and then return to steps 4 and 5 to solve for d2 and J2• Use steps 3-5 
repeatedly to solve for di+l, di+1, and di+). 

A flowchart similar to Figure 16-8, based on Newmark's equation, is left to your diS-=­
cretion. Again, note that the advantage of Wilson's method is that it can be made un­
conditionally stable by setting e ~ 1.37. Finally, the time step. At, recommended is 
approximately -lo to ~ of the shortest natural period T" of the finite element assemblage 
with n degrees of freedom; that is, dl ~ "t'n/IO. In comparing the Newmark and Wil­
son methods, we observe little difference in the computational effort, because they 
both require about the same time step. Wilson's method is very similar to Newmark's, 
so hand solutions will not be presented. However, we suggest that you rework Exam­
pJe 16.1 by Wilson's method and compare your displacement results with the exact s0-

lution listed in Table 16-1. 

1: 16.4 Natural Frequencies of a 
One-Dimensional Bar 

Before solving the structural stress dynamics analysis problem, we will first describe 
how to determine the natural frequencies of continuous elements (specifically the bar 
element). The natural frequencies are necessary in a vibration analysis and also are 
important when choosing a proper time step for a structural dynamics analysis (as 
will be discussed in Section 16.5). 
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Natural frequencies are determined by solving Eq. (16.2.24) in the absence of a 
forcing function F(t). Therefore, we solve the matrix equation 

M4+K4=O (16.4.1) 

The standard solution for 4(t) is given by the hannonic equation in time 

4(/) = 4'dllJ1 (16.4.2) 

where 4' is the part of the nodal displacement matrix called natural modes that is 
assumed to be independent of time, i is the standard imaginary number given by 
i = H, and (fJ is a natural frequency. 

Differentiating Eq. (16.4.2) twice with respect to time, we obtain 

4( t) = 4' (_{fJ2)e iwr (16.4.3) 

Substitution of Eqs. (16.4.2) and (16.4.3) into Eq. (16.4.1) yields 

_M(I)24'e illJt + K4'e iw
' = 0 

Combining terms in Eg. (16.4.4), we obtain 

eir»t Cit - (1)2 M)4' 0 

Because eimt is not zero," from Eg. (16.4.5)"we obtain 

(K - (1)2 M)g' = O· 

(16.4.4) 

(16.4.5) 

(16.4.6) 

Equation (16.4.6) is a set of linear homogeneous equations in terms of displacement 
mode 4'. Hence, Eq. (16.4.6) has a nontrivial solution if and only if the determinant 
of the coefficient matrix of 4' is zero; that is, we must have 

(16.4.7) 

In general, Eq. (16.4.7) is a set of n algebraic equations, where n is the number of 
degrees of freedom associated with the problem. 

To illustrate the procedure for determining the natural frequencies, we will solve 
the following example problem. 

Example 16.3 

For the bar shown in Figure 16-10 with length 2L, modulus of elasticity E, mass den­
sity p, and cross-sectional area A, determine the fitst two natural frequencies. 

For simplicity, the bar is discretized into two elements each oflength L as shown 
in Figure 16-1 L To solve Eq. (16.4.7)~ we must develop the total stiffness matrix for 
the bar by using Eq. (16.2.11). Either the lumped-mass matrix Eq. (16.2.12) or the 

~ ~x 
~~----------u------------~ 

Figure 16-10 One-dimensional bar used for natural frequency determination 
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~ 2 

Figure 16-11 Discretized bar of Figure 16-10 

consistent-mass matrix Eq. (16.2.23) can be used. In general, using the consistent-mass 
matrix has resulted in solutions that compare more closely to available analytical and 
experimental results than those fou~d using the lumped-mass matrix. However, the 
longhand calculations are more tedious using the consistent-mass matrix than using 
the I~ped-mass matrix because the Consistent-mass matrix is a full symmetric matrix, 
whereas the lumped-mass matrix bas nonzero tenns only along the main diagonal. 
Hence, the lumped-mass matrix wiD be used in this analysis. 

Using Eq. (16.2.11), the stiffness matrices for each element are given by 

1 2 

[k(l)} = AE ( 1 -1 ] 
L -1 1 

2 3 

[kPl l = AE [ 1 -l] 
L -1 1 

(16.4.8) 

The usual direct stiffness method for as~bling the element matrices, Eqs. (16.4.8), 
yields the global stiffness matrix for the whole bar as 

[K) = ~ [-; -~ -~] 
o -1 1 

Using Eq. (16.2.12), the mass matrices for each element are given by 

1 2 

[m(l)] = pAL [1 OJ' 
201 

2 3 

[m(2}} = pAL [1 0] 
2 0 1 

(16.4.9) 

(16.4.10) 

The mass matrices for each element are assembled in the same manner as for the stiff­
ness matrices. Therefore, by assembling Eqs. (16.4.10), we obtain the global mass ma­
trix as 

[M} = pAL 0 2 0 
[

I 0 0] 

200 1 
(16.4.11) 

We observe from the resulting global mass matrix that there are two mass contribu­
tions at node 2 because node 2 is common to both elements. 

Substituting the global stiffness matrix Eq. (16.4.9) and the global mass matrix 
Eq. {I 6.4.1 1) into Eq. (16.4.6), and using-the boundary condition db: = 0 (or now 
d: = 0) to reduce the set of equations in the usual manner~ we obtain 

(AE[ 2 -1] _' 2 pAL [2 O]){tI2} ={O} 
L -I I (f) 2 Old] 0 (16.4.12) 
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To obtain a solution to the set of homogeneous equations in Eq. (16.4.12), we set tb 
determinant of the coefficient matrix equal to zero as indicated by Eq. (16.4.7). W, 
then have 

I
AE[ 2 -1] _APAL [2 0·1[=0 
L -1 I 2 0 1. 

(16.4.13 

where 1 = w2 has been used in Eq. (16.4.13). Dividing Eq. (16.4.13) by pAL an( 
letting p = E/(pL2 ). we obtain 

Evaluating the determinant in Eq. (16.4.14), we obtain 

1 = 2p ±p.Ji 

or Al 0.6Op 

(16.4.14 

(16.4.15 

For comparison, the exact solution is given by 1 = O.616p, whereas the consistent 
mass approach yields 1:= 0.648/l. ThereJore, for bar elements, the lumped-mas: 
approacn can yield results as good as, or even better than, the results for the consis 
tent-mass approach. However, the consistent-mass approach can be mathematican~ 
proved to yield- an upper bound on the frequencies) whereas the lumped-mas: 
approach yields results that can be below or above the exact frequencies with n< 

mathematical proof of boundedness. From Eqs. (16.4.15), the first and second natura 
frequencies are given by 

W] = ~ = 0.77.JP. t:IJ2 = Ji;" = 1.85.JP. 

Letting E = 30 x 106 psi, p = 0.000731b-s2/in4, and L = 100 in.) we obtain 

p = E/(pL2) = (30 x 106)/[(0.00073)(1"00)2J = 4.12 x 106 8-2 

Therefore, we obtain the natural circular frequencies as 

WI = 1.56 x 103 rad/s t:IJ2 = ~.76 x 103 cadis 

or in Hertz (lis) units 

f. = wl/2n = 248 Hz, and so on 

(16.4.16: 

In conclusion, note that for a bar discretized such that two nodes are free to dis, 
place, there are two natural modes and two frequencies. When a system vibrates with ~ 
given natural frequency Wi, that unique shape with -arbitrary amplitude correspondin! 
to Wi is called the mode. In general, for an n-degrees-of-freedom discrete system, thert 
are n natural modes and frequencies. A continuous system actually has an infinitE 
number of natural modes and . frequencies. When the system is discretized, only 1, 

degrees of freedom are created. The lowest modes and frequencies are approximate( 
most often; the rugher frequencies -are damped out more rapidly and are usuaUy Oflesl 

importance. A rule of thumb is to use two times as many elements as the number 01 

frequencies desired. 
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1.0 1.0 

First mode Second mode 

Figure 16-12 First and second modes of longitudinal vibration for the cantilever bar 
ofFigure 16-10 

Substituting AI from Eqs. (16.4.15) into Eq. (16.4.12) and simplifying, the first 
modal equations are given by 

L4pd~(I) - p.d~{I) == 0 

-JUi~(I) + 0.7pdt) = 0 
(16.4.17) 

It is customary to specify the value of one of the natural modes d' for a given Wi 

or Ai- Letting d;(1) = 1 and solving Eq. (16.4.17). we find dt) = 0.7. Similarly, substi­
tuting A2 from Eqs. (16.4.15) into Eq. (16.4.12), we obtain the second modal equa­
tions. For brevity's sake, these equations are not presented here. Now letting 
d;(2) = 1 results in d~(2) = -0.7. The modal response for the first and second natural 
frequencies of longitudinal vibration are plotted in Figure 16-12. The first mode 
means that the bar is completely in tension or compression, depending on the excita­
tion direction. The second mode means the bar is in compression and tension or in 
tension and compression. • 

.At.. 16.5 Time-Dependent One-Dimensional 
Bar Analysis 

Example 16.4 

To illustrate the finite element solution of a time-dependent problem, we will solve 
the problem of the one-dimensional bar shown in Figure 16-13( a) subjected to the 
force shown in Figure 16-13(b). We will assume the boundary condition d1x = 0 and 
the initial conditions do = 0 and do = O. For later numerical computation purposes, 
we let parameters p = 0.00073 Ib-s2Jin\ A = I in2, E::::; 30 X ]06 psi, and L = 100 in. 
These parameters are the sam~ values as used in Section 16.4. 

Because the bar is discretized into two elements of equal length, the global stitT­
ness and mass matrices detennined in Section 16.4 and given by Eqs. (16.4.9) and 
(16.4.11) are applicable. We will again use the lumped-mass matrix because of its 
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F(!) 

~ ~F(t) 
~~------U--------~ 

1000 Ib 1----------..... 

(a) (b) 

Figure 16-13 (a) Bar subjeaed to a time-dependent force and (b) the forcing 
function applied to the end of the bar 

o (B--F(l) 

L L 

Figure 16-14 Discretized bar with lumped masses 

resulting computational simplicity. Figure 16-14 shows the discretized bar and the 
associated lumped masses. 

For il1ustration of the numerical time integration scheme, we will use the central 
difference method because it is easier to apply for longhand computations (and with­
out loss of generality). \ 

We next select the time step to be used in the integration process. It has been 
mathematically shown that the time step must be less than or equal to 2 divided by 
the highest natural frequency when the central difference method is used [7J; that is, 
I1t ~ 2/wmax • However, for practical results, we must use a time step of less than or 
equal to three-fourths of this value; that is, 

dt~ ~(_2_) 
4 COmax 

(16.5.1) 

This time step ensures stability of the inte~tion method. This criterion for selecting 
a time step demonstrates the usefulness of determining the natural frequencies of 
vibration, as previously described in Section 16.4, before performing the dynamic 
stress analysis. An alternative guide (used only for a bar) for choosing the approxi­
mate time step is 

(16.5.2) 

where L is the element length, and ex J Ex/pis called the longitudinal wave velocity. 
Evaluating the time step by using both criteria, Eqs. 06.S.l} and (16.5.2), from Eqs. 
(16.4.l6) for w> we obtain 

dt 3 ( ·2 ) 1.5 
'4 Wmax = 3.76 X 103 

0.40 X 10-3 S (16.5.3) 
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or L 100 
!It = - = = 0.48 x 10-3 s 

ex J30 x 106/0.00073 
(16.5.4) 

Guided by the maximum time steps calculated in Eqs. (16.5.3) and (16.5.4). we choose 
At = 0.25 x 10-3 s as a convenient time step for the computations. 

Substituting the global stiffness and mass matrices, Eqs. (16.4.9) and (16.4. I J), 
into the global dynamic Eq. (16.2.24), we obtain 

~ [-~ -~ -~] {~~:} + P~L [~ ,~ ~l {~:} = { ~l } (16.5.5) 
o -I 1 d3x 0 0 1 d3x F3(t) 

where R, denotes the unknown reaction at node 1. Using the procedure for solution 
outlined in Section 16.3 and in the flowchart of Figure 16-6, we begin as follows: 

Step 1 

Given: d1x = 0 because of the fixed support at node 1, and all nodal displacements 
and velocities are zero at time t = 0; that is, do = 0 and rIo = O. Also, assume 
db = 0 at all times. 

Step 2 

Solve for 40 using Eq. (16.3.5) as 

dO={;:}t=o =P~L[t n[{l~Oo}_A:[_~ -~]{~}] (16.5.6) 
where Eq. (16.5.6) accounts for the conditions dl.~ = 0 and d,x = O. Simplifying 
Eq. (16.5.6), we obtain 

.. 2000 { 0 } { 0 }. z 
rIo = pAL 1 = 27,400 m·/'S (16.5.7) 

where the numerical values for p, A, and L have been substituted into the final 
numerical result in Eq. (16.5.7), and 

M-1 = _2_ [! 0] (16.5.8) 
- pAL 0 1 

has been used in Eq. (16.5.6). The computational advantage of using the lumped-mass 
matrix for longhand calculations is now evident. The inverse of a diagonal matrix, 
such as the lumped-mass matrix, is obtained simply by inverting the diagon,!1 elements ._ 
of the matrix. 

Step 3 

Using, Eq. (16.3.8), we solve for 4-1 as 

. (At)2 .. 
4-1 = do - (M)d.o +-2-rIo (16.5.9) 
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Substituting the initial conditions on 40 and rio from step 1 and Eq. (16.5.7) for the ini­
tial acceleration 40 from step 2 into Eq. (16.5.9), we obtain 

4-1 = 0 - (0.25 x 10-3)(0) + (0.25 ><2 10-
3
)2 (27,400) { ~} 

Of, on simplification, 

{~:} -1 = {0.856 ~ 1O-3 } in. 

Step 4 

On premultiplying Eq. (16.3.7) by M-1) we now solve for ~1 by 

41 M-1{(At)2Eo + [2M - (AI)2K]4o Md-I} 

(16.5.10) 

(16.5.11) 

Substituting the numerical values for p,A,L, and E and the results ofEq. (16.5.10) 
into Eq. (16.5.1 I), we obtain 

{ d2;x} = _2_ [~ 0] {C0.25 X 1O-3)2{ 0 } + [2(0.073) [2 01] 
d3x 1 0.073 0 1 1000 2 0 

- (025 x 10-')'(30 x 10') [_~ -:]]{ ~} 

- 0.073 [~ ~]{ 0.856 : 10-3 }} 

Simplifying, we obtain 

{~: }I= 0'~73 [~ ~J [{ 0.0625

0

x 1O-3} {0.0312

0

X 10-3 }] 
Finally, the nodal displacements at time t 0.25 x 10-3 s become 

{ ~: } I = { 0.858 ~ 10-3 } in. (at t = 0.25>< 10-3 s) (16.5.12) 

Step 5 

With rio initially given and 41 determined from step 4, we use Eq. (16.3.7) to obtain 

42 = M-I{{L\t)2EI + {2M - (M)2K1.41 - Mao} 

= _2_ [~ 0] {(0.25 X 1O-3)2{ 0 } + [2(0.073) [7 0
1

] 
0.073 0 1 1000 2 0 

- (0.25 x W-')'(30 x 10') [_~ -: II 
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{ 
0 } 0.073[2 O]{O}} 

x 0.858 x 10-3 - 0 1 0 

2 [t 0] [{ 0 } {0.0161:X 10-
3 
}] 

= 0.073 0 1 0.0625 X 10-3 + 0.0466 X 10-3 

Simplifying, we obtain the nodal displacements at time t = 0.50 X 10-3 s as" 

{ 
d2x } {0.221 X 1O-

3
} • 

d3x 2 = 2.99 X 10-3 m. (at t = 0.50 X 10-3 s) (16.5.13) 

Step 6 

Solve for the nodal accelerations ii, again using Eq. (16.3.5) as 

.. 2 [1 0] [{ 0 } 4 [ 2 -1] { ° }] 
41 = 0.073 ~ 1 1000 - (30 x 10) -1 1 0.858 x 10-3 

Simplifying, we then obtain the nodal accelerations at time t = 0.25 X 10-3 s as 

{ d2x } {3526} . 2 
.. = 26345 m·/s 
d3x I ' 

(at t = 0.25 X 10-3 s) (16.5.14) 

The reaction Rl could be found by using the results ofEqs. (16.5.12) and (16.5.14) in 
Eq. (16.5.5). 

Step 7 

Using Eq. (16.5.13) from step 5 and the boundary condition for 40 given in step I, we 
obtain 41 as 

[{ 
0.221 X 10-

3 
} _ { 0 }] 

d _ 2.99 X 10-3 0 
_I - 2(0.25 x 10-3) 

Simplifying, we obtain 

{ d2,x } = {0.442}. I . 598 m. s d3x - . 
(at t = 0.25 'x 10-3 s) 

StepS 

We now use steps 5-7 repeatedly to obtain the displacement, acceleration, and veloc~ 
ity for all other time steps. For simplicity, we Calculate the acceler,ation only. 

Repeating steP 6 with t = 0.50 X 10-3 S, we obtain the nodal accelerations as 

d __ 2 [! O}[{ ° }-30X 104[ 2 _-1] {0.221 x 10-3}] 
,,2 - 0.073 ° 1 1000 -1 1 2.99 x 10-3 
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On simplifying, the nodal accelerations at t = 0.50 X 10-3 s are 

{ 
d2x } { 0 } { 10,500 } 
d3x 2 = 27,400 + -22,800 

{ 
1O,500} . ., 

m./s-
4600 

(at { = 0.5 X 10-3 s) (16.5.15) II 

A 16.6 Beam Element Mass Matrices 
and Natural Frequencies 

We now consider the lumped~ and consistent-mass matrices appropriate for time­
dependent beam analysis. The development of the element equations follows the 
same general steps as used in Section 16.2 for the bar element. 

The beam element with the associated nodal degrees of freedom (transverse dis· 
placemtmnmd rotation) is shown in Figure 16-15. 

The basic element equations are given by the general form, Eq. (16.2.10), with 
the appropriate nodal force, stiffness, and' mass matrices for a beam element. The stiff­
ness matrix for the beam element is that given by Eq. (4.1.14). A lumped-mass matrix 
is obtained as 

(16.6.1) 

where one-half of the total beam mass has been lumped at each node, corresponding 
to the translational degrees of freedom. In the lumped mass approach, the inertial 
effect associated with possible rotational degrees of freedom has been assumed to be 
zero in obtaining Eq. (16.6.1) although a value may be assigned to these rotational 
degrees of freedom by calculating the mass moment of inertia of a fraction of the 
beam segment about the nodal points. For a Imifonn beam we could then calculate 
the mass moment of inertia of half of the beam segment about each end node using 

J"L }J". 
~l~'r--i-----------"'~~ 

I 2 
L 

Figure 16-15 Beam element with nodal degrees of freedom 
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basic dynamics as 

1 = 1 (pAL/2)(L/2)2 

Again, the lumped-mass matrix given by Eq. (16.6.1) is a diagonal matrix, making 
matrix numerical calculations easier to penorm than when using the consistent-mass 
matrix. The consistent-mass matrix can be obtained by applying the general 
Eq. (16.2.19) for the beam element, where the shape functions are now given by Eqs. 
(4.1.7). Therefore, 

with 

[m] = III p[Nf[N] dV (16.6-2) 
v 

NI = ~3 (2i) - 3x2L + L3
) 

Nz = 13 (x3 L - 25:2 L 2 + xL 3) 

N3 = ~3 (-2x3 + 3x2L) 

N4 = ~3 (x3L - ¥L2) 

(16.6.3) 

(16.6.4) 

On substituting the shape function Eqs. (16.6.4) into Eq. (16.6.3) and performing the 
integration, the consistent-mass matrix becomes 

[ 

156 

[~] = pAL 22L 
m 420 54 

-13L 

!~~ ~;L =~~;l 
13L 156 -22L 

-3L2 -22L 4L2 

(16.6.5) 

Having obtained the mass matrix for the beam element, we could proceed to formu­
late the global stiffness and mass matrices and equations of the form given by 
Eq. (16.2.24) to solve the problem of a beam subjected to a time-dependent load. We 
win not illustrate the procedure for solution here because it is tedious and similar to 
that used to solve the one-dimensional bar problem in Section 16.5. However, a com­
puter program can be used, for the analysis of beams and frames subjected to time-

. dependent forces. Section 16.7 provides descriptions of plane frame and other element 
mass matrices, and Section 16.9 describes some computer program results for dynam­
ics analysis of bars, beams, and frame~. 

To clarify the procedure for beam analysis, we will now determine the natural 
frequencies of a beam. 



676 It. 16 Structural Dynamics and Time-Dependent Heat Transfer 

Example 165 

We now consider the determination of the natural frequencies of vibration for a beam 
fixed at both ends as shown in Figure 16-16. The beam has mass density p, modulus of 
eJasticity E, cross-sectional area A, area moment of inertia 1, and length 2L. For simplicity 
of the longhand calculations, the beam is discretized into (a) two beam elements of length 
L (Figure 16-16(a)) and then (b) three beam elements oflength L each (Figure 16-16(b)). 

2 

L3 ·1· L ·1· 
(a) (b) 

Figure 16-16 Beam for determination of natural frequencies 

(a) Two-Element Solution 
We can obtain the natural frequencies by using the general Eq. (16.4.7). First, we 

assemble the global stiffness and mass matrices (using the boundary conditions 
d1y = 0, tPl 0, d3y = 0, and tP3 = 0 to reduce the matrices) as 

d2y '2 

K = EI [24 0 J o 8L2 
M= (16.6.6) 

where Eq. (4.1.14) has been used to obtain each element stiffness matrix and 
Eq. (16.6.1) has been used to calculate the lumped-mass matrix. On substituting 
Eqs. (I6.6:6) into Eq. (16.4.7), we obtain 

l
EI [24 . 0] 2 [ 1 0 -II 
L3 0 8L2 (j) pAL 0 0_ = 0 

Dividing Eq. (16.6.7) by pAL and simplifying, we obtain 

or 

2 24EI 
(j) = pAL4 

ill = 4.90 (EI)'/2 
. L2 Ap 

(16.6.7) 

(16.6.8) 

The exact solution for the first natural frequency, from simple beam theory, is given 
by Reference [6]. It is 

= 5_59 (EI)I/2 
(JJ L2 Ap (16.6.9) 

The large discrepancy between the exact solution and the finite element solution is 
assumed to be accounted for by the coarseness of the finite element model. In Exam­
ple 16.6 we show for a clamped-free beam that as the number of degrees of freedom 
increases) convergence to the exact solution results. Furthermore, if we had used the 
consistent-mass matrix for the beam [Eq. (16.6.S)}, the results would have been more 
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accurate than with the lumped-mass matrix as consistent-mass matrices yield more ac­
curate results for flexural elements such as beams. 
(b) Three-Element Solution: 

Using Eq. (16.6.1), we calculate each element mass matrix as follows: 

dl x fIJI d2x fP2 d2x 'P2 d3:x 'Pl 

[m(I)1 = P~L [~ ~ ~ ~ 1 [1h(2)] = p~£ [~ ~ ~ ~ 1 
O· 0 1 O· 0 0 0 

o 000 000 0 
d3x fP3 c4x fP4 

[m('») = P~L [1 ! 1 ~ 1 (16.6.10) 

Knowing that d1y = fPI ::: d4y = fP4) we obtain the global mass matrix as 

d2y fP"J. d3y '1'3 

M = pAL [1 ! 1 ! 1 (16.6.11) 

Using Eq. (4.1.14), we obtain each element stiffness matrix as 

dly '1', d2J' "2 d2y IP2 d3y fP3 

[ 12 
6£ -12 

6L 1 [ 12 
6£ 

-12 U 1 k(I)=EI 6L 4L2 -6L 2L2 k(2) = EI 6L 4£2 -6£ 2L2 
- £3 - L3 

-12 -6L 12 -6£ -12 -6£ 12 -6L 

6£ 2£2 -6£ 4L2 6L 2L2 -6L 4£2 

d3y f{J3 d4y f{J4 

[ 12 

6L 
-12 6L 1 k(3) = EI 6L 4L2 - 6L 2L2 (16.6.12) - L3 

-12 -6L 12 -6£ 

6£ ir} -6L 4L2 

Using Eq. (16.6.12), we asemble the global stiffness matrix as 

d2)' '1'2 dly f{J3 d2y fP2 d3y '1'3 
6L+6£ -12 6£ 12L -12 [ 12 -12 

1 [0 Ul El 
4L2 +2L2 -6L 2L2 EI 0 6L2- -6L 2~2 K=- 6L-6L - L3 

-12 -6L 12+ 12 -6L+6L = L3 -12 -6L 24 
6L 2L2 -6£+6L 4L2 +4L2 6L 2L2 0 8L2 

(16.6.13) 

L 
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Using the general Eq. (16.4.7), we obtain the frequency equation as 

[ 0 
12L 

-12 6L 1 [1 0 0 0-

EI 0 6L2 -6L 2L2 2 0 0 0 0 
V -12 -6L 24 o - w pAL 0 0 1 0 

6L 2L2 0 8L2 0 0 0 0 

wlpAL 12£I/L2 -12£I/L3 6EI/L2 

0 6EI/L -6EI/L2 2EI/L 
0 (16.6.14) 

-12El/L3 -6El/L2 24E1/L3 - wlpAL 0 

6El/L2 2EI/L 0 8El/L 

Simplifying Eq. (16.6.14), we.have 

-w2fJ 12El/L2 -12£I/L3 6EI/L2 

0 6EI1L -6EI/L2 2EI/L 
0 (16.6.15) 

-12£I/L3 -6EI/L2 24EI / L3 - wlfJ 0 

6EI/L2 2EI/L 0 8EI/L 

wherefJ pAL 
'- Upon evaluating the four-by-four determinant in Eq. (l6.6.15), we obtain 

-1152(£)2 E3 13 fJ 48w4 E2 12 p2 576£414 1296£4 14 
£5 + Ll +---zg--

96w2 E3 13[1 4W4 [12 E2 ]2 6912£4 ]4 

.+ LS L2 L8 o 

1056(J}[1E3]3 763i£4]4 = 0 
LS V (16.6.16) 

11 
4.02 _ 264ol-fJEI 1908E2

/ 2 

w P L3 L6 = 0 

Dividing Eq. (l6.6J6) by 4~2212, we obtain two roots for WI2p as 

2p -5.817254El 2p _ 29.817254El 
WI L3 WI -, V (16.6.17) 

Ignoring the negative root as it is not physically possible and solving explicitJy for cOl) 
we have ' 

2 29.817254El 
Wt = PL3 or 

29.817254El = 5.46 {ii 
fJL3 L2 VAP (16.6.18) 
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In summary, comparing Eqs (16.6.8) and (16.6.18) with the exact solution, Eq. 
(16.6.9), for the first natural frequency, we have 

4.90 (ii 
Two Beam Elements: (J) = V V AP 

5.46 (ii 
Three Beam Elements: (J) = 0 V AP 

. 5.59 (El) 1/2 
Exact solunon: (J) = L2 Ap 

(16.6.19) 

We can observe that with just three elements the accuracy bas significantly increased 

• 
Example 16.6 

Detcnnine the first natural frequency of vibration of the cantilever beam shown in 
Figure 16-17 with the following data: '. 

l---lSin·-1 

:s! ... ---~30in.--~-_+j., 

Figure 16-17 Fixed-free beam (tWo-element model, lumped·m~ss matrix) 

Length of the beam: 
Modulus of elasticity: 
Moment of inertia: 
Cross·sectional area: 
Mass density: 
PoissOn's ratio: 

L = 30 in. 
E = 3 X 107 psi 
1 = 0.0833 in4 
A = 1 in2 

P = O.OO0731h-s1jin4 

v=O.3 

The finite element longhand solution result for the firSt natural frequency is obtained 
similarly to that of Example 16.5 as . 

(t) = .3.148 (El)1/2 
L2 Ap 

The exact solution according to beru:n theory [I I is 

(t) = 3.516 (EI)1/2 
L2 pA 
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(a) First mode 

(b) Second mode 

y 

lz~----.:::::::-..-.... 
~---------~ 

( c) Third mode 

Figure 16-18 First, second, and third mode shapes of flexural vibration for a 
cantilever beam 

According to vibration theory for a clamped-free beam [1], we relate the second and 
third natUral frequencies to the first natural frequency by 

CU:2 = 6.2669 
COl 

W3 = 17.5475 
WI 

Figure 16-18 shows the first, second, and third mode shapes corresponding to the first 
three natural frequencies for the cantilever beam of Example 16.6 as obtained from a 
computer program. Note that each mode shape has one fewer node where a node is a 

Table 16-3 Finite element computer solution compared to exact solution for 
Example 16.6 

W) (rad/s) W2 (rad/s) 

Exact solution from beam theory 
Finite element solution 

Using 2 elements 
Using 6 elements 
Using 10 elements 
Using 30 elements 
Using 60 elements 

228 

205 
226 
227.5 
228.5 
228.5 

1434 

128.6 
1372 
1410 
1430 
1432 
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point of zero displacement. That i~ the first mode has all the elements of the beam of the 
same sign [Figure 16-18(a)}, the second mode has one sign change and at some point 
along the beam the displacement is zero [Figure 16-18(b)), and the third mode has two 
sign changes and at two points along the beam the displacement is zero [Figure 16-18(c)J. 
. Table 16-3 shows the computer solution compared with the exact solution .• 

... 16.7 Truss, Plane Frame, Plane Stress/Strain, 
Axisymmetric, and Solid Element Mass 
Matrices 

The dynamic analysis of the truss and that of the plane frame are performed by 
extending the concepts presented in Sections 16.2 and 16.6 to the truss and plane 
frame, as has previously been done for the static analysis of trusses and frames. 

Truss Element 

The truss analysis requires.the same transfonnation of the mass matrix from local to 
global coordinates as in Eq. (3.4.22) for the stiffness matrix; that is, the global mass 
matrix for a truss element is given by • 

ll! = IT rill (16.7.1) 

We are now dealing with motion in two or three dimensions. Therefore) we must 
refonnulate a bar element mass matrix with both axial and transverse inertial proper­
ties because mass is included in both the global x and y directions in plane truss anal· ' 
ysis (Figure 16-19). Considering two-dimensional motion) we express both local axial 
displacement fl and transverse displacement ii for the element in tenns of the local axial 
and transverse nodal displacements as 

IJb) 
{ ~} =.!. [L - x 0 4 X ~] ~IY 

V L 0 LxOx d2x 

d2y 

(16.7.2) 

In general, 1: = lY4; therefore, the shape function matrix from Eq. (16.7.2) is 

[N]=~[L-X 0 x 0] 
L 0 L x 0 x (16.7.3) 

Figure 16-19 Truss element arbitrarily oriented in 
x-y plane showing nodal degrees of freedom 

~""-'='~---x 
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We can then substitute Eq. (16.7.3) into the general expression given by Eq. (16.2.19) 
to evaluate the local truss element consistent-mass matrix as 

[
2 0 1 0] 

[ A 1 = pAL 0 2 0 1 
m 6 1 0 2 0 

o 102 

(16.7.4) 

The truss element lumped-mass matrix for two-dimensional motion is obtained 
by simpJy lumping mass at each node and remembering that mass is the same in both 
the x and y directions. The local truss element lumped-mass matrix is then 

pAL [~ ~ ~ ~l 
2001.0 

000 1 

(16.7.5) 

Plane Frame Element 

The plane frame analysis requires first expanding and then combining the bar and 
beam mass matrices to obtain the Jocal mass matrix. Because we recall there are six 
total degrees of freedom associated with a plane frame element (Figure 16-20), the 
bar and beam mass matrices are expanded to order 6 x 6 and superimposed. On com­
bining the local axes consistent-mass matrices for the bar and beam from Eqs. 
(16.2.23) and (16.6.5). we obtain 

ru = pAL 

2/6 0 0 1/6 0 0 

156/420 22L/420 0 54/420 -13L/420 

Symmetry 

2 

4L2/420 0 13L/420 -3L2/420 

2/6 0 0 
(16.7.6) 

156/420 -22L/420 

4L2/420 

Figure 16-20 Frame element arbitrarily oriented 
in local coordinate system showing nodal degrees 
of !teed om 
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On combining the Jumped-mass matrices Eqs. (16.2.12) and (16.6.1) for the bar and 
beam, respectively, the resulting local axes plane frame lumped-mass matrix is 

db dfy ~I d2x d2}, "2 1 0 0 0 0 0 
0 I 0 0 0 0 

A pAL 0 0 0 0 0 0 (16.7.7) m=--
- 2 0 0 0 0 0 

0 0 0 0 0 
0 0 0 0 0 0 

The global mass matrix m for a plane frame element arbitrarily oriented in x-y coordi­
nates is transfonned according to Eq. (16.7.1), where the transformation matrix I is 
now given by Eq. (5.1.10) and either Eq. (16.7.6) for consistent-mass or (16.7.7) for 
lumped-mass matrices. 

Because a longhand solution of the tirne-dependent plane frame problem is quite 
lengthy, only a computer program solution wm be presented in Section 16.9. 

Plane Stress/Strain Element 

The plane stress, plane strain, constant-strain triangle element (Figure 16-21) consis­
tent-mass matrix is obtained by using the shape functions from Eq. (6.2.18) and the 
shape function matrix given by substituting 

into Eq. (16.2.19) to obtain 

y 

(16.7.8) 

Figure 16-21 CST element with nodal 
degrees of freedom 
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Letting dV = t dA and noting that fA Nf dA = ! A, SA NIN2 dA = -tz A, and so on, we 
obtain the CST global consistent-mass matrix as 

2 0 0 0' 
2 0 0 1 

ptA 2 0 1 0 
(16.7.9) m=- i 0 1 - 12 

2 0 
Synunetry 2 

For the isoparametric quadrilateral element for pJane stress and plane strain con­
sidered in Chapter 10, we use the shape functions given by Eq. (10.3.5) with the shape 
funttion matrix given in Eq. (10.3.4) substituted into Eq. (16.7.10). This yields the 
quadrilateral element consistent-mass malrix as 

m=ptJl 11 J1Tlfdetldsdt 
-1 -1 

(16.7.l0~ 

Tne integral in Eq. (16.7.10) is evaluated best by numerical integration as described in 
Section 10.5. 

Axisymmetric Elem~nt 

The axisymmelric triangular element (considered in Chapfer 9 and shown in Figure 
16-22) consistent-mass matrix is given by 

(16.7.11) 

m = 27r.P
J
r (NI't + N2r2 + N3r3)lfTlf dA 
A . 

(16.7.12) 

2 

Figure 16-22 Axisymmetric: triangular 
element showing nodal degrees of 
freedom 
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Noting that 

we obtain 

rcpA 
m=-- to 

where 

4 _ 
3'1 + 2r 

Symmetry 

o 

Tetrahedral Solid Element 

J NfN.,dA =2A 
A - 60 

and so on 

2f-2 
3 

o 2; 

0 

'3 

3 

0 

4 
"3r2 + 2; 

_ Tt +'2 +'3 '=--3--

2f _:2 
3 

0 

2f '1 

3 

0 

4 
3r3 +2; 

(16.7.13) 

0 

2r-2 
3 

0 

2r-~ 
3 

0 

4 _ 
3'3 + 2r 

(16.7.14) 

Finally, the tetrahedral solid element (considered in Chapter 11) consistent-mass matrix 
is obtained by substituting the shape function matrix Eq. (11.2.9) with shape functions 
defined in Eq. (11.2.10) into Eq. (16.2.19) and performing the integration to obtain 

2 0 0 1 0 0 1 0 0 1 0 0 

2 0 0 I 0 0 0 0 1 0 

2 0 0 1 0 0 1 0 0 

2 0 0 1 0 0 1 0 0 

2 0 0 1 0 0 I 0 

pV 2 0 0 1 0 0 
(16.7.15) m= 20 2 0 0 I 0 0 

2 0 0 1 0 
2 0 0 1 

2 0 0 
2 0 

Symmetry 2 
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A 16.8 Time-Dependent Heat Transfer 

In this section) we consider the time-dependent heat transfer problem in one dimen­
sion only. The basic differential equation for time-dependent heat transfer in one 
dimension was given previously by Eq. (13.1.7) with the boundary conditions given 
by Eqs. (13.1.10) and (13.1.11). 

The finite element form.ulation of/the equations can be obtained by minimization 
of the following functional: ,: 

'h = H!J[K~(~J' -2(Q <pm] dV 

~ II q+TdS +~IJ h(T - Too)2 tis (16.8.1) 

52 53 . 

Equation (16.8.1) is similar to Eq. (13.4.10) with definitions given by Eq. (13.4.11) ex-
cept that the Q term is now replaced by . 

Q-cpT (16.8.2) 

where) again, c is the specific heat of the material, and the dot over the variable T 
denotes differentiation with respect to time. Again, Eq. (13.4.22) obtained in Section 
13.4 for the conductivity or stiffness matrlX and Eqs. (13.4.23)-(13.4.25) for the force 
matrix terms are applicabJe here. 

The term given by Eq. (16.8.2) yields an additional contribution to the basic 
element equations previously obtained for the time-independent problem as follows: 

nQ = - III T(Q - cpT)dV (16.8.3) 
v 

Again, the temperature function is given by 

{T} [NHF} (16.8.4) 

where iN] is the shape function matrix given by Eq. (13.4.3) or Eqs. (16.2.3) for the 
simple one-dimensional element) and {i} is the nodal temperature matrix. Substituting 
Eq. (16.8.4) into Eq. (16.8.3) anq differentiating with respect to time where indicated 
yield 

nQ - JJI ([N]{i}Q- cp[N]{i}[N]{t})dV (16.8.5) 
v 

where the fact that [N] is a function OIuy of the coordinate system has been taken into 
account. Equation (16.8.5) must be minimized with respect to the nodal temperatures 
as follows: 

:~} = III [Nf QdV + IIJ cp[N] T-[NJ dV{i} (16.8.6) 
v v 
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where we have assumed that {h r~mains constant during the differentiation with re­
spect to {t}. Equation (16.8.6) results in the additional time-dependent tenn added 
to Eq. (13.4.18). Hence, using previous definitions for the stiffness and force matrices, :' 
we obtain the element equations as 

(16.8.7) 

where now [til] = IJJ cp[N]T[N]dV (16.8.8) 
v 

For an element with constant cross-sectional area A, the differential volume is 
dV == A dx. Substituting the one-dimensional shape function matrix Eq. (13.43) into 
Eq. (16.8.8) yields 

or (16.8.9) 

Equation (16.8.9) is analogous to the consistent-mass matrix Eq. (16.2.23). The 
lumped-mass matrix for the heat conduction problem is then 

[m] = cpAL [1 0] 
2 0 1 

(16.8.10) 

which is analogous to Eq. (16.2.12) for the one-dimensional stress element. 
The tiroe-dependent heat-transfer problem can now be solved in a manner anal­

ogous to that for the stress _analysis problem. We present the numerical time 
integration scheme. 

Numerical Time Integration 

The numerical time integration method described here is similar to Newmark's 
method used for structural dynamics analysis and can be used to solve time-dependent 
or transient heat-transfer problems. 

We begin by assuming that two temperature states Xi at time Ii and Xi+1 at time 
t;+1 are related by 

(16.8.11) 

Equation (16.8.11) is known as the generalized trapezoid rule. Much like Newmark's 
method for numerical time integration of the second~order equations of structural 
dynamics, Eq. (16.8:1 1) includes a parameter P that is chosen by the user. 

Next we express.Eq. (16.8.7) in global form as 

{F} = [KJ{T} + [M]{t} (16.8.12) 
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We now write Eq. (16.8.12) for time ti and then for time 1,.+1. We then multiply th~ 
first of these two equations by 1 - P and the second by fJ to obtain' 

(J6.8J3a; 

P(KIHI + Mli+') = Pfi+1 (16.8J3bj 

Next we add Eqs. (16.8.13a and b) together to obtain 

M[(1 - [J)ti + Pli+lJ + K[(l - [3)I; + fJli+rl = (1 - P)fi + PE+I (16.8.14) 

Now, using Eq. (16.8.11), we can eliminate the time derivative terms from Eq. 
(16.8.14) to write 

M(Ti+l - T i) , 
- - At - + K[(l - fJ)'Ii + Pli+d = (1 - P)fi + fJEi-t.1 (16.8.15) 

Rewriting Eq. (16.8.15) by grouping the Ii+l terms on the left side, we have 

(LM + PK ) Ii+1 = [LM - (1 - jJ)K]Ii + (1 - P)Ei+ PEi-,--! (16.8.16) 

The time integration to solve for T begins as follows. Given a known Initial tempera­
ture"Io at time l = 0 and a time step At, we solve Eq. (l6.8.16) for II at t = At. Then, 
using II, we determine 12 at t 2(At): and so on. For a constant At, the left-side co­
efficient of Ti+1 need be evaluated only one time (assuming M and K do not vary with 
time). The matrix Eq. (16.8.16) can then be solved in the usual manner, such as by 
Gauss elimination. For a one-dimensional heat-transfer analysis, element Ii is given 
by Eqs. (13.4.22) and (13.4.28), whereas! is given by Eqs. (13.4.26) and (13.4.29). 

It has been shown that depending on the value of fJ, the time step III may have an 
upper limit for the numerical analysis to be stable. If P < !, the largest III for stability 
as shown in Reference [12] is 

2 
At=-:---~-

(1 - 2fJ)lmax 

where Amax is the largest eigenvalue of 

(K -X!J1)I' = 0 

in which, as in Eq. (16.4.2)1 we have 

ICt) = I'i:U 

(16.8.17) 

(16.8.18) 

(16.8.19) 

with I' representing the natural modes. If P ;;::: !, the numerical analysis is uncondi­
tionally stable~ that is, stability of solution (but not accuracy) is guaranteed for At 
greater than that given by Eq. (16.8.l7), or as At becomes indefinitely large. Various 
nmnerical integration methods result, depending on specific values of p: 

p = 0: Forward difference, or Euler (3), which is said to be conditionally 
stable (that is, Ilt must be no greater than that given by 
Eq. (16.8.17) to obtain a stable solution). 
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fJ ==~: Crank-Nicolson, or trapezoid, rule, which is unconditionally 
stable. 

p :::: ~: Galerkin, which is unconditionally stable. 

f3 = 1: Backward difference, which·is unconditionally stable. 

If P = 0. the immerical integration method is called explicit; that is, we can solve 
f~r Ii+1 directly at time at knowing only previous information at t == Ii- If fJ > 0, the 
method is called implicit. If a diagonal mass-type matrix M exists and P == 0, the com­
putational effort for each time step is small (see Example 16.4, where a lumped-mass 
matrix was used), but so must be at. The choice of fJ > ~ is often used. However, if 
fJ = ! and sharp transients exist, the method generates spurious oscillations in the so­
lution. Using P>~, along 'with smaller M [12], is probably better. Example 16.7 
illustrates the solution of a one-dimensional time-dependent heat-transfer problem 
using the nwnericaI time integration scheme {Eq. (16.8.16)J, 

Example 16.7 

A circular fin (Figure 16-23) is made of pure copper with a thermal conductivity of 
K;u = 400 W/(m· 0q, h = 150 W/(m2 . 0q, mass density p = 8900 kg/m3, and spe­
cific heat c = 375 J/(kg· °C) (1 J = 1 W· s). The initial temperature of the fin is 
25 ClC. The fin length is 2 cm, and the diameter is 0.4 em. The right tip of the fin is 
insulated. The base of the fin is then suddenly increased ·to a temperature of 85°C 
and maintained at this temperature. Use the consistent form of the capacitance ma· 
trix, a time step of 0.1 s, and P =~. Use two elements of equal length. Determine the 
temperature distribution up to 3 s. 

Using Eq. (13.4.22), the stiffness matrix is 

1 2 
2 3 

k(l) = k(2) = AKxx [ 1 -}1 ] 
- - L-l 

2 
2 3 

hPL [~ ~] 

k(l) = k(2) = n(0.004)2(400} [ 1 -1] 150(2n)(O.002)(0.01) [2 21] 
- - 4(0.01) -1 1 + 6 1 

T..,= 2S<>C 

Insulated tip 

8S·C 

Figure 16-23 Rod subjected to time-dependent temperature 

(16.8.20: 
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Assembling the element stiffness matrices, Eq. (16.8.20), we obtain the global stiffness 
matrix as 

1 2 3 

. [ 0.50894 -0.49951 0 1 
IS. = -00.49951 1.01788 -0.49951 W 

-0.49951 0.50894 

(16.8.21) 

Using Eq. (13.4.25), we obtain each element force matrix as 

{ : } = (150)(25'C)(~)(O.002)(OOI) { : } 

= {0.23561} 
0.23561 

Using Eq. (16.8.22).. we find that the assembled global force matrix is 

{ 

0.23561 } 
{F} = 0.47122 W 

0.23561 

(16.8.22) 

(16.8.23) 

Next using Eq. (16.8.9), we obtain each element mass (capacitance) matrix as 

[m] = cpAL [ 2 1] 
6 1 2 

(375)(8900) 7r(0.~04)2 (0.01) [2 21] 
m(!)=m(2) 

6 1 

= O.06990[~ ~] w· stC 

Using Eq. (16.8.24), the assembled. capacitance matrix is 

123 

[

0.13980 0.06990 ° ] W . s 
M 0.06990 0.27960 0.06990 ~ 

o 0.06990 0.13980 

Using Eq. (16.8.16) and Eqs. (16.8.21) and (16.8.25), we obtain 

(1 M + PIS.) = 0.36603 3.4747 0.36603~ 
. [1.7374 0.36603 0 1 

t 0 0.36603 1.7374 

(16.8.24) 

(16.8.25) 

(16.8.26) 
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Table 16-4 Nodal temperatures at various times 
for Example 16.7 

Time 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 
2.1 
2.2 
2.3 
2.4 
2.5 
2.6 
2.7 
2.8 
2.9 
3.0 

and 

Temperature of Node Numbers {"q 

1 2 3 

85 
85 
85 
85 
85 
85 
85 
85 
85 
85 
85 
85 
85 
85 
85 .~ 

85 
85 
85 
85 
85 
85 
85 
85 
85 
85 
85 
85 
85 
85 
85 

18.534 
29.732 
36.404 
41.032 
44.665 
47.749 
50.482 
52.956 
55.218 
57.296 
59.208 
60.969 
62.593 
64.089 
65.469 
66.742 
67.915 
68.996 
69.993 
70.912 
71.760 
72.542 
73.262 
13.926 
74.539 
75.104 
15.624 
76.104 
76.547 
76.955 

26.311 
21.752 
22.662 
25.655 
29.312 
33.059 
36.669 
40.062 
43.218 
46.139 
48.837 
5].327 
53.623 
55.741 
57.693 
59.493 
6U-52 
62.683 
64.094 
65.395 
66.594 
67.700 
68.720 
69.660 
70.527 
71.326 
72.063 
72.742 
73.36g 
13.946 

[~ M - (1 - PM:;] = 0.8655 2.457 0.8655~ 
[

1.2280 0.8655 0 J 
I 0 0.8655 1.2280, 

(16.8.27) 

where fJ = j and At = 0.1 s have been used to obtain Eqs. (16.8.26) and (16.8.27). For 
the first time step. t = 0.1 S, we then use Eqs. (16.8.23), (16.8.27), and (16.8.26) in 
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Eq. (16.8.16) to obtain 

[ 

1. 7374 0.36603 0 ] { 850C} 
0.36603 3.4747 0.36603 12 

o 0.36603 L 7374 t3 

[

1.2280 0.8655 0 1 { 250C} { 0.23561 } 
= 0.8655. 2.457 0.8655 25°C + 0.47122 

o . 0.8655 1.2280 25°C 0.23561 . 

(16.8.28) 

In Eq. (16.8.28), we should note that because Fi = Ei+[ for an time, the sum of the 
terms is (I - PJEi + Pfi+1 = E for an time. This is the column matrix on the right 
side of Eq. (16.8.28). We now solve Eq. (16.8.28) in the usual manner by partitioning 
the second and third equations of Eq. (16.8.28) from the first equation and solving 
the second and third equations simultaneously for 12 and t3. The results are 

l2 = 18.534°C 

At time t = 0.2 s, Eq. (16.8.28) becomes 

. [~::~:~3 ~:!~:~3 ~.36603] { 85t:C } 
o 0.36603· 1.7374 13 

= [~::: ~:!:~5 ~.86551.{ 18~::~C} + {~:~~~~~} 
o 0.8655 1.2280 26.371°C 0.23561 

80.0,..-------------'--------, 

60.0 
Node 3 

~ 
;:; 40.0 

~ I 

~ :1 I, , , , • , • , , " , , ,I 
o 0.2 0.40.6 0.8 1 1.2 1.4 1.6 1.8. 2 2.22.42.62.8 3 

Time, s 

(16.8.29) 

Figure 16-24 Temperature as a function of time for nodes 2 and 3 of Example 16.7 
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Solving Eq. (16.8.29) for 12 and t3, we obtain 

12 = 29.732 °c 

The results through a time of 3 s are tabulated in Table 16-4 and plotted in Fig· 
urel~~. • 

Ai 16.9 Computer Progr:arn.&ample Solutions 
for Structural Dynamics 

In this section, we report some results of structural dynamics from a computer pro­
gram. We report the results of the natural frequencies of a fixed-fixed beam using the 
plane stress element in Algor [15] and compare how many elements of this type are 
necessary to obtain correct results. We also report the results of three structural 
dynamics problems, a bar, a beam, and a frame subjected to time-dependent loadings. 

Finally, we show two additional models, one of a time-dependent three-dimen­
sional gantry crane made of beam elements and subjected to an impact loading, and 
the other of a cab frame thilt travels along the underside of a crane beam. 

Figure 16-25 shows a fixed-fixed steel beam used for natural frequency detenni­
nation using plane stress elements. Table 16-5 shows the results of the first five natural 
frequencies using 100 elements and then using 1000 elements. Comparisons to the an­
alytical solutions from beam theory are shown. We observe that it takes a large num­
ber of plane stress elements to accurately predict the natural frequencies whereas it 

Cross section 

~ 
.4 

I in. , 
.. 100 in. ... I in .... 

Figure 16-25 Fixed-fixed beam for natural·frequencY determination moqeled using 
plane stress element 

Table 16-5 Results for first five frequencies using 100 and 1000 elements 
and exact solution 

co 100 Elements 1000 Elements 

1 130.8 130.7 130.6 
2 360.8 359.8 359.7 
3 707.3 704.7 704.1 
4 1169.2 1163.3 1161.6 
5 1746.6 1734.5 1731.0 
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F(t).lb 

~I 2 J 

, • ~t) 
!--UX) in+lOO in~ 

1000 

0.001 0.002 I, s 

Figure 16-26 Bar subjected to forcing function shown 

only took a few beam elements to accurately predict natural frequencies (see Example 
16.6 and Table 16-3). 

Figure 16-26 shows a steel bar subjected to a time-dep~dent forcing function. 
Using two elements in the model, the nodal displacements at nodes 2 and 3 are pre­
sented in Table 16-6. A time step of integration of 0.00025 s was used. This time 
step is based on that recommended by Eq. (16.5.1) and determined in Example 
16.4, as the bar has the same properties as that of Example 16.4. 

Figure 16-27 shows a fixed-fixed beam subjected to a forcing function. Here 
. E = 6.58 X 106 psi, 1= 100 in.4, mass density of 0.1 ItK2lin.4 and a time step of in­

tegration of 0.01 s were used for the beam. The natural frequencies and displace­
ment-time history for nodes 2 and 3 are shown in Table 16-7. 

Table 16-} lists the first six natura] frequencies for the fixed-fixed beam and the 
vertical displacement versus time for nodes 2 and' 3 of the beam. The natural frequen­
cies 1, 2. 3, and 6 are flexural mqdes, while mode 5 is an axial mode. These modes are 
seen by looking at the modes from a frequency analysis. The maximum displacement 
under the load (at node 3) compares with the solution in Reference [14J. This maxi­
mum displacement is at node 3 at a time of 0.08 s with a value of 1.207 in. The min­
imum displacement at node 3 is -0.2028 in. at time 0.16 s. The static deflection for the 
beam with a concentrated load at mid-span is 0.633 in. as obtained from the classical 
solution of y = PL3/192EJ. The time-dependent response oscillates about the static 
deflection. 

A time step of 0.01 was used in the fixed-fixed beam as it meets the recommended 
-time step as suggested in Section 16.3. That is, At < TlI/l0 to TlI/20 is recommended to 
provide accurate results for Wilson's dir~ct integration scheme as used in the Algor 
program. From the frequency analysis (see the output in Table 16-7), the circular fre­
quency (06 = 197.52 or the natural frequency is /6 = (Jj6/(2n) = 31.44 cyclesls or 
Hertz (Hz). Now we use At = Tn/20 = 1/(20}6) = 1/[20(31.43)] = 0.015 s. Therefore, 
At = 0.01 s is acceptable. Using a time step greater than TnllO may result in loss of 
accuracy as some of the higher mode response contributions to the solution may be 
missed. Often times a cut-off period or frequency is used to decide what largest natural 
frequency to use in the analysis. In many applications onJy a few lower modes contrib­
ute significantly to th~ respon~. The higher modes are then not necessary. The highest 
frequency used in the analysis is called the cut-off frequency. For machinery parts, the 
cut-off frequency is often taken as high as 250 Hz. In the fixed-fixed beam, we have 
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Table 16-6 Displacement time history, nodes 2 and 3 
of Figure 16-26 

"'NODE NUMBER· -
TIME 2-( 2) 

.00025 4.410E-06 

.00050 4.600E-05 

.00075 2.147E-04 

.0(}100 6.5078-04 

.00125 1.481E-03 

.00150 2.6998-03 

.00175 4.0blE-03 

.00200 5.109E-03 

.00225 5.34.9E-03 

.00250 4.501E-03 

.00275 2.670E-03 

.00300 3.2658-04 

.00325 -1.907E-03 

.00350 -3.538E-03 

.00375 -4.376E-03 

.00400 -4.530E-03 

.00425 -4.232E-03 

.00450 -3.6458-03 

.00475 -2.772E-03 

.00500 -1.514E-03 

.00525 1.599E-04-

.00550 2.082E-03 

.00575 3.8678-03 

.00600 5.055£-03 

.00625 5.312E-03 

.00650 4.583£-03 

.00675 3.106E-03 

.00700 1.2828-03 

.00725 -5.031E-04 

.00750 -2.015E-03 

.00775 -3.183E-03 

.00800 -4.013E-03 

.00825 -4.477E-03 

.00850 -4.466£-03 

.00875 -3.838E-03 

.00900 -2..542E-03 

.00925 -7.098E-04 

MAXIMUM ABSOLUTE VALUES 

MAXIMUM 
TIME 

5.349B-03 
2.250E-03 

(COMPONENT NUMBER) 
3-( 2) 

6.1568-05 
4.668E-04 
1. 425E-03 
2.967E-03 
4.8738-03 
6.439E-03 
7.143E-03 
6.860E-03 
5.793£-03 
4.385E-03 
2.862E-03 
1.141E-03 

-9.441E-04 
-3.354E-03 
-5.694E-03 
-7.319E-03 
-7.646E-03 

--6.463E-03 
-4.057E-03 
-1.083E-03 
1. 740E-03 
3.9218-03 
5.3138-03 
6.021E-03 
15.185E-03 
5.814E-03 
4.776E-03 
2..947E-03 
4.073E-04 

-2.460E-03 
-5.051£-03 
-6.763E-03 
-7.233E-03 
-6.4648-03 
-4.770E-03 
-2.594£-03 
-3.179E-04 

7.646E-03 
4.250E-03 

selected a cut-off frequency of 16 = 31.44 Hz in detennining the time step of integra­
tion. This frequency is the highest flexural mode frequency computed for the four­
element beam model. 
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F(t) 

10,000 Ibl-----.. 

o oj 

Figure 16-27 Fixed-fixed beam subjected to forcing function 

Table 16-7 Natural frequencies and displacement 
time history (nodes 2 and'3, Figure 16-27) 

Frequencies = 6 
mode circular 

number frequency 
(rad/sec) 

1 4.522762320741130+01 
2 4.522762320741130+01 
3 1.201598934753190+02 
4 1.201598934753190+02 
5 1.241688327976880+02 
6 1.97518763916263D+02 

Y-DISPLACEMENT 

*NOQE NUMBER* -
TIME 2-( 2) 

.01000 1.791E-02 

.02000 1.203E-01 

.03000 2.987E-01 

.04000 5.201E-01 

.05000 7.624E-01 

.06000 9.9072-01 

.07000 1.152E+OO 

.08000 1.207E+00 

.09000 1. 150E+00 

.10000 1.003E+OO 

.11000 7.873E-01 

.12000 5.270E-01 

.13000 2.601E-Ot 

.14000 3.174£-02 

.15000 -1. 267E-01 

.16000 -2.028E-01 

.17000 -1. 962E-Ol 

MAXIMUM ABSOLUTE VALUES 

MAXIMUM 
TIME 

1.207E+00 
8.000E-02 

(COMPONENT NUMSER) 
3-( 2) 

4.050E-03 
3:458E-02 
1.197£-01 
2.542E-01 
3.978E-01 
5.l43E-Ol 
5.916E-01 
6.246E-01 
6.024E-01 
5.217E-01 
3.989E-Ol 
2.60lE-Ol 
1.241E-Ol 
4.247E-03 

-8.361E-02 
-1. 244E-Ol 
-1.lS3E-Ol 

6.246E-01 
8.000£-02 

0.2 rime, s 
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Damping will not be considered in any examples. However, Algor allows you to 
consider'damping using Rayleigh damping in the direct integration method. For Ray-
leigh damping, the damping matrix is 

Ie} = Cl[MJ + P[KJ (16.9.1) 

where the constants a. and P are calculated from the system equations 

(j. + fko; == 2cJJi'i (16.9.2) 

Table 16-8 Forces and moments versus time for elements 1 and:2 of Figure 16-27 

1**** BEAM ELEMENT FORCBS AND MOMENTS 

BLEMENT CASE AXIAL SHEAR SHEAR TORSION BBNDING BENDING 
NO. (MODE) FORCB FORCE FORCE MOMENT MOMENT MOMENT 

:al R2 R3 Ml M2 M3 

O.OOOE+OO 1. 68SB+02 O.OOOE+OO O.OOOE+OO 6. 764E+02 
O.OOOE+OO -1.68SE+02 O.OOOE+OO O.OOOE+OO O.OOOE+OO 7.7488+03 

2 O.OOOE+OO 6. 662E+02- O.OOOE+OO O.OOOE+OO O.OOOE+OO -7.l00E+03 
O.OOOE+OO -6.662E+02 O.OOOE+OO O.OOOE+OO O.OOOE+OO 4.041B+04 
O.OOOB+OO -4. 880E+02 O.OOOE+OQ' O~OOOE"'OO O.OOOE"'OO -7.116E+04 
O.OOOE+OO 4.880E,+02 O.OOOE+OO O.OOOE+OO O.OOOE+OO 4.676E+04 

4 O.OOOE+OO -3.738E+03 O.ooOE+OO O.OOOE+OO O.OOOE+OO -1. 961E+05 
O.OOOE+OO 3. 738E+03 O.,OOOE+OO O.OOOE+OO 0.000£+00 9.226E+03 

5 O.OOOE+OO -7.069E+03 O.OOOE+OO 0.000£+00 O.OOOE+OO -3. 272E+05 
0.000£+00 7.069£+03 O.OOOE+OO 0.000£+00 O.OOOE+OO -2.624£+04 

6 O.OOOE+OO -9.022£+03 0.000£+00 O.OOOE+OO 0.000£+00 -4.211E+05 
0.0.00£+00 9.022£+03 O.OOOE+OO 0.000£+00 O.OOOE",:,OO -2.9988+04 
O.OOOE+OO -1.008£+04 O.OOOE+OO O.OOOE+Oo. O.OOOE+OO -4.794E+05 
0.000£+00 1.008E+04 0.000£+00 0.000£+00. 0.000£+0.0' -2.448£+04 

8 O.OOOE+OO -1.086E+04 O.OOOE+OO 0.000£+00 O.OOo.E+OO -S.098E+o.S 
0.000£+00 1.086£+04 O.OOo.E+OO O.OOOE+OO 0.0.00£+00 -3.33SB+04 

2 O.OQOE+OO -4.514£+02 O.OOOE+OO O.OOOE+OO O.OOOE+OO -7.748£+03 
O.OOOE+OO 4.514E+02 O.OOOE+o.O O.OOOE+OO O.Oo.OE+OO -1.482E+04 

2 2 O.OOOE+OO ':"2 .. 566£+03 O.OOOE+OO O.OOOE+OO O.OOOE+OO -4.041E+04 
O.OOOE+OO 2.566E+03 O.OOOE+OD 0..0.00£+00 O.OOOE+OO -8. 791E+04 

3 0.000£+00 -4.229£+03 0.000£+00 0.000£+00 0.000£+00 -4.676E+04 
O.OOOE+OO 4.229£+03 O.OOOE+OO 0.000£+00 O.OOOE+OO -1. 647E+05 

2 O.OOOE+OO -4.476£+03 0.000£+00 O.OOOE+OO 0.000£+00 -9.226£+03 
O.OOOE+OO 4.476E+03 O.OOOE+OO O.Oo.OB+OO o.oOM+oo -2.146E+05 

2 5 0.000£"'00 -4.970£+03 O.OOOE+OO O.OOOE+OO O.OOOE+Oo. 2.624E+04 
O.OOOE+OO 4.970E+03 0.000£+00 O~OOOE+OO O.OOOB+OO -2.7478+05 

6 O.OooE+OO -6.623E+03 0.000£+00 0.0.00.£+00 0.000£+00 2.998£+04 
O.OOOE+OO 6.623£+03 O.OOOE+OO O.OOOE+OO O.OOOE+OO -3.611£+05 

2 0.000£+00 -8.118£+03 0.000£+00 O.OOOE+OO O.OOOE+OO 2.44B£+04 
O.OOOE+o.O 8.l18£+03 0.000£+00 0.000£+00 O.OOOE+OO -4.304E+05 

2 8 0.000£+00 -8.196E+03 0.000£+00 0.000£+00 0.000£+00 3.335£+04 
0.000£'+00 8.196E+03 O.OOOE+OO 0.0001:':+00 0.000£"'00 -4.431£+05 
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where ())i are circular natural frequencies obtained through modal analysis, and {i 
are damping ratios specified by the analyst. For instance, assume we assign damping 
ratios {I and (2, from the above Eq. (16.9.2), we can show that a and P aJ;e 

(16.9.3) 

For fJ = O~· [CJ = a[.MJ and the higher modes are only slightly damped, while for 
ct = 0, [C) = P[K} and higher modes are heavily damped. To obtain II and p, we then 
necessarily run the modal analysis program first to obtain the frequenci,es. For in­
stance, in the fixed-fixed beam, the first two different frequencies are ())J = 45.23 radls 
and ll>3 = 120.16 radls (CO2 is the same as l.O3, so use ())3). Now assume light damping 

2F{t) 
--II> 

~,.. -+---i--____.x 2 

F(t) 

Fa --------

o 

3L---Io+III-1.-IIIioI..-""";2£-i 

(a) 

t.=17.Sms 

(1)) 

tz=35ms t 

Figure 16-28 (a) Six-member plane frame; (b) dynamic toad 
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(C 5; 0.05). Therefore, let 'I = '2 = 0.05. Using these ro's and Cs, in Eqs. (16.9.3), we 
obtain IX 3.286 and P = 0.000605. These values could be used for (J. and P if you 
want to include 5% damping (' = 0.05). 

Table 16-8 lists the element forces and moments for elements 1 and 2 up to 
time 0.08 s. This time corresponds to when the maximum dlsplacement occurs and is 
also when the maximum moments occur. The largest element 1 bending moment is 
M3 -509,800 Ib in. at the wall (node 1) at a time 0(0.08 s (see the column "Case 
(Mode)," number 8). The largest element 2 bepding moment is M3 = -443,100 lb in. 

Figure 16-28(a) shows a plane frame consisting of six rigidly connected pris­
matic members with dynamic forces F(t) ana 2F(I) applied in the x direction ~tjoints 
6 andA, respectively. The time variation of FCt) is shown in Figure 16-28(b). The 
results are for steel with cross-sectional area of 30 in2, moment of inertia' 
of 1000 in\ L = 50 in., and Fl = 10,000 lb. Figure 16-29 shows the displaced 
frame for the worst stress at time of 0.035 s.'The Jargest x displaCement of node 6 
for the time of 0.O~5 sis 0.1551 inch. This value compares closely with the solution 
in Reference [16]. . 

Finally> Figures 16-30(a) and 1 &:-31 (a) show models of a gantry crane and a cab 
frame subjected to dynamic loading functions (Figures 16-30(b) and (16-31{b)). For 
details of these design solutions consult [17-18]. 

Figure 16-29 Displaced frame with worst stress at time 0.035 s 

BEam-Truss 

1
8121.9 
S1J1.B 
33"'E.B 
999."'5 
-1315.3 
-31j2.3 
-61i:B.'i 
-BSIJ-I.'i 
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41 

39 3S 

Finite Element Analysis of Gantry Crane 

F(r),lb 

5400 

0.1 

(a) 

0.4 
Time. t (sec)-

(b) 

43 

0.6 

Figure 16-30 {a) Gantry crane model composed of 73 beam elements and 
(b) the time-dependent trapezoidal loading function applied to the top edge 
of the crane [171 



16.9 Computer Program Example Solutions for Structural Dynamics .. 701 

F(t) 10 

16 

11 

11 

4 9 

y 

X 1 

(ll) 

F(t),lb 

0.1 0.3 

2 

0.4 
Time,s 

(b) 

20 

13 

12 

Small number· node 
Big number· element 

Figure 16-31 "(a) Finite element model of a cab with 8 plate elements (upper right 
triangular elements) and lS beam elements and (b) the time-dependent trapezoidal 
loading applied to node 10 [18] 
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A Problems 

16.1 Determine the consistent-mass matrix for the one-dimensional bar cliscretized into two 
elements as shown in Figure PI6-1. Let the bar have modulus of elasticity E, mass 
density p, and cross-sectional area A. 
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2 2 3 

It • 13 It • ' . 14 
t--L ·1 L----1 ~L ·1· L' ·1· L--1 

Figure P16-1 Figure P16-2 

16.2 For the one-dimensional bar discretized into three elements as shown in Figure PI 6--2, 
determine the lumped- and consistent-mass matrices. Let the bar properties be E,p) 
and A throughout the bar. 

16.3 For the one-dimensional bar shown in Figure P16-3> determine the natural frequencies 
of vibration, (U's, using two elements of equ31 length. Use the consistent­
mass approach. Let the bar have modulus of elasticity E, mass density p, and cross­
sectional area A. Compare your answers to those· obtained using a lumped-mass 
matrix in Example 16.3. 

~ I ~ I 
~I .\ I· 'll. I 60 in. 

Figure P16-3 Figure P16-4 

16.4 For the one-dimensional bar shown in Figure P16-4, determine the natural frequen­
cies of longitudinal vibration Using first two and then three elements of equal length. 
Let the bar have E = 30 X 106 psi, P = 0.00073 1b-s2/in4, A = 1 in2, and"L = 60 in. 

16.5 For the spring-mass system shown in 'Figure Pl6-5, determine the mass displacement, 
velocity, and acceleration for five time steps using the central difference method. Let 
k = 2000 Ib/ft and m = 2 slugs. Use a time step of M = 0.03- s. You might want to 
write a computer program to solve this problem. 

F(t).lb 

50 

if. • 

~(I)· 
0.09 0.15 t. $ 

Figure P16-S 
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16.6 For the spring-mass system shown in Figure PI 6-6) determine the mass displacement, 
velocity, and acceieration for five time steps using (a) the central difference method, 
(b) Newmark~s time integration method, and (c) Wilson's method. Let k 1200 Iblft 
and m = 2 slugs. 

k 

~t) 
Figure P16-6 

F(t).lb 

20.0 

0.10 t, S 

16.7 For the bar shown in Figure Plo..:7, determine the nodal displacements, velocities, 
and accelerations for five time steps using two .finite elements. Let E = 30 x 106 psi, 
P = 0.000731b-s21in\ A .=-1 in2, and L = 100 in_ 

F(t),lb 

1000 

Figure P16-7 

16.8 For the bar shown in Figure Pl6-8, determine the nodal displacements, velocities, 
and accelerations for five time steps using two .finite elements. For simplicity of cal­
cUlations, let E = 1 ~ 106 psi; p.::= 1 I~s2/in4, A = 1 in2, and L = 100 in. Use 
Newmark's method and Wilson's method. 

Figure P16-8 

F(/),tb 

2000 

O.S 1,5 



16.9, Rework Problems 16.7 and 16.8 using a computer program. 
16.10 

~ 
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16.11 For the beams shown in Figure Pl6-11, determine the natural frequencies using first 
two and, then three elements. Let E,p. and A be constant for the beams. 

L 
~. 

L ~ 
(a) (b) 

L 7A ~ L ~ 
(c) (d) 

Figure P16-11 

16.12 Rework Problem 16.11 using a computer program with E = 3 X 107 psi, p = 0.00073 .s Ih-s2/in4, A = 1 in2, L = 100 in., and I ~ 0.0833 inol. 

16.13, For the beams in Figures PI6-13 and PI6-14 subjected to the forcing functions-
16.14 shown, determine the maximum deflections, velocities, and accelerations. Use'a COID­II puter program. 

F(/).kN 

I. S 

Figure P16-13 
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E = 30 x IObpsi 
1 = 200in-c 

A == 30 in2 

F(I)i 
~~-----2-0-fi--------

Figure Pl6-14 

0.3 I.S 

16.15, For the rigid frames in Figures Pl6-15 and P16-16 subjected to the forcing functions 
16.16 shown, determine the maximum displacements, Yelocities, and accelerations. Use a 
• computer program. 

7 8 
O-.-SF-(t .... ) f-®-3.1---L-~ ..... --J;-CD--I ---, 

7 I 
tOft 

5 

O.8F(/) 

3 

F(I) 

30ft----.f 
(Bays on 25-ft .centers) 

Figure Pl6-15 

ISpsf 

...'For elements 1 and 9, 
A = 13 in2

• 1 = 25Oin4 

For elements 2, 3. 7, and 8, 
A = 6 in:!:.! = tOO in4 

For elements 4, 5, and 6. 
A = 14m2.1 = 8ooin4 

For all elements, 
E 30 x 10' psi 

Fer), k 

10 -----.".-----

0.3 t,S 

16.17 A marble slab withk = 2 W/(m· °C). p = 2500 kglm3, andc = 800W· sI(kg· 0c) is 2 
em thick and at an initial unifonn temperature of T; = 200°C. The left surface is 
suddenly lowered to O°C and is maintained at that temperature while the other sur­
face is kept insulated. Determine the temperature distribution in the slab for 40 s. Use 
P = j and a time step of 8 s .. 
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,F(t).kN 

F(t) T E:: 210GPa 
25 I 4 x lO-4 m4 ---,6m 

A = 2 X IO-2m2 

1 
I 
I 
1 
I 
I 
I 

'/ 

~6m---1 
'/ 0.2 I. S 

Figure P16-16 

16.18, A circular fin is made of pure copper with a thennal conductivity of k = 400 WI 
(m· "C), h = 150W/(m2 . °C), mass density p = 8900 kg/m3) and specific heat c = 
375 l/(kg· °C). The initial temperature of the fin is 25°C. The fin length is 2 em and 
the ,diameter is 0.4 em. The right tip of the fin is insulated~ See Figure Pl6-1&. The 
base of the fin is then suddenly increased to a temperatme of 85°C and maintained ,at 
this temperature. Use the lumped. form of the capacitance matrix, a time step of 0.1 s, 
and P = j. Use two elements of equal length. Determine the temperature distribution 
up to 3 s. Compare your results with Example 16.7, which used the consistent fonn of 
the capacitance matrix. 

Too = 2S"C 

Insulated tip 

2cm 

Figure Pl6-18 

16.19, Rework Problems 16.17 artd 16.18 using a computer program. 
16.20 • 
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Introduction 

In this appendix~ we provide an introduction to matrix algebra. We will consider the 
concepts relevant to the finite element method to provide an adequate background 
for the matrix algebra concepts used in this text. 

... A.l Definition of a Matrix 

708 

A matrix is an m x n array of numbers arranged in m rows and n columns. The matrix 
is then described as being of order m x n. Equation (A.LI) illustrates a matrix with 
m rows and n columns. . 

all a12 an al4 aln 

a2I {i22 a23 a24 a2n 

[a} = a31 a32 an 034 a3n (A.l.l ) 
: 

amI am1 am3 Om4 amn 

Ifm '# n in matrix Eq. (A.I.l), the matrix is caned rectangular. If m = 1 and 
n> I, the elements of Eq. (A.L1) form a single row called a row matrix. If m > 1 
and n = 1, the elements form a single column called a column matrix. If m = n, the 
array is called a square matrix. Row matrices and rectangular matrices are denoted 
by using brackets (], and column matrices are denoted by using braces { }. For sim­
plicity, matrices (row, column, or rectangular) are often denoted by using a line 
under a variable instead of surrounding it with brackets or braces. The order of the 
matrix should then be apparent from the context of its use. The force and displace­
ment matrices used in structural analysis are column matrices, whereas the stiffness 
matrix is a square matrix. 

. '.,.' ~ 
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To identify an element of matrix g, we represent the element by Qij, where the 
subscripts i and j indicate the row number and the coJunm number, respectively, of 
g. Hence~ alternative notations for a matrix are given by 

g= [a] = [aij] (A.l.2) 

Numerical examples of special types of matrices are given by Eqs. (A. 1.3)­
(A.1.6). A rectangular matrix g is given by 

(A. 1.3) 

where g has three rows and two columns. In matrix g of Eq. (A.I.t)) if m = I, a row 
matrix results, such as 

g = [2 3 4 -I} (A. 1.4) 

If n 1 in Eq. (A. 1.1 ), a column matrix results} such as 

g= {~} (AJ.5) 

Ifm = 1'1 in Eq. (A.I.J), a square matrix results, such as 

=[2 -lj' 
g 3-2 (A.L6) 

Matrices and matrix notation are often used to express algebraic equations in 
compact fonn and are frequently used in the finite element formulation of equations. 
Matrix notation is also used to simplify the solution of a problem. 

Ai A.2 Matrix Operations 

We will no\}' present some common matrix operations that will be used in this text. 

Multiplication of a Matrix by a Scalar 

If we have a scalar k and a matrix f, then the product g = kf is given by 

gij=kfij (A.2.t) 

-that is, every element of the matrix f is multiplied by the scalar k. As a numerical 
example, consider 

The product g = kf is 

Note that if f is of order m x n, then 9 is also of order m x n. 
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Addition of Matrices 

Matrices of the same order can be added together by summing corresponding ele· 
ments of the matrices. Subtraction is performed in a similar manner. Matrices of 
unlike order cannot be added or subtracted. Matrices of the same order can be 
added (or subtracted) in any order (the commutative law for addition applies). That is, 

f = g + 12 = 12 :i- g (A.2.i) 

or, in subsCript (index) notation, we have 

feij] = lay] + [by] = [by} + [aij] (A.2.3) 

As a numerical example, let 

[-I 2] 
-3 2 

b = [1 2] 
- 3 1 

The sum f! + Il = f is given by 

Again, remember that the matrices g, /2, and f must all be of the same order. For 
instance, a ~ x 2 matrix cannot be added to a 3 x 3 matrix. 

Multiplication of Matrices 

For two matrices g and 12 to be multiplied in the order shown in Eq. (A.2.4), ·the num­
ber of column~ in g must equal the number of rows in 12. For example, consider 

If g is an m x n matrix, then 12 must have n rows. Using subscript notation, we can 
write the product of matrices g and 12 as 

n 

[ey] = L aiebej (A.2.S) 
e=1 . 

where n is the total number of columns in a or of rows in b. For matrix a of order 
2 x 2 and matrix Q of order 2 x 2, after multiplying the two ~atrices, we h;ve 

For example. let 

[
allbll + aI2b21 allb12 + al2bn] 

a21bll + an~I' a21 bl2 + ani>n 

g = [~ ~] b= [1 -1] 
- 2 0 

The product gll. is then 

ab _ [2(1) + 1(2) 2(-1) + 1(0)] ~ [4 -2]. 
--- 3(1)+2(2) 3(-1)+2(0) 7-3 

(A.2.6) 
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In generaJ, matrix multiplication is not commutative; that is, 

gQ # Qg (A.2.7) 

The validity of the product of two matric~ 9 and Q is commonly illustrated by 

g Q f 

(ixe) (exj) (i xj) 
(A.2.8) 

where the product matrix f will be of order i x j; that is, it will have the same number 
or rows as matrix (1 and the same number of columns as matrix f!.. 

Transpose of a Matrix 

Any matrix, whether a row, column, or rectangular matrix, can be transposed. This 
operation is frequently used in finite element equation formulations. The transpose 
of a matrix g is commonly denoted by 9 T. The superscript T is used to denote the 
transpose of a matrix throughout this text. The transpose of a matrix is obtained by 
interchanging rows and columns; that is, the first row becomes the first column, the 
second row becomes the second column, and so on. For the transpose of matrix (1. 

(A.2.9) 

For example, if we let 

then aT = [2 3 4] 
- 1 2 5 

where we have interchanged the rows and columns of g to obtain its transpose. 
Another important relationship that involves the transpose is 

(A.2.1O) 

That is, the transpose of the product of matrices g and!:!. is equal to the transpose of 
the latter matrix!:!. multiplied by the transpose of matrix g in that order, provided the 
order of the initial matrices continues to satisfy the rule for matrix multiplication, 
Eq. (A.2.8). In general, this property holds for any number of matrices; that is, 

(9!:!.f ... !f)T = !fT •.. fTf!.T gT 

Note that the transpose of a column matrix is a row matrix. 
As a numerical example of the use ofEq. (A.2.l0), let 

g=[~~] Q={~} 

g~ = [~ !] { ! } = { ~~ } 
Then, (gQl = [17 39J 

(A.2.l1) 

(A.2.l2) 
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Because!2T and gT can be multiplied according to the rule for matrix' multiplication, 
we have 

b TaT = [5 6] [ 
1 

3 -oJ = 117 391 
- - 2 4 ' J 

(A.2.l3) 

Hence, on comparing Eqs. (A.2.12) and (A.2.13), we have shown ([or this case) the; 
validity of Eq. (A.2.l0). A simple proof of the general vaiidity of Eq. (A.2.W) is left 
to your discretion. 

Symmetric Matrices 

If a square matrix is equal to its transpose, it is called a symmetric matrix; that is, if 

g=gT 

then g is a symmetric matrix. As an example, 

B=[! ~ ~l (A.2.l4) 

is a symmetric matrix because each element aij ~quals Qji for i :# j. In Eq. (A.2.l4) 
note that the main diagonal running from the upper left corner to the lower right cor­
ner is the line of symmetry of the symmetric matrix g. Remember that only a square 
m~trix can be symmetric. . 

Unit Matrix 

The unit (or identity) matrix 1 is such that 

gj ='jg =g (A.2.l5) 

The unit matrix acts in the same way that the number one acts in conventional 
multiplication. The unit matrix is always a square matrix of any possible order with 
each element of the main diagonal equal to one and all other elements equal to zero. 
For example, the 3 x.3 unit matrix is given by 

(
1 0 0] 

j = 0 1 0 

001 

Inverse of a Matrix 

The inverse of a matrix is a matrix such that 

g-lg = gg-l = I 
\ 

(A.2.l6) 

where the superscript, -1, denotes the- inverse of g as g-l. Section A.3 provides more 
infonnation regarding the properties of the inverse of a' matrix and gives a method 
for determining it. 
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Orthogonal Matrix 

A matrix I is an orthogonal matrix if 

ITI=IIT=l 

Hence) for an orthogonal matrix, we have 

I-I = IT 

(A.2.I7) 

(A.2.18) 

An orthogonal matrix frequently used is the transformation or rOlation matrix I. 
In two-dimensional space, the transformation matrix relates components of a vector 
in one coordinate system to components in another system. For instance, the displace­
ment (and force as well) vector components of d expressed in the x-y system are 
related to those in the _i-y system (Figure A-I and Section 3.3) by 

(A.2.l9) 

or { ± } = [ -::! ~: ~ 1 { ~; } (A.2.20) 

where I is the square matrix on the right side of Eq. (A.2.20). 
Another use of an orthogonal matrix is to change from the local stiffness matrix 

to a global stiffness matrix for an element. That is, given a local stiffness matrix ~ for 
an element, if the element is arbitrarily oriented in the x-y plane, then 

k = ITkr = r-'kr (A.2.21) 

Equation (A.2.2l) is used throughout this text to express the stiffness matrix !f in the 
x-y plane. 

By further examination of I, we see that the trigonometric tenns in 1: can be 
interpreted as the direction cosines of lines Ox and OJ with respect to the x-y axes. 
Thus for Ox or dx> we have from Eq. (A.2,20) 

< til t12) = <cos B sin B) (A.2.22) 

y 

Figure A-l Components of a vector in x-y and x-y coordinates 
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and for OJ or dy , we have 

(A.2.23) 

or unit vectors I and J can be represented in terms of unit vectors i and j [also see 
Section 3.3 for proof of Eq. (A.2.24)] as 

i = icosO+ jsin8 
(A.2.24) 

J = -isin8+ jcos8 

and hence 

(A.2.25) 

and since these vectors Ci and n are orthogonal. by the dot product) we have 

(Illi + tI2)· (Z21i + 122 J) 

or tHt2l + tl2t22 = 0 (A.2.26) 

or we say 'I is orthogonal and therefore 'IT I. = TIT = I and that the transpose is its 
inverse. That is, 

(A.2.27) 

Differentiating a Matrix 

A matrix is differentiated by differentiating every element in the matrix in the conven· 
tional manner. For example, if 

[ xl 
2x2 3:] g= 2xZ. X4 

,3x x x S 
(A.2.28) 

the derivative dg/dx is given by 

t=[~ 
4x L] 4x3 

1 

(A.2.29) 

Similarly, the partial derivative of a matrix is illustrated as follows: 

ag iJ [X2 xy xz] [2x y z] ax = xy y2 yz Y 0 0 
xz yz z2 zOO 

(A.2.30) 

'In structural analysis theory, we sometimes differentiate an expression of the 
form 

(A.2.31) 
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where U might represent the strain energy in a bar. Expression (A.2.31) is known as a 
quadratic form. By matrix..multiplicati.on.of Eq. .. (A;2.3 1 ):- we o:Qtain .. ' 

u = ! (allx2 + 2a12XY + any2) 

Differentiating U now yields 

aU 

Equation (A.2.33) in matrix fonn becomes 

! ~~ I = [all a12
] {X} au al2 all Y 

ay'. . 
A general fonil'of Eq. (A.2.31) is 

U HX}T[aJ{X} 

Then, by comparing Eq. (A.2.3I) and (A.2.34), we obtain 
au . 
ox/", .. [al{ X} ... 

(A.2.32) 

(A.2.33) 

(A.2.34) 

(A.2.35) 

. where Xi denotes x and y. Here Eq. (A.236) depends on matrix gin Eq. (A.2.35) being 
symmetric. 

Integ!ating a Matrix 

J.ust.as,jn.matrix differentiation,- to-lntegm'te.!.a-riiatrix, we must integrate e"very element- . 
in the matriX in the conventional manner. For example, if 

[

3X2 4x 3] 
g = 4x 4x3 1 

3 1 5x4 

we obtain the integration of g as 

Igdx= [0 ~ ;] 
In our finite element formulation of equations, we often integrate an expression of the 
form 

(A.2.37) 
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The triple product in Eq. (A.2.37) will be· symmetric if :4 is symmetric. The form 
[X]T[AJ1X] is also called a quadraticform. For example, letting 

[
9 2 3] 

fAJ = 2 8 0 
305 

[X] 

we obtain 

{Xf[A]{X} [XI- X2 x3l [~ ~ ~] {;~ } 
3 0 5 X3 

= 9xi + 4XIX2 + 6XIX3 + 8xi + 5xi 
which is in quadratic fonn . 

.& A.3 Cofactor- or Adjoint Method 
to Dete(mine the Inverse of a Matrix 

We will now introduce a method for finding the inverse of a matrix. This method is 
useful for longhand determination of the inverse of smaller-order square matrices 
(preferably of order 4 x 4 or less). A matrix g must be square for us to determinejts 
inverse. 

We mUst first define the determinant of a matrix. This concept is necessary in 
determining the inverse of a matrix by the cofactor method. A determinant is a square 
array of elements expressed by . 

(A.3.1) 

where the straight vertical bars, II, on each side of the array denote the determinant. 
The resulting detenninant of an array will be a single numerical value when the 
array is evaluated. 

To evaluate the detenninant of g, we must first determine the cofactors of lay]. 
The cofactors of [aij] are given by 

Cij = (-1 )i+j I41 (A.3.2) 

where the matrix g, called thefirsl minor of [ayJ, is matrix g with row i and colwnnj 
deleted." The inve~se of matrix g is then given by . 

(A.3.3) 

where {; is the cofactor maUix and Ig! is the determinant of g. To illustrate the method 
of cofactor'S, we will detennine the inverse of a matrix g given by 

g= n ~ -~] (A.3.4) 
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Using Eq. (A.3.2), we find that the cof~tors of ~atrix g are 

Sirpilarly, 

Cll = (_1)1+11-: ~I = -12 

C12=(-1)1+21~ ~'=-2 
C13 = ('-1)1+31 ~. -:/ = 8 

C21 = (-1)2+II! '-~I =-11 

Cn = (_1)2+21-~ -~ 1=-1 
Cn = (-1)2+31-~ ! / = 4 

CS1 :;:: -2 C32 = -2 C3"3 = -2 

Therefore, from Eqs. (A.3.5) and tA.3.6), we have 

[

-12 -2 8] 
~= -11 -I 4 

-2 -2 -2 

The determinant of B is then 

II 

Igl = L QijCij With i any row number (1 ~ i ~ n) 
j=l 

It 

or Igi = L ajiYi with i any column Dlnnber (1 ~ i ~ n) 
j=l 

(A.3.5) 

(A.3.6) 

(A.3.7) 

(A.3.8) 

(A.3.9) 

For'instance, if we choose the first rows of g and ~, then i 1 in Eq. (A.3.8), andj is 
s~ed from 1 to 3 such that 

= (-1)(-:-12) + (3)(-2) + (-2)(8) = -10 

Using the definition of the inverse given by Eq. (A.3.3), we have 

(A.3.10) 

(A.3.1l) 
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We can then check that 

gg-I = [~ : ~] 
The transpose of the cofactor matrix is often defined as the adjoint matrix.; that is, 

adjg = "r 
Therefore, an alternative equation for the inverse of g is 

adjg 
= Igl (A.3.l2) 

An important property associated with the detenninant of a matrix is that if the deter­
minant of a matrix is zero-that is, Igl O-then the matrix is said to be singular. A 
sin~lar matrix does not have an inverse. The stiffness matrices used in the fin.ite ele· 
ment method are singular until sufficient boundary conditions (support conditions) 
are applied. This characteristic of the stiffness matrix is further discussed in the text. 

... A.4 Inverse of a Matrix by Row Reduction 

The inverse.of a nonsingular square matrix g can be found by the method of row 
reduction (sometimes called the Gauss-Jordan method) by performing identical 
simultaneous operations on the matrix g and the identity matrix! (of the same order 
as g) such that the matrix g becomes an identity matrix and the original identity 
matrix becomes the inverse of g. 

A numerical example will best illustrate the procedure. We begin by converting 
matrix g to an upper triangular fonn by setting all elements below the main diagonal 
equal to zero, starting with the first column and continuing with succeeding columns. 
We then proceed from the last column to the first, setting all elements above the 
main diagonal equal to zero. 

We will invert the following matrix by row reduction. 

g [~~ f] (A.4.l) 

To find g-', we need to find ~ such that g;!, I, where 

[

Xli XI2 X13] 
~ = XlI X22 X23 

XlI X32 X33 

That is, solve [
2 2 1] [1 0 0] 
2 '1 0 ~= 0 1 0 
1 1 1 0 0 1 
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We begin by writing B and I side-by side as 

[

2 2 1: 1 0 O~l 
210:01 
1 1 1:00 

where the vertical dashed line separates g and I. 

1. Divide the first row of Eq. (A.4.2) by 2. 

2. Multiply the first row ofEq. (A.4.3) by -2 and add the result to the 
second row. -

[
1 1 1: 1 0 0] 2 I 2 

o -1 -1: -1 1 0 
I 1 1: 001 

3. Subtract the first row of Eq. (A.4.4) from the third row. 

[
1 1 1: 1 0 0] 2 I 2 

o -1 .... 1:- -1 '1 0 . 
o 0 ! : -! 0 I 

4. Multiply the second row of Eq. (A.4.5) by -I and the third row by 2. 

[ 
i 1 !! ! 0 0] 
o 1 1: 1 -I 0 
o 0 t I -1 0 2 

5. Subtract the third row ofEq. (A.4.6) frpm the second row. 

[
II! ! -! 0 0] 
o 1 0: 2 -1 -2 
o 0 1 I -I 0 2 

6. Multiply the third row ofEq. (AA.7) by -! and add the result to the 
'first row. 

O 1 O f, 2 1 2 [
1 I 0: 1 0 -I] 

-0 -2 o 0 1:-1 

(A.4.2) 

(AA.3) 

(A.4A) 

(AA.5) 

(A.4.6) 

(AA.7) 

(A.4.8) 
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7. Subtract the second row of Eq. (A.4.8) from the first row. 

[
I 0 0: -1 I 1] 
o 1 0: 2 -l -2 
o 0 1: -1 0 2 

(A.4.9) 

The replacement of g by the inverse matrix is now complete. The inverse of g is then 
the right side of Eq. (A.4.9); that is~ . ...' . 

g-! = [-~ -~ -~] (AA.lO) 

-1 0 2 

For additional information regarding matrix algebra, consult References [1] 
. and [2]. 
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... Problems 

Soll'e Problems A.I-A.6 using matrices d, I, ~,11, and f given by 

A = [ 1 0] 
- -1 4 

B= [ 2 0] 
- -2 8 

c=[ 3 0
3

] 
- -1 0 

Q [! ~~] 6= {H 
(Write "nonsense" if the operation cannot be perfonned.) 

A.I (a) & +B 
(c)AQT 
(e) J)~ 

(b):1 + Q 
(d)J)~' 

(f) ~11 

A.2 Determine ,&-1 by the cofactor method. 

A.3 Detennine J)-I by the cofactor method. 

A.4 Determine ~ I. 



". 

A.5 Determine Jrl by row reduction. 

A.6 Determine p-l by row reduction . 

. A.7 Show,that (Ag)T = gT,aT by using 

. A.8 Find X-I given that 

d = [Oll 0
12

] 
021 022 

T = [ oos8 SinO] 
- -sinO cosO 
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and show that X- J = X? and hence that X is an orthogonal matrix. 

A.9 Given the matrices 

x = [x y] 
- J x 

A = [a h) 
- b c 

show that the triple matrix product X: A.X is symmetric. 

A.tO Evaluate the following integral in explicit form: 

k = J: gTEgdx 

B= [-! !] - . L L 
where 

[Note: This is the step needed to obtain Eq. (10.1.16) from Eq. (1O.l.lS).J 

A.ll The fonowing integral represents the strain energy in a bar: 

U = ~ J: dTgTpg!i dx 

where .!l =E. 

Show that dU jd{d} yieldskd, where k is the bar stiffness matrix given by 

k = A.E [ 1 -1] 
- L -I 1 



Introduction 

Many problems in engineering and mathematical physics require the solution of a sys­
tem of siI)1ultaneous linear algebraic equations. Stress analysis, heat transfer, and 
vibration analysis are engineering problems for which the finite element fonnulation 
for solution typically involves the solving of simultaneous linear equations. This 
appendix introduces methods applicable to both longhand and computer s01utions of 
simultaneous linear equations. Many methods are available for the solution of equa­
tions; for brevity's sake, we will discuss only some of the more common methods. 

A. 8.1 General Form of the' Equations 

In general, the set of equations will have the form 

(B.1.1) 

where the aij's are the coefficients of the unknown x/s, and the c/s are the known 
right-side terms. In the structural analysis problem, the ails are the stiffness coeffi­
cientskij's, the x/s are the unknown nodal displacements d/s, and the c/s are the 
known noda1 forces Fi'S. 

If the c's are not all zero, the set of equations is nonhomogeneous, and all equa­
tions must be independent to yield a unique solution. Stress analysis problems typi­
cally involve solving sets of nonhomogeneous equations. 
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If the c>s are all zero, the set of equations in homogeneous, and nontrivial solu­
tions exist only if all equations are not independent. Buckling and vibration problems 
typically involve homogeneous sets of equations. 

4 B.2 Uniqueness, Nonuniqueness, and 
Nonexistence of Solution 

To solve a system of simultaneous linear equations means to detennine a unique set of 
values (if they exist) for the unknowns that satisfy every equation of the set simulta­
neously_ A unique solution exists if and only if the determinant of the square coeffi­
cient matrix is not equal to zero. (All of the engineering problems considered in this 
text result in square coefficient matrices.) The problems in this text usually result in a 
system of equations that has a unique solution. Here we will briefly illustrate the 
concepts of uniqueness, nonuniqueness, and nonexistence of solution for systems of 
equations. 

Uniqueness of Solution 

2Xl + lX2 = 6 

Ixl +4X2 = 17 
(B.2.1) 

For Eqs. (B.2.1), the determinant of the coefficient matrix is not zero, and a unique 
solution exists. as shown by the single common point of ~ntersection of the two Eqs. 
(B.2.!) in Figure B-1. -

Nonuniqueness of Solution 

2xt + lX2 = 6 

4xI + 2x2 = 12 

Figure 8-1 Uniqueness of solution 

(B.2.2) 
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Figure 8-2 Nonuniqueness off solution Figure 8-3 Nonexistence of solution 

For Eqs. (B.2.2). the determinant of the coefficient matrix is zero; that is, 

I~ ~~ =0 

Hence the equations are called singular, and either the solution is not unique or it does 
not exist. In this case, the solution is not unique, as shown in Figure B-2. 

N~nexistence of Solution 

2xt +X2 =6 

4xl,+2xz = 16 
(8.2.3) 

Again, the determinant of the coefficient matrix is zero. In this case, no solution exists 
because we have parallel lines (no common point of intersection), as shown in 
Figure B-3. 

.... 8.3 Methods for Solving Linear 
Algebraic Equations 

We will now present some common methods for solving systems of linear algebraic 
equations that have unique solutions. Some of these methods work best for small 
sets of equations solved longhand, whereas others are well suited for computer 
application. '-

Cramer's Rule 

We begin by introducing a method known as Cramers rule, which is useful for the 
longhand solution of small numbers' of simultaneous equations. Consider the set of 
equations . 

(B.3.1) 
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or, in index notation, 
n 

LaijXj=ci 
i=l 

(B.3.2) 

We first let dY} be the matrix ~ with colwnn i replaced by the column matrix f. Then 
the unknown x/s are determined by 

!4U) I 
Xi= Igi 

As an example of Cramer's rule, consider the following equations: 

-Xl + 3X2 - 2x3 = 2 

2Xl - 4X2 + 2x3 

4X2 +X3 = 3 

In matrix form, Eqs. (B.3.4) become 

By Eq. (B.3.3), we can solve for the unknown x/s as . 

1
2, 3 -21 
I -4 2 

/.4(1)1 3 4 I 

Xl = 19l = 1-1 3 -21 
2 -4 2 
041 

1

-1 2 -21 
2 1 2 

. /4(2)1 0 3 I 
X2·= Igi = -10 

1

-1 3 21 
2 -4 1 

, 1.4(3)1 0 4 3 
Xl = /gl = -10 

-41 
-10 = 4.1 

1.1 

-1.4 

(B.3.3) 

(B.3.4) 

(B.3.5) 

(B.3.6) 

In general, to find the determinant of an n x n matrix, we must evaluate the 
detenninants of n matrices of order (n ~ 1) x (n 1). It has been 'shown that the sol­
ution of n simultaneous equations by Cramer's rule, evaluating detenninants by 
expansion by minors, requires (n - 1 )(n + I)! multiplications. Hence, this method 
takes large amounts of computer time and therefore is not used in solving large sys­
terns of simultaQeous equations either longhand or by computer. 
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Inversion of the Coefficient Matrix 

T.he set of equations {g = f can be solved for ~ by inverting the coefficient matrix g 
and premultiplying both sides of the original set of equations by B.- t , such that 

g-lg~ = B.-If 

l~=g-If 

~=g-If 

(B.3.7) 

Two methods for determining the inverse of a matrix (the cofactor method and row 
reduction) were discussed in Appendix A. 

The inverse method is much more time-consuming (because much time is 
required to detennine the inverse of g) than either the elimination method or the iter­
ation method, which are discussed subsequently. Therefore, inversion is practical 
only for small systems of equations. 

However) the concept of inversion is often used during the formulation of the 
finite element equations, even though elimination or iteration is· used in achieving the 
final solution for the unknowns (such as nodal displacements). 

Besides the tedious calculations necessary to obtain the inverse, the method usu­
ally involves detennining the inverse of sparse, banded matrices (stiffness matrices in 
structural analysis usually contain many zeros with the nonzero coefficients located 
in a band around the main diagonal). This sparsity and banded nature can be used 
to advantage in terms of storage requirements and solution algorithms on the com­
puter. The inverse results in a dense, full matrix with loss of the advantages resulting 
from the sparse, banded nature of the original coefficient matrix. 

To illustrate the solution of a system of equations by the inverse method, con­
sider the same equations that we solved previously by Cramer's rule. For conve~ 
nience's sake, we repeat the equati~ns here. 

(B.3.8) 

The inverse of this coefficient matrix was found in Eq. (A.3.11) of Appendix A. The 
unknowns are then detennined as 

(B.3.9) 

Gaussian Elimination 

We will now consider a commonly used method called Gaussian elimination that is 
easily adapted to the computer for solving systems of simultaneous equati~. It is 
based on trianguiarization of the coefficient matrix and evaluation of the unknowns 
by back-substitution starting from the last equation. 
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The general system of n equations with 11 unknowns given by 

[

all a12 . • • al
n 11 XIII Ct I a21 all ... a211 X2 C2 

-.. ". . .. _.. ~ ... ..... . 
anI a n2 ann Xn Cn 

will be used to explain the Gaussian elimination method. 

1. Eliminate the coefficient of XI in every equation except the first one. 
To do this, select all as the pivot, and 
a. Add the mUltiple -a21 I at I of the first row to the second row. 
b. Add the multiple -a3d all of the first row to the third row. 
c. Continue this procedure through the nth row. 
The system of equations will then be reduced to the following form: 

[ Q~'~: :~ll:l-l~;1 
o a~2 . . . a:m Xn c~ 

2. Eliminate the coefficient of X2 in every equation below the second 
equation. To do this, select ak as the pivot, and 

. a. Add the multiple -ahl ak of the second row to the third row,,­
h. Add the multiple -a~21 ah of the second row to the fourth row. 
c. Continue this procedure through the nth row. 
The system of equations will then be reduced to the following fonn: 

all a!2 a!3 . .. a~n I Xl II C! I o a22 a23 • • . aln Xl c2 

o 0 af3 afn X3 = c; 
., . .' . . . . 

o 0 a:3 .. a::n Xn C; 

We repeat this process for the remaining rows until we have the 
system of equations (called triangularized) as 

al1 al2 aJ3 al4 aln XI Cl 

0 a' 22 ah a24 al 
In X2 c' 2 

0 0 a" 33 a" 34 a" 3n X3 e" 3 

0 0 0 alii 
44 

alii 
4n X4 em 

4 

0 0 0 0 a::n- I Xn cn- 1 
n 

3. Determine Xn from the last equation as 
cn- 1 

Xn =_1'1_ 
a",-I 

nn 

(B.3.1O) 

(B.3.11) 

(B.3.12) 

(B.3.13) 

(B.3.14: 
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and detennine the other unknowns by back-substitution. These steps 
are summarized in general fonn by . 

k = 1,2, .. . ,n - 1 

i=k+l, ... ,n 

j=k, ... ,n+ 1 (B.3.15) 

Xi = : .. (al,,,+1 - t airxr) 
1I l'=i+1 

where ai,n+1 represent the latest right side e's given by Eq. (B.3.13). 

We will solve the following example to illustrate the Gaussian elimination 
method. 

Example B.1 

Solve the following set of simultaneous equations using Gauss elimination method." 

2xI +2x2 + Ix) = 9 

(B.3.16) 

Step 1 

Eliminate the coefficient of XI in every equation except the first one. Select all 2 as 
the pivot, and 

a. Add the multiple -a21/atl -2/2 of the first row to the second row 
b. Add the multiple -a3I/aU = -1/2 of the first row to the third row. 

We then obtain 

2xI + 2X2 + IX3 = 9 

Ox] - IX2 - Ix3 = 4 - 9 = -5 (B.3.17) 

OXI + OX2 + ! X3 = 6 ~ = ~ 
Step 2 

Eliminate the coefficient of X2 in every equation below the second equation. In this 
case, we accomplished this in step 1. 

Step 3 

Solve for X:; in the third ofEqs. (B.3.17) as 

(J) 
X3 =+= 3 (2) 



I, .-

;. 
. " 

B.3 Methods for Solving linear Algebraic Equations A 729 

Solve for Xl in the second of Eqs. (B.3J 7) as 

-5+3 
X2= =2 

Solve for Xl in the first of Eqs. (Bj.l7) as 

9 - 2(2) - 3 
Xl = 2 

To illustrate the use of the index Eqs. (B:3J5), we re-solve the same example as 
follows. The ranges of the indexes in Eqs. (B.3.15) are k = 1,2; i = 2,3; and 
j = 1,2,3,4. 

Step 1 

For k = I, i = 2, andj indexing from 1 to 4, 

a:u = a21 - an - = 2 - 2 - = 0 a:Z1 (2) 
alI 2 

all (2) a23=a23-a13-=0-1 - =-1 
all 2 

(8.3.18) 

Note that these new coefficients correspond to those of the second of Eqs. 
(B.3.17), where the right-side a's of Eqs. (B.3.18) are those from the previous step 
[here from Eqs. (B.3.16)J, the right-side a24 is really C2 = 4, and the left-side aZ4 is the 
new C7 = -5. 

For k = I, i = 3, andj indexing from 1 to 4, 

a31 = a31 - an - = I - 2 - = 0 a3J (1) 
all 2 

a31 (1) a32 = a32 - a12 - = 1 - 2 - = 0 
all 2 

(B.3.l9) 

a33 = a33 - al3 a:n = .1 - I (~) =! 
all 2 2 

• 034 = a34 - 014 a31 = 6 - 9 (!) = ~ 
all 2 2 

where these new coefficients correspond to those of the third of Eqs. (B.3.17) as previ­
ously explained 
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Step 2 

For k = 2, i = 3, andj (= k) indexing from 2 to 4, 

a32 = a32 - a22(:~) = 0 - (-1) (~l) ~ 0 

a3} = a33 - a23 - = - - (- I) - =-(
a 32) I ( 0 ) 1 

, a22 2 -1 2 
(B.3.20) 

a34 = a34 - a24 (a
32

) = ~ - ( -5) (~) = ~ 
a22 2 , -1 2 

where the new coefficients again correspond to those of the third of Eqs. (B.3.17), 
because step 1 already eliminated the coefficients of X2 as observed in the third of 
Eqs. (B.3.17), and the a's on the right side of Eqs. (B,3.20) are taken from Eqs. 
(B.3..18) and (B.3.19). 

Step 3 

By Eqs. (B,3.15), for X3, we have 

or, using a33 and a34 from Eqs. (B..3.20), 

1 (3) 
Xl = (!) 2" = 3 

where the summation is interpreted as zero in the second of Eqs. (B-3. I 5) when r > n 
(for X3, r := 4, and n = 3). For Xl, we have 

1 
X2 = -(a24 - a23x 3) 

a22 

or, using the appropriate a's from Eqs. (B.3.18), 

1 
X2 = -1 [-5 - (-1)(3)1 = 2 

and for XI, we have 

or, using the a's from the first of Eqs.. (B.3.16), 

X(= H9 - 2(2) - 1(3)] = 1 

In swnmary, the latest a's from the previous steps have been used in Eqs. (B.3.15) to 
obtain the rs.· • 
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Note that the pivot element was the diagonal element in each step. However, the 
diagonal element must be nonzero because we divide by it in each step. An original 
matrix with all nonzero diagonal elements does not ensure that the pivots in each 
step will remain nonzero, because we are adding numbers to equations below the 
pivot in each following step. Therefore, a test is necessary to determine whether the 
pivot akk at each step is zero. If it is zero. the current row (equation) must be inter­
changed with one of the following rows-usually with the next row unless that row 
has a zero at the position that would next become the pivot. Remember that the 
right-side corresponding element in ~ must also be interchanged. After making this 
test and. if necessary~ interchanging the equations, continue the procedure in the 
usual manner. 

An example will now i11ustrate the method for treating the occurrence of a zero 
pivot element. . 

Example B.2. 

Solve the following set of simultaneous equations. 

2x1 + 2x2 + lX3 9 

lxl + lx2 + lX3 = 6 

2x] + IX2 4 

(B.3.21) 

It will often be convenient to set up the solution procedure by considering the 
. coefficient matrix g plus the right-side matrix ~ in one matrix without writing down 
the unknown matrix ~. This new matrix is called the augmented matrix. For the set 
of Eqs. (B.3.21), we have the augmented matrix written as . 

[
2 2 1 ~ 9] 
1 1 1: 6 
2 I 0:4 

We use the steps previously outlined as follows: 

Step 1 

We select an = 2 as the pivot and 

·a. Add the multiple -a21! all = -1/2 of the first row to the second row 
of Eq. (B.3.22). 

b. Add the,multiple -a3I!all = -2/2 of the first row to the third row of 
Eq. (B.3.22) to obtain 

[0
2
0 

2 1 I 9] 
o !:' 1 

2 I 2 

-1 -1 I -5 

(B.3.22) 

(B.3.23) 

At the end of step 1, we would normally choose an as the next pivot. However, an is 
now equal to zero. If we interchange the second and third rows of Eq. (B.3.23j: the 
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new an will be nonzero and can be used as a pivot. Interchanging rows 2 and 3 results 
in 

r2 2 1: 9] 
lo -1 -1!-5 
o 0 ~: ~ 

(B.3.24) 

For this special set of only three equations) the interchange has resulted in an upper­
triangular coefficient matrix and concludes the elimination procedure. The back­
substitution process of step 3 now yields 

• 
A second problem when 'selecting the pivots in sequential manner, without test­

ing for the best possible pivot is that loss of accuracy due to rounding in the results 
can occur. In general, the pivots should be selected as the largest (in absolute value) 
of the elements in any column. For example, consider the set of equations given by 

0.002x} + 2.00X2 = 2.00 

3.00Xl + 1.50x2 = 4.50 

whose actual solution is given by 

Xl = 1.0005 X2::::; 0.999 

(B.3.25) 

(B.3.26) 

The solution by Gaussian elimination without testing for the largest absolute 
value of the element in any column is 

0.OO2x1 + 2.00X2 = 2.00 

-2998.5x2 = -995.5 

X2 = 0.3320 

Xl = 668 (B.3.27) 

This solution does not satisfy the second ofEqs. (B.3.25). The solution by interchanging 
equations is 

3.00xl + 1.S0x2 = 4.50 

O.OO2xl + 2.00X2 2.00 

or 3.00xt + 1.50X2 = 4.50 

1.999x2 = 1.997 

X2 = 0.999 

Xl = 1.0005 

Equations (B.3.28) agree with the actual solution fEqs. (B.3.26)J. 

(B.3.28) 
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Hence, in general, the pivots should be selected as the largest an absolute value) 
of the elements in any column. This process is called partial pivoting. Even better 
results can be obtained by choosing the pivot as the largest element in the whole 
matrix of th~emaining equations and performing appropriate interchanging of 
rows. This is called complete pivoting. Complete pivoting requires a large amount of 
testing, so it is not recommended in general. 

The finite element equations generally involve coefficients with different orders 
of magnitude, so Gaussian elimination with partial pivoting is a useful method for 
solving the equations. 

Finally) it has been shown that for n simultaneous equations, the number of 
arithmetic operations required in Gaussian elimination is n divisions, fn 3 + n2 multi­
plications) and in3 + n additions. If partial 'pivoting is included, the number of com~ 
pari sons needed to select pivots is n(n + 1)/2. 

Other elimination methods, including the Gauss-Jordan and Cholesky methods, 
have some advantages over Gaussian elimination and are sometimes used to solve 
large systems of equations. For descriptions of other methods, see References fI -3]. 

Gauss-Seidel Iteration 

Another general class of methods (other than the elimination methods) uSed to solve 
systems of linear algebraic equations is the iterative methods. Iterative methods work 
well when the system of equations is large and sparse (many zero coefficients). The 
Gauss-Seidel method starts with the original set of equations g~ = f written in the 
form 

The fonewing steps are then applied. 

1. Assume a set of initial values for the unknowns Xl, Xl, • •. j X", and 
substitute them into the right side of the first of Eqs. (B.3.29) to solve 
for the new XI. ' 

2. Use the latest value for XI obtained from step 1 and the initial values 
for X:;, X4, •• • , Xn in the right side of the second of Eqs. (B.3.29) to 
solve for the new X2. 

3. Continue using the latest values of the x's obtained in the left side of 
Eqs. (B.3.29) as the next trial values in the right side for each succeed­
ing step. 

4. Iterate until convergence is satisfactory. 

(B.3.29) 
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A good initial set of values (guesses) is often Xi = ci/a/i. An example will serve to 
illustrate the method. 

Example B.3 

Consider the set of linear simultaneous equations given by 

4xI X2 2 

-Xl +4X2 X3 5 

-X2 +4X3 X4 = 6 

-X3 + 2X4 =-2 

Using the initial guesses given by Xi = ci/ajj) we have 

Solving the first of Eqs. (B.3.30) for XI yields 

XI = !(2 + Xl) = ! (2 + 1) = i 
Solving the second of Eqs. (B.3.30) for Xl, we have 

X4 =-1 

X2 = H 5 + Xl + X3) = H 5 + i + 1) = 1.68 

Solving the third of Eqs. (B.3.30) for X3, we have 

X3 = 1(6+ X2 + X4) = i[6+ 1.68 + (-I)J = 1.672 

Solving the fourth of Eqs. (B.3.30) for X4, we obtain 

X4 =!(-2+X3) =!(-2+ 1.67) = -0.16 

The first iteration has now been completed. The secqnd iteration yields 

Xl = !(2+ 1.68) = 0.922 

X2 = HS + 0.922 + 1..672) = 1.899 

X3 = 1[6 + 1.899 + (-0.16)] = 1.944 

X4 = 1C -2 + 1.944) = -0.028 

(B.3.30) 

Table B-1 lists the results of four iterations of the Gauss-Seidel method and th~ 
exact solution. From Table B-1, we observe that convergence to the exact solution 
has proceeded rapidly by the fourth iteration, and the accur~cy of the solution is 
dependent on the number of iterations. • 

In general. iteration me~ods are self-correcting, s~ch that an error made in cal­
culations at one iteration will be corrected 'by later iterations. However, there 
are certain systems of equations for which iterative methods are not convergent. 
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Table B-1 Results of four iterations of the Gauss-Seidel method for Eqs .. (B.330) 

Iteration XI X2 XJ X4 

0 0.5 1.0 1.0 -1.0 
1 0.75 1.68 1.672 -0.16 
2 0.922 1.899 1.944 -0.028 
3 0.975 1.979 1.988 '::'0.006 
4 0.9985 1.9945 1.9983 -0.0008 
Ex.act 1.0 2.0 2.00 0 

When the equations can be arranged such that the diagonal terms are greater than the 
off-diagonal terms, the possibility of convergence is usually enhanced. 

Finally, it has been shown that for n simultaneous equations, the number of 
arithmetic operations required by Gauss-Seidel iteration is n divisions, 121 multiplica­
tions, and n2 - n additions for each iteration. 

:11 B.4 Banded-Symmetric Matrices, Bandwidth, 
Skyline, and Wavefront Methods 

The coefficient matrix (stiffness matrix) for the linear, equations that occur in struc­
tural analysis is always symmetric and banded. Because a meaningful analysis gener­
ally requires the use of a large number of variables, the implementation of compressed 
storage of the stiffness matrix is desirable both from the standpoint of fitting into' 
memory (immediate access portion of the computer) and for computational efficienCy. 
We will discuss the banded-symmetric format, which is not necessarily the most effi­
cient fonnat but is relatively simple to implement on the computer. 

Another method, based on the concept of the skyline of the stiffness matrix, is 
often used to improve the efficiency in soIvihg the equations_ The skyline is an envelope 
that begins with the first nonzero coeffiCient in each column of the stiffness matrix 
(Figure B-5). In skylining, only the coefficients between the main diagonal and the 
skyline are stored (normally by successive columns) in a one-dimensional array. In 
general, this procedure takes even less storage space in the computer and is more effi­
cient in terms of equation solving than the conventional banded format. (For more 
infonnation on skylining, consult References pO-12}.) 

A matrix is banded. if the nonzero terms of the matrix are gathered about the 
main diagonal. To illustrate this concept, consider the plane truss of Figure B-4. 

From Figure B-4, we see that element 2 connects nodes I and.4. Therefore, the 
2 x 2 submatrices at positions l-i, 1-4,4-1, and 4-4 of Figure B-5 have nonzero 
coefficients. Figure B~5 represents the total stiffness matrix of the plane truss. The 
X's denote nonzero coefficients. From Figure B-5, we observe that the nonzero 
terms are within the band shown. When we use a banded storage format, only the 
main diagonal 'and the nonzero upper codiagonals need be stored as shown in Figure 
B-6. Note that any codiagonal with a nonzero term requires storage of the whole, 



736 A B Methods for Solution of Simultaneous Linear Equations 
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X X 
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X 0 X X 
X 0 0 

X 0 

Symmetry X 

figure 8-4 Plane truss for bandwidth 
iUustration 

T 
n = 24 

1 
Figure 8-5 Stiffness matrix for the plane truss of Figure 8-4, where X denotes, in 
general, blocks of 2 x 2 sub matrices with, nonzero coefficients 

codiagonal and any codiagonals between it and the tnain diagonaL The use of banded 
storage is efficient for computational purposes. The Scientific Subroutine Package 
gives a more detailed explanation of banded compressed storage [4}. 

We now define the semibandwidth 7lb aSHb = nd(m + 1), where nd is the number 
of degrees of freedom per node and m is the maximum difference in node numbers 
detennined by calculating the difference in node numbers for each element of a finite 
element model. hi. the example for the plane truss of Figure B-4, m = 4 - 1 = 3 and 
nd 2, so nb = 2(3 + 1) = 8. 

Execution time (primarily equation-solving time) is a function of the number of 
equations to be solved. It has been shown [5] that when banded storage'of global stiff· 
ness matrix K is not used, execution time is proportional to (1 J3)n3• where n is the 
number of equations to be solved, or, equivalently, the size of K. When 
banded storage of K is used, the execution time is proportional to (n)n£. The ratio of 
time of execution without banded storage to that with banded storage is then 
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x X 0 X 
X X X X 
X 0 X X 
X X 0 X 
X X X X 
X 0 X X 
X X 0 X 
X X X X 
X 0 X X 
X 0 0 0 
X 0 0 0 
X 0 0 0 

Figure 8-6 Banded storage format of the 
stiffness matrix of Figure B-5 

(1/3)(n/nb)2. For the plane truss example, this ratio is {1/3)(24j8)2 = 3. Therefore, it 
takes about three times as long to execute the solution of the example truss if banded 
storage is not used. 

Hence, to reduce bandwidth we should number systematically and try to have a 
minimum difference between adjacent nodes. A small bandwidth is usually achieved 
by consecutive node numbering across the shorter dimension, as shown in Figure B-4. 
Some computer programs use the banded-symmetric format for storing the global 
stiffness matrix,!{. 

Several automatic node-renumbering schemes have been computerized /6]. This 
option is available in most generalapurpose computer programs. Alternatively, the 
wavefront or frontal method is becoming popular for optimizing equation solution 
time. In the wavefront method, elements, instead of nodes, are automatically 
renumbered. 

In the wavefront method, the assembly of the equations alternates with their sol­
ution by Gauss elimination. The sequence in which the equations are processed is 
determined by element numbering rather than by node numbering. The first equations 
eliminated are those associated with element 1 only_ Next, the contributions of stiff~ 
ness coefficients of the adjacent element, element 2, are added to the system of equa­
tions. If any additional. degrees of freedom are contributed by elements 1 and 2 
onty-that is, if no other elements contribute stiffness coefficients to specific degrees 
of freedom-these equations are eliminated' (condensed) from the system of equations. 
As one or more additional elements make their contributions to the system of equa­
tions and additional degrees of freedom are contributed only by these elements, those 
degrees of freedom are eliminated from the s.olution. This repetitive alternation 
between assembly and solution was initially seen as a wavefront that sweeps over the 
structure in a pattern determined by the element numbering. For greater efficiency of 
this method, consecutive element numbering should be done across the structure in a 
direction that spans the smallest number of nodes. 

. The wavefront method, though somewhat more difficult to understand and to 
program than the banded-symmetric method, is computationally more efficient. A 
banded solver stores and processes any blocks of zeros created in assembling the stiff­
ness matrix. In the wavefront method, these blocks of zero coefficients are not stored 



738 .. B Methods for Solution of Simultaneous Linear Equations 

or processed. Many large-scale computer programs are now using the wavefront 
method to solve the system of equations. (For additional details ofthls method, see 
References {7-9].} Example B.4 illustrates the wavefront method for solution of a 
truss problem. 

Example B.4 

For the plane truss shown in Figure B-7, illustrate the wavefront solution procedure. 
We wiU solve this problem in symbolic fonn. Merging k's for elements 1,2, and 

3 and enforcing boundary conditions at node I, we have 

d2,x d2y - : dlx d3y c4.<r c4y 
I 

k(l) + k(l) + 'k(3) 
33 II II 

k(l) + k(l) + k(3) : k(3) 
34 12 12 I 13 

k(3) 
14 

k(2) 
13 

k(2} 
14 d2,x 0 

~+~+~ ~+~+~:~ ~ ~ ~ d2y 0 
-------~-----------------~---------------k{l}' k(3) : k(3) k(3) k(2) k(2) d3x 0 31 32 I 33 34 :n 34 

k(3) .~ k(3} : k O) k(3) k(2) k(2) d{y -p 
41 42 I 43 44 43 44 

k(l) k{2) 
I 

dix 0 I 0 0 0 0 31 32 I 

k(2) k(2) 
I 
I 

0 0 0 0 d~y 0 I 41 42 I 

(BA.l) 

Eliminating a2,x and d2y (all stiffness contributions from node 2 degrees of freedom 
have been included from these elements; these contributions are from elements 1-3) 
by static condensation or Gauss elimination yields 

(BA.2) 

o 
1 

2 4 

Figure 8-7 Truss for wavefront solution 
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where the condensed stiffness and force matrices are (also see Section 7.5) 

[k;] = [K~] [K~t1[K;d-l [K:2] 

{F:} = {F;} - [K;lJ[K:t1- I {F{} 

(B.4.3) 

(B.4.4) 

where primes on the degrees of freedom, such as d;x in Eq. (BAl), indicate that all 
stiffness coefficients associated with that degree of freedom have not yet been 
included. Now include elements 4-6 for degrees of freedom at node 3. The resulting 
equations are 

[

k' + k(4) + k(5) + k(6) k(4) + k(5) + k(6) + k' : k(6) + k' k(6) + k' 
ell 33 II 11 34 12 12 el2 ,]3 el3 14 .cI4 

~+~+~+~ ~+~+~+~:~+~ ~+~ 
----------------------------------~----------------

k' k(6) k' k(6) " r k'" k(6) k' k(6) 
ell + 31 e32 + 32 ! el3 + 33 c34 + 34 

k' + k(6) k' + k{6) : k1 + k(6) k' + k(6) 
c41 41 c42 42 I £'43 43 coW 44 

(B.4.5) 

Using static condensation, we eliminate d3x and d3y (all contributions from node 3 
degrees of freedom have been included from each element) to obtain 

where 

[k:] { ~t } = {F:'} (B.4.6) 

[k;1 = [K~l- [K;mK;~tl[K;~] 

{F;'} = {F~'} - [K;;UK;;rl{F{) 

(B.4.7) 

(B.4.8) 

Next we include element 7 contributions to the stiffness matrix. Th~ condensed set of 
equations yield 

where 

[k:'} { ~; } =" {J;I1I} 

[k~'1 = [K~l - [K2'{][Kiir l [Km 

{.f;"'} = {Ft} - [Km[K;~rl{Ft'} 

(B.4.9) 

(B.4.1O) 

(B.4.Il) 

The elimination procedure is now complete, and we solve Eq. (B.4.9) for t4r and t4y• 

Then we back-substitute t4~ and t4y into Eq. (B.~.S) to obtain dn and dly• Finally, 
we back-~ubstitute di,,: through t4y into Eq. (B.4.1) to obtain d2x and d2yo Static COD­

densation and Gauss elimination with back-substitution have been used to solve the 



740 .4 B Methods for Solution of Simultaneous Linear Equations 

set of equations for all the degrees of freedom. The solution procedure has then pro­
ceeded as though it were a wave sweeping over the structure, starting at node 2, 
engulfing node 2 and elements with degrees of freedom at node 2, and then sweeping 
through node 3 and finally node 4. • 

We now describe a practical computer scheme often used in computer programs 
for the solution of the resulting system of algebraic; equations. The significance of this 
scheme is that it takes advantage of the fact that the stiffness method produces a 
banded IS. matrix in which the nonzero elements occur about the main diagonal in 
K. While the equations are solved, this banded format is maintained. 

Example '8.5 

We will now use a simple example to illustrate this computer scheme. Consider the 
three-spring assemblage shown in Figure B-S. The assemblage is SUbjected to forces 
at node 2 of 100 Ib in the x direction and 200 lb in the y direction. Node 1 is com· 
pletely constrained from displacement in both the x and y directions, whereas node 3 
is completely constrained in the y direction but is displaced a known amount 0 in the 
x direction. 

Our purpose here is not to obtain the actual K for the assemblage but rather to 
illustrate the scheme used for solution. The general solution can be shown to be 
given by . 

ktl kl2 k l3 kl4 k ls k l6 db Fix 

kll k23 k24 k 2S k26 d 1y Fly 

k33 k34 k3S k36 d2x Flx = 100 (B.4.12) 
k44 I4s k46 d2y F2y 200 

kS5 kS6 d3x F3x 

Symmetry k66 d3)1 F3y 

2OO1b 

2 JOOlb 

Lx 
k 

Figure 8-8 Three-spring assemblage 
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where K has been left in general form. llpon our imposing the boundary conditions, 
the computer program transfonns Eq., (B.4.12) to: 

1 0 0 0 0 0 d1x 0 

0 1 0 0 0 0 dly 0 

0 0 k33 k34' 0 0 d2x 100 - k3Sh 
(BA.13) 

0 0 ~3 144 0 0 d2y 200 -14sh 
0 0 0 0 .0 d3x J 
0 0 0 0 0 d3y 0 

From Eq. (B.4.13), we can see that db = 0, dly = 0, d3y = 0, and d3x. = o. These dis­
placements are consistent with the imposed boundary conditions. The unknown 
displacements, d2x and d2y, can be detennined routinely by solving Eq. (B.4.l3). 

We will now explain the computer scheme that is generally applicable to trans­
form Eq. (BA.l2) to Eq. (B.4.13). 'First, the terms associated with the known displace-

. ment boundary condition(s) within each equation were transfonned to the right side 
of those equations. In the third and fourth equations ofEq. (B.4.12), k3S0 and ~J 
were transformed to the right side, as shown in Eq. (B.4.13). Then the right-side 
force term corresponding to the'known displacement row was equated to the known 
displacement. In the ,fifth equation of Eq. (BA: 12), where d3x = J, .the right-side, 
fifth-row force term F3x was equated to the known displacement h;',as shown in Eq. 
(B.4J3). For the homogeneous boundary conditionsl the affected ,rows of E, corre­
sponding to the zero-displacement rows, were replaced with zeros. Again, this is 
done in the computer 'scheme only to obtain the nodal displacements and does not 
imply that these nodal forces are zero. We obtain the unknown nodal forces by deter­
mining the nodal displacements and back-substituting these results into the original 
Eq. (BA.12). Because db: = 0, d1y = 0, and d3y = 0 in Eq. (BA.l2), ,the first, second, 
and sixth rows of the force matrix ofEq. (B.4.13) were set to zero. Finally, fOT both 
nonhomogeneous and homogeneous boUndary conditions, the rows and columns. of 
K corresponding to these prescribed boundary conditions were set to zero except the 
main diagonal, which was made unity. That is, the first, second, fifth, and sixth rows 
and columns of Kin Eq. (BA.12) were set to zero, except for the main.diagonal 
tenos, which were made unity. Although doing so' is not necessary, setting the main 
diagonal terms equal to 1 facilitates the simultaneous solution of the six equations in 
Eq. (B.4.13) by an elimination method used in the computer progi'am. This modifica­
tion is shown in the K matrix of Eq. (B.4.13). • 
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.A. Problems 

B.l Detennine the solution of the following simultaneous equations by Cramer's rule. 

IXI +3X2 = 5 

4Xl -lx2 = 12 

B.2 Detennine the solution of the following simultaneous equations by the inver! 
method. 

Ixl + 3X2 = 5 

4xI -lx2 = 12 

B..3 Solve the following system of simUltaneous equations by Gaussian elimination. 

Xl - 4X2 5xJ = 4 

3X2 +4X3 =-1 

-2x1 - IX2 + 2x3 = -3 

B.4 Solve the following system of simultaneous equations by Gaussian elimination. 

2Xl + lX2 - 3X3 = 11 

4Xl - 2x2 + 3X3 = 8 

-2x1 + 2x2 IX3 = -6 



B~ Given that 
XI = 2YI - Y2 

X2 =Y1- Y2 

a. Write these relationships in matrix form. 
b. Express 1. in terms of y. 
c. Express l. in terms of i 

Problems ..... 743 

B.6 Starting with the initial guess XT = [1 1 1 1 1], perform five iterations of the 
Gauss-Seidel method on the following system of equations. On the basis of the results 
of these five iterations, what is the exact solution? 

2Xl -Ix2, =-1 

-tXl + 6X2 -Ix3 4 

-2x2 + 4X3 - lX4 4 

-Ix] +4X4 -lxs = 6' 

-lx4+2xs -2 

B.7 Solve Problem B.I by Gauss-Seidel iteration .. 

B.8 Classify the solutions to the fonowing systems of equations according to Section B.2 
as unique) nonunique, or nonexistent. 

L 2xI - 4X2 = 2 
-9xI + 12xz = -6 

c. 2x1 + lX2 + Ix) = 6 
3Xl + lxl - IX3 = 4 
5Xl + 2X:z + 2x3 8 

b. lOx, + IX2 = 0 
5Xl +!X2 = 3 

d. lxl + IX2 + IX3 = 1 
2xI +2x2 +2x3 = 2 
3Xl + 3X2 + 3X3 = 3 

B.9 Determine the bandwidths of the plane trusses shown in Figure PB-9. What con­
clusions can you draw regarding labeling of nodes? 

13 14 
15 5, 

10 
IS 

10 
n 12 4 

9 14 

7 
8 

9 3 8 13 

4 
5 6 2 

7 
12 

I • • 2 .3 I • ..6 .ll 

Fig~re PB-9 



Introduction 

In this appendix, we will develop the basic equations of the theory of elasticity. These 
equations, should be referred to frequently throughout the structural mechanics por­
tions of this text. 

There are three basic sets of equations included in theory of elasticity. These 
equations must be satisfied if an exact solution to a structural mechanics problem is 
to be obtained. These sets of equations are (1) the differential equations of equilibrium 
formulated here in tenns of the stresses acting on a body, (2) the stiain/di~placement 
and compatibility differential equations, and (3) the stress/strain or material constitu­
tive laws. 

... C.1 Differential Equations of Equilibrium 

. For simplicity~ we initially consider the equilibrium ofa plane element subjected to 
normal stresses (lx and (Jy, in-plane shear stress t xy (in units of force-per unit area), 
and body forces Xb and Yb (in units of force per unit volume), as shown in ~igure C-l. 
The stresses are assumed to be constant as they act on the width of each face. How­
ever, the stresses are assumed to vary from one face to the opposite. For example, 
we have (J'x acting on the left vertical face, whereas ax + (o(J'x/ox) dx acts on the 
right vertical face. The element is assumed to have unit thickness. 

SummingJorces in the x direction. we have 

LFx = 0 = (~x + ~; dx) dy(l) - lTxdy(l) + Xbdxdy(l) 

(C.Ll) 
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y ilu. 
u y +~dy 

I YhL 
L Xb 

.,~ 

u + ilu"dJ; 
z. iJx 

T + 5:x.dJ; 
~ dol 

~----------------------------_x 

Figure C-l Plane differential element subjected to stresses 

After simplifying and canceling terms in Eq. (C.l.l). we obtain 

oax oryx X 0 -+-+ b= 
ox oy 

(C. 1.2) 

Similarly, summing forces in the y direction. we obtain 

oay orxy. Yi 0 ay+a;-+ 'b = (C.l.3) 

Because we are considering only the planar element, three equilibrium equations 
must be satisfied. The third equation is equilibrium of moments about an axis normal 
to th~ x-y plane; that is, taking moments about point C in Figure C-l, we have 

~ . dx ( 07: )dx 
. ~Mz = 0 = 7:rydy(I)2" + 7:ry + aX: dx 2" 

)
dy (. 07:Y;rc) dy 

-!yxdx(l 2"- 'ryx:a;-d}" 2"=0 (C. 1.4) 

Simplifying Eq. (C.I.4) and neglecting higher-order termS yields 

7:ry = 7:yx (C.l.S) 

, We now consider the three-dimensional sta.te of stress shown in Figure C-2, 
which shows the additional stresses' aZ ) 'rxz , and 'ryz. For clarity, we show only the 
stresses on three mutually perpendicular planes. With a straightforward procedure, 
we can extend the two-dimensional equations (C.1.2), (C.1.3), and (C.l.S) to three 
dimensions. The resulting total set· of equilibrium equations is 

oar 07:xy orxz .xi 0 
Tx+ay-+az+ b= 

orry oay O'yz y. - 0 
::I '+::1 +::1 + b-
(IX . vy "Z 

a,x: Oryz oaz Z 0 -+-+-+ b= ox oy oz 

(C.L6) 
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y 

Figure C-2 Thre&dimensional stress element 

and (C.I.7) 

.. C.2 Strain/Displacement and Compatibility 
Equations 

We first obtain the strain/displacement or kinematic differential relatiDnships for 
the two-dimensional case. We begin by considering the differential element shown in 
Figure 'C-3, where the undefonned state is represented by the dashed lines and the 
deformed shape (after straining takes place) is represented by the solid lines. 

Considering line element AB in the x direction, we cart see that it becomes AlB' 
after defonnation., where u and v represent the displacements in the x and y directions. 
By the definition of engineering nonnal strain (that is. the change in length divided by 

iJu 
'"jjdy D' C" 

Tr--~lC 
dy I I a' 

l lA' I . 
. I I 

~dx ox 
AL---__ ... Ja _+--'--

I-dr-l tb: + ~dr 
~------------------------~x.u 

Figure C-3 Differential element before and after deformation 
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the original length of a line), we have 

Now 

and 

A'B'-AB 
tx = AB 

AB=dx 

(A'$')' = (dx+ ~dx Y + (!: dx)' 

(C.2.1) 

(C2.2) 

(C.2.3) 

Therefore, evaluating A' B' using the binomial theorem and neglecting the higher­
order terms (iJu/iJx)2 and (au/ex)2 (an approach consistent with the assumption of 
small strains), we have 

A'B' = dx+ eu dx ox 
Using Eqs. (C.2.2) and (C.2A) in Eq. (C.2.!), we obtain 

ou 
t x = ex 

Similarly, considering line element AD in the y direction, we have 

ef) 
ey = ay 

(C.2.4) 

(C.2.S) 

(C.2.6) 

The shear strain y xy is defined to be -the change in the angle between two lines, 
such as AB and AD, that originally formed a right angle. Hence, from Figure C-3, 
we can see that y xy is the sum of two angles and is given by 

eu ov 
Yxy = iJy + ox (C.2.7) 

Equations (C2.5)-(C2.7) represent the strain/displacement relationships fOF in:..plane 
behavior. 

For three-dimensional sitUations, we have a displacement w in the z direction. It 
then becomes straightfolWard to extend the two-dimensional derivations to the thfee... 
dimensional case to obtain the additional strain/displacement equations as 

ow 
e..=-. oz 

au ow 
Yx.'! = iJz + iJx 

ov ow 
y --+­
y: - iJz oy 

(Col.8) 

(C.2.9) 

(C2.IO) 

Along with the strain/displacement equations, we need compatibility equations 
to ensure that the displacement Components u. v, and ware single-valued continuous 
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functions so that tearing or overlap of elements. does notoccUT. For the planar-elastic 
case, we obtain the cOD;lpatibility equation by differentiating Yxy with respect to both x 
and y and then using the definitions for ex and ey given by Eqs. (C.2.5) and (C2.6). 
Hence, . 

(C2.l1) 

where the second equation in terms of the strains on the right side is obtained by not­
ing that Single-valued continuity of displacements requires that the paitiat differentia­
tions . with respect to x and y be interchangeable in order. Therefore, we have 
82/8x8y 82j8y8x. Equation (C2.t1) is called die d:mdition of compatibility, and jt 
must be satisfied by the strain components in order for us to obtain unique expressions 
for u and v. Equations (C.2.5), (C.2:6), (C.2.?), and (C2.11) together are then suffi* 
cient to obtain unique single--valued functions for it and v. 

In three dimensions, we obtain five additional-compatibility equations by differ­
entiating l'x: and Yy: in a m~nner similar to that described above for /'xy. We need not 
list these equations here; details of their derivation can be found in Referel).ceil l. 

In addition to the compatibility conditions that ensure single-valued continuous 
functi01lswithin the bodY7 we must also satisfy (lisplacemento.r kinematic boundary 
conditions_ This simply means that the displacement functions must also satisfy pre­
scribed or given displacements on the surface of the body. These conditions often 
occur as·support conditions from rollers and/or pins. In general, we might have 

W=Wo (C.2.l2) 

at'sptafied surface t~a.tio~s ~n.tlie'·1?o4.Y. We may also have conditions oLlter than 
displacements prescribed (for exampie, prescribed rotations).' . 

... , C.3. Stress/~t~aJn F;l~latior)ships. 

We,~i.lI no~ develo~ the thr~-dimension~l stress/strain relationships for an isotropic 
body 'only. This is done by. copsidenng the, tesponse of a- body to imposed stresses. 
We subject the body' to the strysSes-uX ' 0";> and a; iJidependently as shown in Figure 

'·C-4.·- . " ' .. ,', . . 
We first consider the change in length of the element in the x direction due to the 

independent stresses O"x, O"y, and O"z- We assume the principle of superposition to hol~; 
that is, we assume that ,the resultant strain in a system due to several forces is the 
algebraic sum of their iQdivi~ual effects. 

Considering Figure C-4(b), the stress in the x direction produces a positive 
strain 

I O";x 
e=­

x E (C.3.1) 

where Hooke's Jaw, a = Ee~ has been used in writing Eq. (C.3.1), and E is defined as 
the modulus of elasticity. Considering Figure C-4(c), the positive stress in the 
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(a) (b) 

tT, 

(e) (d) 

Figure C-4 Element subjected to normal stress acting in three mutually 
perpendicular directions 

y direction produces a negative strain in the x direction as a result of Poisson's effect 
given by 

(;"­x- (C.3.2) 

where 11 is Poisson's ratio. Similarly, considering Figure C-4(d), the stress in the z 
direction produces a negative strain in the x direction given by 

til V(lz 

ex =-y (C3.3) 

Using superposition ofEqs. (C.3.1)-(C.3.3), we obtain 
(Ix (lz 

ex = E - vE (C.3.4) 

The strains in the y and z directions can be determined in a manner similar to that 
used to obtain Eq. (C3.4) for the x direction. They are 

e = -}1 (Ix + (ly ..:.. v~ 
'Y E E E 

(C.3.S) 
&z= 
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Solving Eqs. (C.3.4) and (C.3.5) for the nonna! stresses, we obtain 

E 
Ux = (1 + v)(l 2v) [e.x(1 - v) + ve, + vez] 

E (I, = (1 + 11)(1 _ 2v) [vex + (1 - v)£y + vez] 

E 
(1= = (1 + V)(1 _ 2v) [vex + vty + (1 - v)£:] 

(C.3.6) 

The Hooke's law relationship, a = Ee, used for DonnaI stress also applies for 
shear stress and strain; that iSt 

t'=Gy (C.3.7) 

where G is the shear modulus. Hence, the expressions for the three different sets of 
shear strains are . 

't'xy 
YA)'=a 

Solving Eqs. (C.3.8) for the stresses, we have 

'rzx 
Yzx =0 

In matrix fonn, we can express the stresses'in Eqs. (CJ.6) and (C.3.9) as 

(1y 

(1;: E 
'[xy (1 + 11)(1 - 2v) 

t'yz 

':x 
I-v v 

I-v 

x 

Symmetry 

v 0 

v 0 

I-v 0 

1-2v 

0 

0 

0 

0 

1- 2v 
-2-

where we note that the relationship 

E 
G=--

2(1 + v) 

0 

0 

0 

0 

o 

1.:.- 2v 
-2-

ex 
E, 
Ez 

Yxy 

)',: 

Yu 

. (C.3.8) 

(C.3.9) 

(C.3.10) 
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has been used inEq. (C.3.1O). The square matrix on the right side ofEq. (C~3.10) is 
called the stress/strain or constitutive matrix and is. defined by fl. where !l is 

I-v v v 0 0 0 

I-v v 0 0 0 

I-v 0 0 0 

[D]- E 
1-2v 

0 0 
- (1 + v)(l - 211) 

-2- (C.3.11) 

1-2v 
0 -2-

Symmetry 
1-211 

Reference 

[I} Timosbenko, S., and Goodier, J., Theory of Elasticity, 3rd ed., MeGraw.HiB, New York, 
1970. 



The equivalent nodal (or joint) forces for different types of loads on beam elCl'nents 
are shown in Table D-1. 

... Problems 

D.I . Detennine the equivalent joint or nodal forces for the beam elements shown in Figure 
PD-I. ' 

, t--1O(t-+-10ft~ 
(a) 

lOOOlb/ft 

,t I I I L 
I· 30n I 

(e) 

~2<IOOlb/rt 

1-2 

I 20ft I 
(e) 

~'m--l 4kN/m 

1~2 
I. 6m I 

(g) 

Figure Po-1 

I lSkip 
!5kiP 2 

1-' ft-/ I-s rr-l 
~20(I---l 

(b) 

2k/fr ! 5 kip 

II J I _ 2 

I--IOft-+-IOft-1 
.(d) 

I rkN 

2 

I--sm~·1 2m-1 
(I) 

SkN/m 

II I I I I II 
I· 4m I 

(b) 
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, f'~' ~ L 1/2,1' 
Table D-1 Single element equivalent Joint forces to for different types of loads Positive nodal force conventions 

fly ml Loading case f2y m2 

-P -PL 

~ 
L/2 lP 

LI2 

~ 
-P PL 

T -8- T T 1. 

-Pb2(L + 2a) -Pab2 

~ 
a 

!p 
b 

~ 
-Pa2(L+2b) Pa2b 

V- L2 --v:-L 
L3 2. 
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~. 
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Table D-1 (Continued) 

7. 

8. 

9. 

Ii, 

-13wL 
32 

-wL 
-3-

-M(a2 + b2 - 4ab - L2) 
o 

ml 

-llwL2 
192 

-wL2 
15 

Mb(2a - b) 
~ 

Loading case h.y m2 

w 
SwLz 

.~ I I I I ~ 
-3wL 

L 
32 192 

w (parabolic loading) 
wLl 

~ I ~ 
-wL 
-3- 15 

L 

~ 
Q )ML b ~ 

M(a2 +b2 - 46b L2) Ma(2b-a) 
L3 -V 
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In this appendix, we will use the principle of virtual work to derive the general finite 
element equations for a dynamic system. ' 

Strictly speaking, the principle of virtual work applies to a static system, bu1 
through the'introduction ofD'Alembert's principle, we willl:ie able to use the principle 
of virtual work to derive the finite element equations applicable for a dynamic system. 

The principle of virtual work is stated as follows: 

If a defonnable body in equilibrium is subjected to arbitraJ:y virtual 
(imaginary) displacements associated with a compatible defonnation of the 
body, the virtual work of external forces on the body is equal to the Virtual 
strain energy of the internal stresses. 

In the principle, compatible displacements are those that satisfy the boundary condi­
tions and ensure that no discontinuities, such as voids or overlaps, occur within the 
body. Figure'E-l shows the hypothetical actual displacement, a compatible (admissible) 
displacement, and an incompatible (inadmissible) displacement for a simply supported 
beam. Here Jv represents the variation in the transverse displacement function v. In 
the finite element formulation, bV would be replaced by nodal degrees of freedom 
btl;. The inadmissible displacements shown in Figure E-l(b) are the result when the 
support condition at the right end of the beam- and the continuity of displacement 
and slope within the beam are not satisfied. For more details of this principle, consult 
structural mechanics references such as Reference [1]. Also, for additional descriptions of 
strain energy and work done by external forces (as applied to a bar), see Section 3.10. 

Applying the principle to a finite element, we have 

6u(e)- = Jw{e) (E.l) 

where bu(e) is the virtual strain energy due to internal stresses and bw(e) is the virtUal 
work of external fo.rces on the element. We can express the internal virtual strain 
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Actual displacement 11 ' 

x 

Virtual displacement fill 

Admissible displacement v + {,,, 

(a) (b) 

Figure E-l (a) Admissible and (b) inadmissible virtual displacement functions 

1"-----r"'..'piHIV fly 

pildV 

piitlV dz 

. 1 Y.·.· . 
~x,u,,. 

z.w"w 

Figure E-2 Effective forces acting on an element 

energy using matrix notation as 

~u(e) = JJ I ~fT qdV 

v 

(E.2) 

From Eq. (E.2), we can observe that internal strain energy is due to internal stresses 
moving through virtual strains be. The external virtual work is due to nodal, surface, 
and body forces. In addition, application of D' Alembert's principle yields effective or 
inertial forces pUdV,pi5 dV, and pwdV, where the double dots indicate second deriva­
tives of the translations u,o, and w in the x, y, and z directions, respectively, with 
respect to time. These forces are shown in Figure E-2. According to D'Alembert's 
principle, these effective forces act in directions that are opposite to the assumed pos­
itive sense of the accelerations. We can now express the external virtual work as 

ow(e) = od. T f + J J o~,;l' dS + III 01'T (X - p~) dV (E.3) 
s y 

where ~{l is the vector of virtual tiooal displacements, ~'" is the vector of virtual dis­
placement functions ~u, av, and ~w, ~"'$ is the vector of Vlrtual displacement functions 
acting over the smface where surface-tractions occur, E is the nodal load matrix, Tis 
the surface force per unit area matrix, and X is the body force per unit volume matrix. 
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Substituting Eqs. (E.2) and (E.3) into Eq. (EJ), we obtain 

JII t5§iT Q'dV = t5gTf + JJ&~;I dS + IJJ &![tT(X - p~)dV (E.4) 
v, s v 

As shown throughout this text, shape functions are used to relate displacement 
functions to nodal displacements as 

(E-S) 

l'ls is the shape function matrix evaluated on the surface where traction I occurs. 
Strains are related to nodal displacements as 

~=Bg (E.6) 

and stresses are related to strains by 

(E.7) 

Hence, substituting Eqs. (E.5), (E.6) and (E.7) for 1/1,[;, and !l into Eq. (EA), we 
obunn -

JJJc5gTBT12B4dV=c5gTf+ JI&gTN[IdS+ JII&gTNT(X-PNd>dV (E.8) 
v s v 

Note that the shape functions are independent of time. Because g (or gT) is the matrix 
of nodal displacements, which is independent of spatial integra~ion, we can simplify 
Eq. (E.8) by taking the gT terms from the integrals to obunn 

dgT JJIBT12BdV4 t5gT!+dgT JIN{!ds+&gT IJINT(X -pN4)dV (E.9) 
v s v 

Becau~ t5gT is an arbitrary virtual nodal displacement vector common to each term 
in Eq. (E.9), the following relationship must be true. , 

IIJBT12BdVg=!+ JIN{IdS+ JJJNTXdV- JIJpNTNdV4 (E.IO) 
v s: v' v 

We now define 

m = JII pNTl'l dV (E.ll). 

v 

1£ = JIJ BT12BdV (B.12) 
v 

Is 11 N[IdS (E.l3) 

s 

[h= IIJNTXdv (E.14) 
v 
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Using Eqs. (E.ll)-(E-14) in Eq. (E.IO) and moving the last term ofEq. (RIO) to the 
left side, yve obtain 

mil + Ifd. = £ + [s + jb (E.15) 

The matrix!11 in Eq. (E.ll) is the element consistent-mass matrix [2], If in Eq. (E.12) is 
the element stiffness matrix, is in Eq. (E.13) is the matrix of element equivalent nodal 
loads due to surface forces, -and Ji, in Eq. (E.14) is the matrix of element equivalent 
nodal loads due to body forces. -

Specific applications of Eq. {E. IS) are given in Chapter 16 for bars and beams 
subjected to dynamic (time-dependent) forces. For static problems, we set (j equal to 
zero in Eq. (E. 1 5) to obtain 

!i4=£+[s+jb (E.16) 

Chapters 3-9, 11 and 12 illustrate the use of Eq. (E.16) applied to bars, trusses, 
beams, frames, and to plane stress, axisymmetric stress. three-dimensional stress, and 
plate-bending problems. 
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ment Techniques," Jouma/ of lhe American Institute of Aeronautics and Astronautics, Vol. 3, 
No. 10, pp. 1910-1918, 1965. 
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Wide Flange Shapes (W Shapes)*: Theoretical Dimensions 
and Properties for Designing 

Flange Axis x-x AxisY-Y 
Weight Area Depth Web 

Section per of of Thick· Thick· 
Number Foot Section Section Width ness ness Ix $. 'x IT S1 '1 

A d hf If I •. 

(Ib) (in.2) (in.) (in.) (in.) (in.) (in.4) (in.l) (in.) (io.4) [m.]) em. 
W36 )( 300 88.3 36.74 16.655 1:680 0.945 20,300 1,110 15.2 1,300 156 3.8. 

2110 82.4 36.52 16.595 1.570 0.885 18,900 1,030 . 15.1 1,200 144 3.8 
260 76.5 36.26 1(j.5SO 1.440 0.840 17,300 953 15.0 1,090 132 3.7· 
245 72.1 36.08 16.510 1.350 0.800 16,100 895 15.0 1,010 123. 3.7 
230 67.6 35.90 16.470 1.260 0.760 15,000 837 14.9 940 114 3.7. 

W36 x 210 61.8 36.69 12.180 1.360 0.830 13,200 719 14.6 411 67.5 2S 
194 57.0 36.49 12.115 1.260 0.765 12,100 664 14.6 375 61.9 2.So 
182 53.6 36.33 12.075 1.180 0.725 11,300 623 14.5 347 57.6 2.5. 
170 SO.O 36.17 12.030 1.100 0.680 10,500 580 14.5 320 53.2 2.5. 
160 47.0 36.01 12.000 1.020 0.650 9,750 542 14.4 29S 49.1 2.51 
ISO 44.2 35.85 11.975 0.940 0.625 9,040 504 14.3 270 45.1 2.4' 
135 39.7 35.55 11.950 0.790 D.600 7,800 439 14.0 ill 37.7 2.3: 

,COIItinu 

• A W section is designated by the letter W followed by the nominal depth in inches and ~ weight in pounds per fOOl. 

All printed with permission of American In$titute of Steel Construction 
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760 ~ F Properties of Structural Steel and Aluminum Shapes 

Wide Fla~ge Shapes (W Shapes)·: Theoretical Dimensions and Properties for Designing (Continued) 

Weight 
Section per 
Number Foot 

(Ib) 

W33 x 241 
221 

,201 

W33 x 152 
141 
130 
118 

W30 x 211 
191 
173 

W30 x 132 
124 
116 
108 
99 

W27 x 178 
161 
146 

W27 x 114 
102 
94 
84 

W24 x 162 
146 
131 
117 
104 

W24 x 94 
84 
76 
68 

W24 x 62 
55 

W21)( 147 
132 
122 
III 
101 

W21 x 93 
83 
73 
68 
62 

W21)( 57 
SO 
44 

Flange 
Area Depth ------

of of 
Sec:ti~ Section 

A d 
. (in.2) (in.) 

70.9 
65.0 
59.1 

44.7 
41.6 
38.3 
34.7 

62.0 
56.1 
50.8 

38,9 
36.5 
34.2 
31.7 
29.1 

52.3 
47.4 
42.9 

33.5 
30.0 
27.7 
24.8 

47.7 
43.0 
38.5 
34.4 
30.6 

27.7 
24.7 
22.4 
20.1 

18.2 
16.2 

43.2 
38.8 
35.9 
32.7 
29.8 

27.3 
24.3 
21.5 
20.0 
18.3 

16.7 
14.7 
13.0 

34.18 
33.93 
33.68 

33.49 
33.30 
33.09 
32.86 

30.94 
3Q.68 
30.44 

30.31 
30.17 
30.01 
29.83 
29.65 

27.81 
27.59 
27.38 

27.29 
27.09 
26.92 
26.71 

25.00 
24.74 
24.48 
24.26 
24.06 

24.31 
24.10 
23.92 
23.73 

23.74 
23.57 

22.06 
21.83 
21.68 
21.51 
21.36 

21.62 
21.43 
21.24 
21.13 
20.99 

21.06 
20.83 
20.66 

Width 
Of 

(in.) 

15.860 
15.805 
15.745 

11.565 
11.535 
11.510 
11.480 

15.105 
15.040 
14.985 

10.545 
10.515 
10.495 
10.475 
10.450 

14.085 
14.020 
13.965 

10.070 
10.015 
9.990 
9.960 

12.955 
12.900 
12.855 
12.800 
12.750 

9.065 
9.020 
8.990 
8.965 

7.040 
7.005 

12.510 
12.440 
12.390 
12.340 
12.290 

8.420 
8.355 
8.295 
8.270 
8.240 

6.555 
6.530 
6.500 

Thick~ 

ness 

~ 
(in.) 

1.400 
1.275 
1.150 

1.055 
0.960 
0.855 
0.740 

1.315 
1.185 
1.065 

1.000 
0.930 
0.&50 
0.760 
0.670 

1.190 
1.080 
0.975 

0.930 
0.830 
0.745 
0.640 

1.220 
1.090 
0.960 
0.850 
0.750 

0.875 
o.no 
0.680 
0.585 

0.590 
0.505 

1.150 
1.03-5 
0.960 
0.875 
0.800 

0.930 
0.835 
0.740 
0.685 
0.615 

0.650 
0.535 
0.450 

Web 
Thick­

ness 
t,. 

(in.) 

0.&30 
0.775 
0.715 

0.635 
0.605 
0.580 
0.550 

0.775 
0.710 
0.655 

0.615 
0.585 
0.565 
0.545 
0.520 

0.725 
0.660 
0.605 

0.570 
0.515 
0.490 
0.460 

0.705 
0:650 
0.605 
0.550 
0.500 

0.515 
0.470 
0.440 
0.415 

0.430 
0.3~5 

0.720 
0.650 
0.600 
0.550 
0.500 

0.580 
0.515 
0.455 
0.430 
0.400 

0.405 
0.380 
0.350 

14,200 
12,800 
11,500 

8,160 
7,450 
6,710 
5,900 

10,300 
9,170 
8,200 

5,770 
5,360 
4,930 
4,470 
3,990 

6,990 
6,.280 
5,630 

4,090 
3,620 
3,.270 
2,850 

5,170 
4,5S0 
4,020 
3,540 
3,100 

2,700 
2,370 
2,100 
1,830 

1,550 
1,350 

3,630 
3,220 
2,960 
2,670 
2,420 

2,070 
1,830 
1,600 
1,4.80 
1,330 

1,170 
984 
843 

Axis X-X 

829 
757 
684 

487 
448 
406 
359 

663 
598 
539 

380 
355 
329 
299 
269 

502 
455 
411 

299 
267 
243 
213 

414 
371 
329 
291 
258 

222 
196 
176 
154 

131 
114 

329 
295 
273 
249 
2TI 

192 
171 
151 
140 
127 

It1 
94.5 
81.6 

(in.) 

14.1 
14.1 
14.0 

13.5 
13.4 
13.2 
13.0 

12.9 
12.8 
12.7 

12.2 
12.1 
12.0 
11.9 
10 

11.6 
11.5 
11.4 

11.0 
11.0 
10.9 
10.7 

10.4 
10.3 
10.2 
10.1 
10.1 

9.S7 
9.79 
9.69 
9.55 

9.23 
9.11 

9.17 
9.12 
9.09 
9.05 
9.02 

8.70 

8.67 
8.64 
8.60 
8.54 

8.36 
8.18 
8.06 

932 
840 
749 

273 
246 
218 
187 

757 
673 
598 

196 
181 
164 
146 
128 

555 
497 
443 

159 
139 
124 
106 

443 
391 
340 
297 
259 

109 
94.4 
82.5 
70.4 

34.5 
29.1 

376 
333 
305 
274 
248 

92.9 
81.4 
70.6 
64.7 
57.5 

30.6 
24.9 
20.7 

AxisY-Y 

118 
106 
95.2 

47.2 
42.1 
37.9 
32.6 

100 
89.5 
79.8 

37.2 
34.4 
31.3 
27.9 
24.5 

78.8 
70.9 
63.5 

31.5 
27.8 
24.8 
21.2 

61L4 
60.5 
53.0 
46.5 
40.7 

24.0 
20.9 
18.4 
15.7 

9.80 
8.30 

60.1 
53.5 
49.2 
44.5 
40.3 

22.1 
19.5 
17.0 
15.7 
13.9 

9.35 
7.64 
6.36 

All printed with permission of American Institute of Steel Construction 

(in.) 

3.63 
3.59 
3.56 

2.47 
2.43 
2.39 
2.32 

3.49 
3.46 
3.43 

2.25 
2.23 
2.19 
2.15 
2.10 

3.26 
3.24 
3.21 

2.1S 
2.15 
2.li 
2.07 

3.05 

3.0r 
2.97 
2.94 
2.91 

1.98 
1.95 
1.92 
1.87 

1.38 
1.34 

2.95 
2.93 
2.92 
2.90 
2.89 

1.84 
1.83 
1.81 
1.80 
1.77 

1.35 
1.30 
1:26 
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Wide Flange Shapes NJ Shapes)*: Theoretical DimensioAs and Properties for Designing (Continued) 

Flange AxisX·X Axis V-V 
Weight Area Depth Web 

Section peT or of Thick- Thiclc-
Number Foot Section Section Width ness ness 1;< Sr P:. IF S, TJ• 

A d hJ IJ t •. 

(lb) (in.2) (in.) {in.} (in.) (in.) (in.') (in.l) (in.) (in.4) (in.l) (in.) 

W1Sx 119 35.1 18.97 11.26S !.06() 0.655 2,190 231 7.90 253 44.9 2.69 
106 31.1 18.73 11.200 0.940 0.590 1,910 204 7.84 22() 39.4 2.66 
97 28.5 IS59 11.145 0.870 0.535 t,7S0 183 7.82 2(») 36.1 2.65 
86 25.3 18.39 11.090 0.770 0.480 1,530 166 7.77 t7S 31.6 2.63 
76 22.3 18.21 IIms 0.680 0.425 1,330 146 7.73 152 27.6 2.61 

WlSx 71 20.8 18.47 7.635 0.810 0.495 1.170 127 7.50 60.3 15.8 1.70 
65 19.1 18.35 .7.590 0.750 0.450 1,070 117 7.49 54.8 14.4 1.69 
60 17.6 18.24 7.555 0.695 0.415 984 lOS 7.47 50.1 13.3 1.69 
55 16.2 18.11 7.530 0.630 0.390 890 98.3 7.41 44.9 11.9 1.67 
SO 14.7 17.99 7.495 0.570 0.355 800 88.9 7.38 40.1 10.7 US 

WI8 x 46 13.5 18.06 6.060 0.605 0.360 712 78.8 7.25 22.5 7.43 1.29 
40 11.8 17.90 6.015 0.525 0.315 612 68.4 7.21 19.1 6.35 1.27 
35 10.3 17.70 6.000 0.425 "_ 0.300 510 57.6 7.04 15.3 5.12 1.22 

W16x 100 29,4 16.97 10,425 0.985 0.585 1,490 175 7.10 186 35.7 2.52 
89 26.2 16.75 10.365 0.875 0.525 1,300 ISS 7.!i5 163 31.4 2.49 
77 22.6 16.52 10.295 0.760 OAS5 1,110 134- 7.00 138 26.9 2.47 
67 19.7 16.33 10.235 .0.665 G.395 954 117 6.96 tt9 23.2 2.46 

WI6x 57 t6.8 16.43 7.12.0 0.715 0.430 758 92.2 6.n 43.1 12.1 t.60 
SO 14.7 16.26 7.070 0.630 0.380 659 &1.0 6.68 37.2 10.5 1.59 
45 13.3 16.13 7.035 0.565 0.345 586 72.7 6.65 32.8 9.34 I.57 
40 11.8 16.01 6.995 0.505 0.305 518 64.7 6.63 28.9 8.25 1.57 
36 10.6 15.86 6.985 0.430 0.295 448 56.S 6.51 24.S 7.00 1.52 

WI6x 31 9.12 15.88 5.525 0.440 0.275 375 47.2 6.41 12..4 4.49 1.17 
26 7.68 15.69 5.500 0.345 0.250 301 38.4 6.26 9.59 3.49 1.12 

WI4 x 7·30 215 22.42 17.890 4.910 3.010 14,300 1,280 8.17 4,72.0 527 4.69 
665 196 21.64 17.650 4.52.0 . 2.830 12,400 1,150 7.98 4,170 472-- 4.62 
60S 178 2.0.92 17.415 4.160 2.595 10,800 1,040 7.80 3,680 423 4.55 
550 162 20.24 17.200 3.820 2.380 9,430 931 7.63 3,250 378 4.49 
500 147 19.60 17.010 3.500 2.190 8,210 838 7.48 2,880 339 4.43 
455 134 19.02 16.835 3.210 2.<H5 7,1% 756 7.33 2,560 304 4.38 

W14x 426 125 18.67 16.695 3.035 1.875 6,600 707 7.26 2,360 283 4.34 
398 lI7 18.29 16.590 2.845 1.770 6,000 656 7.16 2,170 262 4.31 
370 109 17.92 16.475 2.660 1.655 5,440 607 7.07 1,990 241 4.27 
342 101 17.54 16.360 2.470 t.S40 4,900 SS9 6.98 1.810 221 4.24 
311 91.4 17.12 16.230 2.260 l.410 4,330 S06 6.88 1,610 199 4.20 
283 83.3 16.74 16.110 2.070 1.290 3,840 459 6.79 1,440 179 4.17 
257 75.6 16.38 15.995 1.890 1.175 3,400 415 6.71. 1,290 161 4-13 
233 68.5 16.04 15.890 1.720 1.070 3,010 375 6.63 1,ISO 145 4.10 
211 62.0 15.72 15.800 1.560 0.980 2,660 338 6.55 1,030 130 4.01 
193 56.8 15.48 15.710 1.440 0.890 2,400 310 6.50 931 119 4.05 
176 5I.8 15.22 15.650 1.310 0.830 2,~40 281 6.43 $38 107 4.02 
159 46.7 14.98 15.565 1.190 0.745 1,900 254 6.38 743 96.2 4.00 
145 42.7 14.78 15.500 1.090 0.686 1,710 232 6.33 677 87.3 3.98 

W14l( 132 38.8 14.66 14.m I.03() 0.645 1,530 209 6.28 548 74.5 3.76 
120 35.3 14.48 14.670 0.940 0.590 1,380 190 6.24 495 67.5 3.74 

(Continued) 

All printed with permission of American Institute of Steel ConstruCtion 



758 .. E Principle of Virtual Work 

Using Eqs. (E.ll)-(E.14) in Eq. (E.lO) and moving the last term ofEq. (EJO) to the 
left side, ,we obtain 

md + lid = f + Is + b (E.lS) 

The matrix!!! in Eq. (E.lI) is the element consistent-mass matrix [2], Ii in Eq. (E.l2) is 
the element stiffness matnx,/s in Eq. (E.l3) is the.matrix of element equivalent nodal 
loads due to surface forces, -and fh in Eq. (E.14) is the matrix of element equivalent 
nodal loads due to body forces. -

Specific applications of Eq. (E.IS) are given in Chapter 16 for bars and beams 
subjected to dynamic (tirne-dependent) forces. For static problems, we set ii equal to 
zero in Eq. (E.I5) to obtain 

kr1 = f + Is + fb (E.16) 

Chapters 3-9, 11 and 12 illustrate the use of Eq. (E.16) applied to bars, trusses, 
beams, frames, and to plane stress, axisymmetric stress, three-<limensional stress, and 
plate-bending problems. 

Ai: References 

[1) Oden, J. T., and Ripperger, E. A., Mechanics of Elastic Strucrures, 2nd ed.) McGraw-Hill, 
New York, 1981. 

12J Archer, 1. S., "Consistent Matrix Fonnulations for Structural Analysis Using Finite Ele­
ment Techniques," Journal of tlte American Institute of Aeronautics and Astronautics, Vol. 3) 
No. 10, pp. 1910-1918, 1965. 
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Wide Flange Shapes (W Shapes)*: Theoretical Dimensions L~j~' 
and Properties for Designing 

Flange AxisX·X AxisY-Y 
Weight Area Depth Web 

Section per of of Thiele- Thick-
Number Foot Section Section Width ness ness I" s., r~ I, Sy 

A d hI 'I 1 .. 

(Ib) (in.2) (in.) (in.) (in.) (in.) (in. oil (in.) (in.) (in.") (in.') (il 

W36x 300 88.3 36.74 16.6.55 1.680 0.945 20,300 1,110 15.2 1.300 156 3. 
280 82.4 36.52 16.595 1.570 0.885 18,900 1.03() tS.l 1,200 144 3. 
260 76.5 36.26 J(j.S50 1.440 0.840 17,300 953 15.0 1,090 13l 3. 
245 72.1 36.08 16.510 1.350 0.800 16,100 895 15.0 1,010 123 3. 
230 67.6 l5.90 16.470 1.260 0.760 15.000 837 14.9 940 114 3. 

W36 x 210 61.8 36.69 12.180 1.360 0.830 13,200 719 14.6 411 67.$ 2. 
194 57.0 36.49 12.115 1.260 0.765 12,100 664 14.6 375 6!.9 2. 
182 53.6 36.33 12.075 1.180 0.72$ [1,300 623 !4.5 347 $1.6 2. 
170 SO.O 36.17 12.030 1.100 0.680 10,500 580 14.5 320 53.2 2. 
160 47.0 36.01 12.000 1.020 0.650 9,750 542 14.4 29S 49.1 l. 
ISO 44.2 35.85 11.975 0.940 0.625 9,040 S04 14.3 270 45.1 2. 
135 39.7 35.55 IUs() 0.790 0.600 7,800 439 14.0 225 31.7 2. 

(Conlill 

• A W section is designated by the leiter W followed by the nominal depth in inches and lJ1e weight in pouads per foot. 

All printed with permission of American Institute of Steel Construction 



760 .. F Properties of Structural Steel and Aluminum Shapes 

Wide Fla.,ge Shapes ~ Shapes)*: Theoretical Dimensions and Properties for Designing (Continued) 

Flange Axis x-x Axisy·y 
Weight Area Depth Web 

Section per of of Thick- Thick-
Number Foot Section Section Width ness ness f~ S~ '1< I, S, Ty 

A d hI y. t", 

(lb) . (in?) (in.) (in.) (in.) (in.) (in.4) (in.3) (in.) (in.') (in.l) (in.) 

W33 x 241 70.9 34.18 15.860 1.400 0.830 14,200 829 14.1 932 liS 3.63 
221 65.0 33.93 lS.805 1.275 0.775 12,800 757 14.1 ~ 106 3.59 
201 59.1 33.6& 15.745 1.150 0.715 11,500 684 14.0 749 95.2 3.56 

W33 x 152 44.7 33.49 11.S65 1.055 0.635 8,160 487 13.5 273 47.2 2.47 
141 4l.6 33.30 11.535 0.960 0.605 7,450 448 13.4 246 42.1 2.43 
130 38.3 33.09 lUll} 0.855 0.580 6,710 406 13.2 218 37.9 2.39 
118 34.7 32.86 11.480 0.740 0.550 5,900 359 13.0 181 32.6 232 

W30x m 62.0 30.94 15.105 1.315 0.775 10,300 663 12.9 757 100 3.49 
191 56.1 30.68 15.040 LIaS 0.710 9,110 598 12.8 613 89.5 3.46 
173 50.8 30.44 14.985 1.065 0.655 8,200 539 12.7 598 79.8 3.43 

W3&x 132 31M 30.31 10.545 1.000 0.615 5,170 380 12.2 196 37.2 2.25 
124 36.5 30.!1 10.515 0.930 0.585 5,360 355 12.1 181 34.4 2.23 
116 34.2 30.01 10.495 0.850 0.565 4,930 329 12.0 164 31.3 2.19 
108 31.7 29.83 10.475 0.760 0.545 4,470 299 11.9 146 27.9 2.15 
99 29.1 29.65 10.450 D.670 0.520 3,990 269 11'.7 128 24.5 2.10 

W27 x 178 52.3 2UI 14.085 1.190 0.725 ~.990 502 11.6 555 78.8 3.26 
161 47.4 27.59 14.020 1.080 0.660 6,280 455 U.S 497 70.9 3.24 
146 42.9 27.38 13.965 0.975 0.605 5,630 411 11.4 443 63.5 3.21 

W27 x 114 33.5 27.29 10.070 0.930 0570 4,090 299 11.0 159 3l.S 2.18 
102 30.0 27,(» W.OIS 0.830 0.515 3,620 267 11.0 139 27.8 .2.15 

Cj4 21.7 26.92 9.990 0.145 0.490 3,270 243 10..9 124 24.8 2.12 
84- 24.8 26.71 9.960 0.640 0.460 2,850 :213 10.1 106 21.2 2.01 

W24x 162 41.7 25.00 12.955 1.220 G.70S 5,170 414 10.4 443 68.4 3.05 
146 43.0 24.74 12.900 1.090 0.650 4,580 371 10.3 3!H 60.5 3.0f 
131 38.S 24.48 12.855 0.960 0.605 4,020 329 10.2 340 53.0 2.97 
117 34.4 24.26 12.800 0.850 0.550 3,540 291 10.1 297 46.5 .2.94 
104 30.6 24.06 1.2.750 0.750 0.500 3,100 258 10.1 259 40.7 2.91 

W24 x 94 27.7 24.3. 9.065 0.875 0.515 2,700 222 9.87 109 24.0 l.98 
84 24.7 24.10 9.020 0.770 0.470 2,310 196 9.19 94.4 20.9 1.95 
76 22.4 23.92 8.990 0.680 0.440 2,100 176 9.69 82.5 18.4 1.92 
68 20.1 23.73 8.965 D.Sa; DAIS 1,&30 154 9.55 10.4 15.7 1.81 

W24x 62 18.2 23.74 7.040 0.590 0.430 I,S5O 131 9.23 34.5 9.80 1.38 
55 16.2 23.51 7.005 0.50S 0.395 1,350 114 9.11 29.1 8.3(1 1.34 

W21 x 147 43.2 22.06 1.2.510 1.1 SO 0.120 3,630 329 9.t7 376 60.1 2.95 
132 38.8 2t.83 12.440 1.035 0.650 3,220 295 9.12 333 53.5 293 
122 35.9 21.68 12.390 0.960 0.600 2,960 273 9.09 305 49.2 2.92 
IU 32.1 21.51 12.340 0.875 0.550 2,670 249 9.05 274 44.S 2.90 
JOJ 29.8 21.36 12.290 0.800 0.500 2,420 277 9.02 248 40.3 2.89 

WlIx 93 27.3 21.62 8.420 0.930 0.580 2,070 192 8.70 92.9 22.1 1.84 
83 24.3 21.43 8.355 0.835 0.515 1,8.30 171 8.&7 81.4 19.5 1.83 
73 21.5 21.24 8.295 0.740 0.455 1,600 lSI 8.64 70.6 17.0 1.81 
68 20.0 21.13 8.210 0.685 0.430 l,4S0 140 8.60 64.7 15.7 1.80 
62 18.3 20.99 8..240 MIS MOO 1,330 127 8.54 $1.5 13.9 1.77 

W21 )( 57 16.7 21.06 6..sSS 0.650 0.405 1,\70 111 8.36 30.6 9.35 1.35 
50 14.7 20.83 6.530 0.535 0.380 984 94.5 8.18 24.9 7.64 1.30 
44 13.0 20.66 6.S00 0.450 0.350 843 81.6 s.o6 20.7 6.36 t:26 

All printed with permission of American Institute of Steel Construction 
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Wide Flange Shapes (W Shapes)*: Theoretical Dimensions and Properties for Designing (Continued) 

Flange Axis x-x AxisY·Y 

+--r " Weight Area Depth Web 

Section per of of Thick- Thick· 
Number Foot Section Section Width ness ness I", S" 1':r /, S., 1'1' 

A d bf 1/ t •. 

(to) (in.2) (in.) (in.) (in.) (in.) (in.') (in.l) (in.) (in:') (in.l) (in.) 

WI& x 119 3SJ 18.97 11.265 1.060 0.655 2,190 231 7.90 253 44.9 2.69 
106 31.1 18.73 11.200 0.940 0.590 1,910 204 7.84 220 39.4 2.66 
97 28.5 18.59 11.145 0.870 0.535 1,7SO 188 7.82 201 36.1 2.65 
86 25.3 18.39 11.090 0.770 0.430 1,530 166 7.77 175 31.6 2.63 
76 22.3 18.21 11.035 0.680 0.425 1,330 146 7.73 152 27.6 2.61 

WISx 71 20.8 18.47 7.635 0.810 0.495 1,170 127 7.SO 60.3 15.8 1.70 
65 19.1 18.35 7.590 0.7SO 0.4SO 1,070 117 7.49 54.8 14.4 1.69 
60 17.6 lS.14 7.555 0.69S 0.415 984- log 7.47 SO.! 13.3 1.69 
5S 16.2 18.11 7.530 0.63() 0.390 890 98.3 7.41 44.9 11.9 1.67 
SO 14.7 17.99 7.495 0.570 0.355 800 88.9 7.38 40.1 10.7 1.65 

WI8 x 46 13.5 18.06 6.060 0.605 0.360 712 78.8 7.25 22.5 7.43 1.29 
40 H.8 17.90 6.015 0.525 0.315 612 68.4 7.21 19.1 6.35 1.27 
35 10.3 17.70 6.000 0.425 0.300 510 57.6 7.04 15.3 5.12 1.22 

WI6x 100 29.4 16.97 10.425 0.985 0.585 1,490 175 7.10 186 35.7 2.52 
89 26.2 16.75 10.365 0.875 0.525 1,300 155 1.05 163 31.4 2.49 
77 22.6 16.52 10.295 0.760 0.455 1,110 134 7.00 138 26.9 2.47 
67 19.7 16.33 10.235 0.665 1).395 954 1t7 6.96 119 23.2 2.46 

WI6x 57 16.8 16.43 7.120 0.715 0.430 758 92..2 6.72 43.1 12.1 1.60 
SO 14.7 16.26 7.070 0.630 0.380 659 81.0 6.68 37.2 10.5 1.S9 
45 13.3 16.13 7.035 0.565 0.345 586 72.7 6.65 32.& 9.34 1.S7 
40 11.8 16.01 6.995 0.S05 O.3()5 518 64.7 6.63 28.9 8.25 1.57 
36 10.6 15.86 US5 O.43() 0.295 448 56.5 6.51 24.5 7.00 1.52 

W16x )) 9.12 15.88 5.525 0.440 0.275 375 41.2 6,41 12.4 4.49 1.17 
26 7.68 )5.69 5.500 0.345 0.250 301 38.4 6.26 9.59 3.49 1.12 

Wl4x 7:30 215 22.42 17.890 4.910 3.010 14,300 1,280 S.17 4,720 527 4.69 
665 196 21.64 17.650 4.520 2.830 12,400 1,1SO 7.98 4,170 412-- 4.62 
60S 178 20.92 17.415 4.160 2.595 10,800 1,040 7.80 ),680 423 4,55 
550 162 20.24 17.200 3.820 2.380 9,43() 931 7.63 3,2SO 378 4.49 
SOO 147 19.60 17.010 3.500 2.190 8,210 838 7.48 2,880 339 4.43 
455 134 19.02 16.835 3.210 2.015 7,190 756 7.33 2,560 304 4.38 

W14x 426 125 IS.67 16.695 3.035 1.875 6,600 707 7.26 2,360 283 4.34 
398 117 18.29 16.S90 2.845 1.770 6,000 656 7.16 2,170 262 4.31 
370 109 17.92 16.475 2.660 1.655 5,440 607 7.07 1,990 241 4.27 
342 lOt 17.54 16.360 2.470 1..540 4,900 ' 559 6.98 1,810 221 4.24 
311 91.4 17.12 16.230 2.260 1.410 4,33() S06 6.88 1,610 199 4.20 
283 83.3 16.74 16.HO 2.070 1.290 3,840 459 6.79 1,440 179 4.17 
257 75.6 16.38 15.995 1.890 1.I7S 3,400 415 6.71. 1,290 161 4.13 
2:33 68.5 16.04 15.890 1.720 1.070 3,010 375 6.63 I,ISO 145 4.10 
211 62.0 15.72 IS.gOO 1.560 0.980 2,660 338 6.55 1,030 13() 4.07 
193 56.8 15.48 15.710 1.440 0.890 2,400 310 6. SO 931 119 4.05 
176 51.& 15.22 15.6SO 1.310 0.830 2,~40 281 6.43 838 107 4.02 
159 46.7 14.98 15.565 1.190 0.745 1,900 254 6.38 748 96.2 4.00 
145 42.7 14.78 15.500 1.090 0.680 1,710 232 6.33 6Tl 87.3 3.98 

W14x 132 38,8 14.66 14.725 1.030 0.645 1,530 209 6.28 S48 74.5 3.76 
120 35.3 14.48 14.670 0.940 0.S90 1,380 190 6.24 495 67.5 3.74 

( COrltinrgd) 
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Wide Flange Shapes (\IV Shapes)*: Theoretical Dimensions and Properties for Designing (Continued) 

Flange Axis x-x AxisY-Y 
Weight Area Depth Web 

Section per of of Thia- Thick-
Number Foot Section Section Width ness ness, Ix SIC r" ly Sy Ty 

A d bJ t/ t •. 

(Ib) (in.2) (in.) (in.) (in.) (in.) (in.') (in.)) (in.) (in.') (in.~) (in.) 

109 32.0 14.32 14.605 0.860 0.525 1,240 173 6.22 447 61.2 3.73 
99 29.1 14.16 14.565 0.780 0.485 I,lll) 157 6.17 402 55.2 3.71 
90 265 14.02 14.520 0.710 0.440 999 143 6.14 362 49.9 3.70 

Wl4x 82 24.1 14.31 10.130 0.855 0.510 882 123 6.05 148 29.3 1.48 
74 21.8 14.17 10.070 0.785 0.450 796 tl2 6.04 134 26.6 2.48 
68 20.0 14.04 10.035 0.720 0.415 723 103 6.01 121 24.2 2.46 
61 17.9 13.89 9.995 0.645 0.375 640 92.2 5.98 107 21.5 2.45 

W.14 x 53 15.6 13.92 8.060 0.660 0.370 541 77.8 5.89 57.7 14.3 1.92 
48 14.1 13.79 8.030 0.595 0.340 485 70.3 5.85 51.4 12.8 1.91 
43 12.6 13.66 7.995 0.530 0.305 428 62.7 5.82 45.2 11.3 1.89 

WI4x 38 11.2 14.10 6.770 0.515 0.310 385· 54.6 5.88 26.7 7.88 1.5S 
34 10.0 13.98 6.745 0.455 0.285 340 48.6 5.83 23.3 6.91 1.53 
30 8.85 • 13.84 6.730 0.385 0.270 291 42.0 5.73 19.6 5.82 1.49 

Wl4 x 26 7.69 ts.91 5.025 0.420 0.255 ~4S .35.3 5.65 UI 3.54 I.OB 
22 6.49 . 13.74 5.000 0.335 O.no 199 29.0 5.54. 7.00 2.80 1.04 

Wllx 190 55.8 14.38 12.670 1.735 1.060 1,890 263 5.82 589 93.0 3.25· 
170 50.0 14.03 12.570 1560 0.960 1.6SO 235 5.74 SI7 82.3 3.22 
152. 44.7 13.71 12.480 1.400 0.870 1,430 209 5.66 454 72.8 3.19 
136 39.9 13.41 12.400 LlSO 0.790 1,240 186 5.58 398 64.2 3.16 
120 35.3 13.12 12.320 1.105 0.710 1,070 163 'S.5t 345 56.0 3.13 
106 31.2 12.89 12.220 0.990 0.610 933 145 5.47 301 49.3 3.11 
96 28.2 12.71 12.160 Q.900 O.sSO 833 131 5.44 270 44.4 3.09 
87 25.6 1253 12.125 0.810 0.515 740 ll8 5.38 241 39.1 3.07 
79 23.2 1238 12.080 0.135 0.470 662 107 5.34 216 35.8 3.05 
72 21.1 J 12.25 12.040 0.670 0.430 597 97.4 5.31 J95 32.4 3.04 
65 19.1/ 12.12 12.000 0.605 0.390 533 87.9 5.28 174 29.1 3.02 

WI2x 58 17.0 12.19 10.010 0.640 0.360 475 78.0 5.28 107 21.4 2.51 
53 15.6 12.06 9.995 0.575 0.345 425 70.6 5.26 95.8 19.2 2.48 

WI2x SO 14.7 12.19 8.080 0.640 0.370 394 64.7 5.18 56.3 13.9 1.96 
45 13.2 12.06 8.045 0.575 0.335 350 58.1 5.15 50.0 12.4 1.94 
40 11.8 11.94 8.005 0.515 0.29S 310 51.9 5.13 44.1 11.0 1.93 

W12x 35 10.3 12.50 6.560 0.520 0.300 285 45.6 5.lS 24.S 7.47 1.54 
30 8.19 12.34 6.520 0.440 0.260 238 38.6 5.21 20.3 6.24 1.52 
26 7.65 12.22 6.490 0.380 0.230 204 33.4 5.14 17.3 5.34 1.51 

WI2x 22 6.48 12.31 4.030 0.425 0.260 156 25.4 4.91 4.66 2.31 0.848 
19 5.57 12.16 4.005 0.350 0.235 UO 21.3 4.1ll 3.76 US 0.822 
16' 4.71 11.99 3.990 0.265 0.220 103 17.1 4.67 2.82 1.41 0.n3' 
14 4.16 11.91 3.970 0.225 0.200 88.6· 14.9 4.62 2.36 l.l9 0.753 

WIOx 112 32.9 II.J6 10.415 1.2SO 0.755 716 126 4.66 236 45.3 2.68 
100 29.4 11.10 10.340 1.120 0.680 623 112 4.60 267 40.0 2.65 
88 25.9 10.84 10.265 0.990 0.605 534 98.5 4.54 179 34.8 2.63 
77 22,6 10.60 10.190 0.870 0.530 455 85.9 4·49 154 30.1 2.60 
68 20.0 10.40 10.130 0.770 0.470 394 75.7 4.44 134 26.4 2.59 
60 17.6 10.22 10.080 0.680 0.420 341 66.7 4.39 116 23.0 2.57 
54 IS.8 10.09 10.030 6.6IS 0.370 J03 60.0 4.37 103 20.6 2.56 
49 14.4 9.98 10.000 0.560 0.340 272 54.6 4.35 93.4 18.7 2.54 
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Wide Flange Shapes WV Shapes)*: Theoretical Dimensio~s and Properties for Designing (Continued) 

Fla. Allis x-x AxisY·Y 
Weight Area Depth Web 

Section per of of Thick· Thick-
Number Foot Section Section Width ness ness I .• S" T •• Iy $'). 'y 

A- d hJ 11 I .. 

(Ib) [m.2) (in.) (in.) (in.) (in.) (in.4) (in.') (in.) (in.4) (in.3) (in.) 

WIOx 45 U.3 10.10 8.020 0.620 0.350 248 49.1 4.33 53.4 13.3 2.01 
39 II.S 9.92 1.985 0.5)() 0.315 209 42.1 4.27 45.0 11.3 1.98 
33 9.71 9.73 7.960 0.435 0.290 110 35.0 4.19 36.6 9.20 1.94 

WI0x 30 8.84 10.41 5.810 0,510 0.300 170 32.4 4.38 16.7 5.75 1.37 
26 7.6! 10.33 5.770 0.440 0.260 144 27.9 4.35 14:1 4.89 1.36 
22 6.49 10.17 5.750 0.360 0.240 118 23.2 4.27 11.4 3.97 1.33 

WIOx 19 5.62 10.24 4.020 0.395 0.250 96.3 18.3 4.14 4.29 2.14 0.874 
17 4.99 10.11 4.010 0.330 0.240 81.9 16.2 4.05 3.56 1.78 0.845 
15 4.41 7.99 4.000 0.270 0.230 68.9 13.& H5 2.89 1.45 0.810 
12 3.54 9.87 3.960 0.210 0.190 53.& 10.9 3.90 2.la 1.10 0.785 

W8x 61 19.7 9.00 8.280 0.935 0.510 272 60.4 3.72 88.6 21.4 2.12 
58 17.1 8.75 8.220 0.810 0.510 228 52.0 3.65 75.1 18.3 2.10 
48 14.1 8.SO 8.110 0.685 0.'100 184 43.3 3.61 60.9 15.0 2.08 
40 11.7 8.25 8.070 0.560 0.360 146 lS.5 3.53 49.1 12.2 2.04 
35 10.3 8.12 8.020 0.495 0.310 127 31.2 HI 42.6 10.6 2.03 
31 9.13 8.00 7.995 0.435 0.285 110 27.5 3.47 37.1 9.27 2.02 

wax 28 8.25 8.06 6.535 0.465 0.285 98.0 24.3 3.45 21.7 6.63 1.62 
24 7.08 7.93 6.495 0.400 0.245 82.S 20.9 3.42 18.3 5.63 1.61 

WSx 21 6.16 8.28 5.270 OAOO 0.250 75.3 18.2 3.49 9.n 3.71 1.26 
18 5.26 8.14 5.250 0.330 0.230 61.9 15.2 3.43 7.97 3.04 1.23 

WSx 15 4.44 8.n 4.015 0.315 0.245 48.0 11.8 3.29 3.41 1.70 0.876 
13 3.84 7.99 4.000 0.255 0.230 39.6 9.91 3.21 2.73 1.37 0.843 
10 2.96 7.89 3.940 0.205 0.170 30.8 7.81 3.2.2 2.09 1.06 0.841 

W6x 25 7.34 6.38 6.080 0.455 0.320 53.4 16.1 2.70 17.1 5.61 1.52 
20 5.87 6.20 6.020 0.365 0.260 41.4 13.4 2.66 13.3 4.41 1.50 
IS 4.43 5.99 5.990 0.260 0.230' 29.1 9.72 2.56 9.32 3.11 1.4s' 

W6x 16 4.74 6.28 4.030 0.405 0.260 32.1 10.2 2.60 4.43 2.20 0.967 
12 3.S5 6..03 4.000 0.280 0.230 2.2.1 7.31 2.49 2.99 1.50 0.918 
9 2.68 5,90 3.940 0.215 0.170 16.4 5.56 2.47 2.20 J.II 0.905 

W5x 19 i.54 S.t5 5.030 0.430 0.270 26.2 10.2 2.17 9.13 3.63 1.28 
16 4.68 5.01 5.000 0.360 0.240 21.3 8.51 2.13 7.51 3.00 1.27 

W4x 13 3.83 4.16 4.060 -0.345 0.280 1l.3 5.46 1.12 3.86 1.90 1.00 
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Pipe: Dimensions and Properties· $ 
Dimensions 

Properties 
Nominal Outside: Inside Wall Weight 
Diameter Diameter Diameter Thickness per Ft. Lbs. A S Schedule 

in. in. in. in. Plain Ends in.~ in.4 in.} in. No. 

Standard Weight 

y, .840 .622 .109 .85 .250 .017 .041 .261 40 
Y. 1.050 .824 .113 1.13 .333 .037 .071 .334- 40 
I 1.315 1.049 .133 1.68 .494 .087 .133 .421 40 

I'!. 1.660 1.380 .140 2.27 .669 .195 .235 .540 40 
1\1 1.900 1.610 .145 2.72 .799 JIO .326 .623 40 

2 2.375 2.067 .154 3.65 1.07 .666 .561 .787 40 
21': 2.815 ' 2.469 .203 ' 5.79 1.70 1.53 1.06 .947 40 

3 3.500 , 3.1)68 .216 7.58 2.23 3.02 1.72 1.16 40 
3'''': 4.000 3.548 .226 9.1) 2.68 4.79 2.39 1.34 40 

4 4.500 4.026 .n7 10.79 3.17 7.23 3.21 LSI 40 
5 5 . .563 5.047' .258 14.62 4.30 15.2 5AS 1.88 40 
6 6.625 6.065 .280 18.97 5.58, 28.1 8.50 2.25 40 

8.625 7.981 .322 28.55 8.40 72.5 16.8 2.94 40 
10 10.750 10.020 .365 40.48 11.9 161 29.9 3.67 40 
12 12.750 12.000 .375 49.56 14.6 279 43.8 4.38 

, E:!:tra Strong 

\/, .S40 .546 .147 1.09 .320 .020 .048 .250 80 
Y. 1.050 .742 .154 .1.47 .433 .045 .085 .321 80 

, 1.315 .9S1 .179 2.17 .639 .106 .161 .407 80 
HI, 1.660 1.278 .19i 3.00 .881 .242 .291 .524 80 
1'1: 1.900 l.SOO .200 3.63 1.01 .391 .412 .605 80 

2 2.375 1.939 .218 5.02 1.48 .868 .731 .766 SO 
2'1: 2.875 2.323 .276 7.66 2.25 1.92 1.34 ,924 80 

3 3.500 2.900 ,)00 10.25 3.02 3.89 ' ·2.23 1.14 80 
3V1 4.000 3.364 .318 12.50 3.68 6.28 3.14 1.31 80 

4 4.500 3.826 .337 14.98 4.41 9.61 4.27 1.48 SO 
.5 5.563 4.813 .375 20.78 6.11 20.7 7.43 1.34 80 
(, 6.625 5.761 .432 28.57 8.40 40.5 12.2 2.19 80 
8 8.625 7.625 .500 43.39 12.8 106 :24.5 2.88 80 

10 10.150 9.750 . .500 54.74 [6.1 212 39.4 3.63 80 
12 12.750 11,750 .500 65.42 19.2 362 56.7 4.33 

Double-Extra Strong 

2.375 1.503 .436 9.03 2.66 1.31 1.10 .703 
2V: 2.875 1.771 .552 13.69 4.03 2.87 2.00 .844 

3 3.500 2.300 .600 18.58 5.47 5.99 3.42 LOS 
4.500 3.152 .674 27.54 8.10 15.3 6.79 1.37 
5.563 4.063 .750 38.55 11.3 33.6 12.1 1.72 
6.625 4.897 .864 53.16 15.6 66.3 20.0 2.06 
8.625 6.875 .875 72.42 21.3 162 31.6 2.76 

*The listed lleCtions 3.R: available in conformance with ASTM Specification A 53 Grade B or A.5()1. Other sections.arc made to these specifications. 
Consult with pipe manufaclurers or distriootors for availability. Prinled with pennissioo AfSC. 
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Structural Tubing-Square: Dimensions and Properties 

Dimensions Properties" 

Nominal· Weight 
Size Wall Thi~ness per Ft Area S J Z 

In. In. Ll:>. In.~ In.4 In.l In. In.'' In.' 

16 )(16 0.6250 % 127.37 37.4 1450 182 6.23 2320 214 
0.5000 Y., 103.30 30.4 1200 150 6.29 1890 I7S 
0.3750 ~ 78.52 2J.I 931 116 6.35 1450 134 
0.3125 '/" 65.87 19.4 789 98.6 6.38 1220 \13 

14 x 14 0.6250 Yo 110.36 32,4 952 t36 5.42 1530 161 
0.5000 '/: 89.68 26,4 791 m 5.48 1250 132 
0.3750 Yo 68.31 20.1 615 87.9 5.54 963 102 
0.3125 Va, 57.36 16.9 522 74.6 5.57 812 86.1 

.Ii; 12 0.6250 % 93.34 27.4 580 96..7 4.60 943 116 
0.5000 ,/, 76.07 22.4 485 80.9 4.66 771 95.4 
0.3750 % 58.10 17.1 380 63.4 4.72 599 73.9 
0.3125 'I.. 48.86 14.4 324 54.0 4.75 506 62.6 
0.2500 V. 39.43 11.6 265 44.1 4.78 410 50.8 
OJ 875 'A. 29.84 8.77 203 33.8 4.81 312 38.7 

lOx 10 0.6250 % 16.33 22.4 321 64.2 3.78 529 71.6 
0.5625 0/., 69.48 20.4 297 59.4 3.81 485 71.3 
0.5000 Y., 62.46 18.4 271 54.2 3.84 439 64.6 
0.3750 V. 47.90 14.1 214 42.9 3.90 341 50.4 
0.3125 y.. 40.35 11.9 183 36.7 3.93 289 42.& 
0.2500 'I, 32.63 9.59 151 30.1 3.96 235 34.9 
0.1875 ,/", 24.73 1.27 116 23.2 3.99 179 26.6 

9 x 9 0.6250 % 61.82 19.9 227 50.4 3.37 311 61.5 
0.5625 'Ii. 61.83 18.2 211 46.8 3.40 341 56.6 
0.5000 ~ 55.66 16.4 193 42.9 3.43 315 51.4 
0.3750 Y. 42.79 12.6 154 34.1 3.49 246 40.3 
0.3125 ¥.. 36.10 10.6 132 29.3 3.53 209 34.3 
0.2500 V. 29.23 8.59 109 24.1 3.56 170 28.0 
0.1875 1;'. 22.18 ~.S2 83.8 18.6 3.59 130 21.4 

8 x 8 0.6250 % 59.32 17.4 153 38.3 2.96 258 47.2 
0.5625 y.. 54.l7 15.9 143 35.7 3.00 238 43.6 
0.5000 ~ 48.85 14.4 131 32.9 3.03 217 39.7 
0.3750 % 37.69 11.1 106 26.4 3.09 170 3!.l 
0.3125 '/'. .31.84 9.36 90.9 22.7 3.12 145 26.1 
0.2500 Y. 25.82 7.59 75.\ 18.& 3.15 !IS 21.9 
0.1875 '/i. 19.63 5.77 5&.2 14.6 3.18 90.6 IU 

7 x 7 0.5625 0/.. 46.5\ 13.7 91.4 26.1 2.59 154 32.3 
0.5000 y, 42.05 12.4 84.6 24.2 2.62 141 29.6 
0.3750 Y, 32.58 9.58 68.7 19.6 2.68 112 23.5 
0.3125 ,/" 27.59 8.11 59.5 17.0 2.71 95.6 20.1 
0.2500 It. 22.42 6.59 49.4 14.1 2.74 78.3 16.5 
0.1875 Yr, 17.08 5.02 38.5 11.0 2.77 60.2 12.7 

·Outsid<: dimensions across flal sides. 
··Properties are based upon a nominal outside corner radius equal to two times the wall thickness. 
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Structural Tubing-Square: Dimensions and Properties (Continued) 

Dimensions PropertiC$·· 

Nomina'''' Weight 
Size Wall Thickness perFt Area S J Z 

In. In. Lb. In.2 In.4 In.1 In. In.4 In.} 

6)(6 0.5625 '10. 38.86 11.4 54.1 18.0 2.18 92.9 22.7 
O.SOOO ~ 35.24 10.4 50.5 16.8 2.21 85.6 20.9 
0.3750 V. 27.48 8.08 41.6 13.9 2.27 68.5 16.8 
0.3125 ¥t~ 23.34 6.&6 36.3 12.1 2.30 58.9 14.4 
0.2500 V. 19.02 5.59 30.3 10.1 2.33 48.5 11.9 
0.1875 ¥,. 14.53 4.27 23.8 7.93 2.36 37.5 9.24 

5)( 5 O.SOOO Y, 28.43 8.36 27.0 10.8 1.80 46.8 13.7 
0.3750 V. 22.37 6.58 22.8 9.11 1.86 38.2 11.2 
0.3125 0/.. 19.08 5.61 20.1 8.02 1.89 33.1 9.70 
0.2500 V- 15.62 4.59 16.9 6.78 U2 27.4 8.07 
0.1875 '1.. H.97 3.52 13.4 '5.36 US 21.3 6.29 

4.5 x 4.5 02500 Yo 13.91 4.09 12.1 5.36 1.72 19.7 6.43 
0.1875 lA. 10.70 3.14 9.60 4.27 1.75 15.4 5.03 

'4 x 4 0.5000 t,.} 21.63 6.36 12.3 6.13 1.39 21.& 8.02 
0.3750 V. 17.27 5.08 10.7 5.35 1,45 18.4 6.72 
0.3125 ~;,. 14.83 4.36 9.58 4.79 1.48 16.1 5.90 
02500 V- 12.2\ 3.59 8.22 4.11 1.S1 13.5 4.97 
0.1875 lA. 9.42 2.77 6.59 3.30 1.54 10.6 3.91 

3.5)( 3.5 0.3125 v.. 12.70 3.73 6.09 3.48 1.28 lOA 4.35 
0.2500 Yo 10.51 3.09 529 3.02 1.31 8.82 3.70 
0.1875 ¥O. 8.15 2.39 4.29 2.45 1.34 6.99 2.93 

3)(3 0.3125 v.. 10.58 3.11 3.58 2.39 1.07 6.22 3.04 
0.2500 V. 8.81 2.59 3.16 2.10 LlO 5.35 2.61 
0.1875 0/.. 6.87 2.02 2.60 1.73 U3 4.28 2.10 

2.5 x 2.5 0.3125 Yo, 10.58 3.11 3.58 2.39 1.07 3.32 1.96 
0.2500 II, 1.11 2.00 1.69 I.3S 0.899 2.92 1.71 
0.1875 ¥O. S.59 1.64 1.42 U.4 0.930 2.38 lAO 

2:.:2 0.3125 Yi. 6.32 1.86 0.880 0.880 0.690 1.49 1.11 
0.2500 Y. 5.41 1.59 0.766 0.766 M94 1.36 1.00 
o.um 'I", 4.)2 1.27 0.6~ 0.668 0.726 US 0.840 
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Y 

xffix 
Structural Tubing-Rectangular: Dimensions and Properties Y 

Propertics .... 
Dimensions 

X·XAxis y-y Axis 
Nominal· Wall Weight 

Size Thidrness per Ft. Area ,. S,' Z" T.< If $, Z). ~, J 

In. In. Lb. In.l Tn.· In.' In.l In. In.4 In.~ In.) In. In.'' 

20)( 12 0.6250 % 127.37 37.4 2000 200 245 7.30 904 151 172 4.91 2010 
0.5000 v:. 103.30 30,4 1650 165 201 7.37 750 12l 141 4.97 1650 
0.3750 Yo 78.52 23.1 1280 128 154 7.45 583 97.2 109 5.03 1270 
0.3125 v.: 65.81 19.4 1080 108 130 7.41 495 82.5 91.8 5.06 1010 

20)( 8 0.5000 'lI '-89.68 26.4 1270 127 162 6.94 300 75.1 84.7 3.38 806 
0.3150 Y- 68.31 20.1 988 98.8 125 7.02 236 59.1 65.6 3.43 625 
0.3125 Yo. 57.36 16.9 838 . S3.S IQ5 7.05 202 50.4 55.6 3.46 529 

20)( 4 0.5000 v:. 76.01 22.4 889 88.9 123 6.31 61.6 30.8 36.0 1.66 205 
0.3150 Yo 58.10 17.1 699 69.9 95.3 6.40 50.3 25.1 28.S 1.72 165 
0.3125 Yo, 48.86 14.4 596 59.6 80.S 6.44 43.7 21.8 24.3 1.74 143 

18 l( 6 0.5000 V, 76.07 22.4 818 90.9 119 6.05 141 47.2 53.9 2.52 410. 
0.3750 % 58.10 17.1 641 71.3 92.2 6.13 113 37.6 42.1 2.57 322 
0.3125 1" 48.86 14.4 S46 60.7 7U 6.17 97.0 32.3 35.8 2.60 214 

16)( 12 0.6250 Yo 110.36 32.4 1\60 145 175 5.98 742 124 144 4.78 1460 
0.5000 v., 89.68 26.4- 962 120 144 6.04 618 103 118 4.84 1200 
0.3750 Yo 68.31 20.1 748 93.5 III 6.11 482 80.3 91.3 4.90 922 
0.3125 \Ii, 57.36 16.9 635 79.4 93.8 6.14 409 68.2 77.2 4.93 m 

16 x 8 o.sooo y; 76.07 22.4 722 90.2 113 5.68 244 61.0 69.7 3.30 S99 
0.3750 Yo 58.10 17.l 56S 70.6 87.6 5.75 193 48.2 54.2 3.36 46S 
0.3125 XII 48.80 14.4 41U 60.1 14.2 5.79 165 41.2 45.9 3.39 394 

16 x 4 0.5000 y; 62.46 18.4 481 60.2 82.2 5.12 49.3 24.6 29.0 1.64 157 
0.3150 % 47.90 14.1 382 47.8 64.2 5.21 40,4 20.2 23.0 l.69 127 
0.3t25 ~;,. 40.35 11.9 327 40.9 54.5 5.25 35.1 17.6 19.7 1.71 110 

14)( 10 0.6250 Yo 93.34 27.4 '728 1M 127 5.15 431 86.2 101 3.96 885 
0.5000 \Ii 76JJ? 22.4- 60i 86.9 105 5.22 361 72.3 83.6 4.02 130 
0.3750 V. 58.10 17.1 476 68.0 8U 5.28 284 56.8 64.8 4.08 564 
0.3125 ,/" 48.86 14.4 405 57.9 69.0 5.31 242 48.4 54.9 4.11 477 

14 x 6 0.5000 ,/, 62.46 18.4 426 60.8 78.3 4.82 III 37.1 42.9 2.46 296 
0.3750 Y. 41.90 14.1 331 48.1 61.1 4.89 89.1 29.7 33.6 2.52 233 
0.3125 !I .. 40.35 11.9 288 41.2 51.9 4.93 76.7 25.6 28.7 2.54 199 
0.2500 'I. 32.63 9.59 237 33.8 42.3 4.97 63.4 21.1 23.4 2.57 162 

14)( 4 0.5000 ,/; 55.66 16.4 335 47.& 64.8 4.52 43.1 21.5 25.5 1.62 134 
0.3750 V. 42.79 12.6 267 38.2 SO.8 4.61 35.4 17.7 20.3 L68 108 
o.:ms v.. 36,10 10.6 230 32.8 43.3 4.65 30.9 15,4 17.4 1.71 93.1 
0.2500 V. 29.23 8.59 189 27.0 35.4 4.69 25.8 12.9 14.3 1.71 77.0 

(C()1ttinwd) 

·Outside dimen$iQfls across flat sides.. 
• .. Propctties are based upon a nominal outside comet radilll equal (0 two (im~ (tie wall thickness. 
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Structural Tubing-Rectangular: Dimensions and Properties (Continued) 

Properties"· 
Dimensions 

x-x Axis y.y Axis 
Nominal· Wall Weight 

Size Thickness per Ft. Area Ix Sx Zx rJ( ly s,. Zy '1 J 

In. In. Lb. In.2 In.' In! In.l In.4 In.3 In? In. In.4 . 

l2'x 8 0.6250 % 76.33 22.4 418 69.7 87.1 4.32 222 55.3 65.6 3.14 481 
0.5625 0/,. 69.48 20.4 387 64.5 79.9 4.35 205 51.3 61D 3.17 442 
0.5000 \Ii 62.46 18.4 353 58.9 72.4 4.39 188 46.9 54.7 3.20 401 
0.3150 'f. 41.90 14.1 279 46.5 56.5 4.45 149 37.3 42.7 3.26 312 
0.3125 'Ii. 40.35 11.9 239 39.8 47.9 4.49 128 32.0 36.3 3.28 265 
0.2500 If. 32.63 9.59 1% 32.6 39.1 4.52 105 26.3 29.6 3.31 216 
0.1875 %. 24.73 1.1.7 151 25.1 29.8 455 8U 20.3 12.7 3.34 165 

12 x 6 0.6250 l4 67.82 19.9 337 56.2 72.9 4.11 112 37.2 44.5 2.37 286 
0.5625 'A6 61.83 18.2 313 52.2 67.1 4.15 104 34.7 41.0 2.39 264 
0.5000 ~ 5's.66 16.4 287 47.8 60.9 4.19 96.0 32.0 37.4 2.42 241 
0.3750 Yo 42.79 12.6 228 38.1 47.7 4.26 17.2 25.7 29.4 2.48 190 
0.3125 Yo. 36.10 10.6 1% 32.6 40.6 4.30 66.6 22.2 25.1 2.51 162 
0.2500 ~ 29.23 . '8.59 i61 26.9 33.2 4.33 55.2 18.4 20.6 2.53 132 
0.1875 y.. 22.18 6.52 124 20.7 25.4 4.37 42.8 14.3 15.& 2.56 101 

12 x 4 0.625() l4 59.32 17.4 257 42.8 58.6 3.84 41.8 20.9 25.8 1.55 127 
0.5625 tj,. 54.17 15.9 240 39.9 54.2 3.8& 39.6 19.8 24.0 1.58 119 
0.5000 '/, 48.&5 14.4 221 36.8 49.4 3.92 36.9 18.5 12.0 1.60 ·110 
0.3750 Yo 37.69 ILl 118 2M 39.0 4.01" 30.5 15.2 11.6 1.66 89.0 
0.3125 y., 31.84 9.36 153 25.5 33.3 4.05 26.6 13.3 15.1 1.69 76.9 
0.2500 X, 25.82 7.59 121 21.1 27.3 4.09 22.3 tl.l 12.5 1.11 63.6 
0.1875 Yo, i9.63 5.77 9&.2 16.4 21.0 4.13 17.5 8.75 9.63 1.74 49.3 

12x 2 0.2500 X, 22.42 6.59 92.2 15.4 21.4 3.74 4.62 4.62 5.38 0.837 15.9 
0.1875 !I .. 11.0& 5.02 72.0 12.0 16.6 3.79 3.76 3.76 4.24 0.&65 12.8 

10 x 8 0.6250 % 67.82 19.9 266 53.2 65.9 3.65 187 46.8 56.4 3.07 367 
0.5625 '!" 6l.83 18.2 247 49.3 60.6 3.68 174 43_5 52.0 3.09 337 
0.5000 '/, 55.66 16.4 226 45.2 55.1 3.72 160 39.9 47.2 3.12 306 
0.3750 Yo 42.79 li6' ISO 35.9 43.1 3.78 121 31.8 37.0 3.18 239 
0.3125 ~, 36.10 10.6 154 30.8 36.7 3.81 109 27.3 31.5 3.21 203 
0.2500 'I..' 29.23 8.59 127 25.4 30.0 3.84 90.2 22.5 25.8 3.24 166 
0.1875 y.. 22.18 6.52 97.9 19.6 23.0 3.87 69.1 17.4 19.7 3.27 127 

10 x 6 0.6250 Y. 59.32 17.4 211 42.2 54.2 3.48 93.5 31.2 37.7 2.32 221 
a.S625 %. 54.17 15.9 197 39.3 50.0 3.51 87.5 29.2 34.9 2.34 204 
0.5000 Y, 4&.85 .4.4 181 36.2 45.6 3.55 80.8 26.9 31.9 2.37 187 
0.3750 Y, 37.69 11.1 145 29.0 35.9 3.62 65.4 21.8 25.2 2.43 147 
0.3125 v" 31.84 9.36 125 25.0 30.7 3.65 56.5' 18.8 21.5 2.46 126 
0.2500 '!. 25.&2 7.59 103 20.6 25.1 3.69 46.9 15.6 17.7 2.49 103 
0.1875 y., 19.63 5.17 79.& 16.0 19.3 >.72 36.5 12.2 \3.6 2.51 79.t 

10 x 5 0.6250 % 55.06 J6.2 1&3 36.7 48.3 3.37 60.0 24.0 29.3 1.93 157 
0.5625 Yo. SO.34 14.8 171 34.3 44.7 3,40 56.5 22.6 27.2 1.95 146 
0.5000 ~ 45.45 13.4 158 31.6 40.8 3.44 52.5 21.0 25.0 1.98 134 
0.3750 'f. 35.13 10.3 128 25.S 32.3 3.51 42,9 17.1 19.9 2.04 10.7 
0,3125 'I.. 29,12 8.73 110 22.0 27.6 3.55 37.2 14.9 17.0 2.07 91.5 
0.2500 '!. 24.12 7.09 91.2 18.2 22.7 3.59 ll.l 12.4 14J) 2.09 75.2 
0.1875 Vo. 18.35 5.39 70.8 14.2 17.4 3.62 24.3 9.71 10.8 2.12 58.0 

lOx4 05625 y." 4651 13.7 146 29.3 39:4 3.27 32.9 16.4 20.1 1,55 93.8 
0.5000 ~ 42.05 12.4 136 27.1 16.J 3.31 30.~ 15.4 18.5 1.58 86.9 
0.3750 'lio 32.58 9.58 110 22.0 28.7 3.39 25.5 12,8 14.9 1.63 70.4 
0.3125 Yo, 2759 8.11 95.5 19.1 24.6 3.43 12.4 11.2 12.& 1.66 60.8 
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Structural Tubj~g-Rectangular: Dimensions and Properties (Continued) 

Properties" 
Dimensions 

x-x Axis v-v Axis 
Nominal- Wall Weight 

Sill: Thickness per Ft. Area '" $, z" T" Iy Sy z~ Ty J 

In. In. Lb. fn.2 In.4 In.J In.l In. In.4 In.l In.3 In. In.4 

0.2500 'I. 22.42 6.59 7!D 15.9 20.2 3.47 18.& 9.39 10.6 ).69 50A. 
0.1875 ¥I. 17.08 5.02 61.7 12.3 15.6 3.51 14.8 7.3~ 8.20 1.72 39.1 

10 x 2 0.3750 % 27.48 8.0& 75.4 15.1 21.5 3.06 4.85 4.85 6.05 0.775 16.5 
0.3125 '!.. 23.34 6.86 66.1 13.2 18.5 3.10 4.42 4.42 5.33 0.802 14.9 
0.2500 'I. 19.02 5.59 55.5 11.1 15.4 3.15 3.85 3.&5 4.50 0.830 12.8 
0.1875 'A. 14.53 4.27 43.7 8.74 11.9 3.20 3.14 3.14 3.56 0.i58 to.3 

9 x7 0.6250 'I. 59.32 17.4 183 40.6 51.0 3.24 123 35.1 42.8 2.66 248 
0.5625 'I.. 54.17 15.9 170 37.9 47.1 3.27 US 32.8 39.5 2.69 229 
0.5000 !tS 4&.85 14.4 !57 34.8 42.9 3.30 106 30.2 36.1 2.71 209 
0.3750 '!. 37.69 ILl 126 27.9 33.8 3.37 85.1 24.3 28.4 2.77 J64 
0.3125 0/0. 31.84 9.36 108 24.0 28.8 3.4Q 73.5 21.0 24.3 2.80 140 
0.2500 'I. 25.82 7.59 &9.4 19.9 23.6 3.43 6O.S 17.4 19.9 2.83 114 
0.1875 )A. 19.63 5.77 69.2 15.4 18.1 3.46 47.2 l3.S 15.3 2.86 87.7 

9x6 0.6250 'fa 5'5.06 16.2 161 35.8 45.8 3.15 84.5 18.2 34.4 2.28 189 
0.562S '/,. 50.34 14.8 ISO 33.4 42.3 3.19 79.2 26.S 31.9 2.31 115 
O.SOOO y; 45.45 13.4 139 30:8 38.7 3.22 73.2 24.4 29.1 2.34 160 
0.3750 iI. 35.13 10.3 112 24.& 30.6 3.29 59.4 19.8 23.1 2.40 127 
().312S '!.. 29.72 8.73 96.4 21.4 26.1 3.32 51.4 17.1 19.8 2.43 108 
0.1500 V. 24.12 7.09 79.8 17.7 21.4 3.36 42.1 14.2 16.2 2.46 88.8 
0.1875 %, 18.35 5.39 61.9 13.8 16.5 3.39 .33.3 ILl 12.5 2.48 68.2 

9x5 0.5625 0/,. 46.51 13.1 130 29.0 37.6 3.09 50.9 2M 24.7 1.93 126 
0.5000 Yz 42.05 12.4 121 26.8 34.4 3.12 47.4 18.9 22.1 1.96 IIS 
0.3750 Yo 32.58 9.58 97.8 21.7 27.3 3.20 38.8 15.S 18.1 2.01 92.2 
0.3125 %. 27.59 8.11 84.6 18.8 23.4 3.23 33.8 13.5 15.6 2.04 79.2 
0.2500 Yo 22.42 6.59 70.3 15.6 19.3 3.27 28.2 11.3 12.8 2.07 65.2 
0.1875 v.. 17.08 5.02 54.7 12.1 14.8 3.30 22.1 8.84 9.90 2.10 50.2 

9)(3 0.5000 'h 35.24 10.4 84.4 18.8 25.9 2.86 13.7 9.11 11.3 US 41.6 
0.3750 Va 27.48 8.08 69.9 15.5 20,9 2.94 11.7 7.79 9.29 1.20 34.9 
0.3125 '!.. 23.34 6.86 61.0 13.6 18.0 2.98 10.4 6.92 8.08 1.23 3O.S 
0.2500 Y. 19.02 5.59 51.1 11.4 14.9 3.02 8.84 5.90 6.73 1.26 25.6 
0.1875 y., 14.53 4.27 4QJ 8.91 ItS 3.06 7.06 4.70 5.26 1.29 20.1 

8)(6 0.5625 0/" 46.51 13.7 112 27.9 35.2 2.86 70.8 23.6 2&.8 2.28 147 
0.5000 y, 42.05 12.4 103 25.8 32.2 2.89 65.7 21.9 26.4 2.31 135 
0.3750 % 32.58 9.58 83.7 20.9 25.6 2.% 53.5 17.& 21.0 2.36 107 
0.3125 Yo, 27.59 S.1l 72.4 18.1 21.9 2.99 46.4 IS.S 18.0 2.39 91.3 
0.2500 Y. 22.42 6.59 60.1 15.0 18.0 3.02 38.6 12.9 14.8 2.42 74.9 
0.1875 Yo. 17.08 5,02 46.8 11.7 13.9 3.05 30.1 10.0 11.4 2.45 57.6 

8)(4 0.5625 0/., 38.86 11.4 SO. 5 20.1 26.9 2.65 26.2 13.1 16.2 1.51 69.0 
O.SOOO 'tS 35.24 10.4 75.1 18.8 24.7 2.69 24.6 12,] 15.0 1.54 64.1 
0.3750 Yi 27.48 8.08 61.9 15.5 19.9 2.17 20.6 10.3 12.2 1.60 /52.2 
0.3125 Yo, 23.34 6.86 53.9 as 17.1 2.80 18.1 9.05 10.5 1.62 45.2 
0.2500 Y. 19.02 5.59 45.1 11.3 14.J 2.84 15.3 7.63 8.72 1.65 37.5 
0.1&75 !flO 14.53 4.27 35.3 8.83 11.0 2.88 12.0 6.02 6.77 1.68 29'.1 

8 x3 0.5000 'I: 31.84 9.36 6t.O 15.3 21.0 2.55 12.1 8.05 10.1 1.14 35.1 
0.3750 Y. 24.93 7.33 51.0 12.7 17.0 2.64 1'0.4 6.92 8.:U 1.19 29'.9 

(Continwd) 
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Structural Tubing-Rectangular. Dimensions and Properties (Continued) 

In. 

Ilx2 

1xS 

7x4 

7x3 

7 x2 

6xS 

6 )(4 

Sx4 

Dimensions 

Weight 

per Ft. Area 

In. Lb. 

0.3125 ¥I>. 21.21 
0.2500 V. 17.32 
0.1875 'I.. 13.25 

0.3150 % 
0.3125 Yo, 
0.2500 V. 
0.1875 Yo. 

O.SOOO ~ 

0.3750 % 
0.3125 0/" 
0.2500 V. 
0.1875 ¥'" 

0.5000 ~ 

0.3750 % 
o.m.s Yo. 
0.2500 V. 
0.1875 0/0. 

0.5000 Y! 
0.3750 ',4 

0.3125 V" 
0.2500 v.. 
0.1875 ¥.l 

0.2500 v.. 
0.1875 V .. 

0.5000 'h 
0.3750. % 
0.3125 'I.. 
0.2500 V. 
0.1815 71. 

0.5000 ~ 

0.3150 Y-
0.3125 ¥.. 

.0.2500 V. 
OJS7S V .. 

0.3750 Yo 
0.3125 0/,. 

0.2500 V. 
0.1875 V .. 

22..37 
19.08 
15.62 
11.97 

35.24 
27.48 
2334 
19..02 
14.53 

31.84 
24.93 
l1.21 
17.32 
13.25 

28.43 
22.37 
19.08 
15.62 
IU7 

13.91 
10.70 

31.84 
24.93 
21.21 
17.32 
13.25 

28.43 
22.37 
19.08 
15.62 
11.97 

19.1l2 
16.96 
13.91 
10.70 

0.3750 V. 17.27 
03125 'I.. 14.83 
0..2500 V. ) 2.21 
0.1875 71. 9.42 

0.3750 Yo 19.82 
0.3125 0/,. 16.96 
0.2S00 Yo 13.91 
0.1875 Y.. 10.70 

6.23 
5.09 
3.89 

65a 
5.61 
4.59 
3.52 

10.4 
&.08 
6.86 
5.59 
4.27 

9.36 
7.33 
6.23 
5.09 
3.89 

8.36 
6.58 
S.6J 
4.59 
3.52 

4.09 
3.14 

9.36 
7.33 
6'.23 
5J19 
3.89 

8.36 
6.58 
5.61 
4.59 
3.52 

5.83 
4.98 
4.09 
3.14 

5.08 
4.36 
3.59 
2.77 

5.83 
4.98 
4.09 
3.14 

x-x. Axis 

I.. $.. 

In:' 

44.7 11.2 
37.6 9.40 
29.6 7.40 

40.1 
35.5 
30.' 
23.9 

63.5 
52.2. 
45.5 
33.0 
29.8 

52.9 
44.0 
38.5 
32.3 
25.4 

42.3 
35.7 
3LS 
26.6 
21.1 

20.9 
16.7 

42.9 
35.6 
31.2 
26.2 
20.6 

35.3 
29.7 
26.2 
22.1 
11.4 

23.8 
21.1 
17.9 
14.3 

17.8 
16.0 
13.8 
11.1 

18.7 
16.6 
14.1 
1l.2 

10.0 

8.87 
7.52 
5.97 

18.1 
14.9 
13.0 
10.9 
8.SO 

15.1 
12.6 
lUi 
9.23 
1.26 

12.1 
10.2 
9.00 
7.61 
6.02 

5.98 
4.71 

14.3 
11.9 
10.4 
8.74 
6.87 

If.S 
9.90 
8.12 
7.36 
5.81 

7.92 
7.03 
5.98 
4.76 

5.94 
5.34 
4.60 
3.10 

7.50 
6.65 
5.65 
4.49 

Z" 

• In. 

14.7 2.68 
12.2 2.72 

9.49 2.76 

14.2 2.47 
12.3 2.51 
10.3 256 
8.02 2.60 

23.1 2.48 
18.5 2.54 
15.9 2.58 
13.2 2.61 
10.2 2.64 

19.8 2.38 
16.0 2.45 
13.8 2.49 
11.5 2.52 
3.91 2.55 

16.6 2.25 
13.5 2.33 
11.8 2.37 
9.79 2.41 
7.63 2.45 

8.10 2.26 

6.36 2.31 

18.1 2.14 
14.7 2.21 
12.1 2.24 
10.5 2.27 
8.15 2.30 

15.4 2.06 
12.5 2.13 
10.9 2.16 
9.06 2.19 
7.06 2.23 

10.4 2.02 
9.11 2.06 
1.62 2.09 
5.97 2.13 

8.:n 1.87 
733 1.92 
6.18 1.96 
4.88 2.00 

9.44 1.19 
8.24 1.83 
6.89 1.86 
5.39 1.89 

y.y Axis 

s,. z, ry 

In.' In? In. 

9.25 6.16 7.24 1.22 
7.90 5.26 6.05 1.25 
6.31 4.21 4.73 1.27 

3.85 3.85 4.83 0.765 
3.52 3.52 4.28 0.792 
3.08 3.08 3.63 0.819 
2.52 2.52 2.88 0.847 

37.2 14.9 18.2 1.90 
30.8 12.3 14.6 \.95 
26.9 10.8 12.6 1.98 
22.6 9.04 10.4 2.01 
17.7 7.10 8.10 2.04 

21.5 10.8 13.3 l.52 
18.1 9.06 10.8 1.57 
16.0 7.98 9.36 1.60 
13.5 6.75 7.78 1.63 
10.7 5.34 6.06 1.66 

10.5 6.99 8.&4 1.12 
9.08 6.05 7.32 US 
8.11 5.41 6.40 1.20 
6.95 4.63 5.36 1.23 
5.57 3.71 4.21 1.26 

2.69 269 3.19 0.812 
2.21 2.21 2.54 0.839 

32.1 12.8 16.0 1.85 
26.8 10.7 12.9 t.91 
23.5 9.40 1 1.2 1.94 
19.8 7.91 9.26 1.97 
15.6 6.23 7.20 2.00 

18,4 9.21 1 1.5 1.48 
1S.6 H2 9.44 1.54 
13.8 6.92 8.21 1.57 
11.7 5.87 6.84 ~.6() 
9.32 4.66 5.34 1.63 

7.78 5.19 6.34 1.16 
6.98 4.6S • 5.56 1.18 
6.00 4.00 4.67 1.21 
4.83 3.22 3.68 1.24 

.J 

In.4 

26.3 
22.1 
17.3 

12.6 
11.4 
9.84 
7.94 

79.9 
64.2 
55.3 
45.6 
35.3 

53.0 
43.3 
37.5 
31.2 
24.2 

29.8 
25.1 
.22.0 
IS.5 
14.6 

8.36 
6.14 

629 
50.9 

43.9 
36.3 
28.1 

42.1 
34.6 
30.1 
25.0 
19.5 

20.3 
17.9 
15.1 
11.9 

2.84 2.84 3.61 0.748 8.72 
2.62 2.62 3.22 0.775 7.94 
2.31 2.3\ 2.75 O.8()2 6.88 
1.90 1.90 2.20 0.829 5.56 

1~.2 6.58 8.08 1.50 26.3 
11.7 5.85 7.05 1.53 22.9 
9.98 4.99 S.90 1.56 . 19.1 
7.96 3.98 4.63 1.59 14.9 

All printed with permission of American Institute of Steel Construction 
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Structural Tubing-Rectangular: Dimensions and Properties (Continued) 

Properties •• 

Dimensions 
X·XAxis y.y Axis 

Nominal- Wall We1ght 
Sw: Thickness perFt. Area I.. 5.. Z;r T" II" S, Zr r, J 

rn. Lb. In.l In.4 In.) In.l In. In! In.' In.l Ill. In.4 

S x 3 0.5000 Y: 21.63 6.36 16.9 6.15 9.20 1.63 7.33 4.88 6.35 1.07 18.2 
0.3750 lit 17.27 5.08 14.7 5.89 7.71 1.70 6.48 4.32 5.35 1.13 15.6 
0.3125 V .. 14.113 4.36 13.2 S.27 6.n 1.74 5.85 3.90 4.72 1.16 13.8 
0.2500 % 12.21 3.S~ 11.3 4.52 5.70 I.n S.05 3.37 3.99 1.19 11.7 
0.1875 v., 9.42 2.n 9.06 3.62 4.49 UI 4.08 2.72 3.IS 1.21 9.21 

5)(2 0.3125 v., 12.70 3.73 9.14 3.90 5.31 1.62 2.16 2.16 2.70 0.162 6.24 
0.2SOO 'I. 10.51 .l09 8.48 3.39 4.51 1.66 1.92 1.92 2.32 0.789 5.43 
0.1875 y,. 8.15 2.39 6.89 2.75 3.59 1.70 1.60 1.60 1.86 0.816 4.40 

4x3 0.3125 V .. 1.2.70 3.73 7.45 3.72 4.15 1.41 4.11 3.14 3.&8 1.11 9.89 
O.2S00 'I. 10.51 3.09 6.45 3.23 4.03 1.45 4.10 2.74 3.30 US 8.41 
0.1875 v.. S.15 2.39 5.23 2.62 3.20 1.48 3.34 2.23 2.62 1.1S 6.67 

4x2 0.3125 Y., 10.58 3.11 s.n 2.66 3.60 1.31 1.71 1.71 2.17 0.743 4..58 
0.2500 % lUI 2.S9 4.69 235 3.09 US 1.54 1.54 1.&8 0:170 4.01 
0.1175 V .. 6,87 2.02 3.87 1.93 2.48 l.38 1.29 1.29 I.S2 0.798 3.26 

3.5 x 2.S 0.1500 Y. 8.81 2.59 3.97 2.27 2.88 1.24 2.33 1.86 2.28 0,948 4.99 
0.1875 y" 6.87 2J)2 3.26 1.86 2.31 1.27 1.93 1.54 1.83 0.911 4.02 

3x2 0.2500 Yo 7.11 2.09 2.21 1.47 1.92 1.03 US US 1.44 0.742 2.63 
0.1875 ¥o. 5.59 1.64 1.86 1.24 1.57 1.06 0.977 0.977 US 0.71) 2.16 

At! printed with permission of American Institute of Steel Construction 
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y "I 

B7~ 
X XA 

.J 
Aluminum Association Standard I-Beams: Dimensions; Areas, Weights, , I 

I 
and Section Properties y 

Section Properties3 

Size 
Flange Web Fillet Axis x-x Axis'y-V 

Depth Width Tliickness Thickness RadiWl 
A B Areal , Weight! If R S S 

in. in. in.l Ib/tt in. in. in. in.4 ·3 m. in. in.4 in.3 in. 

3.00 2.50 1.392 1.637 0.20 0.13 0.25 2.24 1.49 1.27 0.52 0.42 0.61 
3.00 2.50 1.726 2.0.3(l 0.26 OJ5 0.25 2.71" 1.81 1.25 0.68 'Q.54' 0.63· 
4.00 3.00 1.965 2.311 0.23 0.15 0.25 5.62 2.81 1.69 1.04 0.69 0.73 
4.00 3.00 2.375 2.793 0.29 0.11' 0.25 6.7l 3.36 1.68 1.31 9.74. 

5.00 3.50 3.146 3.700 0.32 0.19 0.30 13.94 5.58 2.11 2.29 1.31 0.85 
6.00 4~00 3.427 4.030 0.29 0.19 0.30 21.99, 7.33 2.53, 3.10 t.S5 0.95 
6.00 4.00 3.990 4.692 0.35 '0.21' 0.30 25.50 8.50 2:53 3.74 1.87 0.97 
7.00 4.50 4.932 5.800 0.38 0.23· 0.30 42.89 12.25 2.95 5.78 2.51 1.08, 

8.00 5.00 5.256 6.181 0.35 0.23 0.30 59.69, 14.92 3.37 7.30 . 2.92 US 
S.OO 5.00 5.942 7.023 0.41 0.25 0 . .3(l 67.78 16.94 3.37 8.55 3.42 1.20 
9.00 5.50 7.1I0 8.361 0.44 0.21 0.30 102.02 22.67 3.79 12.22 4.44 1.31 

10.00 6.00 7.352 8.646 0.41 0.25 0.40 132.09 26.42 4.24 14.78 4.93 1.42 
10.00 6.00 8.747 10.286 0.50 0.29 0.40 155.79 31.16 4.22 18.03 6.01 1.44 

12.00 7.00 9.925 11.612 0.47 0.29 0.40 255.57 42.60 5.07 26.90 7.69 1.65 
12.00 7.00 12.153 14.292 ,0.62 0.31 0040 317.33 52.89 5.11 35.48 10.14 1.71 

1 Areas listed are based on nomiDal dimensions. 
ZWeigbts per fOOl area are based on nominal dimensions and a density of 0.098 pound per cubic inch which is the density of alloy 6061. 
31 ::: D'IOIllIeDt of inertia; S ::: SCld.ioo modulus; , =: ndius of gyration. • 
"'scrs arc Cl'ICOW'agcd 10 asocrtaia current availability of partieular structural shapes through blquires to their suppliers. 
Printed with pmnissiou of the Aluminum ~OD from 1988 Ed •• Aluminum StaI)dards and Data 



Chapter 2 

[kl 0 -kl 

o ] 2.1 a·lf= _!' k3 0 -k3 

0 kl +kz -kl 
-k) -k2 k2+kl 

k2P 
4: 

(k1 +~2)P b. d3,x- , 
klk2 + klkJ + k2k3 klk2 + klk3 + k2k3 

Co Fir 
-k.k2P 

Flx 
-k3(kl + k1)P 

klk~ + klk3 + klk3) kJk2 + klk3 + kZk3 

1.2 dlx = 0.5 in .• Flz =2501b, iP) .fll) , 
Ix = - 2% == -250 Ib, A2)--!P) 2x - 3,x 

k -k 0 0 

-1] 

-k 2k -k 0 
1.3 a. K= 0 -k 2Jc. -k 

0 0 -k 2k 
0 0 0 -k 

p 
b. dlx == 2k' 

p 
d3x="P 

p 
4:=2k 

P 
c.'Fb:=-'2' F5x= 

P 

U 8.!! same as 2.3a. 

= [-! -:0 ~ -~ 1 
l.S K 0 0 S-S 

o -9 -5 14 

-250lb 

-k6 k6 
FSx=­

, ' 4 
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2.6 d2x = 0.4746· in 

2.7 d2x = 1 in., d)x = 2 in. 

R~) = -R)} -500 lb, ]g) = -if} = -500 lb, Fix = -500 Ib 

2.8 db = 0, da == '3 in., dk == 7 in.~ titx = 11 in. 

fi;) = -A;) = -3000 lb. l[;l = -A;) -4000 Ib 

fi:) == -./1;) = -4000 lb. FIx == -3000 Ib 

2.9 4 = -2 in. 

R~) = -.R;) 2000 lb, fi;) == -ii;) = -1000 Ib 

jJ;) == -/[;) = -1000 lb, Fix 2000 lb, F3x = F4x 1000lb 

2.10 d'bl = 0.01 m, ~~) = -/~) = -20 N 

fi;) = -A~} == -20 N. Fix = -20 N 

2.11 d2x == 0.027 m, dl% 0.018 m 

R~) = -/~) == -270 N, A;) == -/i;) = 180 N 

A;) -/g? == 180 N, Fix = -270 N, F4x = -180 N 

1.12 d'bl = 0.125 m, d3x = 0.25 m, tAx = 0.125 m 

J.~) == -A;) == -2.5 kN, /i;) = -.n;) = -2.S leN 

!,;} == -iP} = 2.S leN, ~) = -A:} 2.5 kN 

Fb: = -2.5 kN, Fh = -2.5 leN 

1.13 d'bl = -0.25 m, dll: == -0.7S m 

R;} = -ii)} 100 N, fi;) == -.it;) == 200 N 

Fix lOON 

2.14 dk = 0.001 m. .ii2 = 7~) = -0.5 kN 
A(2);(2) ;(3) ?(3) 

f2x == -liz = -O.S kN, Jh -f4x = 1 kN 

fix = -0.5 kN' F2x == -0.5 kN, Fu = -1 kN 

1.15 d'bl = 1/3 in., d1x = -1/3 in. 

1.16 a. x == 0.5 in. 1, 11:pmiro = -125 lb.-in. 

b~" x == 2.0 in. -, 11:p";,,, = -1000 lb.-in. 

c.. x = 1.962"mm 1. "ltPfta = -3849 N . mm. 

d.. x = 2.4525 nun -, 11:",. = - 1203 N . mm 

2.17 x == 2.0 in. i 
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2.18 x = 0.707 in. -, 7C,..",. = -235.1 in-Ib 

2.1' Same as 2.10 

2.20 Same as 2.1 5 ' 

3.l 

Chapter 3 

A,El -AIEl 
0 0 

T -r;-
-AIEl AIEl AlE2 -A2E2 

0 --:c;- --+-- -r;-
a. K= 

LI L,. 

0 
-A2E2 A2E2 A3E3 -A3E3 

-r;- IT+-r;- ~ 
0 0 

-A3E3 A3E3 

~ r:;-
PL 2PL 

b. d2x 3AE' d'h 3AE 

C. i. r4.: = 3.33 x 10-4 In., d3x = 6.67 x 10-' in. 

iL Fb -333 lb. F4x = -667 Ib 
ii. 0<1) 333 psi (T), 0-<2) = 333 psi (T). 0'(3) = -667 psi (C) 

3.2 d2x = -0.595 X 10-4 m, d3x = -1.19 x'IO-4 m, Fix = 5 leN 

Ji~} = -.Ii!} = 5 kN. f;;) = -A;) = S kN 

33 d2x 1.91 x 10-3 in., FI;r: = -S7151b) P3x = -22861b 

A~) -Ji!) = -5715 lb, A;} = -A;) = 22861b 

3.4 d2x = -1.66 X 10-' in.~ d3x = -1.33 X 10-3 in. 

Fix = .667 lb. F4x = 5333 lb 

fl~) =;= -ii;} = 667 lb. fl;) = -.R;) = 46671b 
• ~3) ~3) 
J'ix = -J~ =;= -5333 Ib 

35 d2x = 0.003 in.; d3:t. = 0.009 in., Fb = -15000 Ib 
};(1) __ ;(1) _ ;(l) _.PU} - -15000 Ib 
hx - 'fix -Jix :fjx-

3.6 d2x == 3.16 x 10-3 in., Fix = -3790 Ib, Fh: = F4x = -21051b, 

A;) = -it? = -3790 lb, A;) = .:.ale> = A;) = -It? == 2105 Ib 

3.7 thx = 2.21 x 1O-s in., d3x == 6.65 X 10-3 in. 

Ph: = -33.151~. F4x = -9975Ib 

.r.~)<= -Jt) =It? = -.1;;) = -33.151b, j2) = -.i2) = 9975 ,Jb 
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3.8 dlx = -0.250 mm, d'jx:::: - 1.678 mm, FIx = 20 kN 

3.9 d2x = 0.01238 m, Fb = -520 leN, F3x = 530 leN 

jf~) = -fi;) = -520 !eN, iJ;) = -if;? = -530 kN 

3.10 a2x = 0.935 x 10-3 m, d3x = 0.727 X 10-3 m 

Fix == -6.546 leN, F4x = -1.455 kN 

Ji~) = -.iE:) = -6.546 kN, A;,) = -.I};) = 1.455 kN, 

h~) = -h~) == 1.455 leN 

3.11 dlx = 3.572 x 10"" m, Fix = -7.50 kN, F3x == F4Jc :::: Fsx = -7.50 kN 

it~) = -fi;) = -1.50 leN, 
;(2) _ .;(2) _ if~) _ .;(3) _ ;(4) _ . ;(4) - 7 50 leN 

J2x - -h~ - 11.:r - -J4x - Jlx - -JSx - . 

3.12 tW()-element sol11tion, alx = -0.686 x 10-3 in. 

one-dement solu~on. ab::::: -0.667 x. 10-3 in. 

B =.[_!+ 4x -8x 1 4X] (/2 
V r+p · Il.=A BTElldx 

. L V 
3.13 

. -LIZ 

3.15 [ I 

-1 -I] ~ 1 1 -1 -1 
•• k. = 2.25 x 106 _I 

-1 
lb/in. 1 . 

-1 -1 1 

-0 -1 

b. k= 10' [-~ ~l 3 J3 -3 
- 4 -1 v'3 t 

-v'3 . Ib/in. 

v'3 -3 -v'3 . 3 

-J3 -3 

[ 3 ~l -v'3 1 J3 -1 c. k== 7000 _": kN/m - -3 J3 3 

v'3 -1 -v'3 

[ 0.883 0.321 "':0.883 

d. If. = 1.4 X 10
4 _~:;~~ 0.117 -0.321 

-0.321 
-0.321 -0.117 

3.16 .a. d1x == 0.433 in.. d2x :::: 0.592' in. 

b. dl.'C = 0.433 iIi., ihx = -0.1585 in, 

3.17 tl. d1x = 2.165 mm, dl1 = -1.2S.mm, 

d2x = 0.098 mm, d2y -5.83 rn.al 

h. d1x = -1.25 rom. Jly = 2.165 mm, 

d2x == 3.03 mm, d2y = 5.098 mm 

3.18 _. (f = 10,600 psi, b. 45.47 MPa 

0.883 

0.321 

-0.321] 
-0.117. kN 1m 

0.321 

0.117 
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2 0 1 ! -1 0 _1 _1 
~2 2 2 

0 I 1 _1 0 0 _1 _1 
2 2 2 2 

_1 ! 1 1 0'0 0 '() 
2 2' 2 -2 

\ 3.19 a. K=k 1 _1 _1 1 0: 0 0 0 
,2 2 2 2 
-1 0 0 0 1 o : 0 0 

0 () 0 0 0 0 0 0 
_1 _1 0 0 0 0 1 1 

2 2 2 2 
_1 0 0 0 0 1 1 

2 2 2 

-10 
b. db; 0, d1y = T 

3.20 d'b; = 0, d2y = 0.142 in., 0'(1) 0-<2) = 701 psi (T) 

3 d 
- 231L d _ 43.5L 

.21 Ix - AE' ly - AE 

422L d
1
" = 1570L 

3.22 db = AE ' , AE 

at1) 5
A
74 (C), 0'(2) = 422 (T). 0'(3) = 996 (T) 

A A , , 

3.23 dtx = 0.24 in., dly = 0, 0'(1) 12000 psi 

3;24 d 26,675 J, _ 105,021 J, _ -26,675 J,3y = 105,021 
:Lx AE' 2, - AE' 3x - ---;tE' AE 

A~)::; -1;;/ = -13331b, 'fl~) = _.f1;1 = -1667Ib 

J[;l = -.b} = 16671b, h.~) = -f1:) = 0 
j(5) _.;(S) = 13331b .;(6) = _j(6);:: 0 

J'h; :J4x 'h% :J4x 

~2y _- 225,000, -53,340..1 _ 210,000 
3.25· d2x = 0, u· AE' d3x = ': AE :' "3, - AE 

3.26 

3.27 

3.28 

-"~) = -~) = 0, .Ii;) = -.Ii;) = ..,.3333 Ib 

ft.) -A;) 1000 lb, A;) = -i1.~ ='26671b 

A!) = -j}!) = 0 

No, the truss is unstable, IKI = 0" .: ' 

th. Q.0463 in., d3y = -0.0176 in. , ' 

fi~) = -'-.Ii;) = -2.055 kip, 12;) = -1};) ;:: 6.279 kip 

J;-X:) = -l~) = -6.6 kip 

rT = [~ f ; ~] , ' [1 0 0 'O~l] 
and T' T'T 0 1 ,0 

-- = O' 0 

000 

:.T.T=rl 

3.29 d1;r = -0.893 X 1'0-4 m; dl)' -4.46 x 10--4 m 

at]) = ,31.2 MPa (T). 0'(2) = 26.5 MPa (T), 0-<3) == 6.25 MPa (T) 

.. 777 
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3..30 db 1.11 x 10-4 m, dly = -7.55 )( 10-4 m 
,,(1) = 79.28 MPa (1'), 0-<2) = 11.91 MPa (1'), 0-<3) = -23.87 Mfa (C) 

3.31 dl lt = 8.25 )( 10-4 m, dly = -3.65 )( 10-3 m 

q(2) ::;; 57.74 MPa (T), q(3)::;; -115.5 MPa (C) 

3.32 db = 0.135)( 10-2 m, d2y = -0.850)( 10-2 m, 

d]y = -0.137 )( 10-1 m, 14, = -0.164 )( 10-1 m, 

a(t) = -198 MPa (C), 0-<2) = 0, q(3) = 44.6 MPa (1') 

0-<4) -31.6 MPa (C), a(S) = -191 MPa (C), 

q(6) = -63.1 MPa (C) 

3.33 a. db = -3.448)( 10-3 m, dIy = -6.896 x 10-3 m 

O"(I} = 102.4 MFa (T), 0"(2) = -12.4 MPa (C) 

3.34 t4x = 9.9~ )( 10-3 in., t4y = -2.46 x 10-3 in. 

a<1) ::;; 31.2S·ksi (T). 0-<2)::;; 3.459 ksi (T), 0-<3) -1.538 ksi (C) 

0"(4) -3.10~ bi (C),O-<S) = 0 

3.35 d1y == -0.5 )( 10-) in.) qCI) = 259 psi (T) 

3.3(; dl;x: = 0.212 in. 

,3.37 db == 0.0397 in. 

3.38 d2,x = 16.98 m.m 

3.39 .d2:t = 1.71 mm 

3.40 dl:r = -3.01&)( 10-5 In, d" = -1.517 x 10-5 m, 

d1z = 2.684 X 10-5 m, 0-<1) = -338 kNjm2 (C), 

q<l) = -1690 kN/m2 (C). 0-<3)::;; -7965 kN/m2 (C) 

0-<4) = -2126 kN/m2 (C) 

3.41 dlx = 1.383 x 10-3 m, d1y = -5.119 x 10-5 m 

dl;r = 6.015 )( 10-5 m, qCl) == 20.51 MPa (T), 

0-<2) = 4.21 MPa (T), 0-<3) -5.29 MPa (C) 

3.4l dSlt:::;; 0.0014 in., dsy = O. ds:; == -0.00042 in. 

0-<1) = q(4) = 180 psi (1'). 0-<2) = q(3) = 140 psi (C) 

3.43 du = 0.00863 in., t4y = 0, 4 = -0.00683 in. 

0-<1) ::;; -916 psi (C) 

3.46 d2y = -0.0192 in.) d" = -0.0168 in. 

./ 
~l) = -1668 psi (C). q(2) = 1332 psi (T). 0-<3) = 1000 psi (T) 
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-llOP. -40SP. 
3.47 db == -a m., d1y = 0, d'2x = 0, d2y = --:4E In.) 

O d 
-433P . d SOP . .I. - 208P . 

d3x =, 3y Ae- Jn., 4x == AE tn., "4Y =--:4E In . 

0-<1) = -0 lS6~ q(2) = -020s!: q(3) = -116!:. . A' . A' . A 

0-<4) = 0.260~, a(S} -0.573~, 0-<6) = 0.458~ 
3.48 d2y == -0.955 x 10-2 m, ~p = -1.03 X 10-2 m, 

aO) = 67.1 MPa (C), a(2)::: 60.0 MPa (T), a(3) = 22.4 MPa (C) 

0-<4) = 44.7 MPa (C), 0-<5) = 20.0 MPa (T) 

3.49 d::r = 0, d2y = -0.00283 in., F2:r = 2000 Ib 
a(1) = 0, 0-<2) = 1414 psi (T), a(3) = 0 

3.se d2y = -0.00283 in. 

3.51 d2x = 0.002 in., fi~ -2800 lb., f~ == -2000 Ib 

F{y = -2828 Ib 

3.52 a. dl.-.: = 0.010 in.!. 7th .. = -100 Ib-in. 

b. dl;c = 0.00833 in. -.., 7tPmifl = -41.671b-in. 

3 S3 k = 3AoE [ 1 -1 ] 
• - 2L -1 1 

3.54 two-element solution: d-u. = 0.00825 in., d3x = 0.012 in., a(l) = 8250 psi (T), 
all} = 3750 psi (T), 

3.5S two-element solution: d2:r = 6.75 X 10-3 in., d3x = 0.009 in. 

a(l) 6750 psi (T), q(2) 2250 psi (T) 

3.56 d2 "C = 0.75 X 10-3 in., a(l) = 750 psi (T) 

3.57 db = yL2/(2£), d2x = 3.,L2/(8E), a(1) -= .,L/8, rl2l = 3yL/8 

3.58 a. fix = 583.3 lb, f2x = 666.7 Ib 

b. fix = 26.7 kN, 12.-.: = 80 kN 

Chapter 4 

-1PL"3 _PL2 PL2 

4.3 d2y = 768£1' ;1 = 32El' ;2 = 128£1 

SP lIP -3PL 
F1"=16' MI ==0, 6 Y =T6' M3=16 

_PL3 PL3 

4.4 d,}, = 3£1' ;1 2El' F2)' = P, M2 -PL 



780 .A Answers to Selected Problems 

4.5 dry = -2.688 in., ¢>! = 0.0144 rad, t/J,. = 0.0048 rad 

F2y = 2.5 kip, F3y = -1.5 kip, M3 = 10.0 k-ft 

4.6 d3y = -3.94 in. 

4.7 d2y = -0.105 in., tP2 = -0.003 rad, d3y = -0.345 in., tP3 = -0.0045 rad 

4.8 d2y = -1.34 X 10-4 m, th = 8.93 X 10-5 rad 

Fly = 10 kN, MI = 12.5 kN . m, F3y = 1.87'N, M.3 = -2.5 kN . m 

4.9 d3y = -7.619 X 10-4 m, t/J,. = -3.809 X 10-4 rad, ¢>I = 1.904 X 10-4 rad 

Fly = -0.889 kN, F2y = 4.889 kN 

4.10 d2y = -0.886 in., "'2 = -0.00554 rad 

Fly = IllS Ib, MI = -267 k-in. 

4.11 d2y = -7.934 X 10-3 m, ¢>I = -2.975 X 10-3 fad 

Fly = 5.208 kN, F3y = 5.208 kN 

Fspring = 1.587 kN 

"":lwL4 -WL4 
4.12 d2y = d4y = 607.SEl' d3y = 507EJ 

-lwL3 

~2 = 270EJ' ¢>4 = -¢>2 

wL wL2 
Fly =2' Ml=U 

'-wL4 wL wL2 
4.13 d2y = 384EI' Fly = 2' ·MI = 12 

-5wL4 . -WL3 wL 
4.14 d2y = 384El' tPl = -tP3 = 24EJ' Fly = T 

-wL4 -WL3 -7wL3 
4.15 d3y = 4El' th. = 8El' ¢>J = 24El 

-3wL M _ -wL2 F _ 7wL 
Fly =-4-' 1- 4 ' 2Y -"4 

416 ,; _ = -3wL , -WL2 • -7wL wL2
. 

• Jly 20' ml =~, fir = ----W-' "'2 = 20 
3wL wL2 7wL . -wL2 

4.17 Fly = 20' M, = 30' F3y = 20' M3 =---w-
wL3 9wL 7wL2 llwL 

4.18 ¢>2 = 80EI' Fly = 40' M, = 120' F2y = ~ 

4.19 d3)' = -0.0244 m, "'3 = -0.0071 rad, ~ = -0.00305 rad 

Fly = -24 kN, . MI = -32 kN 'm, F2y = 56kN 

R}~) = -f~~) = -24 kN, . m~l) = -32 kN . m, m~l) = -64 kN . m 

.J{2) = 32 kN m(2) = 64 kN . m f'(2) - 0 m(2) = 0 12)" . '2 , 3y -, .3 
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4.20 "'I = -0.0032 fad, d2y = -0.0115 m, ¢3 0.0032 rad 

FI}' 29.94 kN, Fly = 0.1152 kN, Fly 29.94 kN 

;(1) _ 2994 kN m(l) - 0 ;(l) = 0058 kN ,yP) 59.65 kN· m 
Jly - - , 1 - ,fiy . • 2 

4.21 d2y = -2.514 in., (h -0.00698 rad, ~3 0.0279 rad 

Fly 37.5 kip, M\ 225 k-in., F3y = 22.5 kip 

4.22 d3y = -3.217 in., ~3 =: -0.0323 rad, "'2 = -0.0130 rad 

Fly = -20.5 kip, M\ = - 7t'.67 k-ft, Fly:::: 60.5 kip 

4.23 d2y == -2.34 in., Fly = 53251b = F3y, Ml = 19,900 Ib-ft = -M3 

4..24 PI = -3.596 X 10-4 rad, '2 = 9.92 x 10-5 rad, ~3 = 1.091 X 10-4 rad 

F!y = 9875 N, h, = 28,406 N, F3y == 6719 N 

4.25 dm.a.x -O.OOO756m 

arn&.X = 34.3 MPa 

amin:::: -51.0MPa 

4.26 dmll.X -OJ953m 

amin = -469MPa. 

4.27 dma.x = -1.028 in. 

ame.x 34000 psi 

aurin = -65800psi 

4.28 dma.'C:::: -0.0419m at C 

at midspan of AB and BC 

at midspan of AB and BC 

at B 

at midspan of BC 

under 7.5 kip load at B 

amax = 66.97 MPa at fixed end A 

O'min :::: -133.9 MPa at B 

4.29 dmax = -0.495 in. at C 

0"1l'UlX = 5625 psi at A 

amin -22500 psi at B 

4.30 dmax = -0.087 m at C 

allll\X = 251 MPa at B 
-PL3 wL4 P+ wL 

4.37 d2), = 192El - 384E1' Fl)' 

-5PL3 

4.38 d2y = 648El 

-(25P + 22wL}LJ 

240£1 
wL PL wL2 

Fly P+ 2> Ml 2+-3-

4.40 d2J, -157 x 10-4 rn, ~2 = 1.19 X 10-4 rad 
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\ 

4.41 

4.42 

4.44 

4,47 

d'2y = -3.18 X 10-4 m, ¢2 = 1.58 X 10-4 rad, tit) 1.58 x 10-4 rad 

d3y = -2.13 x lO-s m, th. = -1.28 x 10-5 tad, ;3 = 2.69 x 10-5 rad 

k = GAw [ 1 -1] 
- L -I I 

k = EI J:!BJT[Bldx+k/ J:lN]T!N]dX 

Chapter 5 

5.1 d2x = 0.0278 in., d2y 0, th. = -0.555 X 10-4 rad 

fl;} = -iF) -8300 Ib, ~~1 = -h~) = 4.61b 

mil) = 27751b-in., rt41
) 0 

5.2 d2x d3,x 0.688 in., d2y = -d3y = 0.00171 in. 

;2 =: -~ ~O.OO 173 tad 

~~) -2140 lb, ir~) = -h~} = -2503 Ib 

mil) 343,600 Ib-in., Tn~l) = 257,000 Ib-in. 

J[;) -fi} = 2497 lb, ii:) = -~~) = -2140 Ib 

m~2) -257,000 lb-rn., mf) = -256,600 lb-in: 

;(3) _~3) = 2140 lb j·(3) = _.J(3) = 24971b 
J3x J4x '3)1 14y 

m~3) = 256,600 Ib-in., m?} = 342,100 Ib-m. 

FIx = F4r = -"2503 lb, Fly::: -F4y = -2140 Ib 

M\ = 343,600 Ib-in., Mit = 342,700 l~in. 

5.3 Channel section 6 x 8.2 based on Mrrua. 106,900 lb-in. 

5.4 d4x = 0.00445 in., <4y = -0.0123 in., ;4 -0.00290 rad 

fl;) = -.i1;1 = 4.04 kip, A~) = -!J.~) -1.43 kip 

m\l) = -254 k-in., m~l) = -513 k~m. 

11'(2) - _;(2) - 5 82 kip ;(2) _;(2) - -1 4S kip 
2x - J4x -. , J2y J4y - • 

m~2) = -260 k-in., m~2) -519 k·in. 

FI:;~ = 3.1 kip, Fly = 2.96 kip, MI = -254 k-in. 

F2,x = -1.31 kip, Fly 5.86 kip, M'J. = -260 k~in. 

F3;c = -1.78 kip, F3y = 11.17 kip, M3 =: -1736 k-m. 

5.5 d2,x = 0.05618 in.; thy = -0.1792 in., ;2 = -0.00965 rad 

R~) = 90.07 kip, fi~) = 3.83 kip, m\l) = 361 k-in . 

.1;.;) = -73.43 kip, A;) = 7.21 kip, 1741
) = -1106 k-in. 

f];) -.r~} = 46.8 kip, A;) = 17.05 kip, m?} = 1107 k-in. 
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A;) = 22.95 kip, m~2) = -2171 k-in. 

FIx = Fh 46.8 kip, Fly = 77.1 kip, M. = 361 k-in. 

F3y = 22.95ldp, M3 = 2171 k-in. 

5.6 dzx == -0.000269 in., d"l:y == -0.0363 in., th = -0.00347 r;ld 

R~) = 46.6 kip, .Ii;) = 6.07ldp. mil) = 491.3 k-in. 

/i;) = -32.4 kip, A;) = 8.07 kip, 114') = -831.3 k-in. 

i't:) = -j?} = -0.28 kip, A;) 58.31ldp, mf) = 1123.9 k-in . 

.1;;) = 21.69 kip, m~2) -1611.8 k-in. 

;(3) . ;(3) 50 2 ki .#3) .ril) 1 49 lei • (3) 154 2 k . 14x = -J2;( . p, )4y = -12"), = - . P, m4 = - . -In. 

rr43
) = -293.2 k-in. 

Fb: = 28.65 kip, Fly = 37.24 kip, Ml == 491.3 k·in. 

F3<e 0.28 kip, F3y = 21.69 kip, M3 == -1611.8 k-in. 

F4,r :: -28.93 kip, F4y = 41.05 kip, M4 -154.2 k-in. 

5.7 dzx"; 0.4308 X 10-4 m, d2y = -0.9067 X 10-4 m, 

~ = -0.1403 x 10-2 rad 

fY!.:) = -I,;} == 23.8 leN, 1.-;> = 17.26 kN, mil) = 32.77 kN· m 

A~) = 22.74 kN, m~l) = -54,64 leN ,m 

fJ;) -1;;) = 11.31 leN" A;} = 37.19 kN, m~2) = 65.09 kN . m 

A;) 42.81 kN, m;2} = -87.54 leN . m 

~) = -f'1;} = 17.55 kN, fl.;) -n;) = 1.40 leN 

,;43) = -10.51 kN· m, m~) = -5.30 leN· m 

Fb=-17.26kN, FJy=23.80IeN, M. = 32.77kN·m 

F3x = -11.31 kN. F3y 42.81 leN, M3 = -87.54 kN· m 

F4x = -11.42 kN, F4y = 13.40 leN, M4 = -5.30 leN . m 

5.9 dzx -4.95 x 10-5 m, d2y = -2.56 x 10-5 m, th 2.66 X 10-3 rad 

I.-~) -fi;) = 26.9 leN, A;) -Jg) = -42.0 kN 

m~l) = 55.9 kN· m, ,;41) = 111.7 leN·m 
}i2} }(2) }il) . }(2) 

Ji.x = -fl'x = -42.0 leN, Ii, = -13,. = 26.9 leN 

M. = 55.9 kN· m, M3 =:= 44.7 kN·m 

5.10 d2y = -0.1423 x ltr-2 m, ~ = -0.5917 x 10-3 rad 

it;) = 0, .fi~) = 10 kN, m~J) = 23.3 leN· m, ig) 0, 

/i:) -10 kN, .,;41) = 6.7 leN· m 

5.11 d2y =: -3.712 x lO-s m, FI:~ 5440 N. Fly = 10000 N, MJ = 112 N . m 
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S.12 dtx = -0.2143 m, dly :: -0.250 m, ;\ = 0.0893 rad, d2x = -0.2143 m, 
dll' =: -0.357 X 10-4 m, th 0.0714 m 

5.13 d2x = 0.0559 in., d2y = 0.00382 in., ~:: -0.000150 rad 

d 3x = 0.0558 in., d3y = -0.000133 in., tP3 = 0.000149 rad 

FIx = -198 lb, Fly:: -4nO lb, MJ = 27460 lb . in. 

F4x = -4&02 lb, F4y = 4770 lb, M4 = 27430 Ib . in. 
5.14 d2x = 0.0174 in., d2y = -0.0481 in., th = -0.00165 rad 

~~) = 19160 lb, It;) = -13851b, m~1) = -59050 lb· in. 

iE} -191601b, 11;) = 13851b, m~1) = -176;000 lb· in. 

5.15 d2x = -1.76 X 10-2 m, d2y = -1.8.7 x 10-5 m, th = 5.00 X 10-3 rad 

d3x = -1.76 X 10-2 m, "3 = -2.49 X 10-3 rad 

FIx = 20.0 kN, Fly = 13.} kN, Ml = -57.4 kN . m, F3y = -13.1 kN 

5.16 d3y = -2.83 :X: 10-5 ID, tk.x = 1.0 x lO-s m, tk.y = -2.83 x 10-5 m 

5.17 ~y = -0.397 in., tP3 = 0 

5.18 d],x = ~y = -0.01 X 10-3 ID, tP2 = 1.766 X 10-4 rad 

5.19 db = 0.702 in., d ly = 0.00797 in., ,pI = -Q.00446 rad 

h~) = -.ft~) = -19.93 kip, A~) = -~~) =: 18.1 kip, m~l) = 1309 k· in. 

m~l) = 863 k· in. 

S.20 d3x = 1.24 in., d3y = 0.00203 in., tP3 = -0.000556 rad 
-(I) -. ;il) • (I) .;{I) ..;(1) Ax = -2.76 kip, it, = 1.79 kip, m1 = 0, Jix = 2.76 Jcip, 12-, = -1.79 kip, 

m~!) = 322 k . in. 

5.21 Use a W16 x 31 for all sections 

S.22 ObendlngmAX = 11924 psi 

5.23 dsx. == 0.0204 in., dsy = 0.00122 in., tPs 0.000207 rad 

5.24 dsx = 2.82 in., ds] = 0.00266 in., 'S == -0.00139 rad 

S.25 3. d2y = -2.12 X 10-3 in. b. d3y = -6.07 X 10-2 in. 

S.26 d2x = 0.596 x 10-5 in., d2p -0.332 x 10-2 in., (l2 = -0.100 X 10-3 rad 

Fix = 130 lb, Fly = 10360 lb, F4x. = - 130 lb, F4y = 103~ lb 

5.1:7 dly = -0.0153 in., .1;) = 30 kN, fi~ = -6.67 kN, m~l) = 0 

S.28 d],x = 5.70 rom, d2y = -0.0244 mm, ~ = 0.00523 rad 

5.29 d3y = -1.83 in., ~y = -1.22 in. 

5.30 d3y = 6.67 in., ~y -6.67 in., th == -{l4 == -3.20 rad 

Fix = 11.69 kN, F,y = 30 kN, MI = -1810 leN • m 

F6x == -11.69 kN, F6y = 30 kN, M6 = 1810 kN· m 
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5.31 d2J1 = -1.58 X 10-2 in. 

5.32 a2x = 4.30 mm, t/J~ = -0.241 X 10-3 rad 

Fbi. = -8339 N, Fly = -4995 N, Mt = 26,700 N . m, 

F4Jt = -6661 N, F4y = 4995 N. M4 = 23,330 N . m 

5.33 a7x = 0.0264 m t d7,'= 0.463 x 10-4 m; ;., = 0.171 X 10-2 rad 

It;) = -21.1 N, fi-X;) = 30.4 Nt m;l) = 74.95 N· m 

.f3~) = 21.1 N, .A~} = -30.4 N. m~l) = 46.65 N . m 

5.35 d9x = 0.0174 m, ~~) = -22.6 kN. R~) = 16.0 kN, m~l) = 53.6 leN· m 

.f3~) = 22.6 kN, A;) = -16.0 kN, m~l) = 42.4 kN· m 

5.36 ~y = -2.80 X 10-7 m, d,y = -4.87 X 10-7 m 

5.37 d51 = -1.29 X 10-2 m 

5.38 d2:tt; = 1.43 X 10-1 m 

5.39 Truss: d7x = 0.0260 m, a7y = 0.00566 m, 

Frame: d,x = 0.0180 m, d7y = 0.00424 m 

Truss, element 1: itx = -49,730 N, it, = 0 

Frame, element l:ftx = -43,060 N. ity = 22670 N 
5.40 dlllAX = -0.0105m at midspan 

MlIIAX = 1.568 x lo'N-m at C 

5.41 dnwc = 0.0524 m 

Mmax = 6.22 x 10"N-m 

5.45 Tapered beam n = 3 
one element: dly = -0.222 x 10-1 in. 

,two elements: dl)l = -0.189 x'10-1 in. 

four elements: dl }, = -0.181 X 10-1 in. 

eight elements; aly = -0.179 x 10-1 in. 

K' =lSGJO[ I -II] 
5.46 - 'L -1 

5.48 d2y = -0.214 in. 

5.49 a2y = -0.729 in. 

55l dip = -0.690 X 10-2 m 

S.5l asy ~ -O.lTI6 in. 

5.S3 t4y = -1.026 in. 

5.55 d), = -2.54 x 10-~ m 

5.57 asy = -2.22 X 10-2 m 
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5.58 d2y = 0.491 in., d3; 0.837 in. 

S.59 d7: = -0.251 in. 

Chapter 6 

6.1 Use Eq. (6.2.10) in Eq. (6.2.18) to show Ni + Nj + Nm = 1. 

2.5 1.25 -2.0 -1.5 -O.S 0.25 

4.375 -1.0 -0.75 -0.25 -3.625 

6.3 a. k=4.0x 106 4.0 0 
1.5 

-20 1.0 
Ib/in. 

1.5 -0.75 

6.4 

6.6 

Symmetry 

1.54 0.75 
1.815 

-1.0 
-0.3 

2.5 -1.25 

4.375 

-0.45 -0.54 -0.3 
-0.375 -0.45 -1.44 

b. If = 13.33 X 106 1.0 0 
0.375 

0 
0.45 

0.3 
o Ibjin. 

a. ax ::; 19.2 ksi, 

0'1 = 28.6 hi, 

b.O'x 32.0 ksi, 

0'\ = 47.7 ksi, 

a. If = 2.074 x lOs 

b. If =4.48 X 107 

Symmetry 

Cly = 4.8 ksi, 7:xy = -15.0 ksi 

Cl2 = -4.64 hi. fJp ::; -32.2° 

O'y = 8.0 ksi, 1:xy ::; -25.0 ksi 

a2 = -7.73 ksi, (Jp -32.2° 

8437.5 1687.5 -7762.5 
1687.5 3931.5 337.5 

-7762.5 337.5 8437.5 
-337.5 -2137.5 -1687.S 
-675 -2025 -675 

-1350 -1800 1350 

25.0 0 -12.5 6.25 

0.54 

-337.5 
-2131.5 
-1687.5 

3937.5 
2025 

-1800 

o 
1.44 

-675 
-2025 

-675 

2025 
1350 

0 

-1350 
-1800 

1350 
-1800 

0 
3600 

-12.5 -6.25 
9.315 9.375 -4.6875 -9.375 -4.6875 

15.625 -7.8125 -3.125 -.1.5625 
27.343 1:5625 -3.125 

15.625 7.8125 
Symmetry 27.343 

6.7 a. Clx = -5.289 GPa~ Cly ::; -0.156 GPa, 't'xy = 0.233 GPa 

(1t = -0.1459 GPa, (12 == -5.3!) GPa~ (Jp = -25go 

h. Ur = 0, U, = 42.0 MFa,. Txy = 33.6 MPa 

CIt = 60.6 MPa, (12 = -18.6 MPa, (Jp = -2go 

N/m 

Njm 



Answers to Selected Problems A. 

6.9 a. (Ix = -15.0 ksi. (ly = -45.0 ksi, 1:xy = -18.0 ksi 

(I) -6.57 ksi, (12 = -53.4 ksi, (Jp = -25.11) 

6.10 

6.11 

h. (Ix = -15.0 ksi.; (17 = -45 ksi, 1:'xy:= -21.0 ksi 

tTl -4.19 ksi, 0'2 = -55.8 ksi, (Jp = -27.2° 

c. tT" = -30 ksi, O'y = -90 ksi) r:x:y = -21lcsi 

0') -23.38 ksi, (11 = -96.6 ksi, (Jp = -17.47° 

'f. O'x = -22.5 ksi, O'y = -67.5 ksi, "xy = -21.0 ksi 

tTl = -14.2 ksi, 0'2 = -75.8 ksi, Bp = -21.5° 

a. (Ix = -52.5 M~, (I; = -32.8 MPa, fxy = -5.38 MPa 

tTl = -31.4 MPa, tT2 = -53.9 MPa, 0, = -14.3° 

h. O'x = -31.4 MFa, (I)' = -13.5 MPa, -eX}' 5.38 MPa 

(11 = -12.0 MPa. 0'2 = -32.9 MPa, (Jp = -15S' 

c. 0'" = -27.6 MPa, O'y = -19.5 MPa, 't'xy = 4.04 MPa 

0'1 = -17.9 MPa, (12 = -29.3 MPa, Bp = -22.5" 

d. O'x = -31.6 MPa, (ly = -28.9 MPa, 't'xy -6.73 MPa 

(I) = -23.0 MPa, (12 = -38.0 MPa, Bp = 39" 

a. hlx = 0, hly 0, J;2x = poLI/6, Ib.y = 0 

.h3x = poLt/3, 1s3y =0 

b. hlx =0, .h2x = poLt/I2, hh = PoJ;-t/4 

6.12 h • .h,y = f¥2y = poLt/1t 

6.13 d3x = 0.5 x 10-3 in., d3y = -0.275 X 1~-2 in. 

r4x -0.609 X 10-3 in., t4y = -0.293 X 10-2 in. 

(J~) = 824 psi, a}l) = 247 psi, t£/ = -1587 psi 

a~l) = 2149 psi, a~l} = -1077 psi, 0;,1) = _40° 

af}) =.-826 psi, (I}2) = 292 psi, 1:'~ = -411 psi 

a~2) = 426 psi" a~2) = -960 psi, ()~2) = 18.15° 

6.14 a. d2.x 0.281 x 10-4 m~ d2y = -0.330 X lO-4'm 

dsx = 0.115 X 10-4 m, dsy = -0.1,03?< 10-4 m 

O'i
2
) = 16.4 MPa, a~2} = 15.2 MPa 

tW = -6.99 MPa, (li2) = 22.8 MPa 

(If) = 8.80 MPa, rlp2) = -42.7° 

a~) = 10.6 Mfa, a§l) = 3.18 Mfa' 
t'~ -3.34 MPa, O'~I) = 11.9 MPa 
tT~l) = 1.90 MPa, rlpl) -21.00 

l: 'j~. 
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b. d1x = -db: = -0.165 x 10-5 m. dly = i2y = -0.125 x 10-4 m 

dS1: = 0.274 X 10-12 m. ds)' == ':"'0.163 X 10-4 m 

CT~I) = 5.99 X 105 Njm2, 01.1) = -3.78 x 106 N/m2 

t'W = 4.05 X 10-1 N/m2. CT~l) = 5.99 X 105 N/m2 

CT~I) -3.78 x 10' N/ml. tlpl) ='f1', CT'}) = 5.64 x 106 N/m2 

l1j3) 1.88 x 10
' 

N/m2, 't'W = -1.11 x HIt N/m2 

CT~3) = 1.88 x 107 N/m2, l1~3} = 5.64 x 10' N/m2, ~3) = _90° 

6.1S All fb,/s are equal to O. 

a. fbI)' = h2y = fb3y = 1M>, = -10.28 N, fbsy = -20.56 N 

b. fbi)' = lh2y = h3y = 1M)' =: -8.03 N, fbsy = "'716.06 N 

6.18 b. Yes" e. Yes g. No 

6..20 a. n.o 8, b. no = 12 

Chapter 1 

7.9 d1,x = dlx = 0.647 X 10-3 in., tl2y = 0.666 X 10-4 in. 

d)y = -0.666 X 10-4 in., skew effect 

7.10 Stress approaches 2.5 psi near edge of whole for model of 70 nodes, 54 elements. 

7.11 At depth 4 in. equal to width, stress approaches uniform l1y -1000 psi. 

7.12 CTl = 8836 psi at top and bottom of hole 

7.13 01 = 372 psi at fillet 

7.14 For refined mesh at re-entrant,comer,l11 = 20160 psi 

7.1~ l1YM = 93.7 psi at load 

7.11 For the model with 12 in. x ! in. size eleinenls. finite element solution yields free-end deflection 
of -0.499 in.; exact solution is -1.15 in. (See Table 7-1 in text for other results.) 

7.19 O"l == 3 kN/m2 (round hole model) 

0"1 3.51 kN/m2 (square hole With comer radius) 

7.21 (lYM = 8.1 MPa 

7.n a. 0'1 = 58700 psi 

7:J3 (Ii = 19 MPa at bole 

7.25 Largest von Mises stress 35-45 MPa at inside edge at junction of narrow to larger section of 
wrench 
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7.27 Largest principal stress 0"1 = 1005 MPa at narrowest width of member (7O-element, 9~node 
model) 

7.35 For a 1 em thick-wrench, O"VM = 502 MPa 

Chapter 8 

8.2 ex = ~(-UI +U2 + 4U4 -4us), By = ~(-VI +V3 +4V4 - 4V6) 

1 1 ' 
Yxy = Yi (-UI + U3 + 4'4 - 414) + 3b (-VI + V3 + 4V4 - 4V6) 

E E 
O")l = 1 _ v2 (ex + vey), O"y = I _ v2 (ey + vex), t'xy = Gyxy 

-p'th -2pth 
8.3 !sIx = !s3J: = -6-' fsS)l = -3-

-poth -Poth 
8.4 /"1.1'=0, h3J:=-6-' fs5x=-3-

8.S 3. ex = -5 x 1O-5y +2.5 x 104 , ey = -1.67 x lO-4x+ 3.33 X lO-s, 

Yxy = -5 x 10-sx-1.11 x ~0-4y+4.17 x 10-4 

(Ix = 3290 psi, O"y = -4850 psi. 'rxy = 1540 psi 

b. e.l' = -5 x 10-Sy+ 1.67 x 10-4, By = -1.67 X lO-4x+ 5 X lO-s 

/'xy = -5 X 1O-5X - 4.17 x 10-5y + 2.08 X 10-4 

Gx = 928 pSi, (Jy = -8290 psi. t'xy = 632 psi 

~6 ex = 2.54 x 10-3 

e)l = -7.62 x 10-3 

N2= -x+y +r+y2 _ xy 
60 1800 900 

xy y2 Y xy 
N4 = 900 - 900' Ns = 15-'900' etc. 

Chapter 9 

5 1 0 -1 0 

1 4 -2 -1 -2 -3 

9.1 K = 25.132 X 106 0 -2 8 0 4 2 
lb/in. a. 

-1 -1 0 1 0 
-2 4 4 

0 -3 2 0 1 3 
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2.75 0 -2.25 0.5 0.25 -0.5 

0 -1 -1 0 

h. IS. = 50.265 X 106 '-2.25 5.75 -2.5 0.25 1.5 
lb/in. 

0.5 -1 -2.5 4 0.5 -3 

0.25 -1 0.25 0.5 1.75 0.5 

-0.5 0 1.5 -3 0.5 3 

9.2 ft2t 
2nhPoh h3r = 2n~oh -6-. 

9.3 fblr = Jb2J = hi3.r = 0.382 Ib 
fb .. z fbi:: = fii3z = -6.32 lb 

9.4 a. u, 8000 psi. u;:=O. Ue = 8000 psi, 1:rz 1200 psi 

b. Ur = 5830 psi, U= = -3770 psi, eT8 = 3090 psi, 7:/"% =400 psi 

3125 625 0 -625 625 0 
2500 -1250 -625 -1250 -1875 

9.6 a. k = 7.037 
5000 0 2500 1250 

kN/mm 
625 625 0 

2500 ,625 

Symmetry 1875 

2475 0 -2025 450 225 -450 

900 900 -900 -900 0 

b. If= 11.73 
5175 -2250 225 ·1350 

kN/mm 
3600 450 -2700 

1575 450 
Symmetry 2700 

9.7 B. U, = -84 MPa, UZ = -84 MPa, U{J = 252 MPa, 'fro = -lOt MP-li 
b. u, = -103 MPa, Uz -103 MPa) Uo = 112 MPa, '1'% = .-73 MPa 

9.14 Using 0.5 in.' radii in corners, UI 7590 psi at inside comer 

9.18 UI = 4621 psi outer edge of hole, along' axis of symmetry 

9.19 eTb = 22,711 psi, (I, -4984 psi, u, = 0.037 in. 

9.20 UI 64.1 MPa, u = 0.0782 rn top and bottom center of plates 

9.24 UYM = 5221 psi at fillet, UYM = 1631.5 psi at groove 

Chapter 10 

10.2 a. S = -!, 
10.3 a. s = Ot 

10.5 a. s = -0.5, 

h. Nt = 0.4, N2 = 0.6 

b. Nl 0.5) ;Nz ~ 0.5 

b. NJ d: 0.375, N:i = -'0.125, N3 = 0.75 
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10.8 Q2x = 4.859 x lO-4m (right end), Q3x::: 2.793 x 1O-4m (center) 

10.10 t:x = 0.0009315 in.fm., ty = -0.00125 in./in., Yxy = -0.000625 rad 

ax == 18.5 ksi, (Jy = -31.9 ksi, !xy = -7.21 ksi 

10.15 a. /tJt = 500 Ib, 1141 = 500 lb, b. hll = 83.33 Ib, 114/ = 41.671b 

10.16 ~ 1.917~ b.0.667, c.0.400, d.2.87; f.O 

Chapter 11 

0 0 0 0 0 0 4 0 0 -4 0 0 
0 0 Q, 0 4 0 0 0 0 0 -4 0 

11.1 B=! 0 0 4 0 0 0 0 0 0 0 0 -4 
a. - 8 0 0 0 4 0 0 0 4 0 -4 -4 0 

0 4 0 0 0 4 0 0 0 0 -4 -4 
4 0 0 0 0 0 0, 0 4 -4 0 -4 

11.3 (Jx = 77.9 ksi, (J, = 8.65 ks~ (J% := -49.0 ksi 

!xy = 11.5 ksi, !'yr = -23.1 ksi, !a = 5.77 ksi 

it.6 a. 
1 

B= 18750 

-625 0 0 0 0 0 0 0 0 625 0 0 
0 -375 0 0 750 0 0 0 0 0 -375 0 
0 0 -375 0 0 0 0 0 750 0 0 -375 

x 
-375 -625 0 150 0 0 0 0 0 -375 625 0 

0 -375 -315 0 0 750 0 750 0 '0 -375 -375 
-375 0 -625 0 0 0 750 0 0 :-375 0 ,625 

11.7 (Jx = 72.7 MPa, a)':= 169.6 MPa, az = 72.7 MPa 

'xy 59.2 MPa, Ty;::= 32.3 MPa, T::x = 91.5 MPa, 

H.I0 N2 = (l-s}{l- t)(l-z'), N _ (1-3)(1 +t)(l-z') 
8 3,-. 8 • 

N4 = (1 - $)(1 +.))(1 + z'), 
8 

Ns = (I +$)(1 - t)(l + Zl), N _ (I + s){l- 1){1 - Zl) . 

8 6 - 8 • 

N7:= (1 +$)(1 +1)(1 Z'), Ns = (l +5)(1 +1)(1 +z') 
8 8 

11.11 
(1 s}{J - t)( 1 + z')( -$ - t + z' 2) 

NI= g , 

(I - s){ 1 - J)( 1 - =')( -s - t - Zl - 2) 
N2 = 8 

lJ.t3 dmax == -0.662 in. under the load 
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Chapter 13 

13.1 12 166.7°e, t) = 233.3°e 

13.2 t2 = 150°F, 13::::: lOO°F, 14 = 50"F 

13.3 t2 = 875 of, 13 = 12S0°F, FI = -180 Btu/h 

13.4 tl = 151°F, t2 = 148 of, t3 = 140°F, t4 = 125°F 

13.5 t2 = 183 of, 13 = 267 of, 14 = 350°F, ts = 433 OF 

13.6 '2 = 421 °e, t;:, = 121 "e, q(3) = 3975 W/102 

13.7 t2 = 418.2 °e, t3::::: 527.3°e 

13.8 12 = 20 oe, t3 = 20oe, iirnax = O.OOO9W, ijmiJl::::: -O.OO09W 

13.9 6°C at center of wall, iima.x = 5.54 W, iimin = -5.54 W 

13.11 I8Soe at right end, ilmax = 439 W 

13.14 to = 92.2S"C, tt = 8&.S75"C, t2 = 84.9"C, t3 = 800C 

13.16 If = A~xx [~: -~] 

13.18 If::::: [39.57 3;:~~6 =~:~~], f = {~:~:} Btufh 
7.083 50 

13.19 f == {12~~.3} W 
1254 

13.22 14 = 75 OF, ts =:= 25 OF 
13.36 12cC at 2.5 em from top, 25°C 1.25 em from top, qmax'= 1416W, qmin = -1083W 
13.41 iJmax.= 3457 W, qmiJl = -3848W 

Chapter 14 

14.1 P2 = 4.545 m, 1'3 = 1.818 m, v~J) = 10.91 mIs, Q}I) == 21.82 m3/s 

14.2 P2 = -15 lo, P3 = -40 lo, P4 = -65 m, v~) = 25 m/s., Ql = 50 ml/s 

14.3 1'2 = 8.182 in., P3 = S.455 in., v11
) = 0.182 in-Is, v~) = 0.273 in./s, 

v~) = 0.545 in./s., Q}l) == 1.091 in3/s 

14.4 P2 = -3 em, P3 = -8 em, vll ) == 1.2 em/s, v'f} =; 2 cin./s, 

Ql = Q2 == 6 cm3/s 
14.6 pO} = 2.0 in./s, V(2) = 4.0 in./s, Q<I) = Q(2) = 4 inljs 

{ 
54.76} 

14.7 fQ = 28.S7 m3 Is 
16.67 



I 
I 
I 

14.8 It = 13 = 5 in3/s, fi = 0 

14..9 P2 = P3 = 12 m, P5 11 m 

Chapter 15 

15.1 d2;x:::;:: 0.021 in., d3:t = 0.042 in., ax == O. 

15.2' d2;x: = 0, ax = 50.4 MPa 

15.3 d lx == dly = -0.0175 in., a<"1} = 4350 psi (T) 

0-<2) = -6150 psi (C), 0-<3) = 4350 psi (T) 

15.4 db = -0.0291 in., d1y == -0.0095 in. 

Answers to Selected Probtems A. 793 

0-<1) = -1370 psi (C). 0-<2) = 2375 psi (T), 0-<3) = -1370 psi (C) 

15.5 d2x = 1.44 x 10-4 m, 0-<1) = -~0.2 MPa (C), 0-<2) = 0-<3) = -10.1 MPa (C) 

15.6 d\x = 0, dl y = 6.0 x 10-4 m, 0-<1) = ~3) = -10.5 MFa (C) 

qC2) == 18.2 MPa (T) 

IS.7 d,x = 0, dly = -3.6 X 10-4 m, 0-<1) = 0-<2) = 0 . 

15.8 d2x = 0.0173 in., all = 840 psi (T), a", = 1680 psi (C) 

15.12 a. -0.001907 in. b. cTbr = -28,600 psi, O'/tIS = -19,067 psi 

15.13 ITix = -44641b, ITly = -8929 lb. fT2:x: = 4464lb 

In, = -89291b, fTh = 0, In, = 17,8571b 

15..14 fTtx = -43.125 leN, ITly = 0, Inx = 43.125 kN, Iny = -86.250 k.N 
ITh == 0, Iny == 86.250 kN 

15.15 ITt:.:. = -60.0 kip, In, = -90 kip, IT2:x: = 60 kip. iny = 0, 
In~ = 0, Iny = 90 kip 

15.16 ITI:.: = 134 kN, ITty = 134 kN. Inx = -l34.kN, Iny = 0 
fTh = 0, Iny == -134 kN 

IS.17 aX = ay = -8929 psi (C). Xxy == 0 

15.18 (1x = 67.2 MPa, a y = 67.2 MPa, Txy = 0 

15.19 {IT} = AEIXO { -4/1 - 5t
2 } 

6 4tt +5t2 

~S.:zo AEa { -tl - t2 } 
2 tl + t2 . 
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1s.l.1 {J;} ~fAEIX(AT)[Bf { ~ } 
T 1-2\1 1 

o 

IS.22 tl:u = 0.8 X 10-3 in., ~x =-0, d3y == 0.8 X 10-3 in. 
4t = t4y = 0.8 X 10-3 in.; stresses are zero 

15.23 d2x = 0.989 X 10-3 in., db; = -0.756 X 10-3 in., 
d3y == Q.989 X 10-3 in., t:4x = 0.132 X 10-2 in., 
d.,. :::: 0.2045 X 10-2 in., G~I) = 17 ksi, 0'~2) = -17 ksi 

Chapter 16 

[M]=pALF 
1 0] 

t6.1 4 1 
- 6 0 1 2 

L [M] = pAL [~ 
0 0 

;] 16.1 
2 0 

2 0 0 2 
0 0 0 

.. [M] = pAL (; 

0 

f] 
4 1 

6 0 1 4 
0 0 

16.3 COt = O.806Jii, lD2 == 2.81 v'P 

16.4 COl == 5.368 X 103 rad/s, CO2 = 17.556 X 103 wi/s 

16.5 a. t (s) di (ft) til (ft/s) 1; (ft/s1-) 

0 0 0 25" 
0.03 0.01125 0.71 22.09 
0.06 0.04238 1.03 -0.715 
0.09 0.07287 0.67 -22.87 
0.12 0.08278 -0.35 -45.28 

0.15 0.05194 -1.43 -26.94 



Answers to Selected Problems ... 

16.6. a. t (8) ~ (ft) d; (ftjs) (i (ft/S2) 

0 0 0 10.00 

0.02 0.0020 0.168 6.80 

0.04 0.00672 0.256 1.968 

0.06 0.01223 0.242 -3.338 

0.08 0.01640 0.130 -7.84 

0.10 0.01743 -0.053 -10.46 

b. t (8) di (ft) di (ftjs) ~ (ft/s2) F(t) (Jb) 

0.00 0.00000 0.000 10.000 20.0 

0.02 0.00179 0.169 6.923 16.0 
OJ)4 0'.00625 0.263 2.248 12.0 

0.06 0.0115 0.254 -2.945 8,0 

0.08 0.0157 0.150 -7.458 4.0 
0.10 0.0169 -0.0147 -10.251 0.0 

16.7 Node t (5) d; (in.) di (in.js) tli (in./s2) 

2 0 0 0 0 
0.00025 2.6E-6 0.031 249.6 

0.00050 3.4E-5 0.284 1768.9 
0.00075 1.9E-4 1.085 4641.9 
0.0010 6.36E-4 2.605 7519.3 

3 0 0 0 0 

0.00025 6.59E-5 0.791 6328.8 

0.00050 4.99E-4 2.817 9881.2 
0.00075 1.5 1 E-3 5.265 9701.7 
0.0010 3.l0E-3 7.369 7128.3 

16.8 Using Newmark's method with y = t, p = i 
Node t (s) d; (in.) di (in·/s) ~ (in·/s2) F(t) (1b) 

2 0 0 0 0 0 
0.05 0.00172 0.103 4.131 0 

9-1,0 0.01544 0.513 12.27 0 

3 0 0 0 40.0 2000 
0.05 0.0448 1.685 27.39 1800 
0.10 0.1536 2.479 4.37 1600 

16.11 
_ 3.15 ( El)1/2 

a. Wl- V pA • 
= 16.24 (£1)112 

~ L2 pA ' C. WI 
9.8 (El)/2 
L2 pA 

.14.8 (El}12 
41.W=- -

L2 pA 
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~ 

16.17 Node: 2 3 4 S· 6 

t (s) Temperature 
0 0 200 200 200 200 200 200 

g 0 159.0095 191.4441 198.2110 199.6110 199.8444 
2 16 0 135.5852 1.78.1491 193.6620 1982lt2 199.1445 

3 24 0 120.2309 165.7003 187.3485 195.5379 197.5152 

4 32 0 109.1993 154.9581' 180.4038 191.7446 194.81I5 

5 40 0 100.1600 145.7784 113.4129 181.1268 191.1242 

6 48 0 94.00311 137.8529 166.6182 181.9599 186.6590 
7 56 0 88.39929 130.9034 160.1012 176.4598 181.6395 

8 64· 0 83.61745 124.1101 153.8759 170.7856 176.2620 

9 72 0 79.43935 119.1075 147.9316 165.0508 170.6822 

10 80 0 76.71603 113.9733 142.2502 159.3352 165.0171 

16.18 Node 
Time (8) 2 3 (using consistent capacitance matrix) 

T~perature 
0 25 25 25 
0.1 85 18.53611 26.36189 
,0.2' 85 29.61303 21.63526 
0.3 85 36.18435 22.42717 
0.4 ,85 40.72491 25.30428 
0.5 85 44.27834 28.85201 
0.6 85 47.29072 32.49614 
0.7 85 49.95809 36.01157 
0:8 85 52.37152 39.31761 
0.9 8S 54.57756 42.39278 

16.18 Node 
Time (s) 2 3 (using consistent capacitance. matrix) 

Temperature (0C) 
J 85 56.60353 45.23933 
1.1 85 58.46814 ' 47.86852 
12 85 60.1859 50.29457 
1.3 85 61.76908 52.53218 
1.4 85 63.22852 54.59557 
1.5 85 64.574 56.49814 
1.6 85 65.81448 58.25235 
1.7 85 66.95818 . 59.86974 
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16.18 Node 

Time (s) 2 3 

Temperature 
0 25 25 2S 

1.8 85 68.01265 61.36096 
1.9 85 68.98485 62.73586 
2 85 69.88121 64.0035 
2.1 85 70.70765 65.17226 
2.2 85 11.46961 66.24984 

2.3 85 72.11214 67.24336 

2.4 85 72.81986 68.15938. 

2.5 85 73.41705 69.00393 
2.6 85 73.96766 69.78261 
2.7 85 74.47531 70.50053 
2.8 -85 74.94336 71.16246 
2.9 85 75.3749 71.77274 

3 85 75.77277 72.33542 

Appendix A 

At. a. [_~ 1~] b. Nonsense c. Nonsense 

L{n e. Nonsense f [10 7 6] 
. 3 -1 7 

Al. 
l: ~l 
~[~~ -3 

-~l Al. 5 
17 -8 2 11 

A4. • }l!onsense 

AS. H ~l 
A6. Same asA3 

A8. [COS9 -Sm9] 
sin 9 cos 9 

Appendix B 

Bl. XI = 3.15, X2 = 0.62 

B2. X! = 3.15, X2 0.62 
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m. XI = 2.5, X2 = -1, X3 = 0.5 

84. XI:= 3, Xz = -1, X3 = -2 

b.{ZI}=[-32]{YI} 
Z2 5 -3 Y2 

B6. XI = 0, X2 = 1, X3 = 2, X4 = 2, Xs = 0 

87. 'XI = 3.15, X2 = 0.62 

B8. a. Unique b. Nonexistent Co Unique d. Nonuruque 

Appendix D 

DI. ll. iiy = hy = -S kip, ml = -mz = -100 k-ft 
b. fiy = ii)'::: -5 kip, m, = -1n2 = -18.75 k-ft 
c. iiy = ii, = -IS kip, mt -m2 = -75 k-ft 
d. ii, = -18.75 kip, iiy = -6.25 kip, ml = -58.3 k-ft, ml = 33.3 k-ft 
e. ii)' = -6 kip, Ii, = -14 kip, ml = -26.67 k-ft, m2 = 40 k-ft 
f. fl)' = -0.99 kN, hy -4.0 kN. ml =,-2.04 kN· m, m2 = 5.10 kN·m 
g. fiy = ii, = -6 kN, m) = -m2 = -7.5 kN ·.m'· 
h. fiy f2y = -10 kN, m, = -m2 -6.67 kN· m 



A 
Adaptive refinement, 355 
Adjoint method, 718 
Admissible variation, 55 
Aluminum shapes, properties of, 

759-772 
Amplitude, defined, 649 
Approximation 'functions, 

72-74 
compatible, 73 
complete, 73-74 
conforming. 73 
displacement, 72-74 
interpolation, 74 

Aspect ratio (AR), 35). 
,352-353 

Axial symmetIy, 100 
Axis of revolution, 412 
Axis of symmetry, 412 
Axisymmetric element, 9, 412-442, 

684-685 
applications of, 428-433 
body forces, 419-420 
consistent-mass matrix, 6S4-685 
defined, 9, 412 
discretization, 423 
displacement functions, 415-417 
element type, selection of, 415 
equations, 419-421 
introduction to, 412 
pressure vessel, solution of, 

422-428 
sti1fDess matrix, 412-422, 

423-428 
strainjdispl.acement relationships, 

411-419 
stress/strain relationships, 417-419 
surface foras, 420-421 

B 
Banded-syrnm.etric method, 735-741 
Bar elements, 67-72, 92-100, 

109:-120, 120-124, 124-127, 
127-131,444-449,665-669, 
669-674. See also Truss equations 

analysis of. 665-669, 669-674 
collocation method, 129 
consistent-mass matrix, 651-653 
displacement function, 68, 446, 

650 
dynamic analysis of, 649-653, 

665--669, 669-674 
equations, 124-127,447-449, 

649-653 
exact'solution, 120-124 
finite element solution, 12():"'124 
Galerldn's residual method, 

124-127, 131 
isoparametric formulation, 

444-449 
least squares method, 130 
lOCal coordin'ates for, 66-12 
lumped· mass matrix, 651 
mass matrix, 650-653 
Datural frequencies, 665-669 
one-<limensional problenl$, 

127-131,665-669,609-674 
, potential energy approach, 

109-120 
residual methods, 124-127, 

127-131 
selection of, 67, 444-446,650 
stiffness matrix, 66-72, 92-100, 

444-449, 6~653 
strain/displacement relationships, 

69,446-447,650 
stress. computation of, 82-83 

stress/strain relationships. 69, 
446-447,650 

subdomain method, 129-130 
three-dimensional space, 92-100 
time-dependent (dynamic) stress 

analysis, 649-653 
time .. dependent problem, 

669-674 
transformation matrix, 92-100 

Beam element, 152-161, 161-163, 
194-199,214-218,218-236, 
255-269, 674-681 

arbitrarily oriented, 214-218, 
255-269 

bending, 153-158, 255-260 
boundary conditions, 161-163 
defined, 152 
deformations, 153-158 ' 
displacement function, 155..:..156 
equations, 157-158, 161-163 
mass matrices, 674-681 
natural frequencies, 674-681 
nodal hinge, 194--199 
rigid plane frames, 218-236 
selection of, 154 
shape functions, 155-156 
sign conventions, 152, 256-257 
space, arbitrarily oriented in, 

255-269 
stiffness, 152-161 
stiffuess matrix, 153-158, 

158-161 
strain/displacement relatioDShips, 

156-157 
stress/strain relationships, 

156--157 
transformation matrix, 216, 

259-260 
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Beam element (Continued) 
transverse shear deformations, 

158-161 
twCHiimensionai, arbitJarily 

oriented, 214-218 
Beam equations, 151-213 

bending deformations; 153-158 
boundaryeonditions, 161-163 
direct stiffness method, 163-175 
displacement functions, 155-156 
distributed loading, 175-188 
EuIer-Bemouli theory, 153-158 
exact solution, 188-194 
finite element solution, 188-194 
fixed-end reactions, 175 
Galerkin's method, 201-203 
introduction to, 151-152 
load replacement, 177-178 
nodal hinge, element with a, 

194-199 
potential energy approach, 199-201 
sign conventions, 152 
stiffness matrix, 153-158, 158-161, 

161-163 
stiffuess ofel.ement, 152-161 
strain/dispJacement relationships, 

156-157 
stress/strain relationships, 156-157 
TlIDosbcDko theory, 158-161 
transverse shear deformations, 

158-161 
work-equiva1ence method, 176-177 

Bending, 153-158,255-260,514-518 
beam elements in arbitrary space, 

255-260 
defonna~ons in beam elements, 
15~-158 

plate element. 514-518 
rigidity of a plate, 517 

Body forces; 324-326, 419-420, 448, 
460; 497-498 

axisymmetric elemcots, 419-420 
bar element, 448 
centrifugal, 325 
natural coordinate system, 448 
plane element, 460 
teU'ahedral element, 497-498 
treatment of, 324-326 

Boundary conditions, 13-14,34, 
39-52, 103-109, 161-163, 
320-322, 601 

beam elements. 161-163 
constant-strain triangular (CST) 

elemertt, 320-322 
fluid flow, 601 
homogeneous, 39-40 
iDclincd supports, 103-109 
introduction to, 13-14,34 
DOnbomo.geneous, 39, 4O-4l 
penalty method, 50-52 

C 

skewed supports, 103-1 09 
stiffness method, 39-52 

Castigli;lDO'S theorem, 12 
Central difference method, 653, 

654-659 
Centrifugal body force, 325 
Cireu1ar frequency, natural, 649 
Coarse-mesh generation, 310 
Coefficient matrix, inversion of, 726 
Coefficient oftbennal expansion, 618 
Cofactor method, 716-717 
Collocation method, 129 
Column matrices, 4, 708 
Compatibility, 35, 363-367, 746-748 

condition of, 748 
equations, 746-748 
finite element resultS, 363-367 
requirement, 35 

Compatible displacements, 155 
Compatible functions, 73 
Complete, approximation functions, 

73-74 
Computer programs, 6-7, 23-24, 

314-380,524-528,693-701 
finite element method, 23-24 
plate bending element, solution for, 

524-528 
role of, 6-7 
step-by-step solutions, 374-380 
structuta1 dynamics, 693-701 

Concentrated loads, 360-361 
Condensation, see Static. condensation 
Conduction,535-538,542-546,551-S58 

element conduction matrix, . 
542-546, 551-558 

beat, one-dimensional, 535-537 
beat, two-dimensiona~ 537-538 

Conforming functions, 73 
Gonnecting (mixing) different kinds 

of elements, 361-362 
Consistent-mass matrix, 651-653, 

682-685 
cOnstant-strain uianguJar (CST) 

element, 304-305, 310-324, 
324-329, 342, 406-408 

body forces, 324-326 
boundaly conditions. 320-322 
eoarse--~ generation, 310 
defects, 342 

. displacement function, 311-315 
equations, 310-324 
forces (stresses), 322-324 
global equations, 320-322 
introduction to, 304-305 
LST elements, comparison of, 

406-408 
matrix, 310-324, 329-331 
nodal displacements, 322 

penalty formulation, 331 
selection of, 310-311 
strain/displacement relationships, 

315-320 
stress/strain relationships, 315-320 
surface forces, 326-329 

Constitutive law, 11 
Constitutive ma!rix, 309, 522 
Continuity, 35, 73 

requirement, 35 
symbol,73 

Convection, heat tJansfer with, 
538-539, 540 

Convergence of finite element 
solution, 367-368 

Coordinates, 66-72, 444-446 
bar elements, 67-72,444-446 
intrinsic system, 444 
natura] system, 444 

Coulomb-Mohr theory, 342 
Cramer's rule, 724-725 
CST, see Constant-strain triangular 

(CST) element 
Cubic elements, 9 
Curvature matrix, 521-522 

D 
D'A!embert's principle, 755-756 
Defects, CST elements, 342 
Deformation, "33, 153-158, 158-161, 

514-518 
bending'in beams, 153-158 
bending rigidity of a plate, 517 
defined, 33 
Kirchhoff assumptions, $]5-516 
plate bending, 514-518 
potential energy, 518 
stress/strain relationships, 517-518 
transVerse shear in beams, 158-161 

Degrees offreedom, 14, IS, 29 
defined,15 
spring element, 29 
unknown, 14 

Determinant, defined, 716 
Differential equations, 535-538, 

594-596, 744-746 
elasticity theory, 744-746 
equilibrium, 744-746 
fluid flow, 594-598 . 
heat transfer, 535-538 

Direct equilibrium method, 11 
Direct integration, 653 
Direct stiffness method, 2-4, 13-14, 

28,37-39, 163-175. 
See also Superposition 

beam analysis using, 163-175 
history of, 2-4, 28 
total stiffness matrix, assembly by, 

37-39 
use of, 13-14 



Direction cosines, 85, 95-96 
Directional stiffness bias, 371 
Discontinuities, natural subdivisions 

at, 354, 357 
Discretization, 1,8-10,331-332,423 

axisymmetric element, 423 
finite element method, 1, 8-10. 

331-332 
plane stress, 331-332 

Displacement function, 11,31-32,68, 
15.5-156, 311-315, 399-401,446, 
450-451, 455-456, 494-496, 
519-521 -

bar element, 68, 446 
beam element, 155-156 
constant-strain triangular (CSlj 

element, 11l-315 
Hermite cubic interpolation, 

155-156 
interpolation, 32 
isoparametric function, 446, 

450-451,455-456 
linear-strain triangle (LSl), 

399-401 
plane element" 455-456 
plane stress element, 450-451 
plate bending element, 519-521 
selection o( 11 
shape, 32, 155-156 
spring element, 31-32 
tetrahedral element, 494-496 

DispIacement method, 7, 28-64. See 
also Stiffness method 

introduction to, 28-64 
use of, 7 

Displacements, 34, 70, 72-74, 
755-758. See also Strain/" 
djsp1acement relationships 

appromnation functions for, 72-74 
compatible, 755 
nodal, 34, 10 
virtual work, principles of, 755-758 

Distributed loading, 175-188 
beams, 175-188 
eft'eetive global nodal forces, 
- 181-182 
fixed-end reactions,. 175 _ 
general formulation of, 178-179 
load replacement, 171-178 
work..equiva1ence method, 176-177 

Dynamics, 647-700 
axisymmetric element, analysis of, 

684-685 
bar element equations, 649-653 
beam element DlaS.') mattia:s, 

674-681 
central difference method, 653, 

654-659 
computer program example 

solutions, 693-701 

E 

introduction to, 647 
mass matrices, 650-653, 674-681, 

681-685 
natural frequencies, 649, 665-669, 

674-681 
Newmark's method, 659-663 
numerical integration in time, 

653-665, 687-693 
one-dimensional bar analysis, 

665-669, 669-674 
plane frame element, analysis of, 

682-683 
plane stress/strain element, analysis 

of, 683--684 
spring-mass system, 641-649 
structural, 647-707 
tetrahedral (solid) element mass 

matria:s, analysiS of, 685 
time, numerical integration in, 

653-665, 687"'-693 
time-dependent heat transfer, 

686-693 
t.ime-dependent stress analysis, 

649-653, 669-674 
truss element, analysis of, 681-682' 
Wj]so~'s (Wdson·Theta) method, 

664-665 

EffectivC stress, 341 
Elasticity theoIy, 744-751 

compatibility equations, 746-748 
condition of compatibility, 748 
differential equations of 

equilibrium, 744-746 
equilibrium, differential equations 

of. 744-746 
introduction to, 744 
modulus ofe1asticity, 748 
strain/displacement, 746-748 
stress/strain relationships, 748-751 

Elements, 8-1(}, 11, 13-14,30-34, 
65-150, 151-213, 304-30S, 
310-324, 342,351-362. 398-403, 
444--449,449-452, 480-482, 
493-500,501-508, 514-533 

aspect ratio (AR), 35] 
axisymmetric; 9 
bar, 65-150,444-449 
beam, lS1-21~ 
eoarse--mesb. generation, 310 
connecting (mixing), modeling, 

361-362 
constant...strain triangular (CST), 

304-305, 310-324, 342 
cubic,.9 __ 
defects, CST, 324 
equations, 11, J3-J4, 34, 69-70, 

402-403,451-452, 522-523 
finite, 8 
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forces, 34, 70 
heterosis, 523 
isopara:metric, 446 
laGrange, 482 
linear, 9 
linear hexahedral, 50 1-504-
linear-strain triangle (LST), 

398-403 
plane stress, 449-452 
plate bending. 514-533 
Q8,480 
Q9,482 
quadratic, 9 
quadratic bexahedral, 504-508 
refinement, methods of, 355-356, 

358-359 
selection of, 8-10, 30-31,310-311 

399,444--446,449,519 
serendipity,481 
shapes. modeling, 351 
sizing, 355-356, 358-359 
spring, 30-34 -
stiffues:s matrix, I t ~ 33-34, 66-72, 

402-403,447-449,451-452, 
522-523 

tet:rah.edral. 493-500 
transition triangles, 359-360 

Energy method, 12 
Equations, II, 13-14, 34, 52-60, 

65-149, 151-213,214-237, 
238-255,310-324,398-411, 
419-422, 447-449, 451-452, 
459-460, 497-498, 522-523, 
535-538, 542-$46, 557-558, 
594-596, 599-601. 608, 659-661, 
664-665,722-743, 744-751. 
See also .Elasticity theory; 
SimuJtaneous linear equations 

axisymmetric eIeiner.tt, 419-422 
bar element. 124-127, 447-449 
beam, 151-213 
beam-clement, 199-201, 201-203 
compatibility, 746-748 
constant--strain triangnlar (CST) 

element, 310-324 
diffcn:ntia1~ 535-538, 594-596, 

744-745 
element, 11, 13-14,69-70 
element conduction, 542-546. 

557-558 
finite e1cmcnt, III 
ftuid ftow, 599-601, 608 
frame, 214-231 
global, 13-14,34, 70, 161-163, S4E 

601 
grid. 214, 238-255 
heat transfer, 535-518 
i.soparametric formulation, 447-449 

459-460 
Jacobian function, 447 
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Equations (Continued) 
linear-strain triangle (LST), 

398-411 
Newmark's, 659-661 
one-dimensional, 124-127, 131, 

542-546 
plane element, 459-460 
plane stress element., 451-452 
plate bending element, 522-523 
simultaneous linear, 722-743 
spring element, 52-60 
tetrahedral element, 497-498 
total, 13-14, 70 
truss, 65-149 
two-dimensional,557-558 
Wilson's, 664-665 

Equilibrium, 363-367, 744-746 
compatibility and, 363-367 
differential equations 744-746 
finite element results,.363-367 

Equivalent stress., 341 
Euler-Bemouli theory, 153-158 
Exact solution, 120-124, 188-194 

bar element, 120- t24 
beams, 188-194 
finite element solution, comparison 

to, 120-124, 188-194 
Explicit numerical integration method, 

689 

F 
Field problems, 52 
Finite element, defined, 8 
Finite element method, 1-26, 

120-124,350-363,540--;555, 
555-564, 566-568, 569-574, 
59&-606,606-610. See also 
Madding 

advantages of, 19-22 
applications of, 15-19 . 
boundary conditions, 13-14 
computer, role of, 6-7 
computer programs for, 23-24 
constitutive law ~ 11 
defined, I, 8 
degrees offreedom, 14, 15 
direct equilibrium method, 11 \ 
direct stiffness method, 2-3, 

13-14 
discretization, 1,8-10 
displacement function, selection of, 

II 
displacement method, 7 
element conduction matrix, 

542-546,557-558 
element types, selection of, 8-10, 

541, 555, 598 
energy method, 12 
exact solution, comparison to, 
1~124 

flexibility method, 7 
fluid flow, 598-606, 606-610 
force method, 7 
functional, 12 
generalized displacements, 14 
global equations, 13-14 
gradient/potential relationship, 599, 

607 
heat flux/temperature gradient 

relationship, 542, 556-557 
heat transfer, 540-555, 555-564, 

566-568, 569-574 
history of, 2-4 
introduction to, 1-26 
matrix notation, 4-6 
modeling, 350-363 
one-dimensional, 540-555, 569, 

598-606 
potential ftinction, 598-599, 607 
primal}' unknowns, 14 
results, interpretation of, 14 
steps of, 7-14 
stiffness method, 7 
strain/displacement relationships, 11 
stress/strain relationships, 11, 14 
temperature fuJiction, 541, 556 
temperature gradient/temperature 

relationships, 542, 556-557 
three-dimensional, 566-568 
total equations, 13-14· • 
truss equations, 120-124 
two-dimensional, 555-564, 606-610 
v;uiationai method, 540-555 
velocity/gradient relationship, 599, 

607 
weighted residuals, methods of, 

12-13 
work method, 12 

Finite element solution, 120-124, 
188-194,331-342,363-367, 
367-369 

approximations in, 364-367 
bar element, 120-124 
beams, 188-194 
compatibility of.results, 363-367 
convergence of, ·361-368 
CST defects, 342 
discretization, 331-332 
equifibriwn of results, 363-361 
exact solution, comparison to, 

120-124,188-194 
plane stress, 305-309 
stiffness matrix, assemblage of, 

332-342 
Fixed-end forces, 229-230 
Fixed-end reactions, 115 
Flexibility metbod, 7 
Flowcharts, 374, 574,611,656,661 

central difference method, 656 
fluid dow; 611 

heat transfer, 574 
Newmark's equations, 661 
nwnerical integration, 656 
plane stress/strain, 374 

Fluid flow, 593-616 
boundary conditions, 601 
differential equations, 594-598 
equations, 599-601, 608 
finite element formulation, 598-606, 

606-610 
flowchart for, 611 
global equations, 601 
gradient/potential relationship, 599, 

607 
introduction to, 593 
nodal potentials, 601 
one-dimensional, 598-601 
pipes, 596-598 
porous medium, 594-596 
potential function, 589 
program, example of. 611-61 i 
solid bodies, around, 596-598 
stiffness matrix, 599-601, 608 
two-dimensional, 606-6l0 
velocities, 602 

, velocity/gradient relationship, 599, 
601 . 

volumetric dow rates, 602 
Force, 7, 34, 36, 70, 178-182, 

229-230,232-233,322-324, 
324-329,419-421, 44&--449, 460, 
497-498, 752-754 

axisymmetric elements, 419-421 
bar element, 70, 448--449 
body, 324-326,419-420,448,460, 

497-498 
centrifugal body, 325 
constant-strain triangular (CST) 

element, 322-324, 324-329 
equivalent nodal, 178-180,752-154 
fixed-end, 22~-230 
global nodal matrix, 36 
method,7 
nodal, 178-182,232-233 
plane element, 460 
rigid plane frames, 229-230, 

232-233 
spring element, 34 
stresses, 322-324 
sulface, 326-329,420-421, 

448-449,460,498 
tetrahedral element, 497-498 

Forced convection, 538, 540 
Frame equations, 214-237 

effective nodal forces, 232-233 
fixed-end forces, 229-230 
inclined supports, 137 
introduction to, 214 
rigid plane frames. 218-236 
skewed supports, 237 



Free convection. 538,540 
Fringe carpet., 369 
Functional, defined, 12 

G 
Galerkin's method, 12-13, 124-127, 

131,201-203 
bar element formulation, 125-127 
beam element equations, 201-203 
general fonnuIation, 124-125 
one-dimensionaJ bar element 

equations, 124-127, 131 
residual method, 124-127, 131 
lISe of, 12-13 

Gauss·Jordan method, 718-720 
Gauss-Seidel iteration, 733-735 
Gaussian elimination, 726-733 
Gaussian quadrature, 463-466, 

469-475 
element stresses, evaluation of, 

473-475 
one-point, 463-464 
stiffness matrix, evaluation of, 

.469-413 
three-point, 465-466 
two-point fonnula. 464-465 

Global equations, 13-]4, 34,70, 
161-163,320-322,601 

assemblage of, 13-14 
bar clement, 70 
beam element, 161-163 
constant-strain triangular (CST) 

element, 320-322 
Huid flow, 601 
spring element, 34 

Global stiffness matrix, 36, 78-81. See 
also Total stifihess matrix 

bar element, 78-81 
inverse. 80 
spring assembly, 36 

. transverse, 80 
Gradient/potential relationsbip, 599, 

607 
Grid, defined, 238 . 
Grid equations, 214, 238-255 

dete:nnination of, 238-255 
introduction to, 214 

H 

open sections, 241 
polar moment of inertia, 240 
torsional constant, 240-241,242 

h method of refinement, 355-356 
Hannonic motion, simple, 649 
Hea~ fiux, 542, 546 
Heat flux/temperature gradient 

relationship, 542, 556-557 
Heat transfer, 534-593, 686-6!a 

coefficients, 539-540 
convection, 538-539, S40, 

differential equations, 535-538 
element conduction matrix, 

542-546, 557-S5S 
finite element fonntdation, 540-555, 

555-564, 566-568, 569-574 
flowchart for, 574 
Galerkin's method, 569-574 
heat conduction, one-dimensional, 

535-537 
beat conduction, two-dimensional, 

537-538 
heat flux/temperature gradient 

relationship, 542, 556-557 
heat·transfer coefficients, 539-540 
introduction to, 534-535 
line sources, 564-566 
mass uansport, 569-574 
nodal temperature, 546 
nwneric:al time integration, 687-683 
one..<fimensional, 540-555, 569 
point sources, 564-566 
program, examples of, 574-576 
temperature function, 541, 556 
temperature gradient/tenlf)erature 

relationships, 542, 556-557 
thermal conductivities, 539-540 
three-dimensional, 566-568 
time-dependent, 686-693 
two-dimensional, 555-564, 574-567 
units of, 539-540 
variational method, 540-555 

Hermite cubic interpolation function, 
155-156 

Heterosis element, 523 
Hooke's Jaw, 11,67 

I 
Identity matrix, 712 
Inclined supports,_ 103-109, 237 

frame equations, 237 
truss equations, 103-109 

Infinite medium, 361 
Infinite stress, 360-361 
Integration, !fee Numerical Integration . 
Interpolation functions, 32, 74. See 

also Approximation functions 
Intrinsic coordinate system, 444-
Inverse, defined, 80 
Inverse ofa matrix, 7l2, 716-718, 

71&-720 
adjoint method, 718 
cofactor method, 716-717 
defined, 712 
Gauss-Jordan method, 71&-720 
row reduction, 718-720 

lsoparametric formulati9ll, 443~89, 
501-508 

bar element stiffness matrix., 
444--449 

defined, 444, 483 

J 
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element stresses, evaluation of, 
473-475 

Gaussian quadrature, 463-466, 
469-475 

intrinsic coordinate system, 444 
introduction to, 443 
linear hexahedral element, 501-50.: 
natural coordinate system, 444 
Newton-Cotes quadrature, 467-49. 
numerical integration, 463-469 
plane element stiffness matrix, 

452-462 
plane stress element, 449-452 
quadratic hexabedral e~ment, 

504-508 
shape functions, higher-order, 

475-484 
stiffness matrix, evaluation of, 

469-473 
stress analysis. 501-508 
transformation mapping, 444 

Jacobian function, 447 
Joint force, see Nodal force 

K 
Kirchhoff assumptions, 515-517 

L \ 
L:aGrange interpolation, 482 
Least squares method, 130 
Line elements, defined, 3M 
Line sources, 564-566 
Linear elements, 9 . 
Linear..elastic bar element, see Bar 

elements; Truss equations 
Linear hexahedral element, SOI-5M 
Linear-strain triangle (LSlj equation: 

398-411 
CSTelements,comparisonof,406-4{ 
defined, 398, 401 
derivation of, 389-403 
displacement function, 399-401 
element type, selection of, 399 
introduction to, 398 
Pa.sc:al triangle, 400 
quadratic-strain triangle (QST) 

element., 400 
stiffness, determination of, 4Ol-4Ot 
st:i.f6less matrix. 398-403 
strain/displacement relationships, 

401-402 
stress/strain relationships, 401-402 

Load rep1acc:ment, 177-178 
Local stiffness matrix, 34 
Longitudinal wave velocity, 670 
LST. 'see Linear-strain triangle (I..ST. 

equations 
Lumped-mass matrix, 651, 682 
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M 
Mass matrix, 650-653,674-681, 

681-685 
axisymmetric element, 684--(;85 
bar eJemeDt, 650-653 
beam element, 674-681 
consistent-mass, 651-653, 682-985 
lumped-mass, 651, 682 
natural frequencies and. 674-681 
plane frame element, 682-683 
plane stress/strain element, 

683-684 
tetrahedral (solid) element, 685 
truss element., 681-682 

Mass transport, 569-574 
Galerkin's method, 569-574 
heat transfer and, 569-574 
mass flow rate, 569 

Matrix, 4-6, 11, 28-29, 29-34, 36, 
37-39,06-72,78-81,92-100, 
216,259-260,304-305,309, 
310-324,329-331,519-523, 

_.542-546,557-558,620-622, 
650-653,647-681.681-68S, 
708-721. See also Matrix algebra; 
Mass matrix; Stiffness matrix 

algebra, 708-721 
column, 4, 708 
consistent-mass., 651-653 
constant-strain,triangular (CST) . 

element, 304-305, 310-324, 
329-331 

constitutive, 309,522 
curvature, 521-522 
defined, 4,708-709 
element conduction, 542-546, 

557-558 
element stiffness., 11 
global nodal displacement, 36 
global nodal force, 36 
global stiffiless, 36, 78-81 
identity, 712 
local stiffness, 34 
lumped-m~ 651 
mass, 650-653, 647-681. 681-685 
moment, 521-522 
notation for, 4-6 
orthogonal,713-714 
quadra~c form, 716 
rectangular, 4, 708 
row, 708 
singular, 718 
square, 708 
stiffneSs, 28-29, 29-34, 66-7~ 

92-100, 519-523, ~50-653 
stiffness influence coefficients, 5 
stft'SS/strain, 309 
symmcttic, 712 
system stif1hess, 36 
thermal strain, 620-622 

three dimensions, for bars in, 
92-100 

total stiffness, 36, 37-39 
transfonnatiOD (rotation), 92-100, 

216, 259-260 
unit, 712 

Matrix algebra, 708-72 t 
addition of matrices, 710 
adjoint meth~ 718 
cofactor method,. 716-717 
definitions of, 708-709 
differentiation's, 71+-.715 
Gauss-Jordan method, 7]8-720 
identity matrix, 721 
integrating, 715-716 
inverse of, 712,716-718,718-720 
multiplication by a scalar, 709 
mUltiplication of matrices, 710-711 
operations, 709-716 
orthogonal matrix, 713-714 
fOW reduction, 718-720 
symmetric matrices, 712 
tIanspose, 711-712 
unit matrix, 712 

Maximum distortiQD energy theory, 
341=-342 

Mindlin plate theory, 523, 526 
Minimum potential energy, principle 

of, 52-53, 57-59, III 
finite element equations, III 
spring element equations, 52-53, 

57-59 
Modeling,350-397 

adaptive refinement, 355 
aspect ratio (AR). 351, 352-353 
checking, 362 
compatibility of results, 363-367 
computer program assisted step-by-

step solutions, 374-380 
concentrated loads, 360-361 
connecting (mixing) elements, 

361-362 ' 
convergence of solution, 367-368 
discontinuities, natural subdivisions 

at, 354,357 
equilibrium of resu1ts, 363-367 
finite element, 350-363 
flowcharts, 374 
general considerations, 351 
h method of refinement, 355-356 
infinite medium, 361 
infinite stress, 360-361 
introduction to, 350 
natural subdivisions, 354, 357 
p method of refinement, 358-359 
point loa~ 360-361 
postprocessor results. 362-363 
refinement, 355-356, 35&-359 
static:: condensation, 369-373 
stresses, interpretation of, 368-369 

symmetry, 351-354, 355-356 
tIansition triangles, 359-360 

Modes, natural, 666, 668 
Modulus of elasticity, 748 
Moment matrix, 521-522 

N 
Natural convection, 538, 540 
Natural coordinate system, 444, 447 

Jacobian function. 447 
use of, 444 

Natural frequencies, 649, 665-669, 
674-681 

amplitude. 649 
bar element, one-dimensional, 

665-669 
beam element, 674-681 
circular, 649 
mass matrices, 674-681 
modes., 666, 668 
role of thumb for, 668 

Natura1 subdivisions at 
discontinuities, 354, 357 

Newmark's method of numerical 
integration, 659-663 

Newton-Co~es quadrature. 467-469 
intervals, 467 
numerical integration, 467-469 

Nodal displacements, 34, 36, 70, 322 
bar element, 70 
constant-strain triangular (CST) 

element, 322 
global matrix, 36 
spring element, 34 

Nodal forces, 178-182,232-233, 
752-754 

effective, 232-233 
effec:'tive global, 181-182 
equivalent., 178-180,752-754 
load displacement, beams, 178-182 
rigid plane frames, 232-233 

Nodal hinge, beam elements, 194--199 
Nodal potentials, 601 
Nodal temperature, 546 
Nodes, 29, 152, 370 

actual. 370 
condensed out, 370 
defined, 29 
sign conventions for beams, 152 

Nonexistence of solution, 724 
Nonuniqueness of solution, 723-724 

. Numerical comparisons. plate bending 
element, 523-524 

Numerical integration, 463-469, 
653-665,687-693 

central difference method, 653, 
654-659 

direct integration, 653 
dynamic systems, 653-665 
explicit, 689 
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flowcharts for, 656, 661 
Gaussian quadrature, 463-466, 

469-475 
heat-transfer, 687-693 
Newmark's method, 659-663 
Newton-Cotes quadrature, 467-469 
Simpson one-third rule, 463, 467 
time, 653-665, ~87-693 
trapezoid rule, 463, 467-468, 687 
Wilson's method, 664-665 

One-dimcnsional elements, 124-127, 
127-13!, 540-555, 569, 598-601, 
665-·669, 669-674 

bar analysis. 665-669, 669-674 
bar element equations, 124-127 
bar element problems, 127-131 
fluid flow. 598-601 
heat-tran~fer problems, 540-555, 

569 
mass transport, 569 
natural frequencies, 665-669 
time-dependent, 669-674 

Open sections, 241 
Orthogonal matrix, 713-714 

p 
p method of refinement, 358-359 
Parasitic shear. 342 
Pa."Cal triangle, 400 
Penalty formulation, 331 
Penalty method, 50-52 
Period of vibration. 649 
Pipes, fluid flow in, 5%-598 
Plane element, 452-463, 682-684 

body forces, 460 
consistent-mass matrix, 683-684 
displacement functions, 455-456 
equations, 459-460 
isoparametric formulation, 

452-463 
mass matrices, 682-684 
quadrilateral element, 684 
selection of, 453-455 
stiffness matrix, 452-463 
strain/displacement relationships, 

456-459 
stress/strain relationships. 456-459, 

683-684 
surface forces, 460 

Plane {rames, 218-236,682-683 
element, 682-683 
mass matrices, 682-683 
rigid, 218-236 . 

Plane strain, 305-309, 374-380, 
683-684 

concept of, 305-309 
consistent-mass matrix, 683-684 
defined, 305 

flowchart fOf, 374 
program assisted step-by-step 

solutions, 374-380 
Plane stress, 305-309, 331-342, 

374-380,449-452, 683-684 
concept of, 305-309 
consistent-mass mall'ix, 683-684 
defined,305 
discretization, 331-332 
displacement functions, 450-451 
element, 449-452 
finite element solution of, 331-342 
flowchart for, 374 
isoparametrlc formulation. 449-452 
maximum distortion energy theory, 

34!-342 
principal angle, 307 
program assisted step-by-step 

solutions, 374-380 
rectangular element, 449-452 
stiffness matrix assemblage for, 

332-341 
von Mises (von Mises-Hencky) 

theory, 341-342 
Plane truss, solution of, 84-92 
Plate bending element, 514-533 

computer solution for, 524--528 
concept of, 514-518 
deformation of, 514-515 
displacement function, 519-521 
equations, 519-523 
geometry of, 514-515 
heterosis element., 523 
introduction to, 514 
Kirchhoff assumptions, 515-517 
Mindlin plate theory, 523, 526 
numerical comparisons, 523-524 
potential energy, 518 
rigidity of, 517 
selection of, 519 
stiffness matrix, 519-523 
strain/displacement relationships, 

521-522 
stress/strain relationships, 517-518, 

521-522 
Point loads, 360-361 
Point sources, 564-566 
Polar moment of inertia, 240 
Porous medium, fluid flow in, 

594-596 
Potential energy approach, 52-60, 

109--120, 199-201,518 
admissible variation, 55 
bar element equations, 109-120 
beam element equations. 199--201 
mi.nimwn potential energy, 

principle of, 52-53, 57-59, 111 
plate bending element, 518 
spring element equations, 52-60 
stationary value, 54 

Index ... 80S 

total potential energy, 53, 518 
truss equations, 1'09-) 20 
variation, 55 

Potential function, 589 
Pressure vessel, axisymmetric, 

solution of, 422-428 
Primary unknowns, defined, 14 
Principal angle, 307 
Principal stresses, 307 

Q 
Q8 element, 480 
Q9 element, 482 
Quadratic elements, 9 
Quadratic form, 716 
Quadratic hexahedral element, 

504-508 
Quadratic-strain triangle (QST) 

element, 400 
Quadrilateral element consistent-mass 

matrix, 684 

.R 
Refinement, 355-356, 358-359 

adaptive, 355 
h method, 355-356 
p method. 358-359 

Reflective (mirror) symmetry, 100-103 
Rigid plane frames, 218-236 

defined, 218 
examples of, 218-236 

Row reduction, 718-720 

S 
Serendipity element, 431 
Shape functions, 32, 155-156, 

475-484 
beam element, 155-156 
defined,32 
higher-order, 475--484 
isoparametric formulation, 475-484 
laGrange element, 482 
Q8 element, 480 
Q9 element, 482 
serendipity element, 481 

Shear locking, 342 
Sign conventions, beams, H2, 

256-257 . 
Simultaneous linear equations, 

722-743 
banded...syrtl.metric method, 735-741 
Cramer's rule, 724-725 
Gauss-Seidel iteration, 733-735 
Gaussian elimination, 726-733 
general fonn of, 722-723 
introduction to, 722 
inversion of coefficient matrix, 726 
methods for solving, 724-735 
nonexistence of solution, 724 
nonuniqu.eness of solution, 723-724 
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Simultaneous linear equations 
( Continued) 

skyline method, 735-741 
uniqueness of solution, 723 
wavefront method, 735-741 

Sizing of clements, 355-356, 35&-359 
Skew, defined, 370-371 
Skewed supports, 103-109,237 

frame equations, 237 
truss equations, 103-109 

Skyline method, 735-741 
Smoothing process, 369 
Solid bodies, fluid flow around, 

596-598 
Solid element, see Tetrahedral element 
Spring clements, 29-34,34-37,52-60 

assemblage of, 34-37 
compatibility requirement, 35 
continuity requirement, 35 
degrees of freedom, 29 
displacement function, 31-32 
element type, 30-31 
equations, 52-60 
global equation for, 34 
nodal displacements, 34 
nodes, 29 
potential energy approach, 52-60 
spring constant, 29 
stiffness matrix for, 29-34 

Spring-mass system, 647-649 
amplitude, 649 
dynamics of, 647-649 
hannonic motion, simple, 649 
natural circular frequency, 649 
period of vibration, 649 

Static condensation, 369-373 
concept of, 369-373 
condensed load vector, 370 
condensed out nodes, 370 
condensed stiffness matrix, 370 
directional stiffness bias, 371 
skew, 370-371 

Stationary value, 54 
Stiffness equations, 304-349 

constant-strain triangular (CS11 
element, 304;-305, 310-324, 
324-329, 329-331 

explicit expression, 329-331 
finite element solution, 331-341 
introduction to, 304-305 
maximum distortion energy theory, 

341-342 
plane strain, 305-309 
plane stress, 305-309, 331-342 
von Mises (von Mises-Hencky) 

theory, 341-342 
Stiffuess inftuence eoefficients, 5 
Stiffness matrix, 28-29, 29-34, 36, 

66-72,92.:..100,153-158, 
'158-161, 161-163,304-305, 

310-324,332-341,369-313, 
402-403,403-406, 419-422, 
423-428,444-449,451-452, 
452-463, 469-473, 497-500, 
519-523,599-601,608,735-741 

axisymmetric element, 419-422, 
423-428 

banded-symmetric method, 735-741 
bar element, 66-72, 444-449 
beam equations, 153-158, 158-161, 

161-163 
beams, examples of assembJage of, 

161-163 
bending deformations, 153-158 
body forces, 419-420, 448 
condensed, 370 
constant-strain triangular (CST) 

element, 304-305, 310-324 
defined, 28-29 
Euler-Bemouli theory, based on, 

153-158 
evaluation of, 469.473 
fluid flow, 599-601,608 
Gaussian quadrature, 469-473 
isoparametric formulation, 

444-449, 469-473 
linear-strain triangle (l.S1) element, 

402-403, 403-406 
local, 34 
plane element, 452-463 
plane sl.reSS element, 451-452 
plane stress problem, assemblage 

of for, 332-341 
plate bending element, 519-523 
skyline method, 735-741 
spring element, 29-34 
static condensation, 369-373 
superposition, assemblage by, 

332-341,423-428 
suIface forces, 420-421,448-449 
tetrahedral element, 497-500 
threedimensions,forbarsin, 92-100 
Timoshenko theory, base(! on, 

158-161 . 
total (global), 36,37-39, 332-341 
transition matrix and, 92-100 
transverse shear deformations, 

158-161 
wavefront method, 735-741 

Stiffness method, 7, 28-64 
boundary conditions, 34, 39-52 
direct, 37-39 
introduction to, 28-64 
minimum potential energy, 

principle of, 52-53, 57-59 
penalty method, 50-52 
potential energy approach., 52-60 
spring constant, 29 
spring clements, 29-34, 34-37, 

52-60 

stiffness matrix, 28-29, 29-34, 36 
superposition, 37-39 
total potential energy, 53 
total stiffness matrix, 37-39 
use of, 7 

Strain, 306-309. See also Plane strain 
normal,308 
shear, 308 
two-dimensional state of, 306-309 

Strain/displacement relationships, 11, 
33,69,156-157,315-320, 
401-402,417-419,446-447,451, 
456-459,490-493,496-497, 
521-522,146-748 

axisymmetric element, 417-419 
bar element, 69 
beam element, 156-157 
condition of compatibility, 748 
constant*strain triangular (CS1) 

element, 315-320 
deformation, 33 
elasticity theory, 746-748 
Hooke's law, I I, 67 
isoparametric formulatioll, 

446-:447,456-459 
linear-strain triangle (LST) 

elements, 401-402 
plane clement, linear, 456-459 
plane stress element, 451 
plate bending element, 521-522 
spring element, 33 
stress analysis, 490-493 
tetrahedral element, 496-497 

Stress, 82-83, 306-309, 341-342, 
360-361, 368-369, 473-475. See 
also Plane stress; Thenna1 stress 

computation of for a bar element, 
82-83 

Coulomb-Mohr theory, 342 
effective, 341 
equivalent, 341 
evaluation of, 473-475 
fringe carpet, 369 
Gaussian quadrature, 473-475 
infinite, 360-361 
interpretation of, 368-369 
maximum distortion energy theory, 

341-342 
principal, 307 
smoothing process, 369 
two-dimensional state of, 306-309 
von Mises (von Mises-Hendcy) 

theory, 341-342 
Stress analysis, 490-513 

isoparametric formulation, SOl-50S 
linear hexahedral element, 501-504 
quadratic hexahedral element, 

504-508 
strain/displacement relationships, 

490-493 



stress/strain relationships, 490-493 
tetrahedral element, 493-500 
three-dimensional, 490-513 

Stress/suain relationships, II, 14,33, 
69, 156-157,315-320,401-402, 
417-419,446-447,451,456-459, 
490-493,496-497,517-518, 
521-522,748-751 

axisymmetric element, 417-419 
bar dement, 69 
beam element, 156-157 
constant-strain triangular (CST) 

element, 315-320 
constitutive law, 11 
defonnation, 33 
elasticity theory, 748-751 
isoparametric formulation, 

446-447, 456-459 
linear-strain triangle (LST) 

elementS, 40 ], .. 402 
modulus of elasticity, 748 
plane element, linear, 456-459 
plane stress element, 451 
plate bending element, 517-518, 

521-522 
solving for, 14 
spring element, 33 . 
stress analysis, 490-493 
tetrahedral clement, 496-497 

Structural dynamics, see Dynamics 
Structural Sled, properties of, 

759-712 
Structures, 100-103,214-303 

frame equations, 214-237 
grid equations. 238-255 
rigid plane frames, 218-236 
substructure analysis, 269-275 
symmetry in, 100-103 

Subdivisions, natura.!, 354, 357 
Subdomain method, 129-130 

,Subparametric formulation, 
'483-484 

Substructure analysis, 269-275 
Superposition, 37-39, 332-341, 

423-428. See alst) Direct stiffness 
method 

axisymmetric element, assemblage 
for by, 423-428 

plane stress problem, assemblage 
for by, 332-341 

total (global) stiffness matrix, 
assemblage by, 37-39, 332-341 

Surface forces, 326-329, 420-421, 
448-449, 460, 498 , 

axisymmetric elements, 420-421 
bar element, 448-449 
natural coordinate system, 448-449 
plane element, 46(} 

tetrahedral element. 498 
treatment of, 326-329 

Symmetry, 100-103,351-354, 
355-356 

axial,IOO 
finite element modeling, 351-354, 

355-356 
reflective (mirror), 100-103, 351 
structures, use of in, 100-103 

Symmetric matrix. 712 
System stiffness matrix, see Total 

stiffness matrix 

T 
Temperature, 541-542, 546, 556, 

574-576 
distribution, examples of, 574-576 
function, 541, 556 
gradients, 542, 546 
nodal, 546 

Temperature gradient/temperature 
relationships, 542, 556-557 

Tetrahedral element, 493-500, 685 
body forces, 497-498 
consistent~mass matrix, 685 
displacement functions, 494-496 
equations, 497-498 
selection of, 493-494 
stiffness matrix, 497-500 
strain/displacement relationships, 

496--497 
stress/strain relationships, 496-497 
surface forces, 498 

Thermal conductivities, 539-540 
Thermal strain matrix, 620-622 
Thermal stress, 617-646 

coefficient of thermal expansion, 
618 

formulation of,617-640 
introduction to, 617 
thermal strain matrix, 620-622 

Three-dimensional elements, 490-513, 
566-568 

heat·transfer problems, 566-568 
space, 92-100 
stiffness matrix for a bar, 94-100 
stress analysis, 490-513 
tetrahedral element, 493-500 
transformation matrix for a bar, 

92-94 
Time, numerical integration in, 

653-665,687-689 
Time~dependent, 649-653, 669-674, 

686-693 
bar analysis, one-dimensional, 

669-674 
heat transfer, 686-693 
longitudinal wave velocity, 670 
numerical time integration, 681-693 
stress analysis., 649-653 
structural dynamics, 649-653, 

669-674 

Index .. 8 

Timoshenko theory, 158-161 
Torsional conscant, 240-241, 242 
Total equations, see Global equatio 
Total potential energy, defined, 53 
Total stiffness matrix, 36, 37-39, It: 

See also Global stiffness matrix 
beam elemen[, 162 
direct stiffness' method, assembly 

by, 37-39 
spring assembly, 36 
superposition, assembly by, 

37-39 
Transfonna(ion mapping, 444 
Transformation (rotation) matrix, 

92-100,216,259-260, 713 
Transition triangles, 359-360 
Transpose of a matrix, 711 
Transverse, defined, SO 
Transverse shear deformations, 

158-161 
Trapezoid rule, 467-468, 687 
Truss equations, 65-149, 681-682. 

See a/st) Bar elements 
approximation functions, 72-74 
bar elements, 67-72, 92-100, 

109-120, 12()-124, 124-127, 
I 27-13l 

boundary conditions, 103-109 
collocation method, 129 
consistent-mass matrix, 682 
displacements, 72-74 
exact solution, ]20-124 
finite element solution, 120-124 
Galerkin's residual method, 

124-127, 13l 
global stiffness matrix, 78-8} 
inclined supports, 103-109 
introduction to, 65 
~st squares method, 130 
local coordinates for, 66-72 
lumped-mass matrix, 682 
mass matrices, 681-682 
plane truss, solution of, 84-92 
potential energy approach, 

109-120 
residual methods, 124-127, 

127-131 
skewed suppons, 103-109 
stiffness matrix, 66-72, 92-100 
strain/displacement relationships, 
stress, computation of for a bar 

element, 82-83 
stress/strain relationships, 69 
subdomain method, 129-t3O 
symmetry, use of in structures, 

100-103 
transfonnation (rotation) matrix, 

92-100 
vectors, transformation of in two 

dimensions, 75-77 
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Two dimensional elements, 75-77, 
214-218, 304-349, 555-564, 
574-576. 606-610 

U 

beam clements, arbitrarily oriented, 
214-218 

flowchan for heat-transfer process 
fluid flow, 606-610 
heat-transfer problems, 555-564 
plane stress and strain equations, 

304-349 
temperature distribution, 574-576 
vectors, transformation of in, 75-77 

Uniqueness of solution, 723 
Unit matrix, 712 

V 
Variation, defined, 55 
Variational methods, 52, 540-555 
Vectors, 75-77, 370 

condensed load, 370 
transfonnation of in two 

dimensions, 75-77 
Velocity, 602, 670 

fluid flow 602 
longitudinal wave, 670 

Velocity/gradient relationship, 599, 
607 

Virtual work, principle or, 755-758 
compatible displacements, 755 
D' Alembert's principle, 

155-756 
Volumetric flow rates, 602 
Von Mises (von Mises·Hencky) 

theory, 341-342 

W 
Wavefront method. 735-741 
Weighted residuals, methods of. 

12-13, 124-127, 127-131, 
201-203 

bar element equations, 124-127, 
1 27-l3I 

beam element equations, 201-203 
collocation method, 129 
Galerlcin's method, 12--13, 

124-l27, 131,201-203 
introduction to, 12-13 
least squares meth.od, 130 
one-dimensional problems, 127-131 
subdomain method, 129-130 

Wilson's (Wilson-Theta) method of 
numerical integration, 664-665 

Work methods, l2, 52-53, 57-59, 
176-177,755-758 

Castigliano's theorem, 12 
introduction to, 12 
minimum potential energy, 

principJe of, 52-53, 57-59 
virtual work, principle of, 

755-758 
work-equivalence, 176-177 



PROPERTms OF PLANE AREAS Notes: A area, 1 = area moment, of inertia, J = polar moment of inertia. 

R~~e Trian~e 

Circle 

'Thin Ring 

EJlipse 

A = reab 

x 

A =bh 

/_= bJrl 
x 12 

hh3 
1=­

x 3 

A=rer 

Quadrant of Parabola 

2M3 
1=-

x 15 

t 

A:..!..bh 
2 

bh3 

lx=16 

bh3 

1'·=12 

SenUcirde 

reT:? 
A=-

2 

Ii = O.035rey4 

Half of Thin Ring 

A = rert 

1, =O.5re?t 

Qual1er Ellipse 

Parabolic Spandrel 

A =reab 
4 

Ii: = O.0175:n:arJ 

I = Jra;} 
x 16 

relib 
1)'=16 

A = £!! 
3 

Ii = O.0176bJi! 

bh3 
IX =2J 



PROPERTIES OF SOLIDS Notes: p = mass density. m == mass, 1 mass moment of inertia. 

1. Slender Rod 

2. Thin Disk 
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3. Rectangular Prism 

4. Circular Cylinder 

5. Hollow Cylinder 
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CONVERSION FACTORS U.S. Customary Units to Units 

Quantity Con~erted from U.S. Customary To SI Equivalent 

(Acceleration) 
1 foot/second2 (ftJS2) meterJsecond2 (m/s2) 0.304S m/r 
I inch/second2 (in.I?-) meter/second2 (m/s2) 0.0254 m/?-

(Area) 
I (oor (ft2) mete~ (m2

) 0.0929m2 

1 inch2 (in.2) mete~ (m2) 64S.2mm.2 

(Density, m~) 
1 Pound mass/inch3(lbm/in.3) kilogram/mete~ (kg/ml

) 27.68 Mg/m3 

1 pound mass/foot3 (ibm/fi3
) ki1ogram/mete~ (kg/ml ) 16.02 kg/m3 

(Energy, Work) 
I British thermal unit (BTU} Joule (J) 1055 J 
I foot-pound force (ft-Ib) Joule {J} 1.356 J 
I kilowatt-hour Joule (1) 3.60 x 106 1 

(Force) 
I kip (1000 Ib) Newton (N) 4.448 kN 
1 pound force (lb) Newton (N) 4.448 N 

(Length) 
1 foot (ft) meter (m) 0.3048 m 
1 inch (in.) meter (m) 25.4 mm 
1 mile (mi), (U.S. statute) meter (m) 1.609 kIn 
1 mile (mi), (international nautical} meter (m} 1.852 Ian 

(Mass) 
I pound mass (Ibm) kilogram (kg) 0.4536 kg 
1 slug (lb-sdjft) kilogram (kg) 14.59 kg 
1 metric ton (2000 Ibm) kilogram (kg) 907.2 kg 

(Moment of force) 
1 pound-foot (Ib·ft) Newton-meter (N·m) 1.356 N·m 
I pound-inch (lb·in.) Newton-meter (N . m) 0.1130 N'm 

(Moment of inertia of an area) 
I inch4 meter4 (m4) 0.4162 x 10-6 m4 

(Moment of inertia ofa mass) 
1 pound-foot-second2(lb· ft ·rl') kilogram-mete(! (kg· m2

) 1.356 kg·m2 

(MoDlentum, linear) 
1 pound-second (lb·s) kilogram-meter/second (kg. mrs) 4.448 N·s 

(MODltlltum, angular) 
pound·foot-second (lb· ft· s) Newton-meter-second (N . m· s) 1.356 N·m·s 



CONVERSION FACTORS U.s. Customary Units to SI Units (Continued) 

Quantity Converted from U.S. Customary To SI Equivalent 

(Power) 
1 foot.pound/second (ft·lb/s) Watt(W) 1.356 W 
I horsepower (550 ft . Ibis) Watt(W) 745.7 W 

(Pressure, Stress) 
1 atmosphere (std)(14.7.lb/in.2) Newton/mete? (N/m2 or Pa) lOl.l kPa 
1 pound/foot2 (lb/ft2) Newton/meter (N/m2 or Pa) 47.88 Pa 
1 pound/inch"' Ob[m.2 or psi) Newton/meter (N/m2 or Pa) 6.895 kPa 
1 kip/inch2(ksi) Newton/meter (N/m2 or Pa)- 6.895 MPa 

(Spring coasblDt) 
1 pound/inch (lb{m.) Newton/meter (N/m) 175.1 N/m 

(feRlperatute) 
TeF} 1.8T(°C) + 32 

(Velocity) 
I footjse(X)nd (ft/s) meter/se(X)nd (m/s) 0.3048 rols 
1 knot (nautical mifh) meter/second (rnfs) 0.5144 m/s 
1 milefhour (mifh) meter/second (mfs) 0.4410 m/s 
1 milefhour (mifh) kilometer/hour (kmfh) 1.609 kmfh 

(Volume) 
1 foot3 (ftl) mete~ (m3

) 0.02832 m3 

1 inch3 (in.3) merer3 (rol
) 16.39 x 10-6 m) 



PHYSICAL PROPERTIES IN SI AND USCS UNITS 

Property SI uses 
Water (fresh) 

specific weight 9.&1 kN/m3 62Alb/W 
mass density IOOOkg/m) 1.94 slugs/ftl 

Aluminum 
specific weight 26.6 IcN/m3 I 69j1b/ft3 

mass density 2710 kgfm3 5.26 slugs/f~ 
Steel 

specific weight 77.0 kNJml 490 IbJft3 
mass dcmity 7&50 kg/ml 15.2 slugs/f't' 

Reinforced concrete 
specific weight 23.6 kNJm3 ISO Ib/ft3 

mass density 2400 kgfm3 4.66 slugs/f~ 
Acceleration of gravity 
(on the earth's surface) 

Recommended value 9.81 m/; 32.2 ftls'2 
Atmospheric pressure 
(at sea level) 

Recommended value 101 kPa 14.7 psi 

TYPICAL PROPERTIES OF SELECTED ENGINEERING MATERIALS 

Ultimate 0.2% Yield 
Strength Strength Modulus of Sheer Coefficient of 

all (J, Elasticity Modulus Thenna! Expansion. £i Density, p 

E G 
Material ksi MPa ksi MPa (1(f psi GPa) (lot' psi) 10-6tF lO-6j"C Iblin.3 kEVIl? 

Aluminum 
Alloy 1l00-H14 
(99% AI) 14 110(T) 14 95 10.1 70 3.7 13.1 23.6 0.098 2710 

Alloy 2024-T3 
(sheet and plate) 70 480m 50 340 10.6 73 4.0 l2.6 22.7 0.100 2163 

Alloy 6061-T6 
(extruded) 42 260(T) 37 255 10.0 69 3.7 13.1 23.6 0.098 2710 

Alloy 1075-T6 
(sheet and plate) 80 550{T) 70 480 10.4 72 3.9 12.9 23.2 0.101 2795 

Yellow brass (65% Cll, 35% Zn) 
Cold-roned 78 54O(T) 63 435 15 105 5.6 11.3 20.0 0.306 8410 
Annealed 48 330m 15 105 15 105 5.6 11.3 20.0 0.306 8470 

Phosphor bronze 
Cold-rolled (510) 81 560m 75 520 15.9 110 5.9 9.9 17.8 0320 8860 

Spring-tempered 
{S24) 122 840(T) 16 110 5.9 10.2 18.4 0;317 8780 

Cast iron 
Gray, 4.5%C, 

ASTMA-48 25 170(T) 10 70 4.1 6.1 12.1 0.260 7200 

95 650{C) 
Malleable, 

ASTM A-47 SO 340(11 33 230 24 165 9.3 6.7 12.1 0.264 7300 

90 620(C) 


