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Foreword

FElt is intended as a tool for teaching finite element analysis methods. There are better
tools, there are bigger tools, there are tools that can do many, many things that FElt cannot
do. Those tools are for the most part not free and if they are, they’re usually 20 years old.
FElt is a new, continually evolving system that tries to provide lots of modern workstation
type features and of course, it’s completely free.

About this Manual

This manual documentsversion 3.05of FElt. It is part of a futile attempt to provide com-
prehensive, accurate documentation for the FElt system. We do our best to try to keep it
up-to-date with the latest version of the software; we make no guarantees however, and
chances are good that there are things wrong in here. If you find something that behaves
differently than the way this document says it should behave then please let us know.

Organization of this Manual

This manual is organized in the following way:

Chapter1 gives you an introduction to the types of problems that FElt can solve.

Chapter2 details some of the underlying mathematics for each of the analysis types
supported by FElt.

Chapter3 discusses the basic structure of a FElt input file and how a general finite
element problem is translated into the FElt language.

Chapter4 describes the currently available elements within FElt.

Chapter5 introduces you to the simplest user interface to the FElt system, the command
line applicationfelt.

xvii



xviii TYPOGRAPHICAL CONVENTIONS

Chapter6 covers theWinFElt graphical encapsulator for the MS-Windows based envi-
ronments.

Chapter7 introducesvelvet, a full-featured graphical environment for the FElt system.

Chapter8 covers problem solutions and post-processing options withinvelvet

Chapter9 discusses the syntax and usage ofcorduroy, the command line mesh genera-
tor program for FElt.

Chapter10 introduces the powerful and flexible interactive environmentburlap.

Chapter11describes the syntax ofburlap in detail.

Chapter12describes some of the algorithms that FElt uses in solving an arbitrary prob-
lem.

Chapter13 is an attempt at teaching you how to add elements to the FElt library.

Appendix Adiscusses building, installing and administering the FElt system. A must
for potential administrators.

Appendix Bprovides a list of Geompack error codes. You’ll want to keep this handy if
you find yourself doing a lot of mesh generation.

Appendix Ccontains a copy of the GNU General Public License, the terms under which
FElt is distributed.

Typographical Conventions

In writing this guide, a number of typographical conventions were employed to mark but-
tons, command names, menu options, screen interaction, etc.

Bold Font Used to markbuttons, andmenu optionsin graphical environments.

Italics Font Used to indicate an application program name, e.g.felt.

Typewriter Font

Used to represent screen interaction, either with thevelvetcommand line, or
the shell prompt. Also used for example input files, keywords that belong
in input files and code examples.

Key Represents a key (or key combination) to press, as in pressReturn to con-
tinue.
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Chapter 1

Introduction to the FElt System

1.1 Intentions

FElt is a package for introductory level Finite ELemenT analysis. It is centered around
a mathematical engine designed to simply, effectively, accurately, and flexibly solve most
types of structural / mechanical problems that would be encountered in an introductory
course in finite element analysis. It was developed in an overzealous fit of “we can do
better than that” based on some antiquated Fortran code that we had been using for just
such a course.

Our intention was to design a system capable of doing everything that code could do
in the mathematical sense, but bring it into the 90’s (or at least the late 80’s) in terms
of input syntax (including error checking, problem debugging, etc.), flexibility, and most
importantly, a graphical user interface. We hope we’ve succeeded, or at the least, are on
the right track; FElt is a work-in-progress and chances are that if a feature isn’t there now,
there are at least pipe dreams of it somewhere in the backs of our minds.

Of course all our good intentions are for nought if no one uses FElt. If you find
something wrong, let us know (our email addresses are in the legal notice). Alterna-
tively (and an even better option) you can subscribe to the FElt mailing list by send-
ing a one line email message that says “subscribe felt-l” (without the quotes) to list-
serv@mecheng.fullfeed.com. If something is not there that you think should be, let us
know. We make no promises, but we do try to respond and gear development toward user
feedback. If you’re happily using FElt and have no complaints, let us know that too. At
least then we know that we’re on the right track.

1



2 CHAPTER 1. INTRODUCTION TO THE FELT SYSTEM

1.2 FElt: What it can do for you

FElt currently has support for the following element types: three-dimensional truss or bar,
one-dimensional spring, two- and three-dimensional Euler beam, two-dimensional Timo-
shenko beam, constant strain triangles (CSTs) for both plane stress and plane strain anal-
ysis, planar isoparametric elements (four to nine node and a separate type for simple four
node quadrilaterals), again for both plane stress or plane strain analysis, a linear axisymmet-
ric triangular element, an HTK plate bending element, an isoparametric eight-node brick
element, and a rod and a constant temperature gradient triangle for thermal analysis. FElt
allows for an arbitrary mixing of element types within a problem. The syntax for the FElt
input file is based on a high-level grammar which frees you from comma-delimited lists of
numbers and hours of debugging due to not having the right number after the right comma;
both the parser and the mathematical routines do extensive error checking and report what
we hope are informative and useful error messages.

FElt offers several user interface options. The basicfelt application gives you the ca-
pability to define an input file in a favorite editor and then solve the problem from the
shell command line. Graphics for thefelt applications can be handled by any number of
graphing packages. Under Windows,WinFElt provides a text editor and encapsulator en-
vironment with some post-processing capability.velvetis the full-featured graphical user
interface to the FElt system.velvet(which is smoother thanfelt) knows most of what there
is to know about the FElt system and provides a consistent, CAD-like interface for draw-
ing, defining, solving, and visualizing everything about a problem. Though it’s probably
not always the best way to set-up a problem (it’s hard to beatvi for quick-and-dirty prob-
lems), a user working strictly with two-dimensional problems (three-dimensional graphics
are only partially supported invelvet) need never actually see the internals of a FElt file or
run thefelt application from the shell command line;velvetprovides access to all of the
two-dimensional functionality of FElt in one completely stand-alone application.velvet’s
current post-processing capabilities include plotting the displaced shape, two-dimensional
color contours of stress and displacement for planar elements, animation of dynamic struc-
tural simulations, line plots of for time and frequency domain results, and graphical pre-
sentation of mode shapes.

Automated element generation for a FElt problem is provided for both simple grids of
line, quadrilateral and brick elements and arbitrary meshes of triangular planar elements.
The latter capability is derived from J.R. Shewchuk’s Triangle mesh generation routine.
You can interface this functionality either graphically throughvelvetor through a separate
command line application calledcorduroythat has its own input file syntax much like the
regular syntax for FElt problems.
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Support applications are provided for file format conversion and unit conversion and
problem scaling.patchworkcan translate between the standard FElt syntax and several
other common graphical description formats.yardstickcan be used to scale numerical
quantities within a FElt file, including special options for conversion between different
types of units.

FElt should be able to handle most types of linear static and dynamic problems that
you throw at it, but there are no guarantees. Most elements allow arbitrary oriented dis-
tributed line loads. Displacement (e.g., settlement of support) and force (e.g., nodal hinge)
boundary conditions are also allowed. Time varying force and boundary conditions can be
expressed either as continuous or discrete functions.

1.3 FElt: What it cannot do for you

As of this release, FElt can only handle linear static and dynamic problems. We realize
the shortcomings that this presents for some people and we have some vague plans for
non-linear analysis, but nothing is here yet.velvetcan’t really draw in 3-d (at least in the
problem definition stage) and thus isn’t a terribly good way to define 3-d problems; it will
always assume that it should work in the x-y plane (z = 0). This is probably going to stay
this way for a long time.

There are certainly other shortcoming as well, depending on just what you would like
the package to do. What it really comes down to is that FElt was never intended to solve
everybody’s real-world or cutting-edge research problems, so we’re probably never going
to incorporate lots of different analysis types, etc. If you want to take a crack at modifying
FElt for your own local needs, however, then we encourage you to do so; we’ll even help
out where possible.





Chapter 2

FElt Analysis Types

2.1 Introduction

Our intent in writing this chapter was to give some basic details on the kinds of analyses that
are intrinsic to FElt. It is not at all meant to be an introduction to the finite element method,
but rather it is meant to provide a background on what types of physical and mathematical
models we are talking about when we talk about the various analysis types. There is of
course some very basic information on just how these models work in the context of FEA,
but we really do suggest that you try some of the excellent textbooks ( [9, 16, 13, 1, 14])
that are out there if you want any sort of real background information.

2.2 Static structural analysis

The basic equation for static structural analysis can be seen as a generalization of Hooke’s
law for the deformation of a linear spring,f = kx. For a spring, if we know the applied
force and the spring stiffness,k, then we can find the deformation asx = f/k. We can
generalize this to multiple degrees of freedom by considering the static equilibrium of the
general spring in figure2.1. If the spring is in static equilibrium then at point a we must
have

(xa−xb)k = Fa, (2.1)

and at point b

(xb−xa)k = Fb. (2.2)

5
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Figure 2.1: Static equilibrium of a general linear spring.

Figure 2.2: Static equilibrium of two springs in series.

These two conditions form a linear system of equations in two unknowns. We can rewrite
this system in matrix notation as

[
k −k
−k k

][
xa

xb

]
=

[
Fa

Fb

]
. (2.3)

The problem is still essentially the same as our simple Hooke’s law calculation – we know
the applied force and the structural stiffness, and we want to solve for the deformations.
Now, however, our applied force is a vector, our structural stiffness is a matrix and to solve
for the deformations we must now solve a linear system of equations.

The stiffness matrixon the left hand side of equation2.3 is just the element stiffness
matrix in the finite element method. When we want to solve a problem of static equilibrium
for a structure that is more complex than our simple spring all we have to do is stick a
bunch of springs together and then linearly superpose the contributions from each element’s
stiffness matrix into ourglobal stiffness matrix. Consider the case of two springs in series
as in figure2.2. Each individual spring has a stiffness matrix like the one on the left hand
side of equation2.3. The system now has three degrees of freedom (xa, xb, xc) and thus
we know that our global stiffness matrix will be 3×3. We assemble the global stiffness
matrix (construct the superposition of all the element stiffness matrices) by considering
which degrees of freedom each spring affects – spring 1 affects the deformationsxa andxb;
spring 2 affectsxb andxc. We know then that the stiffness at b in our global stiffness matrix
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will have contributions from both spring 1 and spring 2. The global stiffness matrix is

K =

 k1 −k1 0
−k1 k1 +k2 −k2

0 −k2 k2

. (2.4)

The two boxes indicate exactly how the individual element stiffness matrices were placed
into the global stiffness matrix. Our equation for static equilibrium is k1 −k1 0

−k1 k1 +k2 −k2

0 −k2 k2

xa

xb

xc

 =

Fa

Fb

Fc

 . (2.5)

Of course, one-dimensional springs are not the most useful element in terms of mod-
eling complex structural behavior. The concepts of static equilibrium, superposition, and
assembly, however, are identical no matter what types of elements we are using. All that
changes the is nature of the element stiffness matrices – rather than simple linear springs
we take into account bending and torsional stiffness, three-dimensional solid deformations,
plate bending motion, etc. In structural analysis there are only six possible degrees of free-
dom (translations along and rotations about the x, y, and, z axes) and thus if we know how
each element affects each of these degrees of freedom we can even mix different element
types into the same global stiffness matrix. Given a global stiffness matrix,K, which repre-
sents the contributions from an arbitrary number of individual elements and a vector,F , of
the force at each global degree of freedom, then the general form of equation2.5 is simply

Kx = F (2.6)

wherex is a vector of the displacements at each global degree of freedom which we solve
for using matrix techniques for linear systems of equations. Note the direct analogy be-
tween this matrix equation and the simple linear spring relationship,f = kx, cited earlier.

2.3 Transient structural analysis

Just like static structural analysis is an extension of simple static equilibrium for a spring,
we can draw an analogy between dynamic structural analysis and a simple spring-mass-
dashpot oscillator. For the system shown in figure2.3, a sum of forces at the mass and
Newton’s law gives

mẍ+cẋ+kx= f (t) (2.7)

where the overdot indicates differentiation in time. To generalize this to multiple degrees
of freedom we take the same steps as in the static case, recognizing that we can assemble
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Figure 2.3: Dynamic equilibrium of a spring-mass-dashpot system.

global mass and damping matrices from elemental constructs just as we did for the stiffness
matrix in the static case. In that case, the matrix equation of motion becomes

Mẍ+Cẋ+Kx = F(t) (2.8)

whereM, C, andK are now global mass, damping and stiffness matrices,x is a vector of
displacements at each DOF just as before andF(t) is a time-dependent vector of forces at
each degree of freedom.

The damping matrix is the most difficult quantity to estimate in equation2.8; both the
stiffness and mass matrices are relatively simple to derive for a wide variety of elements
(see chapter4). There is no explicit way to specify dashpot constants in FElt. Instead,
damping is based on a Rayleigh model whereby the damping matrix is simply a linear
combination of the mass and stiffness matrices

C = RmM +RkK (2.9)

whereRm andRk are user specified constants of proportionality.

2.4 Static thermal analysis

2.5 Transient thermal analysis

2.6 Modal analysis

There are two basic levels to modal analysis. The first is the eigenvalue problem which
determines the natural frequencies and mode shapes of our structure in free (F(t) = 0),
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undamped (C = [0]) vibration. If we assume a solution to the undamped, unforced form of
equation2.8of the form

x(t) = ueiωt (2.10)

(whereu is a vector of displacement amplitudes) and substitute this into the equation of
motion, we find that [

K−Mω2]u = 0. (2.11)

Linear algebra tells us that this has a non-trivial solution only if

det
[
K−Mω2] = 0. (2.12)

Evaluating the determinant leads to a polynomial of ordern (wheren is the number of
DOF in the problem) inω2. The roots of this polynomial give us the free vibration natural
frequencies,ω2

i , i = 1. . .n. If we substitute each of theseωi into equation2.11 we can
solve forn mode shape vectors,u(i).

By itself, natural frequency and mode shape information can be very useful; the natural
frequencies are an immediate indication of where the resonances for this system will be
(even when we put damping back into the system). The second level of modal analysis,
however, uses the fact that the eigenvectors (mode shapes) form an orthogonal basis set to
decouple an arbitrarily complex multiple degree of freedom system inton single degree of
freedom systems. If we form a matrix,U , of all the eigenvectors,u(i), then we can compute
the modal mass and stiffness matrices as

M̂ = UTMU (2.13)

K̂ = UTKU . (2.14)

The modal matrices have the remarkable property that they are diagonal and thus if we
form a transformed system of coordinates,

q = U−1x, (2.15)

and a transformed force vector

Q = UTF , (2.16)

we can write our matrix equation of motion asn uncoupled single degree of freedom equa-
tions

M̂i q̈i + K̂iqi = Qi , i = 1. . .n. (2.17)

We say thatM̂i andK̂i are the modal mass and stiffness in theith mode. They are simple
theith entries along the diagonals of the modal mass and stiffness matrices. We can further
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simplify the resulting equations of motion by making use of the fact that the eigenvec-
tors can be arbitrarily normalized (they are only fixed to within an arbitary multiplicative
constant by equation2.11). If we choose an appropriate normalization then we can fix it
so thatM̂ = I , the identity matrix. The appropriately normalized mode shapes are called
orthonormal modes.

Because FElt uses a Rayleigh damping model, we can also construct a diagonal damp-
ing matrix,

Ĉ = UTCU = RmM̂ +RkK̂. (2.18)

Also, because the motion in each mode is now just like a single degree of freedom motion,
we can use concepts from the theory of single degree of freedom oscillators to help us
chooseRk andRm. The damping ratio in theith mode is simply

ζi =
Ĉi

2M̂iωi
(2.19)

We can fix the damping ratio in two modes,i and j, simply by substituting

Ĉi = RmM̂i +RkK̂i , (2.20)

Ĉj = RmM̂ j +RkK̂ j , (2.21)

into equation2.19and solving the resulting linear system forRm andRk[ 1
ωi

ωi
1

ω j
ω j

][
Rm

Rk

]
=

[
2ζi

2ζ j

]
. (2.22)

After solving then uncoupled single degree of freedom equations (either as initial value
problems or steady state oscillation problems) for the individualqi , we can form the solu-
tion in physical coordinates as the superposition of the motion in each mode

x(t) =
n

∑
i=1

u(i)qi(t) = Uq. (2.23)

2.7 Spectral analysis

Spectral analysis is intended to give us information about the response of our structural
system in the frequency domain. In a way, we can think of it as a direct way to calculate
the results that we would get from estimating a power spectrum of our time domain results
using a fast fourier transform. If we assume that the force vector in equation2.8is harmonic
in time and of the form,

F(t) = F0eiωt (2.24)
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then we can also assume the solution,x(t), is of the form1

x(t) = x̂0eiωt . (2.25)

Note that ˆx0 is a complex constant which incorporates both the magnitude and phase of the
output motion

x̂0 = x0e−iφ. (2.26)

If we differentiate, substitute into equation2.8, and divide out the time dependent harmonic
term then we find that

F0 =
[
−ω2M + iωC+K

]
x̂0. (2.27)

If this were a single degree of freedom system we would recognize the term in square
brackets on the right hand side as the inverse of the transfer function. In a multiple degree
of freedom system, this term is known as the impedance matrix,

Z =−ω2M + iωC+K, (2.28)

and its inverse is equivalent to a matrix of single degree of freedom transfer functions

H = Z−1. (2.29)

In essence, the transfer function matrix predicts the amount of response per unit force at
frequencyω.

Given entries from the transfer function matrixHi j (ω), we can calculate the output
spectrum at DOFi due to system inputs as

S(out)
i =

n

∑
k=1

|Hik(ω)|2S(in)
k , (2.30)

where the input spectraS(in)
k are simply the power spectra of the applied forces.

2.8 Nonlinear static analysis

2.9 Nonlinear dynamic analysis

1It is a property of linear systems that the output will always be at the same frequency as the input.





Chapter 3

Structure of a FElt Problem

3.1 Input file syntax

A FElt problem is defined by an input file which you must create using a text-editor such
asvi or from withinvelvet(though in this case you do not actually need to see the resulting
file). The input file contains a complete description of everything that defines a problem:
the nodes, the elements, analysis parameters, the constraints and forces on the nodes, and
the distributed loads and material properties of the elements. An informal description of
the file format and these objects is given below. For a complete, formal definition of the
syntax, you should refer to thefelt(4fe) manual page.

3.1.1 General rules

The input file for a typical FElt problem will consist of nine sections. In general, each
object within a problem (node, element, force, material, distributed load,

constraint) has a symbolic name. For nodes and elements these names are positive in-
tegers; for everything else the name is a user assigned string, e.g., “steel”, “pointload”,
“roller”. Each type of object is defined within its own section, each section containing a
list of definitions for objects of that type.

As a rule of thumb white space can occur anywhere and the definition sections can
be given in any order (and repeated even). The exceptions to this are theproblem

description section and theend statement, which must come first and last in an input
file, respectively, and cannot be repeated.

Comments are denoted as in the C programming language; anything between/* and

13
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*/ will be ignored as a comment no matter where it appears in the file.

3.1.2 Expressions

3.1.2.1 Continuous functions

As a convenience, wherever a numeric value is required for a material characteristic, mag-
nitude of a force, load or displacement boundary condition, or a nodal coordinate, you can
specify an arbitrary mathematical expression, including the operators+, -, *, /, % and
the standard mathematical library functionssin, cos, tan, sqrt, hypot, pow, exp, log, log10,
floor, ceil, fabsand fmod. Note that arguments to the trigonometric functions should be
given in terms of radians just as if you were calling them from a C program using the stan-
dard math library. Other than this difference, these functions should be used and should
behave as they are described in the manual pages for your local mathematics library.

In a transient analysis problem the symbolt denotes the time variable in expressions
for force magnitudes or time-varying boundary conditions. These expressions will be dy-
namically evaulated throughout the course of the simulation. For other parameters (loads,
nodal coordinates, etc.) and for all parameters in a static problems, these expressions will
simply be evaluated as ift=0. For spectral inputs, the symbolw can be substituted for the
independent variable for clarity and to distinguish frequency domain force spectra from
time domain forces.

Expressions can also contain the ternary conditional operator as in the C programming
language: “if a then b else c” is symbolized in a FElt input file asa ? b : c where
a, b, andc are all valid expressions. The logical operators to use in constructinga are
the same as those in C (==, &&, ||, <=, <, >, >=, !=). The conditional construct is
particularly useful in defining things like discontinuous dynamic forces.

3.1.2.2 Discrete functions

Because some forcing functions are easier to express in a discretized (as opposed to con-
tinuous) form (e.g., earthquake records), the FElt syntax also includes a mechanism for
specifying a discrete representation of a transient forcing function. The basic specification
consists of a series of time magnitude pairs of the form(t, F) whereF is the value of the
function at timet. In evaluating the function, FElt will linearly interpolate between each
adjacent pair for times that fall between two pairs. A single time magnitude pair will be
interpreted as an impulse response function at the given time. Note that the pairs must be
given in order of increasing time.



3.1. INPUT FILE SYNTAX 15

You can express a periodic discrete function simply by defining one period and then
entering a+ symbol at the end of the expression. You could represent a simple sawtooth
forcing function having a period of 2 seconds and a maximum magnitude of 1000 with an
expression like

forces

sawtooth Fx=(0,0.0) (2,1000.0)+

Figure3.1illustrates different ways to define some common types of loading functions with
either continuous or discrete representations.

Figure 3.1: Example loading functions
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3.1.3 Units

There are no set units for the dimensional quantities that you specify in defining a problem
for FElt. The important thing is to remain consistent in the units that you use; numerical
results will then be consistent with the input dimensions. Some examples of consistent
units would be nodal coordinates in meters, forces in Newtons, elastic moduli in Pascals
(N m−2); moments of inertia would be in m−4. The displacement results for a problem like
this would be in meters; stresses would be in Pascals. Convenient English units are often
pounds, inches, and psi (pounds per square inch) or kips (kilopounds), inches, and ksi.

The FElt application,yardstick, is intended for simple scaling of the numerical quanti-
ties in a FElt input file. As a special case of this, unit conversion of files is given special
treatment and made particularly easy. To convert an input file that was originally specified
in kips and feet to Newtons and meters, theyardstickcommand line would simply look like

% yardstick -if kips -il feet -of N -ol m foo.flt > foo_si.flt

The yardstickmanual page details the list of units that the program recognizes and all of
the available options.

3.1.4 A simple example

An input file for a simple cantilever beam problem with an end point-load and considering
self-weight might look something like this:

problem description

title="Cantilever Beam Sample Problem" nodes=2 elements=1 analysis=static

nodes

1 x=0.0 y=0.0 constraint=fixed

2 x=10.0 y=0.0 constraint=free force=end_load

beam elements

1 nodes=[1,2] material=steel load=self_weight

material properties

steel A=10.0 E=30e6 Ix=357 /* properties can also be lowercase */

distributed loads

self_weight direction=perpendicular values=(1,2000) (2,2000)
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constraints

fixed Tx=C Ty=C Rz=C /* column alignment is unimportant */

free Tx=U Ty=U Rz=U /* I could have used tx, ty and rz */

forces

end_load Fy=-1000

end

3.2 Sections of aFElt input file

3.2.1 Problem description

Theproblem description section is used to define the problem title and the number of
nodes and elements in the problem. These numbers will be used for error checking so the
specifications given here must match the actual number of nodes and elements given in the
definition sections. Note that the definitions for nodes and elements do not have to be given
in numerical order, as long as nodes 1 ...m and elements 1 ...n (wherem is the number
of nodes andn is the number of elements) all get defined in one of the element and node
definition sections in the file. Theanalysis= statement defines the type of problem that
you wish to solve. Currently it can either bestatic, transient, static-substitution,
modal, static-thermal, transient-thermal, or spectral. If you do not specify any-
thing, static analysis will be assumed. Theproblem description section is the only
section which you cannot repeat within a given input file.

3.2.2 Nodes

Thenodes section(s) must define all of the nodes given in the problem. Each node must
be located with an x, y, and z coordinate usingx=, y=, andz= assignments. Coordinates
are taken as 0.0 if they are not otherwise defined. If a coordinate is left unspecified for a
given node, it takes the value for that coordinate from the previous node. A node must also
have a constraint assigned to it by aconstraint= statement. The default constraint leaves
the node completely free in all six degrees of freedom. Like coordinates, if a constraint is
left unspecified, the node will be assigned the same constraint as the previous node. Forces
(applied point loads and moments) on a node are optional and are applied using theforce=

statement; if a force is not specified there will be no force applied to that node. You can
also specify an optional lumped mass at a given node with amass= statement.
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3.2.3 Elements

An element definition section begins with the keywordsxxxxx elements wherexxxxx is
the symbolic name of a type of element. All elements under this section heading will
be taken to be the given element type. There could be multiple sections that defined
beam elements, but each must begin with the keywordsbeam elements. If there were
truss elements in the same problem, they would have to be defined in sections which be-
gan with the keywordstruss elements. Currently available types arespring, truss,
beam, beam3d, timoshenko, CSTPlaneStrain, CSTPlaneStress, iso2d PlaneStrain,
iso2d PlaneStress, quad PlaneStrain, quad PlaneStress, htk, brick, rod, and
ctg. A FElt problem is not limited to one element type; the routines for assembling the
global stiffness matrix takes care of getting the right parts of the right element stiffness
matrices into the global matrix.

Each element must have a list of nodes to which it is attached. The node list is defined
with thenodes=[ ...] statement. The length of the list inside the square brackets varies
with element type, but must always contain the full number of nodes which the element
type definition requires (see chapter4 for a complete definition of what each type requires).
A material property must also be assigned to every element with amaterial= statement.
If the material is never specified, an element will take the same material property as the
previous element. If nothing ever gets assigned to an element, the default material property
will have zeros for all of its characteristics. Chances are this is not what you want. Finally,
an element can have up to three optional distributed loads. Each load is assigned with a
separateload= assignment. Each element type may treat a distributed load differently so
you should be careful that the name given for the loads on a given element match the names
of distributed loads which are defined in a manner conformant with what that element type
is expecting.

3.2.4 Material properties

Thematerial properties section(s) is quite simple. Each material has a name followed
by a list of characteristics. Currently available characteristics are listed in table3.1.

Note that no element types require a material property with every one of these charac-
teristics defined. In fact, most only use three or four characteristics. You should consult
the element definitions (chapter4) for a complete list of what each element type requires
from a material property. Density (rho) is always necessary for the materials in a transient,
modal, or spectral analysis problem if you actually want your elements to have any iner-
tia. Different element types can certainly use the same material as long as that material
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property name description

E Young’s modulus or elastic modulus
A cross-sectional area
t thickness
rho density
nu Poisson’s ratio
G bulk or shear modulus
J torsional stiffness
Ix Ixx moment of inertia
Iy Iyy moment of inertia
Iz Izz moment of inertia

kappa shear force correction factor
Rk Rayleigh stiffness damping coefficient
Rm Rayleigh mass damping coefficient
Kx thermal conductivity along the x-direction
Ky thermal conductivity along the y direction
Kz thermal conductivity along the y direction
c heat capacitance

Table 3.1: Symbolic names used to define material properties

definition contains the right characteristics for each type of element that uses it.

3.2.5 Constraints

Theconstraints section(s) must define all of the named constraints within the problem.
Each constraint is defined by a name followed by a list of DOF specifications of the form
Tx=? Ty=? Tz=? Rx=? Ry=? Rz=? where the? can either bec for constrained,
u for unconstrained or a valid, possibly time-dependent, expression for cases where a dis-
placement boundary condition is required (e.g., settlement of support, or time-varying tem-
perature along a boundary in a transient thermal analysis problem). Note that specifiying
Tx=c is equivalent toTx=0.0. TheT andR refer to translation and rotation, respectively
and the subscripted axis letter indicates that the specification refers to translation along,
or rotation about, that axis. An additional specification ofh or hinged is allowed for the
rotational DOFs for cases where it is necessary to model a nodal (momentless) hinge. Note
that a hinge specification currently has meaning only onbeam, beam3d andtimoshenko
elements.

If a specification is never made for a DOF, then the problem is assumed to be uncon-
strained in that degree of freedom. Getting the constraints right is an important part of
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getting a reasonable solution out of a finite element problem so you should be aware of
what DOF are active in a given problem (this will depend on which types of elements are
being used ... even in a 2-d problem, the global stiffness matrix will take displacement in
the z direction into account if there are 3-d elements in use, consequently, those displace-
ments should be constrained).

In order to account for initial conditions in transient analysis problems, a constraint
specification may also include the initial (at timet = 0) displacements, and velocity and
acceleration in the translational DOFs. Initial displacements are given withITx=, IRz=,
etc. You can specify initial accelerations withAx=, Ay=, andAz=. Initial velocities are
given byVx=, Vy=, andVz=. Unspecified velocities and displacements will be taken as 0.0.
If there are no initial accelerations specified (i.e., none of the nodes have a constraint with
an acceleration assigned) then the initial acceleration vector will be solved for by the math-
ematical routines based on the initial force and velocity vectors. If any of the nodes have a
constraint which has an acceleration component defined (even if that component is assigned
to 0.0) then the mathematical routines will not solve for an initial acceleration vector; they
will build one based on the constraint information, assigning 0.0 to any component that was
not specified. What this means is that you cannot specify the initial acceleration for only a
few nodes and expect the mathematical routines to simply solve for the rest of them. If you
specify any of the initial accelerations then you are effectively specifying all of them.

3.2.6 Forces

Theforces section(s) defines all of the point loads used in the problem and actually looks
a lot like theconstraints section. The magnitudes of the forces in the six directions
are specified byFx=? Fy=? Fz=? Mx=? My=? Mz=?. If the value for a given force
component is not given it is assumed to be zero. The directions for both forces and the
constraints as defined above should be given in the global coordinate system (right-hand
Cartesian).

If you are doing transient analysis, the force definitions can be more complicated than
a simple numerical assignment or expression. FElt allows you to specify a transient force
as either a series of time-magnitude pairs (a discrete function in time) or as an actual con-
tinuous function of time. This latter fact means that you can define a force asFx=sin(t)

rather than having to discretize the sine function. These continuous forcing functions are a
special case of expressions as discussed above.

For spectral analysis problems, you can explicitly specify input spectra usingSfx=,
Smy=, etc. if you want to to compute the actual power spectrum of the output. These
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Figure 3.2: An example of a complex distributed load.

spectra can be analytic functions ofw or discrete frequency, power pairs.

3.2.7 Distributed loads

The distributed loads section(s) must contain a definition for each distributed load
that was assigned in the element definition section(s). A valid definition for a distributed
load is a symbolic name followed by the keywordsdirection=xxx andvalues=(n,x)
(m,y) .... The direction assignment must be set to one ofparallel, perpendicular,

LocalX, LocalY, LocalZ, GlobalX, GlobalY, GlobalZ, radial, axial. The
valid directions for a given element type, and what those directions refer to for that ele-
ment type are described in the individual element descriptions in chapter4. The values
assignment is used to assign a list of load pairs to the named load. A load pair is given
in the form(n, x) wheren is the local node number to which the magnitude given byx

applies. Generally, two pairs will be required after thevalues= token. The imaginary line
between the two magnitudes at the two nodes defines an arbitrarily sloping linearly distrib-
uted load. This allows you to specify many common load shapes: a constant distributed
load of magnitudey, including cases of self-weight, a load which slopes from zero at one
node tox at a second node, or a linear superposition of these two cases in which the load
has magnitudey at node 1 and magnitudex+y at node 2. This latter case is illustrated in
figure3.2. The definition of this load would be

distributed loads

load_case_1 direction=perpendicular values=(1,-2000) (2,-6000)

In the future, higher-order load shapes may be supported by some elements and thus
require the specification of more than two load pairs.
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3.2.8 Analysis parameters

Theanalysis parameters section is required only if you are doing some type of tran-
sient, modal, or spectral analysis (e.g.,analyis=transient, analysis=spectral in the
problem description section). For modal analysis it is simply used to set the type of el-
ement mass matrices that will be formed, but for transient and spectral analyses it contains
information that further defines the problem and the parameters for the numerical integra-
tion in time. The variables that you can define in this section include:start= for the start
of the frequency range of interest in spectral analyis;stop= for the end of the time (tran-
sient analysis) or frequency (spectral analysis) range of interest (duration= is an alias for
stop=); step= for the time or frequency step to be used between the start and stop points
(dt= is an alias forstep=); beta=, gamma=, andalpha= for integration parameters in the
structural and thermal dynamic integration schemes;mass-mode= for the types of element
mass matrices that should be formed, eitherlumped or consistent (note again that this is
the only assignment that is required in this section for a modal analysis problem);nodes=[

... ] defines a list of nodes which you are interested in seeing output for;dofs=[ ...

] defines the list of local DOF that you are interested in for the nodes that you are inter-
ested in. The list of nodes should just be a comma delimited list of node numbers. The
list of DOF should be a list of symbolic DOF names (Tx, Ty, Tz, Rx, Ry, Rz). You
will get solution output for each of these DOF at each of the nodes that you specified in the
node list. Finally, you can specify global Rayleigh damping parameters withRk= andRm=.
If either of these parameters is non-zero then the global damping matrix will be formed
using these two parameters and the global mass and stiffness matrices as opposed to being
formed from elemental Rayleigh parameters and elemental mass and stiffness matrices.

You should refer to the chapter on algorithmic details (section12.4.7) for a little more
insight on the meanings of the integration parameters. The individual element descriptions
in chapter4 discuss the different mass matrices for that element. The analysis parameters
and their meaning are summarized in table3.2.

3.2.9 Load cases

3.3 An illustrated example

Figure3.3 illustrates a slightly more complicated problem, a simply supported beam with
two triangular loads applied and a spring support at the center. We can model the spring as
a slender truss element such thatEA/L = k, the spring stiffness.

The input file for this problem would probably look something like this.
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parameter description example r/o

start frequency range start (SP), load range start (LR) 0.0 r
stop time- (T, TT), frequency- (SP) or load- (LR) range end 10.0 r
step time- (T, TT), frequency- (SP) or load- (LR) step 0.05 r
alpha α in HHT-α and transient thermal integration (T, TT) 0.5 o

gamma γ in HHT-α integration (T) 0.25 o
beta β in HHT-α integration (T) 0.5 o

mass-mode element mass matrices to use (T, TT, SP, M) lumped r
nodes list of nodes for which you want results (T, TT, SP, LR, LC)[1,4,5] r
dofs list of DOF at each result node (T, TT, SP, LR, LC) [Tx, Rz] r
Rk global Rayleigh damping constant for stiffness (T, M, SP) 3.0 o
Rm global Rayleigh damping constant for mass (T, M, SP) 1.4 o

input-node node to be parametrically excited (LR) 4 r
input-dof DOF at the input node to be excited (LR) Ty r
tolerance convergence tolerance (SUB) 1e-3 r
iterations maximum permitted number of iterations (SUB) 100 r
relaxation under- (over-) relaxation factor (SUB) 0.8 r
load-steps number of incremental steps to full load (SUB) 10 r

Table 3.2: Meaning given to the various analysis parameters. T indicates transient analysis; TT

is transient-thermal; SP is spectral; M is modal; LR is static analysis (linear or nonlinear) with

load ranges; LC is static analysis (linear or nonlinear) with load cases; SUB is non-linear static

substitution analysis. The r/o column indicates whether the parameter is (r)equired for the given

analyses or if the (o)ptional default value of 0.0 will be used if nothing is specified.
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Figure 3.3: A mixed element problem with distributed loads.

problem description

title="Mixed Element Sample" nodes=4 elements=3

nodes

1 x=0 y=0 constraint=pin

2 x=6 y=0 constraint=free

3 x=12 y=0 constraint=roller

4 x=6 y=-10 constraint=fixed

beam elements

1 nodes=[1,2] material=steel load=left_side

2 nodes=[2,3] load=right_side

truss elements

3 nodes=[2,4] material=spring

material properties

steel A=1 E=210e9 Ix=4e-4

spring A=4.76e-7 E=210e9 /* k = 10 kN/m */

constraints

pin Tx=c Ty=c Tz=c Rz=u /* we better constrain Tz because */

free Tx=u Ty=u Tz=c Rz=u /* there is a truss element! */

roller Tx=u Ty=c Tz=c Rz=u

fixed Tx=c Ty=c Tz=c Rz=c
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distributed loads

left_side direction=perpendicular values=(1,10000) (2,0)

right_side direction=perpendicular values=(1,0) (2,10000)

end

3.4 An example of a transient analysis problem

Figure3.4 illustrates a simple frame problem subjected to a time-dependent loading. Our
input file for this problem differs from our above example in only one significant way; we
must include ananalysis parameters section in this case. Also we need to remember
to define the density of all the materials so we can get a proper mass matrix for each
element. In this case we have also calculated what the self-weight effect of this mass will
be assuming bays on 15 ft centers (depth of frame into page) and assigned it to each element
as a distributed load in terms of pounds per inch.

Figure 3.4: Transient analysis of a simple frame structure.

The input file for this case could look something like the following.

problem description

title="Dynamic Frame Analysis" nodes=8 elements=9 analysis=transient
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analysis parameters

dt=0.05 duration=0.8

beta=0.25 gamma=0.5 alpha=0.0

nodes=[8] dofs=[Tx] mass-mode=lumped

nodes

1 x=0 y=0 constraint=fixed

2 x=360 y=0

3 x=0 y=180 constraint=free force=f1

4 x=360

5 x=0 y=300 force=f2

6 x=360

7 x=0 y=420 force=f3

8 x=360

beam elements

1 nodes=[1,3] material=wall_bottom

2 nodes=[3,5] material=wall_top

3 nodes=[5,7]

4 nodes=[7,8] material=floor_top load=top_wt

5 nodes=[5,6] material=floor_bottom load=bottom_wt

6 nodes=[3,4] load=bottom_wt

7 nodes=[8,6] material=wall_top

8 nodes=[6,4]

9 nodes=[4,2] material=wall_bottom

material properties

wall_bottom A=13.2 Ix=249 E=30e6 rho=0.0049 /* rho is in lb-sˆ2/inˆ4 */

wall_top A=6.2 Ix=107 E=30e6 rho=0.0104

floor_top A=12.3 Ix=133 E=30e6 rho=0.01315

floor_bottom A=24.7 Ix=237 E=30e6 rho=0.0136

distributed loads

top_wt direction=perpendicular values=(1,-62.5) (2,-62.5)

bottom_wt direction=perpendicular values=(1,-130) (2,-130)

forces

f1 Fx=1000*(t < 0.2 ? 25*t : 5)

f2 Fx=800*(t < 0.2 ? 25*t : 5)

f3 Fx=500*(t < 0.2 ? 25*t : 5)

constraints

fixed Tx=c Ty=c Rz=c
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free Tx=u Ty=u Rz=u

end

3.5 Format conversion

Any problem that you want to solve with FElt must be formatted according to the rules that
we have just described. However, we recognize that there are countless other formats that
provide for descriptions of these same kinds of problems (at least the geometric aspects of
the problem). Because of this, FElt provides a mechanism for translating back and forth
between FElt and alternative syntaxes.

3.5.1 Conversion basics

A common example of a popular geometric description syntax is DXF (drawing inter-
change format). DXF files can be produced by any number of CAD and geometric mod-
eling programs. The FElt conversion tool,patchwork, can translate DXF files to and from
the FElt syntax.patchworkis invoked with a command-line like:

% patchwork -dxf bridge.dxf -felt bridge.flt

This example would convert the geometric description given in the filebridge.dxf to
the geometric basics of a standard FElt file,bridge.flt. Geometric basics in this case
means that only the nodes and elements sections will be translated; the DXF file cannot
contain any information about material properties, forces, loads, constraints, and therefore
this information will be left incomplete in the resulting FElt file.

patchworkcan also translate FElt files into other formats. You might want to do this if
you had used some of FElt’s mesh generation capabilities for the bulk of your geometric
problem description, but wanted to do some refinement using your favorite CAD program.
Thepatchworkcommand line to do something like that is simply the reverse of above:

% patchwork -felt mesh.flt -dxf mesh.dxf
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3.5.2 patchworkdetails

patchworkoperates by providing routines to read and write the different file formats based
around a single data structure. The input formatted file is translated into the uniform
database and then the output formatted file is generated from this same database. The
ability to read or write any given format is dependent on whether or not routines exist to go
back and forth between the file syntax and the uniform data structure. Currently,patchwork
can read (i.e., the allowable input formats are) DXF files, standard FElt files, and data files
formatted for use in graphing applications likegnuplot; patchworkcan write (i.e., allow-
able output formats are) FElt, DXF,gnuplot, and files formatted for the software that is
distributed with Logan’s introductory finite element text [13]. Capabilities for additional
formats will be added as time permits and demand warrants. Note that the DXF handling
routines are limited to line and polygonal polyline entities.

When invokingpatchwork, the input format and file always come first. The syntax is
patchwork -[iformat] ifile -[oformat] ofile, where[iformat] can currently be
one ofdxf, felt, graph and[oformat] can be onedxf, felt, graph, logan. An
input or output file name of- (a hyphen) indicates that input should be read from standard
input and/or output should be written to standard output, respectively.



Chapter 4

The FElt Element Library

4.1 Introduction

The FElt element library contains line, plane and solid elements. Line elements in-
clude a one-dimensional spring (spring), a bar or truss element (truss), two- and three-
dimensional Euler-Bernoulli beams (beam andbeam3d), and a two-dimensional beam based
on Timoshenko theory, (timoshenko). The set of planar elements consists of constant
strain triangles (CSTPlaneStrain and CSTPlaneStress), isoparametric quadrilaterals
(iso2d PlaneStress, iso2d PlaneStrain, quad PlaneStrain, quad PlaneStress)
and an HTK plate bending element (htk). The only solid element in the library is an
eight node brick (brick). There is an axisymmetric triangular element (axisymmetric).
The only elements available for thermal analysis are a simple one-dimensional line element
(rod) and a constrant temperature gradient triangular element (ctg). In the above list, the
names in parentheses indicate the actual symbolic type names of the elements.

The number of nodes and the material properties needed for defining each element and
the DOF that the element affects are summarized in the table below. A brief description
for each element follows the table; detailed derivations of element stiffness matrices can be
found in any number of finite element textbooks.

29
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Element type name nodes Material properties DOFs

truss 2 E,A,(rho) Tx,Ty,Tz

spring 2 E,A,(rho) Tx

beam 2 E,A,Ix,(rho) Tx,Ty,Rz

beam3d 2 E,A,Iy,Iz,J,G,(rho) Tx,Ty,Tz,Rx,Ry,Rz

timoshenko 2 E,A,Ix,G,kappa,(rho) Tx,Ty,Rz

CSTPlaneStress 3 E,t,nu,(rho) Tx,Ty

CSTPlaneStrain 3 E,t,nu,(rho) Tx,Ty

quad PlaneStress 4 E,t,nu,(rho) Tx,Ty

quad PlaneStrain 4 E,t,nu,(rho) Tx,Ty

iso2d PlaneStress 9 E,t,nu,(rho) Tx,Ty

iso2d PlaneStrain 9 E,t,nu,(rho) Tx,Ty

htk 4 E,t,nu,kappa,(rho) Tz,Rx,Ry

brick 8 E,nu,(rho) Tx,Ty,Tz

axisymmetric 3 E,nu,(rho) Tx, Ty

rod 2 A,Kx,(c,rho) Tx

ctg 3 t,Kx,Ky,(c,rho) Tx

Table 4.1: Description of the materials required for and local DOF affected by the various element

types. The material properties in () indicate properties that are only required during a non-static

analysis.

4.2 Structural analysis elements

4.2.1 Truss and spring elements

Truss or bar elements are the simplest type of element in the library. They are two-node,
three-dimensional linear elements which are assumed to deform in the axial direction only.
They might find application in a simple bridge simulation (the classic example of truss
elements) or as springs (as in the above example where the spring stiffness,k, is given
by EA/L of the truss element). The truss element in the FElt library uses the classical
linear shape functions,N1 = x/L andN2 = 1−x/L. Any introductory text on finite element
analysis (for mechanics at least) probably starts out by deriving the stiffness matrix for just
such an element; see Chapter 3 of [13] for instance. The stiffness matrix for this type of
element in the local element two-dimensional reference frame is the familiar

k̂ =
[

EA/L −EA/L
−EA/L EA/L

]
. (4.1)

The lumped mass formulation of the local mass matrix is given by

m̂l =
ρAL

2

[
1 0
0 1

]
, (4.2)
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and the consistent mass formulation by

m̂c =
ρAL

6

[
2 1
1 2

]
. (4.3)

The 2×2 matrices in local element coordinates are transformed into the global coordi-
nate system (and into 6×6 form) according to

k = TTk̂T, (4.4)

where the transformation matrix is given by

T =
[

cosθx cosθy cosθz 0 0 0
0 0 0 cosθx cosθy cosθz

]
. (4.5)

The direction cosines are simply the projections of the local coodinate axes onto the global
coordinate axes,

cosθx =
x1−x2

L
, (4.6)

cosθy =
y1−y2

L
, (4.7)

cosθz =
z1−z2

L
. (4.8)

The stress calculated for truss elements is the axial stress (not load). A positive quantity
indicates tension, negative indicates compression. If a distributed load is assigned to a truss
element it is assumed to be a linearly distributed axial loading condition (i.e., it must be
directedparallel). Nothing else makes much sense since a truss element cannot carry
bending or shear forces along its length. The sign convention for the magnitude of the load
pairs is positive for loads pointing from local node 1 to local node 2.

The spring element included in FElt is simply the truss element described above without
the transformation from local element coordinates to global coordinates. What this means
is that the element matrices are only 2×2 and because of this they must be defined only
along the global x-axis. Distributed loads are not supported by spring elements.

4.2.2 Euler-Bernoulli beam elements

4.2.2.1 Special case two-dimensional element

A beam element is a two-dimensional, two-node linear element which can carry in-plane
axial, shear and bending forces. The moment of inertia used in stiffness calculations (spec-
ified with Ix) is the bending moment of inertia about the cross-section x-x axis (which in
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global coordinates is bending about the z-axis). Like the truss element described above,
the beam element in the FElt library is also a standard in many textbooks; the following
stiffness matrix should also look relatively familiar,

k̂ =



AE/L 0 0 −AE/L 0 0
0 12EI/L3 6EI/L2 0 −12EI/L3 6EI/L2

0 6EI/L2 4EI/L 0 −6EI/L2 2EI/L
−AE/L 0 0 AE/L 0 0

0 −12EI/L3 −6EI/L2 0 12EI/L3 −6EI/L2

0 6EI/L2 2EI/L 0 −6EI/L2 4EI/L


. (4.9)

The lumped mass matrix for the beam element is defined as

m̂l =
ρAL

2



1 0 0 0 0 0
0 1 0 0 0 0
0 0 L2

12 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 L2

12


, (4.10)

and the consistent mass matrix as

m̂c =
ρAL
420



140 0 0 70 0 0
0 156 22L 0 54 −13L
0 22L 4L2 0 13L −3L2

70 0 0 140 0 0
0 54 13L 0 156 −22L
0 −13L −3L2 0 −22L 4L2


. (4.11)

The basis for these mass matrices should also be readily available in many textbooks. The
transformation from local element coordinates into global coordinates is of the same form
as equation4.4; the actual transform matrix for two-dimensional beams is given by

T =



cosθx cosθy 0 0 0 0
−cosθy cosθx 0 0 0 0

0 0 1 0 0 0
0 0 0 cosθx cosθy 0
0 0 0 −cosθy cosθx 0
0 0 0 0 0 1


, (4.12)

where the direction cosines, cosθx and cosθy, are defined by equations4.6and4.7.

A distributed load assigned to a beam element can either be directedperpendicular to
the element (as in the self-weight case or the linearly sloping loads in the second example
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Figure 4.1: Sign convention for local forces on a beam element.

above),parallel to the element (just like a linearly distributed axial load in the truss
case), or in theGlobalX or GlobalY directions. Note that loads given in theLocalY and
LocalX directions will be taken as equivalent to theperpendicular andparallel cases,
respectively. Forperpendicular loads a positive magnitude indicates that the load points
in the direction of positive ˆy. A positiveparallel loads point from node 1 to node 2 as in
the truss case. Similarly, the sign convention for loads in the global directions follow the
sign convention of the global coordinate axes. Each beam element is limited to two applied
distributed loads.

After displacements are found, six internal force quantities are computed for each beam
element. These quantities are the axial force, shear force and bending moment at both
nodes. The sign convention for these forces is shown in Figure4.1. This convention is
based on a coordinate system in which the local x-axis, ˆx, points from node 1 to node 2. As
zandẑalways coincide for the 2d beam element, and we define the positive z-axis to point
out of the page, ˆy = z× x̂.

The three beam type elements (beam, beam3d andtimoshenko) all are capable of re-
solving hinged boundary conditions for the rotational degrees of freedom. The adjustment
is made to the element stiffness matrix in global coordinates according to the following
procedure. Given a hinged DOF,do f, then for all entries ink (the element stiffness matrix)
not associated withdo f (all entries not in row or columndo f),

k(i, j) = k(i, j)− k(do f, j)
k(do f,do f)

k(i,do f). (4.13)

The inherent problem in this method of dealing with hinged conditions is that we cannot
calculate any displacements associated with the hinged DOF and thus, the internal forces
calculated for any element with a hinged node will not be correct. Displacements other
than at the hinged DOF will be accurate.
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4.2.2.2 Arbitrarily oriented three-dimensional element

Like their 2-d special case cousins, three-dimensional beam elements are two-node linear
elements. 3-d beams however, can carry forces in any of the six DOFs - axial (local x-
direction), vertical shear (local y-direction), horizontal shear (local z-direction), rotation
about the x-axis (torsion), rotation about the y-axis (out-of-plane bending) and rotation
about the z-axis (in-plane bending). Both the elastic and shear moduli (E and G) must
be specified for a 3-d beam element. The cross-sectional area (A), torsional moment of
inertia (J), Iyy moment of inertia (Iy) andIzzmoment of inertia (Iz) must also be specified.
beam3d elements can define either a lumped or consistent local mass matrix. The lumped
formulation includes entries at every DOF (i.e., there is an inertia entry at rotational DOF)
just like the two-dimensional beam.

The local coordinate system used for the FElt 3-d beam element is based on the element
geometry presented in [13]. Positivex̂ points from node 1 to node 2. Then, ˆy is defined
by the cross product ofz and x̂ (global z and local x), i.e., ˆy = z× x̂. ẑ is selected such
that it is orthogonal to the ˆx-ŷ plane,ẑ= x̂× ŷ. Given this geometry, clockwise moments
and rotations about ˆy are positive; for moments and rotations about ˆz, counter-clockwise is
defined as positive.

Local internal forces calculated for each 3-d beam element include all six forces at both
nodes (twelve total forces for each element). A distributed load on a 3-d beam can be
directedparallel (LocalX is equivalent) or in theLocalY, LocalZ, GlobalX, GlobalY,
or GlobalZ directions. Aparallel load will be taken as a linearly distributed axial force.
Like beam elements, the sign convention for distributed loads is based on the appropriate
coordinate axes system. Positiveparallel loads point from node 1 to node 2. Positive
loads in the local directions point in the direction of of the positive ˆyandẑaxes, respectively.
The sign conventions for loads in the global directions follow the global coordinate axes.
beam3d elements are limited to at most three applied distributed loads.

4.2.3 Timoshenko beam element

The Timoshenko beam element currently in the library is really intended as a well-worked
example of how to add an element to the FElt system (see Chapter13). It is limited to
in-plane behavior and does not support an axial degree of freedom.

There are lots of approaches to defining an element using Timoshenko beam theory.
Classic examples can be found in [10, 15]. The formulation we use is from [4]. In all
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formulations, the stiffness matrix is defined as

k =
EI

(1+φ)L3


12 6L −12 6L
6L (4+φ)L2 −6L (2−φ)L2

−12 −6L 12 −6L
6L (2−φ)L2 −6L (4+φ)L2

 . (4.14)

In the above equation,φ is defined as the ratio of the bending stiffness to shear stiffness,

φ =
EI

κGA
. (4.15)

κ is the shear coefficient from Timoshenko beam theory. Cowper [2] provides an approxi-
mation forκ based on Poisson’s ratio,

κ =
10(1+ν)
12+11ν

, (4.16)

if a better estimate is not available. This approximation will automatically be assumed if
you providenu rather thankappa in the material property for a Timoshenko beam element.
Because there is no axial DOF in this formulation, you need to be careful about horizontally
oriented elements; nothing will be assembled into the translational x DOF in these cases so
you should be extra careful about constraints. The lumped mass matrix for thetimoshenko

element looks just like that for the 2-d Euler-Bernoulli element (eq.4.10), minus the axial
DOF of course. The definition of the consistent mass matrix varies from one formulation
of Timoshenko theory to the next. The definition in the formulation that we are using is
considerably more complicated than the Euler-Bernoulli formulation; see [4] for details.

Distributed loads ontimoshenko elements can only be directed in theperpendicular
(equivalent toLocalY) direction. (There are no axial DOF after all). The sign conventions
for these loads and for internal forces is the same as that for the standard beam element.
The internal forces calculated will be the shear forces and bending moment at each end.

4.2.4 Constant Strain Triangular (CST) elements

Two different CST elements are in the FElt library - one for plane stress analysis and
one for plane strain analysis. This means that the only difference between the two is that
the constitutive matrix,D, used in the element stiffness formulation is different for the
two cases. A CST element is a three-node, two-dimensional, planar element. Each CST
element should exist completely in a single x-y plane. The node numbers must be assigned
to a CST element in counter-clockwise order to avoid the element having a negative area.
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The lumped mass matrix for a CST element is formed simply by dividing the mass of
the element equally between the three nodes, i.e.,

ml =
ρAt
3



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


, (4.17)

whereA is the computed planar area of the element (not the area as defined by the material
propertyA=). There is no consistent mass formulation available for the current set of CST
elements.

Six stress quantities are computed for each CST element:σx, σy, τxy, σ1, σ2, θ, where
σx, σy, τxy, are the stresses in the global coordinate system,σ1, σ2 are the principal streses,
andθ is the orientation of the principal stress axis. A distributed load on a CST element is
taken as an in-plane surface traction. Valid directions for loads areGlobalX andGlobalY.
The sign convention for load magnitude follows the orientation of the global axes. Loads
which are perpendicular or parallel to element sides which are not parallel to one of the
global axes must be broken down into components which are parallel to the axes and then
specified as two separate loads.

4.2.5 Two-dimensional isoparametric elements

4.2.5.1 General four to nine node element

Like CST elements, isoparametric elements are available for either plane strain or plane
stress analysis. Isoparametric elements are 2-d planar, quadrilateral elements with nine
nodes. Any of the last five nodes are optional, however and the fourth node can be the third
node repeated. The numbering convention is shown in Figure4.2. If any of nodes 5 - 9 are
left out, their place must be filled with a zero in thenodes=[ ...] specification for that
element (i.e. you must always specify nine numbers, it is simply that any or all of the last
five might be specified as zero). None of the first four nodes can be zero. If the fourth and
third nodes are the same, then the element will be degenerated to a triangle. In this case
nodes 5 - 9 must be zero.

Currently, no stresses are computed for the generalized isoparametric element. Dis-
tributed loads on the generalized isoparametric element are ignored and do not affect the
problem solution in any way.
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Figure 4.2: Node numbering scheme for nine node isoparametric planar element.

4.2.5.2 Simple four node element

quad PlaneStress andquad PlaneStrain elements are just like the generalized isopara-
metric elements described above, but they can only have the first four nodes. They are
intended to make problem definition easier in cases where the added accuracy that the ad-
ditional nodes offer is not worth the extra effort. Like the generalized case, if the fourth
node is the same as the third node the element will be degenerated into a triangle. This
allows for easy mixing and matching of element shapes without changing element types
(though this too would be allowed).

Distributed loads on the four node isoparametric elements work exactly as they do in
the CST case. The stresses computed for each four node isoparametric are also the same as
those computed for CSTs.

Like CST elements, only a lumped mass formulation is available for the mass matrices
of isoparametric quadrilateral elements. The lumped formulation is generated by lumping
the total mass of the element equally at the four nodes (or the three nodes if the element is
being degenerated into a triangle).

4.2.6 Plate bending element

The plate bending element in FElt is a simple four node isoparametric quadrilateral that
uses selective reduced integration to prevent shear locking. The classic reference for this
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Figure 4.3: Sign convention for force resultants on an htk element.

approach is [10]. The effect is achieved simply by using one-point Gaussian quadrature to
under-integrate the shear contribution to the stiffness where two-point quadrature is used
on the bending contributions.

htk elements must exist entirely in the x-y plane; the three DOF at each node each
represent out of plane deformation. Rotations are positive in the right-hand sense. You can
generate plate bending triangular elements by usinghtk elements with the third and fourth
nodes being equal (just like you can generate triangles from isoparametric quadrilateral
elements). Mass matrices forhtk elements also work the exact same way as the mass
matrices for the in-planequad PlaneStress andquad PlaneStrain elements.

Figure4.3 illustrates the sign convention for the internal force resultants calculated for
eachhtk element.
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Figure 4.4: An example of valid node ordering on a brick element.

4.2.7 Solid brick element

The eight-node solid brick element in FElt is based on an isoparametric formulation using
linear shape functions. The element incorporates all three translational DOF at each node
for a total of 24 local degrees of freedom. The 24×24 element stiffness matrix is evaluated
using a fourth-order accurate 2×2×2 Gaussian quadrature rule. This formulation results
in stress calculations at eight integration points. Figure4.4 shows the local node number-
ing convention for bricks. As the figure illustrates, nodes 1-4 and nodes 5-8 must define
opposite faces.

All six independent components of the stress tensor are calculated for brick elements.
Brick elements are still somewhat limited, however, in that distributed loads are not handled
and element definition routines do not calculate a mass matrix. Also, note that because
brick elements are the only solid elements in the FElt library, they are also the only elements
which are not fully supported byvelvet, both in terms of problem definition and in terms of
post-processing.
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4.2.8 Axisymmetric elements

The axisymmetric element is a three node triangular element based on linear shape func-
tions. The axis of symmetry/revolution is always the y-axis. Distributed loads can be
directed in either theaxial (y) or radial (x) directions.

4.3 Thermal analysis elements

Thermal elements only have one degree of freedom per node, the nodal temperature. Pre-
scribed and initial temperatures are assigned using constraints,Tx=, andiTx=. Heat sources
are specified using nodal forces (Fx=). For uniform heat sources, simply apply the same
force to all nodes.

4.3.1 Rod element

The rod element is a two node straight line element for thermal analysis. Convection sur-
faces are specified using distributed loads. The direction of the load does not matter and
does not need to be specified. The node, magnitude pairs of thevalues definition of the
load are used to specify the surface on which the convection is taking place and the con-
vection coefficient and free stream temperature. For examplevalues=(1,20) (2,50)

specifies a convection coefficient of 20, a free stream temperature of 50, and that the con-
vection acts over the circumferential surface area of the rod. If the node values are equal in
the two pairs then the convecting surface is taken to be an exposed end of the rod.

4.3.2 Constant Temperature Gradient (CTG) element

Thectg element is a thermal analog to the CST triangular elements for mechanical prob-
lems. The temperature is assumed to vary linearly over the element. As withrod elements,
convection onctg elements is specified using distributed loads. Only the three edges are
handled. The node, magnitude pairs of thevalues definition of the load are used to specify
the edge on which the convection is taking place and, as for the rod, the convection coef-
ficient and free stream temperature. For actg element the definitionvalues=(1,20)
(2,50) specifies a convection coefficient of 20, a free stream temperature of 50, and that
the convection acts on the edge defined by local element node numbers 1 and 2.



Chapter 5

The felt Application

5.1 Usingfelt

The basic way to solve a problem withfelt is simply to typefelt foo.flt on the com-
mand line, wherefoo.flt is the name of a FElt input file. There are several command line
options, however, which offer additional capabilities.

-version display the current version number offelt and exit.

-help display a brief help message which lists all of the available command line
options.

-debug will generate a FElt file, that if all is working well, should look exactly like
the original input file. The generated file represents what the application
thinks it was given.

-preview produces an ASCII rendering of the problem geometry. The graphics may
not be great but the result is often good enough for a simple sanity check.

-renumber will invoke a Gibbs-Poole-Stockmeyer/Gibbs-King automatic node renum-
bering algorithm for bandwidth/profile reduction of the global stiffness ma-
trix (and mass and damping matrices in transient analysis). The renumber-
ing will only affect solution time and memory requirements; results will be
referenced to the originally assigned node numbers. Generally there is no
benefit in using this capability for problems with small numbers of nodes.

+table disables tabular output for transient and spectral analysis problems.

41
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-plot generates an ASCII character based plot (or plots) of results for transient or
spectral analysis problems.

-transfer only calculate the transfer functions during spectral analysis. The output
can be graphical and/or tabular depending on theplot andtable options.

-eigen in a modal analysis problem, only calculate the eigenvalues (natural fre-
quencies) and eigenvectors (mode shapes) before quitting (i.e., do not cal-
culate modal mass, damping and stiffness matrices).

-orthonormal

use orthonormal mode shapes to calculate modal mass, damping, and stiff-
ness matrices in a modal analysis problem.

-matrices will print the global matrices that are appropriate to this problem. In static
analysis this would simply be the stiffness matrix; in transient analysis this
is the stiffness, damping, and mass matrices; in modal analysis, this is the
condensed stiffness, damping, and mass matrices.

-summary will generate a summary of all the material properties that were used in the
problem. The number of elements using a material, total length, surface area
and mass of that material (if masses are desired, then the material properties
definition must include a density) and the total mass of the structure are
given.

-graphics foo1

will create a graphics file called foo1 so the user can visualize the structure
with a standard graphing package to make sure that everything is connected
where it should be. The format of this file will be a list of coordinate triplets
connecting each element, with blank lines delimiting the end of an element.

-cpp filename

substitutefilename for the pre-processor to run on the input file.

-nocpp do not run the input file through the pre-processor.

-Idirectory

add directory to the standard search path for include files in the pre-
processor.

-Uname undefine the macroname in the pre-processor.
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-Dname=value

definename to be the macrovalue in the pre-processor.

Additionally, every FElt file that is run throughfelt is pre-processed by the C preproces-
sor (except in DOS). This allows for the use of macro definitions and include files within
a FElt input file. An example of this capability is the international translation files which
allow you to specify a FElt input file in a language other than English. These translation
files are nothing more than include files which contain#define statements which map the
non-English terms to what FElt actually expects (the regular English terms). An input file
that takes advantage of these powerful features might look like this:

#include "german.trn"

#define map(x) ((x)*(cos((x))*cos((x)) + sin((x))*sin((x))))

problembeschreibung

titel="A cantilever beam" knoten=3 elemente=2

knoten

1 x=0 y=0 krafte=point_load zwangsbedingung=pin

2 x=map(240) y=0

beam elemente

1 knoten=[1,2] material=steel

materialeigenschaften

steel e=30e6 ix=100 a=10

kraefte

point_load fy=-1000

zwangsbedingungen

pin tx=c ty=c rz=u

ende

The C preprocessor options and capabilities are described more fully in thefelt(1fe) manual
page. The international translation capability is discussed more fully (including current
translation tables) in appendixA.
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5.2 Solving a problem

As mentioned above the easiest way to solve a problem is to simply do

% felt foo.flt

at the shell prompt . If you want to save the output it is easy to simply re-direct standard
output to a file by doing

% felt foo.flt > foo.results

Th file foo.results could then be printed using whatever printer facilities exist at your
site (lp, lpr, print, etc.) If you want to plot the structure, the command line might look like
this:

% felt -graphics foo.graph foo.flt > foo.results

% myplotter foo.graph

The filefoo.graph could then be used with a program likegnuplot, xmgror xgraph(here
we used a mystical program calledmyplotter) to visualize the structure and make sure that
all the elements were connected properly.

5.3 Interpreting the output from felt

The output fromfelt is the most basic form of output that all applications in the FElt system
produce. That is, no matter how you specify and solve a FElt problem (either withfelt or
velvet) the basic output will look the same.

The main output will vary depending on the analysis type defined in the input file.
In addition to the results from the specific analysis, supplemental kinds of output which
are available include material usage statistics, debugging information, and print-outs of
the global stiffness and mass matrices. Supplemental output fromfelt is controlled via
command line switches (see section5.1).

5.3.1 Static analysis

For a static analysis problem there are three sections of output: nodal displacements, ele-
ment stresses and reaction forces. The nodal displacements are given in a table with the six
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global DOF running across the top and the list of nodes going down. The displacement of
each node in each DOF is printed. Of course in most problems not all DOF will be active
so many of the displacements will simply come up as zero.

The information in the element stress table will vary depending on the element type.
Each row contains up to six columns of information; if an element calculates more than six
stresses or loads, the information for that element will take up more than one row (beam3d
elements for instance have 12 loads calculated and thus the information for each element
takes up two rows). The output format for each element type is summarized in Table5.1.

Element col 1 col 2 col 3 col 4 col 5 col 6

truss σx

beam f 1
x f 1

y m1
z f 2

x f 2
y m2

z

beam3d f 1
x f 1

y f 1
z m1

x m1
y m1

z

f 2
x f 2

y f 2
z m2

x m2
y m2

z

timoshenko f 1
y m1

z f 2
y m2

z

CSTPlaneStress σx σy τxy σ1 σ2 θ
CSTPlaneStrain σx σy τxy σ1 σ2 θ
quadPlaneStress σ1

x σ1
y τ1

xy σ1
1 σ1

2 θ1

...
...

...
...

...
...

σ4
x σ4

y τ4
xy σ4

1 σ4
2 θ4

quadPlaneStrain σ1
x σ1

y τ1
xy σ1

1 σ1
2 θ1

...
...

...
...

...
...

σ4
x σ4

y τ4
xy σ4

1 σ4
2 θ4

htk mxx myy mxy qx qy

brick σ1
xx σ1

yy σ1
zz τ1

xy τ1
yz τ1

zx
...

...
...

...
...

...

σ8
xx σ8

yy σ8
zz τ8

xy τ8
yz τ8

zx

Table 5.1: Contents of the stress vector for different element types.

The reaction force section contains the global forces calculated at each constrained
DOF. The first column indicates the global node number at which this reaction occurs, the
second column contains the DOF at which this force is applied and the last column gives
the magnitude of this reaction force.

If we were to save the input file from the detailed example of section3.3 to a file
mixed.flt then the command

% felt -summary mixed.flt > mixed.result
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would produce a file,mixed.result, which looked like the following.

** Mixed Element Sample **

Nodal Displacements

-----------------------------------------------------------------------------

Node # DOF 1 DOF 2 DOF 3 DOF 4 DOF 5 DOF 6

-----------------------------------------------------------------------------

1 0 0 0 0 0 -0.0032019

2 0 -0.011522 0 0 0 0

3 0 0 0 0 0 0.0032019

4 0 0 0 0 0 0

Element Stresses

----------------------------------------------------------------------------

1: 0 29942 0 0 57.587 0

2: 0 57.587 -59654 0 29942 0

3: -2.4196e+08

Reaction Forces

-----------------------------------

Node # DOF Reaction Force

-----------------------------------

1 Tx 0

1 Ty 29942

1 Tz 0

2 Tz 0

3 Ty 29942

3 Tz 0

4 Tx 0

4 Ty 115.17

4 Tz 0

4 Mz 0

Material Usage Summary

--------------------------

Material: steel

Number: 2

Length: 12.0000

Weight: 0.0000

Material: spring
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Number: 1

Length: 10.0000

Mass: 0.0000

Total mass: 0.0000

5.3.2 Transient analysis

The output for transient analysis is much simpler. It can consist of a table listing
times and nodal displacements for all the nodes and DOF which were specified in the
analysis parameters section (or multiple tables if everything will not comfortably fit
across one screen width) and/or a time-displacement ASCII character plot relating the same
information in a graphical sense (or mulitple plots if there are more than ten nodes/DOF).
Tabular output is the default. You can disable it with the command line switch+table. To
see graphical output use-plot.

If we were to save the input file from the detailed example of section3.4 to a file
transient.flt then the command

% felt -plot transient.flt > transient.result

would produce a file,transient.result, which looked like the following.

------------------------------------------------------------------

time Tx(8)

------------------------------------------------------------------

0 0

0.05 0.00077749

0.1 0.028323

0.15 0.10137

0.2 0.23788

0.25 0.45923

0.3 0.76125

0.35 1.1366

0.4 1.5518

0.45 1.9716

0.5 2.352

0.55 2.6652

0.6 2.8977

0.65 3.0442

0.7 3.1074
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0.75 3.08

0.8 2.9652

0 1.5537 3.1074

+------------------------------+-----------------------------------+

|

0 x

|

0.05 x

|

0.1 x

|

0.15 | x

|

0.2 | x

|

0.25 | x

|

0.3 | x

|

0.35 | x

|

0.4 | x

|

0.45 | x

|

0.5 | x

|

0.55 | x

|

0.6 | x

|

0.65 | x

|

0.7 | x

|

0.75 | x

|

0.8 | x

|

x x x Tx(8)
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5.3.3 Modal analysis

The output from a modal analysis of a simple one story frame is shown below. Note that
the-matrices command-line switch was used to generate supplemental output (the ma-
trices prints before the results from the actual analysis) and that the-eigen switch was not
activated so full modal analysis was performed. The actual modal analysis results consist
of a listing of modal frequencies, a table of mode shape vectors (the eigenvectors)1, the
modal mass, damping, and stiffness matrices and the damping ratios in each mode.

M =

15.62 0 0 0 0 0

0 15.62 0 0 0 0

0 0 8.558e+04 0 0 0

0 0 0 15.62 0 0

0 0 0 0 15.62 0

0 0 0 0 0 8.558e+04

C =

194.8 0 720 -184.6 0 0

0 801.7 170.4 0 -1.049 170.4

720 170.4 1.123e+05 0 -170.4 1.846e+04

-184.6 0 0 194.8 0 720

0 -1.049 -170.4 0 801.7 -170.4

0 170.4 1.846e+04 720 -170.4 1.123e+05

K =

9.711e+04 0 3.6e+05 -9.231e+04 0 0

0 4.005e+05 8.521e+04 0 -524.4 8.521e+04

3.6e+05 8.521e+04 5.446e+07 0 -8.521e+04 9.231e+06

-9.231e+04 0 0 9.711e+04 0 3.6e+05

0 -524.4 -8.521e+04 0 4.005e+05 -8.521e+04

0 8.521e+04 9.231e+06 3.6e+05 -8.521e+04 5.446e+07

** Modal Analysis Example **

Modal frequencies (rad/sec)

------------------------

Mode # Frequency

------------------------

1The current version offelt cannot generate a graphical representation of the mode shapes. See the dis-
cussion of mode shape plotting in chapter8 for an example of howvelvetcan generate these kinds of plots.
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1 12.049 ( 1.9177 Hz)

2 22.807 ( 3.6299 Hz)

3 30.09 ( 4.7889 Hz)

4 110.14 ( 17.529 Hz)

5 160 ( 25.465 Hz)

6 160.21 ( 25.499 Hz)

Mode shapes

--------------------------------------------------------------------------

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

--------------------------------------------------------------------------

1 1 1 1 1 1

0.003005 7.4866e-16 -0.011436 -6.6597e-17 -1.9981e+16 13775

-0.007032 -0.50358 0.025963 0.00036256 -0.012534 1.1007

1 -1 1 -1 3.667 1

-0.003005 -4.565e-15 0.011436 1.0303e-16 -1.9981e+16 -13775

-0.007032 0.50358 0.025963 -0.00036256 -0.041164 1.1007

modal M =

39.71 0 0 0 0 0

0 4.344e+04 0 0 0 0

0 0 146.6 0 0 0

0 0 0 31.27 0 0

0 0 0 0 1.248e+34 0

0 0 0 0 0 5.93e+09

modal K =

5766 0 0 0 0 0

0 2.259e+07 0 0 0 0

0 0 1.328e+05 0 0 0

0 0 0 3.794e+05 0 0

0 0 0 0 3.194e+38 0

0 0 0 0 0 1.522e+14

modal C =

13.12 0 0 0 0 0

0 4.693e+04 0 0 0 0

0 0 271.4 0 0 0

0 0 0 760 0 0

0 0 0 0 6.393e+35 0

0 0 0 0 0 3.047e+11
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-------------------------

Modal damping ratios

-------------------------

1 0.01371

2 0.02368

3 0.03075

4 0.11032

5 0.16013

6 0.16034

5.3.4 Thermal analysis

The result from a static thermal analysis is a simple table showing the node number and
corresponding steady state temperature value; thermal stresses are not computed.

Output for transient thermal analysis can be tabular and/or graphical. The tabulated
results simply show the temperature as a function of time for whatever nodes were listed
in thenodes= specification of the analysis parameters (nodofs= specification is necessary
in transient thermal analysis). If you specify the-plot option on the command line then
felt will generate a simple ASCII plot of time versus temperature for these same nodes of
interest. Just as with transient structural analysis, tabular output can be turned off witht the
+table command-line switch.

5.3.5 Spectral analysis

Depending on howfelt is invoked and the nature of the problem, the output for a spec-
tral analysis problem can either consist of transfer functions or of output spectra. If
the -transfer switch is given on the command line then all output will be for trans-
fer functions only. The transfer functions computed will be for all combinations of out-
put at the nodes and DOF defined by thenodes= anddofs= statements in theanalysis
parameters section of the input file and input at all DOF with a force applied. For exam-
ple, if you define nodes 2 and 4 and DOF Tx and Ty as the relevant DOF in the analysis
parameters and there is force object with Fx and Fy non-zero applied to both nodes 3 and
7, then you will get sixteen transfer functions as results. If the input forcing is defined in
a spectral sense (e.g., withSfx=) then you can also compute the output spectra at the out-
put DOF due to input at any forced DOF with spectral inputs. This is the default behavior
when the-transfer switch is not specified on the command-line. If none of the forces in a
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problem have non-zero spectral input components then the only solution that is non-trivial
is with the-transfer switch invoked.

Just like for transient analysis, the output for spectral analysis (either transfer functions
or output spectra) can be tabular and/or plotted. ASCII plots of transfer functions or output
spectra (whichever are appropriate for the current problem) are generated if the-plot

switch is specified. Tabular output is generated by default and can be turned off with the
+table switch.



Chapter 6

UsingWinFElt

6.1 Introduction to WinFElt

The primary feature of the mainWinFElt window is a standard text editor.

6.2 Solving a problem

Depending on what you want your solution to include, there are a couple of different ways
to go about solving a FElt problem from withinWinFElt. In addition to the standard tabular
type FElt output you can also haveWinFElt generate two-dimensional color shaded stress
or displacement plots and/or plots of the structure with magnified displacements applied.
For transient analysis problems graphical time-displacement or time-temperature plots are
available; in spectral analysis problems, plots of the transfer functions or ouput spectra are
available.

All of the WinFElt output windows have aFile menu from which you can save or print
the results in that window. Line graphs are saved in Windows Metafile format (WMF) and
color contour plots are saved as Windows bitmaps (BMP) Text output can be saved as an
ASCII file. Once an output window is closed there is no way to bring the window back up
without resolving the problem.

One way to solve a problem is to select thesolve option from theSolutions menu.
By default, this simply generates the standard FElt tabular output in a text output window
(figure6.2). This window will contain either the mathematical solution of your problem or
the syntax errors encountered in solving the problem.

53
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Figure 6.1: MainWinFElt editor with a sample problem.

Figure 6.2: The text output box.
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Figure 6.3: The solution control box.

For more control over what gets generated whenever you solve a problem you can
use the output control dialog box (figure6.3), available by selectingControls from the
Solutions menu. The toggle buttons and controls in this dialog box control all of the
available solution and output options, both text and graphical.

The toggles in the top-left corner determine the basic type of output that you would like
to generate – tabular (available for all problem types), line graphs (available for transient
and spectral problems), color contour plots (for static problems with planar elements), and
wireframe drawings (for static problem with any type of element). If appropriate, multiple
toggles can be selected for any given problem solution.

The next grouping of toggles are specific to spectral and modal analysis and control
exactly what types of results get generated during those analyses.

The final grouping of toggle buttons on the left side of figure6.3allows for the inclusion
of ancillary information in the tabular text-based output. Not all of these toggle buttons
will have an effect on solutions of every analysis type – for instance, global matrices are
not available in the solution of a nonlinear problem and the static analyses currently do not
print any details.
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6.3 Text output

The text output fromWinFElt is the most basic form of output that all applications in the
FElt system produce. That is, no matter how you specify and solve a FElt problem (either
with felt, velvet, or WinFElt) the same kind of text output is available. Chapter5 details the
interpretation of this basic output form.

6.4 Graphical output

6.4.1 Contour plots

The controls for color contour plots are available on the right side of the main controls dia-
log (6.3). The two radio buttons control whether element stress or nodal displacements are
used as the basis for the interpolation. For stress plots, the interpretation of the component
number is element specific and must be a valid index in the stress vector for each element
type in the problem. Consult Table5.1 for details on what the stress vector consists of for
each element type. For displacement plots, the component is simply the displacement DOF
that you want to see plotted. In general, this should be one of the active global DOF for the
current problem.

Other contouring controls include toggles for histogram equalization and element
boundary overlay. Histogram equalization is a standard technique in image processing
for enhancing the contrast of images. If the overlay elements toggle is checked then the
outline of all the elements in the problem will be drawn in black on top of the color im-
age. An example of stress contours (rendered here in greyscale) for the wrench example
supplied withWinFElt is shown in figure6.4. Note that both histogram equalization and
element overlay were enabled for this plot.

6.4.2 Line graphs

6.4.3 Wireframe drawings

Most of the controls for wireframe drawing are specific to three-dimensional visualization.
The three sliders control the rotation of the drawing about the three spatial axes. The
magnification determines the multiplicative factor by which nodal displacements will be
increased before the nodes are plotted. z scaling controls the front to back aspect ratio of
the resulting plot.
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Figure 6.4: A color contour plot showing the principal stress component in a static problem using

constant strain triangular elements

.
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Figure 6.5: A time-displacement plot inWinFElt

.

Figure 6.6: An example of a displaced structure plot.
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Chapter 7

The velvetApplication

7.1 Introduction to the velvetGUI

velvetwas designed as the primary user interface to the FElt system. Generally, if the FElt
system can solve a given problem, you will find it easier to specify, solve and analyze the
results for that problem right within thevelvetGUI. velvetembodies all of the mathematical
features of FElt, as well as graphical pre- and post-processing and element generation.

The mainvelvetwindow consists of three major areas (Figure7.1). The first is the list
of menu buttons down the left side of the window. This is the main control area for all of
the operations invelvet. The second is the command/status line across the bottom of the
window. This line is used to display messages and for keyboard based input. The third is
the drawing area, which occupies most of the window. This is the area in which you can
dynamically define and interact with the FElt problem.

The menus are used to define everything about a problem (nodes, elements, forces,
constraints, material properties, distributed loads), to configurevelvet, to use the drawing
tools, to configure the drawing area and to save, open and solve problems.

7.2 General features of the interface

Many of the interface modules that you will see invelvetlook very similar to one another.
Becoming familiar with a few basic operations that are common across all of these modules
will allow you to usevelvetmuch more easily and flexibly.

In general, clicking anacceptbutton will register the current state of a dialog with the
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Figure 7.1: Mainvelvetdrawing area with an interesting sample problem.
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rest of the application. Say you have a dialog with a few toggle buttons and a couple of
entry blanks. You could change the button states and type things into the entry blanks all
you wanted without actually affecting the rest ofvelvet. Once you clickaccept, however,
all of your changes become effective. This behavior is similar to anokay button in many
GUIs; the difference is thatacceptwill not cause the dialog box to disappear. You will
need to click thedismissbutton to do that.

Where there is ahelp button, you can click and hold it to view a brief help message
about that dialog. In some dialogs, additional help is available by clicking and holding
over special labels. This type of help will be discussed in more detail later.

A final factor that is common across GUI components is the idea of multiple mecha-
nisms. In general, there are three different ways that you can perform an action invelvet.
The first is by the standard point, click, and drag operations of the mouse. The second is
through keyboard shortcuts. The third is by entering commands or data into the command
window at the bottom of the main drawing area. For the most part, we will limit our initial
discussion to the mouse operations. Section7.10presents a summary of the equivalencies
between the different interface methods for those of you who want to becomevelvetpower
users. For now, it should be enough to know that whenevervelvetprompts you for a co-
ordinate you can either click in the drawing area or type in anx,y pair in the command
window (followed by a return of course). Similarly if you are being asked to select an
element or node; you can either type in the appropriate number or click on the appropriate
object.

7.3 Working with files

If you already have a FElt input file defined, the easiest way to start working with that
file is by specifying the filename on the shell command line when you invokevelvet. For
example,

% velvet foo.flt

Will start velvetand automatically load in the filefoo.flt. The drawing area will be
initially configured to some reasonable values to allow you to view the entire problem. If
this file was saved fromvelvetthen it will contain special sections that describe all of the
figures and the configuration of the drawing area when the file was saved.velvetwill use
this information to reconstruct all of these things exactly as you left them.



64 CHAPTER 7. THE VELVET APPLICATION

Figure 7.2: Thevelvetfile selection mechanism.

Alternatively, you can invokevelvetwith no filename and then use the standardvelvet
file selection mechanism to load a file. Selectopen from thefile menu. This will bring
up a dialog box that looks something like the one shown in Figure7.2. This dialog is the
standard way for you to specify filenames (either for loading or saving problem files or
graphical dumps). Within this dialog you can choose a file either by typing into the entry
box at the top of the dialog or by clicking on a filename in the list with the first mouse
button. Clickingokay will finalize your selection. You can maneuver through directories
by selecting them and clickingokay just like files. An alternative to selecting an entry
then clicking theokay button is to click on list entries with the middle mouse button. This
will instantly select that entry (or move to that directory). Clicking thecancelbutton will
dismiss the file selection dialog without making a selection.

Additional entries on thefile menu should appear familiar to most users of modern GUI
applications. Choosingnew will erase the current problem and allow you to start with a
blank slate. You’ll be prompted if there is a chance that you might lose some unsaved
changes to the current problem.savedoes just what it says; if the current problem does not
have a filename already associated with it, choosingsaveacts likesave as, otherwise it will
silently save the current state of the problem to the associated file. The current filename
is always displayed as the title in the window manager title bar.save asallows you to
name the file that the problem will be saved to. After saving through asave asaction, this
filename becomes the current filename for this problem. Therestore option is equivalent
to selectingopen and choosing the current input file (i.e., it simply reloads the currently
named input file).exit quits velvetentirely; you will be prompted if you have unsaved
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changes.

Note that whenvelvetsaves a file, it will consist of the standard sections of a FElt file
plus special sections that describe the appearance of the drawing area. These ancillary
sections contain information that allowsvelvetto reconstruct the drawing area (including
tool figures, canvas configuration options and zoom state) when the corresponding FElt
file is loaded back intovelvet. You should never have to worry about whether or not such
information exists. If a file with these sections is run throughfelt the information simply
will be ignored. If the information does not exist and you load the file intovelvetthenvelvet
simply will make a best guess as to how to configure the main canvas area. The advantage
to having such a plain text description of the drawing area is that you can change this
information outside ofvelvetif you want to make quick changes to the problem appearance
but do not want to loadvelvetexplicitly. Such an arrangement also allows you to easily
create defaults files which you can use to start-upvelvetwith your preferred configuration.

7.4 Configuring the drawing area

7.4.1 Basic controls

The primary means for setting up the drawing area is through theconfigure dialog under
thecanvasmenu (Figure7.3). The left side of this dialog deals primarily with the minimum
and maximum coordinates of the drawing area, the snap size and the grid size. The right
side allows you to specify the colors and fonts to use for the different objects that appear
in the drawing area. The label font is used for node and element numbers. Also included
on theconfiguredialog are toggle buttons to control the status of snap, grid, element num-
bering and node numbering. Note that these four toggles are also available by selecting the
appropriate entry right on thecanvasmenu. You must clickaccept to make any of your
changes active.

As mentioned above, thesnapandgrid options act as toggle switches for these common
drawing aids. For those unfamiliar with these terms,grid produces a ruled grid across the
drawing area to help you locate yourself as you work andsnap insures that mouse selected
coordinates will fall on regular fractions (i.e., a snap size of 0.25 insures that all of your
selections will be rounded to the nearest quarter unit). Note that the grid size (the spacing of
the rulings on the screen) and the snap size (the fraction to which your selected coordinates
will be automatically rounded) are controlled separately by entries in theconfiguredialog.
The node numbersoption acts as a toggle switch for node numbering - in a crowded
problem, visible node numbers may not be helpful as they can tend to clutter the display.
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Figure 7.3: The configuration dialog box.

The same is true for theelement numbersoption. A check mark will appear next to the
menu entry if the option is enabled.

7.4.2 Object coloring

Beyond the basic node color and element color controls provided in the canvas configura-
tion dialog (Figure7.3), velvetalso allows you to assign unique colors to individual forces,
constraints, material properties and distributed loads. Selectingcolor control from the
canvasmenu will pop-up the colors dialog shown in Figure7.4. The four smaller scrolled
lists on the left list all of the attributable objects (materials, distributed loads, constraints,
forces; see section7.5) defined in the current problem. The larger list running down the
right side lists the available colors. By highlighting an entry in one of the four object lists
you can assign a color to that object.

In Figure7.4, we see from the highlighted entries that the color for the material steel
is red. Any elements with material property steel will be rendered in red on the main
drawing canvas. If we wanted to change the color for steel to yellow, we could simply click
on yellow in the colors list. There is noacceptbutton on this dialog; color assignments
take effect as soon as you select a color from the colors list. For any color changes to be
reflected in the drawing area, however, you need to click onrecolor on the bottom of the
color control dialog. Because recoloring the drawing area can be computationally intensive
it is a good idea to make all your color assignments first and then selectrecolor only once
when you are finished.

The precedence of coloring, from highest to lowest, is force, constraint, default for
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Figure 7.4: The object coloring control box.

nodes and distributed loads, material, default for elements. What this means is that if a
node has a force applied and that force has a color assigned then the node will be colored
according to the force color. If the force does not have a color assigned, but the constraint
for that node does have one then the node will be colored according to the constraint color.
If neither force nor constraint has a color assigned, then the node will be colored according
to the standard node color defined via the regular canvas configuration dialog (Figure7.3).
Element coloring works the same way.

7.4.3 Zooming

A model with a dense mesh can often be difficult to work with because it is difficult to
position the cursor exactly on top of a given node or element. The way around this problem
is to use the zoom controls to zoom in or out on a given part of the mesh. If you want to
zoom in on a selected part of your drawing just usezoom window from thecanvasmenu.
After selectingzoom window you can can define a bounding box by typing coordinate
pairs in the command window or clicking and dragging out a box with the mouse. Once
you release the mouse button or enter the secondx,y pair, velvetwill rescale the drawing
such that the portion you selected will fill the entire drawing area.

Selecting thezoom to fit option under thecanvasmenu will rescale the drawing area
such that the full extent of the problem can be viewed in the current window. If you want
to move around a zoomed drawing you can either zoom out and zoom in on a new section
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(and repeat this as needed) or you can use the scroll bars on the left and bottom sides of the
drawing area to move around a zoomed canvas.

7.4.4 Dumping the drawing area

Use thesave canvasoption under thecanvasmenu when you want to save a “snapshot”
of the drawing area. Note that this will not be a dump of the entirevelvetwindow as was
shown in Figure7.1. The drawing area only will be saved either as an XWD or a standard
PostScript file. (Figure7.11illustrating the types of drawing tools available invelvetwas
dumped with thesave canvasoption.) You select the filename through the standard file
dialog. Extra toggle buttons near the bottom of the dialog control whether the saved file
will be in XWD or PostScript format. This file could then be rendered for a presentation
or for inclusion in a report. Additional drawing tools (see section7.7) are available which
allow you to put a title, annotation or additional graphic objects in the drawing area in
addition to the standard presentation of nodes and elements. Note that because of the nature
of XWD’s, you need to make sure that no window is covering any part of the drawing area
whenever you do a dump in XWD format. This includes the file selection dialog; make
sure you move it out of the way before you clickokay.

7.5 Drawing and defining a problem

Starting with a blank slate (either by invokingvelvetwithout an input file or selectingnew
from thefile menu) you need to do several things to completely define a new problem. Say
for instance that you want to define the four node, three element, beam and truss exam-
ple problem considered earlier (Section3.3, Figure3.3). This problem uses two different
distributed loads, four different constraints, two element types and two materials. All of
these things need to be defined in order to properly solve the problem. The material prop-
erties must be defined before elements are added because an element must have a material
assigned to it. Likewise, at least one of the constraints must be defined before nodes can
be added because nodes must have a constraint assigned. In general, the procedure is to
setup whatever objects the problem might require (loads, forces, materials, constraints) be-
fore adding nodes and elements (generally nodes come first, since elements have to attach
between them).
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7.5.1 Defining attributable objects

The way that you work with these attributable objects (forces, loads, materials, constraints)
is by setting one of each as theactive object of that type. This is particularly important
for materials and constraints. When you add a node it will automatically be assigned the
active constraint and when you add an element it will automatically be assigned the active
material. If you want to set the load on an element or the force on a node, or change the
constraint on a node or material on an element, you can use theapply menu. For instance,
choosingloadsfrom this menu will allow you to apply the currently active distributed load
on an element of your choosing. To apply an object simply choose the appropriate entry
and then click on the nodes or elements which you wish to apply it to.velvetwill keep
prompting you for additional objects until you click onquit or abort. If you wish to apply
an object to a group of nodes or elements (say for instance you wanted to apply a self-
weight load to all elements in the problem) you could simply drag out a bounding box by
clicking and holding the second mouse button. If you are applying forces or constraints,
every node in this box will be assigned the active object of that type. If you are applying
materials or loads, every element completely within the box will be assigned the active
object.

You set the active object of a given type by selecting it in the appropriate dialog box.
These dialogs can be popped-up by clicking on thematerials, forces, loadsor constraints
buttons in the mainvelvetcontrol area. A picture of the constraint dialog after defining all
the constraints in our sample problem is shown in Figure7.5. Several of the features that
you see here are exactly the same in the other three dialogs. Each has a name field and a
list of all the defined objects of that type. The six buttons (help, accept, dismiss, delete,
new, copy) across the bottom are also present in all four dialogs. The main area to the right
of the list and name is used for object specific definition.

Selecting an entry in the list will display the definition for that object and it will instantly
make that object the active definition for that kind of object. It would remain active even if
you were to dismiss the dialog box. You can use the name field to either set the name when
you are defining a new object or to rename an already defined object. For example, if you
bring up the material dialog in a brand new problem, you will be faced with a completely
blank slate. You can name your first materialaluminum, define some material properties
and clickaccept. This would registeraluminum as an available material and set it as the
currently active material. Now you want to define another material property, sayspringy.
You have two options. Clickingnew will clear out all of the property fields and the name
field and you can name the new materialspringy and define its properties. Alternatively,
you can clickcopyand only the name field will be cleared. This is simply a convenient way
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Figure 7.5: The constraint dialog box.

to define a new material with properties similar to the previous material. All you have to
enter are a new name and any changed or additional material properties. In either case, you
need to clickacceptto registerspringy as a new material. If you still wantaluminum as
the active material, you simply have to selectaluminum in the list after you have accepted
springy. Finally, if you really meant to refer toaluminum by the namesteel, you can
simply change the name in the field above the list and clickaccept. It is important to
note that the basic behavior of these buttons is exactly the same in all four dialogs. Only
the object specific information (discussed in more detail below) in the right side of each
behaves differently.

To delete an object you can simply clickdelete in the appropriate dialog box. Note
thatvelvetwill not let you delete an object that is currently assigned to an element or node.
Clicking and holding thehelp button will display a brief help message for the given dialog
box.

The advantage to this mode of working with objects is that these dialogs can be left up
throughout your work session. You can have them up and easily change the active object
for a given type. There is no need to be constantly popping things up, selecting something
or changing something and then popping it down again only to need it again in 30 seconds.
If you’re sure you won’t be needing them after some initial setup, you can safely dismiss
them if you don’t like too much screen clutter.
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Figure 7.6: The material dialog box.

7.5.1.1 The material dialog

The object specific information for a material property is simply entered through the labeled
text boxes to the right of the material list (Figure7.6). Additional help regarding each
property, including a list of which elements require that property to be defined, can be
gotten by clicking on the label for the given property (i.e., click onE for a description of
Young’s modulus). If a field is left blank, that property will be taken as 0.0.

7.5.1.2 The constraint dialog

The six toggle buttons shown in Figure7.5 allow you to specify which DOFs are con-
strained by a boundary condition. If a toggle button is engaged, the corresponding text
field will also be used in constructing the boundary condition definition. If a button is en-
gaged and the text field is blank, that DOF will be fixed; if a button is engaged and that
field contains the wordhinged then that DOF will be treated as a hinge (remember, hinged
DOFs only make sense on certain element types); if a button is engaged and the text field
contains a number, then that DOF will be defined as a displacement boundary condition; if
a button is engaged and the corresponding text field has a time-dependent expression then
that DOF will be treated as time-varying BC. Finally, if a button is not engaged, then that
DOF will remain completely unconstrained.

Initial conditions for transient analysis problems are defined with the initial displace-
ment, velocity, and acceleration entries. For initial displacement and velocity conditions
empty entries are taken as 0.0. For initial acceleration conditions, empty entries are un-
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Figure 7.7: The force dialog box.

defined. The distinction is that if all of the initial accelerations are undefined then the
mathematical engine will solve for an initial acceleration vector based on the initial dis-
placement and velocity vectors. If any of the initial accelerations are specified in a problem
then any others which were left undefined will be taken as 0.0 and the mathematical engine
will use this vector as the initial acceleration.

7.5.1.3 The force dialog

The two toggle buttons at the top of the dialog toggle the display of force information
between the time domain forces (Fx ...Mz in a FElt file) and frequency domain spectral
inputs (Sfx ...Smz in a FElt file). Forces and moments (or spectra of forces and moments)
in each of the three directions can be entered in the appropriate text field. If an entry is left
blank that component of the force will be taken as 0.0. The dialog pictured in Figure7.7 is
from a model of a bicycle in which there are two static forces defined. Just like in a FElt
file, forces can be a time- or frequency-dependent function using the independent variables
t andw.

7.5.1.4 The load dialog

Figure7.8 shows what the load dialog box looks like after we have defined both of the
distributed loads used in our sample problem. The eight toggle buttons define the direction
of the load. Note that these toggles function as a radio group, i.e., only one of them can
be selected at any one time. The text fields allow you to enter node, magnitude pairs much
the same way that you would define a load in a standard FElt input file. Remember that the
node specification refers to the local element number (i.e., 1 or 2 for a beam, 1, 2 or 3 for a
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Figure 7.8: The load dialog box.

CST, etc.) Also, it is always your responsibility to make sure that the loads assigned to an
element have a valid direction and node ordering for that element type.

7.5.2 Working with nodes and elements

The first step in actually laying out the geometry of a problem is usually to lay the nodes
out (elements have to be attached to nodes after all). Let’s assume that we went through
everything above and defined all the materials, constraints, and loads in our sample problem
(there are no forces). We madesteel the active material andfree the active constraint
(we’ll deal with the loads later). Now to add a node all we have to is selectadd from
the node menu. You choose the location of the node simply by clicking in the drawing
area. A node will be created at that location (or the nearest snapped location if snap is
on). Alternatively, you can specify the exact coordinates within the command window.
You do not need to selectadd for each individual node. Once selected, you are effectively
in add node mode and can simply add additional nodes by repeatedly clicking or typing
coordinates. To stop adding nodes click on thequit or abort button in the main control
area. Most other command functions available from the main control area will be greyed
out while you add nodes. In our sample problem all we need to do is click on the location
of our four nodes. Nodes will be numbered consecutively in the order in which they were
added.

Once the nodes are down, we need to remember that all four have the constraintfree

assigned to them (it was active when we added them). So now we change the active con-
straint topin by clicking it in the constraint list, selectconstraint from theapply menu
and click on node 1. We make node 3 aroller by selectingroller on the constraint list
and applying it to the node via the apply mechanism. Similarly for the fixed condition on



74 CHAPTER 7. THE VELVET APPLICATION

node 4. We could have gotten around this by simply changing the active constraint before
we added each node. All we would have needed to do was leave the constraint dialog up
and click on the appropriate entry in the constraint list before we added the node that used
that constraint.

Before we can add the elements, we need to know how to set the element type. Like an
active object, we have to set a current element type before we can actually add any elements.
There is a distinction, however, as we cannot go back and apply a different element type
to an element. The only way to change the type of a given element is to delete it and add
a new element. We set the current element by choosingset typefrom theelementsmenu.
This will bring up a dialog similar to the standard file selection mechanism. Like the object
dialogs, the element selection dialog can be left up throughout your work session. The
current element type can be set simply by clicking on the appropriate name in the list. The
acceptbutton is simply there in case you want to type in the element name. Typingbeam3d

in the text field and clickingacceptis equivalent to simply clicking on thebeam3d entry in
the list.

Given this mechanism, the logical way to add the elements in our sample problem is
to set the current element type tobeam and add elements 1 and 2. Elements are added by
selectingadd from theelementsmenu and then clicking on nodes in the appropriate order,
or entering node numbers in the command window.velvetwill wait until you have selected
the appropriate number of nodes for the current type of element before it prompts you to
add the next element. Clickquit to stop adding elements. Clickabort if you goofed up
on an element and just want to start over for that element (e.g., if you entered the first two
nodes wrong on a CST element).

Once elements 1 and 2 are added we can change the element type to truss and add
element 3 by clicking on nodes 2 and 4. Before we did this we would probably also change
the active material tospringy (or we could just change it withmaterial from theapply
menu later).

We also still need to apply the distributed loads. All we have to do is setside1 active
by clicking it in the load dialog and apply it to element 1 from theapply menu. Then we
do the same thing forside2 and element 2.

Deleting nodes and elements (viadeleteunder the appropriate menu) must proceed in
reverse order of adding nodes and elements. That is, a node can not be deleted if an element
is still attached to it, so the element must be deleted first. Elements can be deleted freely.
Deleting multiple nodes and elements is accomplished by clicking on one after the other
(quit or abort will finish deleting) or by clicking and holding the middle mouse button and
dragging out a box containing the nodes or elements to be deleted. As in deleting one at a
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Figure 7.9: The node information and editing dialog.

time, none of the selected nodes which are still attached to elements will be deleted.

7.6 More on nodes and elements

7.6.1 Editing nodes

In addition to simply adding and deleting nodes,velvetprovides a powerful mechanism for
displaying and editing all of the information about a node. The node dialog box is shown
in Figure7.9. You can raise this dialog either by selectingedit from thenode menu or
by clicking directly on the node which you want to edit with the left mouse button. You
may want to use the former option (even though it seems a bit clumsier) in cases where
you can’t quite click on the right node. If you proceed from the menu option, you will
be prompted to either select the node with the mouse or to type the node number into the
command window. Once the dialog is up you can change the displayed node either with
the arrow keys in the dialog box, by clicking on a different node in the drawing area or
by selecting a new node through theedit option under thenodemenu. As a third option
for editing nodes you can click on a node with the third mouse button – this will raise the
node editing dialog and the constraint and force (if appropriate) dialogs with the assigned
objects for the selected node already highlighted. This is an easy way to take a complete
look at a given node; remember, however, that any changes you make to the node’s objects
will also affect any other nodes that have that object assigned to them.

The information available in the node dialog are the exact nodal coordinates, all six
nodal displacements (valid only after a problem has been solved), the lumped mass for the
node, the name of the constraint applied to the node and the name of the force (if any)
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applied to the node. The location, lumped mass, constraint and force can be modified
simply by editing the information in this dialog box. To change the applied constraint, you
can enter a new name into the text field or you can click on theconstraint label to pop-up
a menu that will let you choose from a list of the currently defined constraints. The same is
true for forces by clicking on theforce label. Note that while you can change the applied
force on a node via theforce option under theapply menu, editing the information in this
dialog is the only way to completely remove the applied force on a node. Just like the
object dialogs you need to clickaccept to make your changes effective. The rest of the
buttons on the bottom of the node dialog also behave exactly the same as the buttons on the
object dialogs.

velvetprovides two ways for you to change a node’s location. The first is by changing
the location fields in the node dialog. The second is by selectingmove from the node
menu. You can then select the node that you want to move by clicking on it, move to the
new location and click again to put it back down. Alternatively, just like you can click
the first mouse button on a node to edit, you can click on a node with the second mouse
button to pick it up, move to a new location and click again with the second mouse button
to put it back down. Note that becausevelvetis basically a package for working with two-
dimensional problems, you cannot change the z coordinate of a node in the coordinate entry
fields of the node dialog.

7.6.2 Automatic node renumbering

velvetgives you two ways to optimize the node numbering in terms of reducing the profile
of the global stiffness matrix. The first way is to selectrenumber perm from thenodes
menu. This will actually rearrange all of the node numbers in the current problem - per-
manently. Generally you would choose this option where the node numbering was not
particularly important to your own understanding of the problem. This might be the case
if the elements had been automatically generated. If, on the other hand, you have a paper
sketch of the problem which you used to setup the problem then you may not want to lose
that particular node numbering scheme.

In this latter case what you can do is toggle temporary renumbering by selectingrenum-
ber temp from thenodesmenu. This toggle is equivalent to the-renumber command line
switch in the command line applicationfelt. If this switch is on, the nodes will be renum-
bered internally during the computations, and then restored to their original numbers before
you actually see any output, i.e. the output will reflect the original numbering scheme.

Both renumbering methods have their advantages. The permanent scheme reduces over-
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Figure 7.10: The element information and editing dialog.

head if you will be solving the problem numerous times; do it once and then why waste the
time to figure out that it can’t get any better every time you try to solve it. The temporary,
internal only scheme keeps the problem and the results referenced the way that you had
originally defined it. The additional overhead of doing the renumbering each time can be
well worth it for large problems - both in terms of memory requirements and in solution
speed. For both options, the same caveat applies as in the discussion of the command line
switch in felt - for small problems, the algorithm probably won’t be able to do much if
anything in terms of profile reduction; in these cases it is probably easiest simply not to
worry about either of the renumbering options.

7.6.3 Editing elements

Editing elements is very similar to editing nodes. You can either selectedit from theele-
mentsmenu (particularly in cases where you will want to choose the element by typing in
its number) or click on an element (or its number) with the first mouse button to display the
element dialog (Figure7.10). Like the node dialog you can change the displayed elements
either with the up and down arrow buttons or by clicking on a different element with the
first mouse button. Also just like nodes, you can click on an element with third mouse
button to raise the element dialog and the object dialogs (materials and loads) with the ob-
jects assigned to that element already highlighted. Again, remember that any changes to
the assigned objects can affect other elements as well as the element currently displayed in
the element dialog.

The information displayed in this dialog includes the element type, the nodes to which
this element is attached, the material property and distributed loads assigned to this element
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and, if the problem has been solved, the stress results for this element. If an element uses
more than six nodes, you can use the side to side arrow buttons next to the node list to scroll
through them. The dialog gives you a simple mechanism for changing the nodes, material
and loads for a given element. Editing the material and loads is just like the constraint
and force fields in the node dialogs. You can either type into the text field or click on the
appropriate label and choose from a menu of currently available objects. Like forces in the
node dialog, changing the information in the element dialog is the only way to completely
remove all the loads from an element. Once again of course, you need to clickacceptto
make any changes effective. The other buttons across the bottom and their functions should
be very familiar to you by now.

7.7 Using tools

The drawing tools are intended to be aids for meshing up or annotating a problem. For
instance, you can draw a circle by selectingcircle from the tools menu and then place
nodes along the circle. The actual figure on the screen does not affect the solution of the
problem in any way.velvetwill prompt you in the command window for the necessary
coordinates for each figure type. As usual, you can choose coordinates either with the
mouse or by typing in the command window. In general, however, you must enter all of
the coordinate locations for a given figure with the same input method; what this means is
that if you enter the coordinates of the first point of a line with the keyboard then you will
have to enter the second point with keyboard input as well or, alternatively, if you select
the center of a circle with the mouse then you will have to select the radius with the mouse
as well.

Titles and comments can be entered in the drawing area by selectingtext from thetools
menu option. As mentioned earlier, the drawing area could then be dumped to an XWD and
the result could serve as documentation or a figure in a presentation, complete with color
annotation. Figure7.11 shows such a dump with examples of the available tools. Tool
color and font is controlled from theconfigure option under thecanvasmenu. In addition
to text and circles, thevelvetdrawing toolbox currently includes lines, arcs, polylines, and
rectangles.

To draw a line with the mouse you have to click at the start point and hold the mouse
button while you drag the line to the end point. Rectangles work the same way; click and
hold while you drag out a box. For circles your mouse click will select a center point, and
as you move the mouse while still holding the button, your circle will expand about that
center. When drawing polylines with the mouse, use the first mouse button to select the
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Figure 7.11: Examples of all the tools available invelvet.
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starting point by a simple click (not a click and hold). Additional end points are defined by
additional clicks of the first mouse button. You can stop adding endpoints by clicking the
third mouse button. If you want a closed polyline, you can simply click the second mouse
button andvelvetwill draw a line from your current position to the starting point of the
polyline.

Tools can be deleted from the screen just like nodes and elements, either one at a time or
with a window. Once in delete mode (selectdeletefrom thetoolsmenu), individual figures
can be selected by clicking with the left mouse button or a window can be drawn with the
middle mouse button. The delete operation proceeds untilquit or abort is clicked. Moving
a tool figure that already is drawn on the screen is also straightforward; simply selectmove
from thetools menu, click on the figure that you want to move and then click again once
you have dragged it to its new location.

The ancillary sections in the FElt file that are created when you save a problem from
velvetrecord all your tool figures. If these sections are available when you reload a problem,
the tools will automatically be redrawn for you.

7.8 Material databases and defaults files

Often, you will find that certain objects or material properties are being used over and
over again in different problems. Dummy FElt files can be used to make easy use of this
repetitive information. Startingvelvetwith a FElt file that contains a couple of common
constraint definitions means that those definitions will not need to be specified explicitly
within velvet- they will be there for use on start-up. Similarly for other types of objects.
Note that loading a defaults file from withinvelvetis just like opening a new input file,
everything in the current problem will be lost. You can use thecanvas configuration

and display list sections of a FElt file to create a custom canvas configuration in a
defaults file.

Material databases are also special cases of FElt input files. They are given special
treatment withinvelvetbecause they are so convenient. Whole classes of material types
and shapes (W-shape beams, standard diameter bars, etc.) can be stored in a material
database and loaded intovelvetat any time with theopen databasecommand under the
file menu. Any changes to material properties or additions of new materials can be saved
simply by selectingupdate databasefrom thefile menu. The current set of materials is
the only thing that is retained when a new input file is loaded or a new problem is started
within velvet.
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Figure 7.12: The form for defining line and grid generation parameters.

7.9 Automated element generation

Velvet can generate grids and triangular meshes automatically. A grid is defined as ann×m
array of two-dimensional line or quadrilateral elements. A triangular mesh is an arbitrary
polygonal shape (possibly with interior holes) discretized into two-dimensional triangular
elements. When you selectgeneratefrom theelementsmenu, the type of generation is
automatically determined from the current element type. Because both nodes and elements
will be generated, both a constraint and a material property must be active. You should
make sure that the active object of each type will be appropriate for the majority of nodes
and elements that will be generated. This will save you from applying a lot of objects
individually once the generation is complete.

7.9.1 Generating a grid of line or quadrilateral elements

Generating a grid requires that you complete the form pictured in figure7.12. The entries
in the form match parameters in thecorduroy input syntax (see chapter9). The x, y, and
z start and end locations define the two extreme corners of the grid. The number entries
set the number of elements to be generated along each direction and the rule entries set the
spacing rule to be used along each axis. Rules can either be typed in or entered by giving
the focus to one of the entries and selecting a rule from the pull-down menu available by
clicking on theRule button.

7.9.2 Generating a mesh of triangular elements

Generating a mesh of triangles requires a little more work on your part, but it is still a lot
easier than meshing any sort of complicated geometry (and most simple geometries even)
by hand. When triangles are being generated a form will pop-up (Figure7.13) for you to
define the parameters of the generation. The parameters are the target number of elements
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Figure 7.13: The form for defining triangle generation parameters.

that you want to generate, theα area constraint factor and the number of holes in your
generation region. The area constraint factor is defined as

Aelt ≤
αAregion

target
, (7.1)

whereAregion is the total area of the generation region andAelt is the maximum area of a
generated element.

Once the parameters are defined, clickokay to begin defining the boundaries of your
problem. Regions are defined by putting down marker points in the drawing area (they must
be put down in a counter-clockwise order). To finish the boundary, click on thequit button.
If the number of holes was greater than zero then each hole must be defined just like the
boundary was defined – by laying down a series of marker points – but in clockwise order.
Each hole is finished by clicking thequit button. The generation process can be aborted
by clicking theabort button. Typing shift-bkspc will delete the last marker point that was
laid down, thus allowing you to correct mistakes without restarting the entire sequence.
Once all the regions are defined,velvetwill automatically begin generating the mesh.

7.10 Keyboard interface mechanisms

7.10.1 Keyboard shortcuts

As in most graphical environments, the pointer can only do so much for you; often it will
be easier for you to use the keyboard. True, you could get away with using the mouse for
everything, but in the long run you will work more efficiently if you learn the keyboard
interface mechanisms.

There are two basic ways that you can use key presses in place of mouse clicks. The
first are commonly called keyboard shortcuts. This means that rather than selectingsolve
from theproblem menu, you can simply pressctrl-v . A complete list of these shortcuts is
given in the quick reference table at the end of this section.
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The second common way to use the keyboard is to move through groups of buttons
and text fields with tab to change the input focus and usespace to activate the button
or change the toggle state. This is a very convenient way of working with dialog boxes
like the object dialogs (forces, materials, constraints, loads), the file selection dialog, the
node and element dialogs, the configure dialog, the triangular mesh parameter dialog and
the solution dialog. When one of the dialogs has the window manager focus there are a few
special keyboard shortcuts that you can use as well.ctrl-h is equivalent tohelp, return

is acceptor okay, esc is dismissor cancel, ctrl-d is delete, ctrl-n is new, and ctrl-c is
copy.

7.10.2 Command names

All of the commands that are available through menu options in the main control area
are also available by typing a text command into the command window at the bottom of
the main window. To use a text command simply type it into the command window and
hit return . If you just type return with no command entered,velvetwill repeat the last
command that you entered. The following table lists the equivalencies for each command.
The first column lists the name of the menu button in the control area, the second lists
the applicable entry under that menu, if any, and the third lists the command name(s) that
perform the same action. The fourth column provides additional ways that you can perform
the same function, either through a keyboard shortcut or through mouse interaction with
the drawing area.
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Menu Command Text command Other alternatives

File New new Ctrl-f n
Open open Ctrl-f o
Save save Ctrl-f s
Save as save as Ctrl-f w
Restore restore Ctrl-f r
Open database open database

Update database update database

Exit exit Ctrl-f x
Solutions Solve solve Ctrl-v

Animate animate

Results/Output define output

Problem/Analysis define problem

Postprocess Plot stresses plot stresses

Plot displacements plot displacements

Plot structure plot structure

Contouring contour

Wireframe wireframe

Canvas Configure configure

Color control colors

Zoom to fit zoom all Ctrl-Z
Zoom window zoom Ctrl-z
Save canvas dump

Snap snap Ctrl-s
Grid grid Ctrl-g
node numbering node numbers Ctrl-n
element numbering element numbers Ctrl-e

Apply Materials apply material Ctrl-a m
Forces apply force Ctrl-a f
Constraints appply constraint Ctrl-a c
Loads apply load Ctrl-a l

Tools Circle draw circle Ctrl-t c
Arc draw arc Ctrl-t a
Rectangle draw rectangle Ctrl-t r
Polygon draw polygon Ctrl-t p
Line draw line Ctrl-t l
Text draw text Ctrl-t t
Delete delete tool

Move move tool

Nodes Add add node

Edit edit node button 1 on node
Delete delete node

Move move node button 2 on node
Lumped mass lumped mass

Renumber perm renumber nodes

Renumber temp toggle renumber

Elements Add add element

Edit edit element button 1 on element
Set type set element

Generate generate

Materials edit material Ctrl-d m
Constraints edit constraint Ctrl-d c
Forces edit force Ctrl-d f
Loads edit load Ctrl-d l
Quit Esc or button 3
Abort Ctrl-c
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7.11 Command line options

Some of the above functionality can be enabled, disabled or altered via command line
switches when you invokevelvet. In addition to the standard X toolkit options (-display,
etc.) you can use any of the following to control the behavior and set the start-up condi-
tion of velvet. Each of these options can also be set through your Xresources using the
associated resource name.

-sensitive Enable sensitive/insensitive menu switching.velvethas two major modes
of operation, normal mode and edit mode. Each mode allows only certain
operations to be performed. This option allows disabling of the menus con-
trolling the inactive operations. This is the default behavior but may be
inappropriate on a slow server. Associated resource:*sensitiveMenus.

+sensitive Disable sensitive/insensitive menu switching. Associated resource:
*sensitiveMenus.

-numbers Enable element and node numbering on start-up. This is the default behav-
ior. Associated resource:*numbers.

+numbers Disable the drawing of element and node numbering on start-up. On some
servers the node and element numbers may take some extra time to draw
on big problems and since you’ll probably turn them off anyways to reduce
clutter, you can use this switch to disable them from the start. Associate
resource:*numbers.

-nodeColor color

Sets the color of nodes and node numbers. The default color isblue. Asso-
ciated resource:*nodeColor.

-elementColor color

Sets the color of elements and element numbers. The default color isblack.
Associated resource:*elementColor.

-toolColor color

Sets the color of tools (rectangles, lines, circles) and interactive windows.
The default color isred. Associated resource:*toolColor.

-labelFont font

Sets the font used for node and element numbers. The default font is5x8.
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Associated resource:*labelFont.

-toolFont font

Sets the font used for text drawn using the tools. The default font isfg-22.
Associated resource:*toolFont.

-cpp filename

substitutefilename for the pre-processor to run on the input file.

-nocpp do not run the input file through the pre-processor.

-Idirectory

add directory to the standard search path for include files in the pre-
processor.

-Uname undefine the macroname in the pre-processor.

-Dname=value

definename to be the macrovalue in the pre-processor.



Chapter 8

Post-processing withvelvet

8.1 Solving a problem withvelvet

Depending on what you want your solution to include, there are a couple of different ways
to go about solving a FElt problem from withinvelvet. In addition to the standard tabu-
lar type FElt output (see section5.3) you can also havevelvetgenerate two-dimensional
color shaded stress or displacement plots and/or plots of the structure with magnified dis-
placements applied. For transient analysis problems graphical time-displacement or time-
temperature plots replace the ASCII versions thatfelt produces. Transient structural analy-
sis can also include an animation of the simulation. For spectral analysis, graphical plots of
the transfer functions or ouput spectra replacefelt’s ASCII versions.velvetcan also draw
graphical representations of mode shapes for modal analysis problems.

One way to solve a problem is to select thesolveoption from thesolutionsmenu. By
default, this simply generates the standard FElt output. This window will contain either
the mathematical solution of your problem or the syntax errors encountered in solving the
problem.

For more control over what gets generated whenever you solve a problem you can use
the output control dialog box (Figure8.1, available by selectingresults/output from the
solutionsmenu. The toggle buttons in this dialog box control all of the available solution
and output options, both text and graphical.

The three toggles at the top–left of the dialog mimick three of the switches available
in felt; they control the computations that are performed for modal or spectral analysis.
The felt output toggle controls whether or not you want to see any of the standard textual
output thatfelt would generate. If thefelt output toggle is on then the other three textual

87



88 CHAPTER 8. POST-PROCESSING WITH VELVET

Figure 8.1: The output control dialog box.

output toggles mimick command-line switches that are available infelt (see chapter5) to
control the printing of additional information within the textual output.

For graphical output, the toggles for stress, structure and displacement plots simply
allow you to automatically invoke these post-processing options (see below) on solution.
The other two options (time-displacement plots and mode shape plots) are only available
during a problem solution (i.e., only by selecting the appropriate toggle in this dialog and
then solving the problem). Theline plot option generates a graphical line plot (as opposed
to the ASCII plot that you would get withfelt output) for transient or spectral results. A
graphical time-displacement plot is shown in Figure8.2. Figure8.3 is an example of a
mode shape plot. Note thatvelvetonly draws a single mode at a time and that the regu-
lar problem geometry is drawn as an underlying dotted line; you can cycle forward and
backward through the individual modes using the< and> buttons.

Given the settings in our example control box, the output for a static model of a bicycle
would be the two windows shown in Figures8.4 and8.5. (The input file for this problem
can be found asbicycle boys.flt in the tests directory of the standard FElt distributions.)

You can save any of thevelvetoutput by clickingsaveat the bottom of the output
window. A file dialog will pop-up and allow you to name the file which you wish to save
to. Depending on the type of output, you may have the option of saving in one of several
different file formats. Time-displacement, wireframe structure, and mode shape plots can
be saved in either XWD or PostScript format. Text output can be saved as an ASCII file.
Color contours of stress and displacement can be saved in PPM or encapsulated PostScript
(EPS) format.
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Figure 8.2: A time-displacement plot invelvet

.

You can leave all output windows up as long as you like. If you want to unview one at
some point in your work, simply clickdismiss.

For a transient analysis problem you can build a special case simulation for animation
simply by selectinganimate from thesolutionsmenu. The solution that is constructred is
special in that the displacement of all nodes in the x and y (and possibly z) translational
DOF will be automatically recorded for each time step. (This is in contrast to the normal
mode of solution for a transient analysis problem in which only specially requested nodes
and DOF are recorded for output at the end of the simulation.) Once this complete table is
built the animate window (Figure8.6) will pop-up and you can use the playback controls
to determine the speed and direction of the animation. The buttons that look like rewind
and fast forward (<< and>>) are really the speed controls. Holding them down will slow
down or speed up the animation. The play backward and play forward buttons (< and>)
control which direction time moves during the animation. You can use the stop button to
freeze the structure at a given point during the animation. The text indicator in the right
bottom corner of the window keeps track of the elapsed time. The animation will repeat
itself until it is either stopped or the animation window is dismissed.
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Figure 8.3: The mode shape plotting window

.

Figure 8.4: An example of textual output fromvelvet.
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Figure 8.5: An example of a displaced structure plot.

Figure 8.6: An animation invelvet

.
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8.2 Problem description and analysis parameters

The problem description andanalysis parameters section of a regular FElt input
file are mimicked invelvetby the problem and analysis dialog box (Figure8.7). This dialog
is available by selectingproblem/analysisfrom thesolutionsmenu. The problem title text
entry defines the header that will be used for textual output and on graphical line plots. The
analysis mode is defined by engaging one of the toggle buttons just below the problem title
at the top of the dialog. The mass-mode toggles below the analysis toggles allow you to
select either consistent or lumped mass formulations for element mass matrices.

For a transient structural and thermal analysis problems, there are several parameters
which control the numerical integration in time. The text entries down the left side of the
dialog allow you to fill in values for these parameters in theγ, β, andα text entries. For
both transient and spectral analysis the range of time or frequency over which to perform
the computations is defined by thestart, stop, andsteptext entries. Note that the value
for start is ignored in transient analysis types. Values for the global Rayleigh damping
proportionality constants are defined with theRk andRm text entries. Remember that if
either of these values is non-zero then the Rayleigh damping for this problem will be based
on these values and the global stiffness and mass matrices as opposed to elemental material
values ofRkandRmand the element stiffness and mass matrices.

The DOF toggles and the node entries allow you to define the list of nodes and which
DOF at each of those nodes that you would like to have included in the output when the
problem is solved. Click on the left and right arrow keys to scroll through the complete list
of nodes if you are interested in more than six of them.

The push buttons on the bottom of the dialog box are standard of course. Thesolve
andanimate buttons are simply there as a convenience; pushing either button will cause
the current state of the dialog to be registered (as if you had pushedaccept) and then the
appropriate action to be taken just as if you had selectedsolveor animate from the main
solutionsmenu.

8.3 Controlling the post-processing

8.3.1 Controlling contour plots

The controls for color contour plots are available by selectingcontouring from thepost-
processingmenu. On the dialog (Figure8.8), there are identical controls for stress and
displacement plots. On the stress side, the component specifies which stress component
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Figure 8.7: The analysis parameters dialog box

.

Figure 8.8: The control dialog box for contour plots.

will be plotted. This number is element specific and must be a valid index in the stress vec-
tor for each element type in the problem. Consult Table5.1 for details on what the stress
vector consists of for each element type. For displacement plots, the component is simply
the displacement DOF that you want to see plotted. In general, this should be one of the
active global DOF for the current problem.

Other contouring controls include toggles for histogram equalization and element
boundary overlay. Histogram equalization is a standard technique in image processing
for enhancing the contrast of images. If the overlay elements toggle is checked then the
outline of all the elements in the problem will be drawn in black on top of the color im-
age. An example of stress contours (rendered here in greyscale) for the wrench example
pictured earlier is shown in Figure8.9. Note that both histogram equalization and element
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overlay were enabled for this plot.

In addition to the standard buttons forhelp, accept, anddismiss, you can use thes plot
andd plot buttons as an alias for selecting eitherplot stressesor plot displacementsfrom
the mainpostprocessingmenu item. Both buttons cause the dialog state to be accepted
before the plot is generated.

8.3.2 Controlling structure plots

Additional control over structure plots is available through the wireframe dialog box (Fig-
ure 8.10). The majority of these controls are specific to three-dimensional visualization.
The three dial widgets control the rotation of the drawing about the three spatial axes. The
magnification determines the multiplicative factor by which nodal displacements will be
increased before the nodes are plotted. z scaling controls the front to back aspect ratio
of the resulting plot. The toggle for hidden line removal is non-functional in the current
version ofvelvet. The defaults reflected in the dialog pictured in Figure8.10were used to
generate our earlier example of the structural plot of the bicycle (Figure8.5).

The extra button at the bottom of the dialogplot is equivalent to pressingacceptand
selectingplot structure from thepostprocessingmenu.

8.3.3 Controlling animation

The analysis parameters used in constructing a displacement table for an animation are
the same as those that would be used in a normal solution for that problem in transient
analysis mode, except for the nodes and DOF. As mentioned above, an animation will
automatically solve for all nodes at the x and y (and z if the problem is 3d) translational
DOF. The magnification of the displacements during the animation can be controlled via
the same magnification control that is used in structure plots. Likewise for 3-d animations,
the 3-d drawing parameters will be taken from the controls in the wireframe control dialog
box.
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Figure 8.9: The stress output window for the wrench example.
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Figure 8.10: The wireframe plotting control dialog box.



Chapter 9

The corduroyApplication

9.1 Introduction

corduroyis a command line application for automatically generating nodes and elements. It
takes a text input file and generates FElt format nodes and elements for inclusion into a FElt
problem. Likefelt then, it is a command line interface to some of the same functionality
that you can get invelvet. However, unlikefelt andvelvet, which share their file syntax (the
standard FElt syntax),corduroyhas its own special syntax to describe the way elements are
generated.

9.2 Thecorduroysyntax

9.2.1 Specifying basic parameters

corduroyallows you to generate elements in five different ways – along a single line, as
a three-dimensional grid of line elements, as a two-dimensional grid of four-node planar
elements, as a three-dimensional grid of solid elements and as a two-dimensional mesh
of triangular elements. Each type of generation is described in its own section; there can
be multiple types and multiple sections of a given type in any given file. Besides these
descriptive sections there are only a few basic parameters, all of which are optional. Order
of specifications does not matter in acorduroyfile except for numbering of generated nodes
and elements and theend statement which must always come at the end of a file (and is
not optional). As in regular FElt files, comments can be denoted with/* and*/ as in the C
programming language and symbolic expressions may be substituted for any non-integer
value.

97
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You can usestart-node= andstart-element= to specify the number for the first
things that get generated. Normally,corduroystarts the numbering at one and then numbers
sequentially as it moves from section to section of your input file. These two specifications
allow you to override these starting points in situations where you may already have a few
elements and nodes defined and you are going to attach the things that get generated after
corduroyhas done its work.

constraint= andmaterial= will assign a constraint or material name to the initial
node and element. This is simply a convenience; you will need to be sure to go back and
actually define these objects after everything is generated and you are putting the finishing
touches on the problem definition.

9.2.2 Generating elements along a line

The simplest case of element generation is a line which is divided up into an arbitrary
number of elements. You might use something like this if you were examining the accuracy
of a cantilever beam model and wanted to use successively higher numbers of elements
from one case to the next. Thecorduroyspecification for aline section looks like this

line

element-type = beam

start = (0,0,0)

end = (5,5,5)

number = 20

This example would generate twenty beam elements all lying along the line from the origin
to a point at x=5, y=5, z=5 in rectangular Cartesian coordinates. The default element type
for both line and grid generation is truss. Valid type names are the same as in a standard
FElt file (see chapter3).

9.2.3 Generating a grid of line elements

Another relatively simple case is when you want to generate a three-dimensional grid of
line elements. An excellent example of when this might be useful is for a model of a steel
frame structure. The specification for a grid is

grid

element-type = beam

start = (0,0,0) end = (100,500,100)

x-number = 4 y-number = 20 z-number = 4
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This example would generate a three-dimensional frame structure with four bays along
both the x and z axes and 20 bays along y axis.

9.2.4 Generating a grid of quadrilateral planar elements

The case of a simple grid of planar four-node elements is almost identical to the grid
of line elements described above. The only difference is that there are no specifications
along the z direction for quadrilateral grids. An example of a mesh for a long rectangular
plate usinghtk plate bending elements (the default element type for quadrilateral grids is
quadPlaneStress) might look like:

quadrilateral grid

element-type = htk

start = (0,0) end = (10,3)

x-number = 20 y-number = 6

The result would be a rectangular region meshed with 120 equi-sized square elements.

9.2.5 Generating a grid of solid brick elements

The case of a grid of solid eight-node elements is also very similar to grids of line and
planar elements described in the preceding two sections. An example of a mesh for a long
rectangular plate usingbrick elements (the default type for grids of solid elements) might
look like:

brick grid

start = (0,0,0) end = (8,12,6)

x-number = 4 y-number = 6 z-number=3

The result would be a three-dimensional solid region three elements deep, four elements
wide, and six elements tall.

9.2.6 Grid spacing rules

For all of the line and grid generation examples given above, we could also have di-
rected thatcorduroygenerate the elements with non-linear spacing rules. Such spacings
are common when we know that we want a higher mesh density at one corner of the grid
or only at the end of the line. The rules available arelinear (this is the default, equi-
spaced),sinusoidal, cosinusoidal, logarithmic, parabolic, reverse-parabolic,
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andreverser-logarithmic. If we are placing the sides ofn elements along a line, then
we need to locaten+ 1 nodes on the line. The coordinatexi of each node is defined as
follows for each of the spacing rules

linear : xi = Lβ (9.1)

cosinusoidal : xi = L−Lcos
(π

2
β
)

(9.2)

sinusoidal : xi = Lsin
(π

2
β
)

(9.3)

logarithmic : xi = L log10(1+9β) (9.4)

parabolic : xi = Lβ2 (9.5)

reverse− logarithmic : xi = L−L log10(10−9β) (9.6)

reverse−parabolic : xi = L
√

β (9.7)

(9.8)

whereβ = (i−1)/n.

9.2.7 Generating a triangular mesh

The triangular mesh generation capabilities ofcorduroyuse Jonathan Shewchuk’s Triangle
routine. In addition to specifications that describe the boundary and the holes of your two-
dimensional region, you must also define the approximate number of elements to generate
and a constraint on the maximum area of any one generated element. The number of
elements is specified withtarget=. The area constraint is given usingalpha=, whereα is
defined such that

Aelt ≤
αAtotal

total
. (9.9)

The entirecorduroy input file to generate the nodes and elements for the wrench model
pictured in Figure7.1would look like this.

start-node = 1 /* unnecessary as this is the default */

start-element = 1

triangular mesh

element-type = CSTPlaneStress

angtol = 20 dmin = 0.5 min = 100 /* except for min and max */

angspc = 30 kappa = 0.25 max = 300 /* these are defaults */

boundary = [

(0,50)

(20,10)
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(40,0)

(40,50)

(55,70)

(95,70)

(115,50)

(115,0)

(135,10)

(155,50)

(155,90)

(115,160)

(170,404)

(122,404)

(67,160)

(0,90)

]

end

To generate a mesh in a rectangular plate with two side by side rectangular holes in it,
the input file could look like

triangular mesh /* use all defaults, including CSTPlaneStress */

boundary = [

(0,0)

(20,0)

(20,10)

(0,10)

]

hole = [

(6,3)

(8,3)

(8,7)

(6,7)

]

hole = [

(12,3)

(14,3)

(14,7)

(12,7)

]
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end

Note that the hole definitions do not need to come before the boundary, but that points must
always be specified in a counter-clockwise order.

9.3 Usingcorduroy

The only options tocorduroyare the standardcpp options as in bothfelt andvelvet(like
those two programs,corduroyruns all of its input through the pre-processor before actually
operating on it) and a-debug flag which causescorduroy to reproduce as output what it
thinks it received for input. To generate, all you need to do is create an input file with a text
editor and then runcorduroywith the name of this file as the last argument on the command
line. Output will be directed to standard out. So if you had a generation description in a file
foo.crd, you could turn it into the basics of a FElt file calledfoo.flt with the following
command

% corduroy foo.crd > foo.flt

9.4 Incorporating output into a FElt file

Becausecorduroyonly generates the node and element sections of a FElt file, you still have
some editing to do before you can call the problem completely defined and actually try to
solve it withfeltorvelvet. In general, you will have to define forces and constraints to assign
to nodes and material properties (and possibly distributed loads) to assign to elements.
Remember, thematerial= andconstraint= specification are only a convenience. These
two names will simply be assigned to the first element and node, respectively (and all the
following elements and nodes by default). You still need to actually define those objects
and assign any different objects to appropriate nodes and elements. To do all this defining
and assigning you can either use your favorite text editor or you can load the problem into
velvetand do it all from there.

One thing to keep in mind whenever you usecorduroy to generate a problem for you
is thatcorduroy is not very good at node numbering. Using the renumbering features of
eitherfelt or velvetis highly recommended withcorduroygenerated problems. In general
the problems that you will usecorduroy for will be quite large and thus the reduction in
memory and solution time would be significant even if node numbering had been intelligent
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to start with; the reductions for large problem with initially very bad numbering can be
remarkable.





Chapter 10

The burlap Application

10.1 Introduction to the burlap environment

burlap is a mathematical environment designed for adding new element types to FElt and
extending the current set of finite element analyses.burlap can best be described as a
mathematical software package, similar tomatlabor octave, but with the data structures
of FElt. It was designed as an alternative to trying to understand and modify the C code
of the FElt library, which was difficult for even us to do, much less engineers with little C
programming experience.

burlap has its own syntax for manipulating matrices, like that ofmatlab. However,
burlapalso includes all of the FElt data types as well, such as nodes, elements, constraints,
etc., which eliminates the need for having large arrays of numbers, where the third number
is the material thickness and the fourth number is the cross-sectional area, etc.

Any analysis that can be performed withfelt can be performed withburlap. Although
the burlap code is slower than the compiled C code of the FElt library,burlap’s interac-
tive environment makes prototyping new element types and new analyses much easier. At
present, however, there is no support for executingburlapcode fromvelvet.

10.2 Usingburlap

10.2.1 Interacting with burlap

The syntax ofburlap is designed to be intuitive and is best illustrated by examples. A
detailed discussion of the syntax can be found in Chapter11. The simplest way to start
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burlap is to simply typeburlap on the command line, orburlap foo.b if you wish to
execute theburlapfile foo.b. You can also specify command line options that qualify what
you want to do.

-help | -h Display a brief help message which lists all of the available command line
options and then exits.

-quiet | -q

Do not print the start-up message regarding copyright information.

-alias | -a

Do not define the set of built-in aliases.

-interactive | -i

Enter interactive mode by reading expressions from the terminal after pro-
cessing the input files. Normally,burlap will simply exit after processing
any input files.

-no-interactive | -n

Do not enter interactive mode. This flag tellsburlap to simply exit if no files
are given. It is useful if you haveburlap aliased toburlap -i and wish to
override the effect of the-i flag.

-source command-file | -s command-file

Read commands fromcommand-file on start-up.

-felt felt-file | -f felt-file

Usefelt-file to define the current FElt problem.

Sinceburlapcan load and process a FElt file, it also accepts the standard-nocpp, -cpp,
-I, -U, and-D flags common tofelt andvelvet. If you simply typeburlap, you will be
presented with some copyright information and a prompt.

This is burlap, copyright 1995 by Jason I. Gobat and Darren C. Atkinson.

This is free software, and you are welcome to redistribute it under certain

conditions, but there is absolutely no warranty. Type help ("copyright")

for details. Use the -q option to suppress this message.

[1] _
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If burlap was compiled with the GNUreadline library, then you have complete
command-line editing and history, as inbash. (A complete discussion of the editing ca-
pabilities can be found in the documentation of thereadline library.) At the prompt, you
can enter expressions to be evaluated.

[1] 1 + 2

[2] write (1 + 2)

3

[3] a = 1 + 2

[4] write (a)

3

[5] write ([1, 2, 3])

1 2 3

[6] write ([1; 2; 3])

1

2

3

[7] write ([1, 2, 3] + [4, 5, 6])

5 7 9

As illustrated above,write() is used to print results and= is the assignment operator.
Also notice from the first expression thatburlapdoes not print the result of every expression
like matlabdoes. But, just likematlab, matrices are delimited by square brackets with
elements separated by commas and rows separated by semicolons.

If you typealias you should see the following list. (Ifburlap is not compiled with the
readline library then the list will be slightly different.)

exit exit ( )

h history (20)

help help ("!$")

ls system ("ls !*")

quit exit ( )

burlap has a very simple syntax with all computations being done through either oper-
ators, such as+, or functions, such aswrite(). But, sinceexit() andhelp() are rather
non-intuitive, you can alias commands to be whatever you want, just likecsh. So, you can
just typeexit or quit to leaveburlap. Typinghelp will present you with a list of all the
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operators and functions thatburlapprovides. Typinghelp foo will give you detailed help
on topicfoo.

In short, burlap works just like most other interactive programs includingcsh, gdb,
gnuplot, matlab, octave, andgs.

10.3 burlap and FElt

You can load a FElt file intoburlap by either specifying the file on the command line with
the-felt flag or by using thefelt() function.

[1] felt ("truss.flt")

If everything goes okay, then the function should simply return silently. Several vari-
ables are now automatically defined, as shown in Table10.1.

Variable Description

nodes array of nodes

elements array of elements

dofs pos globalDOF positions

dofs num globalDOF numbers

problem problem definition structure

analysis analysis parameters structure

Table 10.1: Finite element related variables.

FElt maintains the globalDOFs in two vectors. The first vector,dofs pos, is an alias
for problem.dofs pos, and contains the position number for each of the sixDOFs. A zero
entry in the vector indicates that theDOF is not active. An example vector for a problem
consisting entirely of beam elements would be

[1 2 0 0 0 3]

since a beam element allows translation along the x-axis and y-axis, and rotation about the
z-axis. Thedofs pos vector can be used to determine if a givenDOF is active and which
global number it is assigned.

The second vector,dofs num, is an alias forproblem.dofs num, and contains the num-
bers of the activeDOFs. The length of the vector is equal to the number of activeDOFs.
Thedofs num vector corresponding to thedofs pos vector given above would then be

[1 2 6]
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since the first, second, and sixthDOFs are active.burlap ensures that the two vectors are
always kept consistent.

All arrays start at one, sonodes (1) designates the first node in the problem, and
nodes (1).constraint designates the constraint associated with that node. A period (.)
is used to access a field of a FElt object. In general the field names are the same as the
names used in the FElt input file. For example,constraint is the field name for accessing
the constraint object assigned to a node with theconstraint= syntax in the FElt file.

[2] write (nodes)

array of node

[3] write (elements)

array of element

[4] write (nodes (1))

node (1)

[5] write (nodes (1).constraint)

constraint (free)

[6] write (elements (1).material.A)

0.0004

[7] m = elements (1).material

[8] write ("A = ", m.A, " E = ", m.E)

A = 0.0004 E = 2.1e+11

10.3.1 Element objects

Elements have the same field names as those used in the FElt file with additional fields for
holding the computed matrices and stress values, as shown in Table10.2. For example,
e.number will return the element number of the elemente ande.material.t will return
the thickness of the element’s material;e.nodes (1) will return the first node of the ele-
ment ande.nodes (1).x will return the x-coordinate of that node. Note thatloads and
distributed are synonymous, as arenum loads andnum distributed.

10.3.2 Node objects

Like elements, nodes have some fields that are defined through the FElt input file with addi-
tional fields to contain the result of computations, as shown in Table10.3. As an example,
n.constraint will return the constraint assigned to the noden, andn.constraint.name
will return the name of that constraint;n.dx will return the displacement vector andn.dx
(1) will return the first component of that vector. Note that the displacement vector may
be accessed either as a vector by usingdx, or as individual components, such asTx. This
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Field name Description

number element number

nodes array of nodes

K stiffness matrix

M mass matrix

material material object

definition element type definition

loads array of distributed loads

num loads number of loads

stresses array of element stresses

ninteg number of integration points

distributed array of distributed loads (loads)

num distributed number of distributed loads (num loads)

Table 10.2: Fields of an element object.

is simply a shorthand; assigning to an individual component is the same as assigning to the
result of indexing the displacement vector. The equivalent force vector,eq force, is used
in transforming distributed loads on an element into equivalent forces on its nodes.

10.3.3 Material objects

Materials have the fields named by the FElt input syntax, as shown in Table10.4. For
example,m.rho will return the density of the materialm and m.A will return its cross-
sectional area.

10.3.4 Force objects

Force objects allow the forces and moments to be accessed as individual components or as a
vector, as shown in Table10.5. For example,f.force will return the force vector off and
f.force (4) will return the moment about the x axis, which is equivalent tof.force.Mx.

For transient problems, a force or moment may vary with time. Infelt, this is described
by an expression in terms oft. A component of a force may be assigned a string value
which will be interpreted byburlap as an expression. Note that evaluating the compo-
nent will evaluate the expression at timet=0. There is currently no way to determine if a
component is assigned a time-varying expression.
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Field name Description

number node number

constraint constraint object

force force object

eq force equivalent force vector

dx displacement vector

x x-coordinate

y y-coordinate

z z-coordinate

m lumped mass

Tx translation along x axis (dx (1))

Ty translation along y axis (dx (2))

Tz translation along z axis (dx (3))

Rx rotation about x axis (dx (4))

Ry rotation about y axis (dx (5))

Rz rotation about z axis (dx (6))

Table 10.3: Fields of a node object.

[1] f.Fx = "cos (t)"

[2] write (f.Fx)

1

10.3.5 Constraint objects

Constraint objects also allow the various information to be accessed as vectors or as in-
dividual components, as shown in Table10.6. If c is a constraint thenc.ix is its initial
displacement vector andc.ix (1) or c.iTx is its initial translation along the x axis. Com-
ponents may be assigned time-varying expressions, as in the case of forces.

10.3.6 Distributed load objects

Distributed loads, or simply loads, have the fields named by the FElt file syntax, as shown
in Table 10.7. The individual values can be accessed usingnode andmagnitude. For
example,l.values (1).node returns the node object of the first load point andl.values

(1).magnitude returns its magnitude.

Thedirection field is used to indicate the direction of the distributed load. The direc-
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Field name Description

name name of material

E Young’s modulus

Ix moment of inertia about x-x axis

Iy moment of inertia about y-y axis

Iz moment of inertia about z-z axis

A cross-sectional area

J polar moment of inertia

G bulk (shear) modulus

t thickness

rho density

nu Poisson’s ratio

kappa shear force correction

Rk Rayleigh damping coefficient (K)

Rm Rayleigh damping coefficient (M)

Kx conductivity along x axis

Ky conductivity along y axis

Kz conductivity along z axis

c heat capacity

Table 10.4: Fields of a material object.
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Field name Description

name name of force

force force vector

spectrum input spectra

Fx force along x axis (force (1))

Fy force along y axis (force (2))

Fz force along z axis (force (3))

Mx moment about x axis (force (4))

My moment about y axis (force (5))

Mz moment about z axis (force (6))

Sfx spectra along x axis (spectrum (1))

Sfy spectra along y axis (spectrum (2))

Sfz spectra along z axis (spectrum (3))

Smx spectra about x axis (spectrum (4))

Smy spectra about y axis (spectrum (5))

Smz spectra about z axis (spectrum (6))

Table 10.5: Fields of a force object.

tion is simply a scalar value as indicated in Table10.8.

10.3.7 Element definition objects

An element definition object is one of the few object types not defined in a FElt file. An
element definition, or simply definition, contains all information necessary for a particular
element type, such as a beam, truss, etc. The fields given in Table10.9are discussed at
length in Section10.4.

10.3.8 Problem definition

The problem definition object contains all information about the current FElt problem, with
the exception of the analysis parameters.

Most fields of the problem definition given in Table10.10are read-only. If you want
to change the characteristics of a problem, you need to edit the input file that defines the
problem, and load it with thefelt() function. The only exceptions are theDOF arrays,
dofs pos anddofs num. Since these arrays must be properly initialized before many of
the built-in finite element functions may be called,burlap ensures that the arrays are kept
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Field name Description

name name of constraint

constraint constraint vector

ix initial displacement vector

vx initial velocity vector

ax initial acceleration vector

dx boundary displacement vector

iTx initial displacement along x axis (ix (1))

iTy initial displacement along y axis (ix (2))

iTz initial displacement along z axis (ix (3))

iRx initial rotation about x axis (ix (4))

iRy initial rotation about y axis (ix (5))

iRz initial rotation about z axis (ix (6))

Vx initial velocity along x axis (vx (1))

Vy initial velocity along y axis (vx (2))

Vz initial velocity along z axis (vx (3))

Ax initial acceleration along x axis (ax (1))

Ay initial acceleration along y axis (ax (2))

Az initial acceleration along z axis (ax (3))

Tx translation along x axis (dx (1))

Ty translation along y axis (dx (2))

Tz translation along z axis (dx (3))

Rx translation along x axis (dx (4))

Ry translation along y axis (dx (5))

Rz translation along z axis (dx (6))

Table 10.6: Fields of a constraint object.

Field name Description

name name of distributed load

direction load direction

num values number of values

values array of values ((node, magnitude) pairs)

Table 10.7: Fields of a distributed load object.
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Direction Value

LocalX &local x

LocalY &local y

LocalZ &local z

GlobalX &global x

GlobalY &global y

GlobalZ &global z

Parallel &parallel

Perpendicular &perpendicular

Table 10.8: Directions of a distributed load.

Field name Description

name name of definition

setup element set-up function

stress element stress computation function

num nodes number of nodes in element

shape nodes number of nodes that define shape

num dofs number of degrees of freedom

dofs degrees of freedom

num stresses number of stresses

retainK flag to retain stiffness matrix after assembly

Table 10.9: Fields of an element definition object.

Field name Description

mode analysis mode

title problem title

nodes array of node objects

elements array of element object

dofs pos globalDOF positions

dofs num globalDOF numbers

num dofs number of activeDOFs

num nodes number of nodes

num elements number of elements

Table 10.10: Fields of a problem definition object.
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consistent. The individual components of the arrays are read-only; however, either array
may be assigned a row vector to change the set of activeDOFs. When one array is changed,
both arrays and the number of activeDOFs are updated. (We don’t know why you would
want to do this. Usually,find dofs() should be used to initialize the arrays. Changing
theDOFs yourself will probably just lead to non-singular matrices.)

10.3.9 Analysis parameters

The analysis parameters structure contains information related to a specific analysis type.

Field name Description

gamma parameter in Newmark integration

beta parameter in Newmark integration

alpha parameter in H-H-T

mass mode mass mode

nodes array of node numbers of interest

dofs array of dofs of interest

start starting time or frequency

stop ending time or frequency

step time or frequency increment

num dofs number of dofs of interest

num nodes number of nodes of interest

Table 10.11: Fields of an analysis parameters object.

Unlike the problem definition structure, most of the fields in the analysis parameters
structure are changeable. However, thedofs andnodes fields are similar to thedofs num

anddofs pos fields of the problem definition. The individual components are read-only,
but they may be assigned a row vector. Ifanalysis.dofs is assigned a valid row vec-
tor thenanalysis.num dofs is updated and is equivalent tolength (analysis.dofs).
Similarly, if analysis.nodes is assigned a valid row vector thenanalysis.num nodes is
updated and is equivalent tolength (analysis.nodes). Thelength() function returns
the number of items in an array, matrix, or string.

10.4 Adding new element types toburlap

Adding a new element type to FElt can be very time-consuming and error-prone.burlap
allows the user to easily add new element definitions that can be quickly tested without
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having to recompile thefelt or velvetapplications. To add a new element to the set of ex-
isting elements, theadd definition() function is used. Similarly, to remove an existing
element definition, theremove definition() function is used.

Argument Description Type Example

name name of definition string "truss"

set up set up function (K andM) function truss set up

stress stress computation function function truss stress

shape element shape scalar &linear

num nodes number of nodes in element scalar 2

shape nodes number of nodes that define shapescalar 2

num stresses number of stress values scalar 1

dofs vector ofDOFs row vector [1,2,3,0,0,0]

retainK retain stiffness matrix indicator scalar &false

Table 10.12: Arguments to theadd definition() function.

The add definition() function requires a variety of arguments as shown in
Table 10.12. For the reminder of the discussion regarding the arguments to the
add definition() function, we will use the truss element as an example.

The name of the element definition is a string by which the element type is referred.
Once the element definition has been successfully added then new elements of that type
can be created. In our example the name is"truss", so a FElt file can now be loaded that
containstruss elements. If an element definition of the same name already exists then
add definition() returns1, otherwise it returns0.

Theset up function is aburlap function that will compute the local stiffness matrix,
K, and local mass matrix,M, for any element of the new definition. Our sample set-up
function is shown in Figure10.1. For our simple truss element, we are ignoring the mass
matrix and the effect of distributed loads.

The set-up function will be called with two arguments. The first argument is the element
whose stiffness and mass matrices are to be computed. The second argument is the mass
mode, which is one of&false, &lumped, or &consistent, where&false indicates that
no mass matrix is required. In our simple example, we have simply omitted the second
argument, since we will not be considering mass matrices. Note that theset up argument
is a burlap function itself, not the name of the function. As discussed in Section11.6,
functions inburlap are simply variables that can be passed as arguments to functions and
also returned from functions. Our simple function for truss elements computes the length
of the element by calling thelength() function, which is discussed in Section11.5.4.



118 CHAPTER 10. THE BURLAP APPLICATION

function truss_set_up (e)

L = length (e)

AEonL = e.material.A * e.material.E / e.material.L

K = [AEonL, -AEonL; -AEonL, AEonL]

cx = (e.node (2).x - e.node (1).x) / L

cy = (e.node (2).y - e.node (1).y) / L

cz = (e.node (2).z - e.node (1).z) / L

T = [cx, cy, cz, 0, 0, 0; 0, 0, 0, cx, cy, cz]

e.K = T’*K*T

return 0

end

Figure 10.1: Set-up function for the truss element definition.

The set-up function assigns the stiffness and mass matrices to the element by assigning
to theK andM fields of the element structure. If the set-up function is successful then it
should return zero. Otherwise, it should return a non-zero value.

The stress function is aburlap function that will compute the stress values for any
element of the new definition. Our sample set-up function is shown in Figure10.2. The
stress function assigns the stresses by assigning to thestress field of the element structure.
If the stress function is successful then it should return zero. Otherwise, it should return a
non-zero value.

Our simple truss element has only one integration point and only a single stress value at
that point. Since an element may have an arbitrary number of integration points, theninteg

field of the element structure must be set before thestress vector can be accessed. The
number of stresses and thus the length of thevalues vector is determined by the element
definition. In the computation of the stress value for the truss element, the two displacement
row vectors are subtracted and then multiplied by the column vector,c, to yield a scalar.

The remaining arguments toadd definition() are easily calculated. The shape of our
truss element is linear and has two nodes, both of which are required and needed to define
the shape of the element. The truss element permits displacements along the X, Y, and Z
axes, but does not allow for rotation about any of the axes. Therefore, the first, second, and
third DOFs are active. The entire call toadd definition() is:
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function truss_stress (e)

L = length (e)

EonL = e.material.E / L

c = zeros (6, 1)

c(1) = (e.node (2).x - e.node (1).x) / L

c(2) = (e.node (2).y - e.node (1).y) / L

c(3) = (e.node (2).z - e.node (1).z) / L

e.ninteg = 1

e.stress (1).x = (e.node(1).x + e.node(2).x) / 2

e.stress (1).y = (e.node(1).y + e.node(2).y) / 2

e.stress (1).values (1) = EonL * (e.node(2).dx - e.node(1).dx) * c

return 0

end

Figure 10.2: Stress function for the truss element definition.

add definition ("truss", truss set up, truss stress,

&linear, 2, 2, 1, [1, 2, 3, 0, 0, 0])

We have neglected to pass a value for the last argument, which indicates whether the
local stiffness matrix should be retained after assembly into the global stiffness matrix. The
default value for this argument is&false, which is fine for our purposes. Only the last ar-
gument toadd definition() may be omitted; the remaining argument do not have default
values. If we wish to remove the truss element definition, then theremove definition()

function must be used. Theremove definition() function takes a single argument that is
the name of the element to be removed. In our case, the call would beremove definition

("truss").

10.5 Tips on using interactive mode

Most of the time,burlap will be used in interactive mode: expressions will be typed in at
the prompt and evaluated. Functions are best created with an editor as a file which is then
included.

[1] system ("vi foo.b")
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[2] include ("foo.b")

[3] system ("vi foo.b")

[4] include ("foo.b")

It soon becomes tedious to retype the same expressions. Ifburlap is compiled with the
readline library, then you can use the built-in history mechanism.

[1] system ("vi foo.b")

[2] include ("foo.b")

[3] !s

[4] !i

For those not familiar withcsh or bash, !s executes the last line that begins withs.
Similarly, !i executes the last line that begins withi. You can save yourself more typing
by using the word completion abilities of thereadline library. Pressing the tab key will
complete the current word. If there is not a unique completion, then you will hear a bell
and pressing the tab key again will list the completions.

[1] sy <Tab>

symmetric? system

[1] system ("vi foo.b")

[2] in <Tab>

in integrate_hyperbolic inv

include integrate_parabolic

[2] include ("foo.b")

The default set of built-in completions includes all keywords such asfunction and
return, intrinsic functions such asinclude andsin, and enumeration constants such as
&linear and&null. Inside a quoted string, the default set of completions is not used;
instead, file names are completed.

[1] include ("Examples/f <Tab>

fe.b find-dofs.b foo.flt foo_d.flt

[1] include ("Examples/f

Using the completion mechanism can save a lot of typing, especially when referring to
file names. Another trick is to define your own aliases for common lines.

[1] alias v system ("vi foo.b")

[2] alias vi system ("vi !$")

[3] alias print write (!*)

[4] vi foo.b
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The first alias definesv to besystem ("vi foo.b"). The second is more general and
definesvi to besystem ("vi !$"). The string!$ will be replaced with the last word on
the line. A complete description of the history expansion can be found in the documentation
for thereadlinelibrary and forcsh. The final alias,print, is simply a convenient wrapper
for thewrite function.

If burlap is not compiled with thereadline library, you still have access to a limited
form of aliasing. The only expansion string legal in an alias is%s which will expand to the
entire line except the first word. A similar alias tovi above would besystem ("vi %s").

An alternative to writing aliases is to define your own convenience functions. If
you wish to be able to both edit and include a file then you can write a small function,
callededit, and place it in a file callededit.b in your search path, as described in Sec-
tion 11.4.14.

function edit (s)

system (concat ("vi ", s))

include (s)

end

Finally, it is important to realize that thereadline library capabilities and aliases work
on lines, not on expressions. History substitutions apply to the lines entered, not to the
individual expressions on a line. Similarly, aliases and history expansion characters are not
recognized whenburlap is reading from a file.

10.6 Common error messages

This section attempts to explain some of the common error messages associated with using
burlap. All error messages are prefixed with the name of the file and the number of the
line that was found to be in error. An error on a line may not be discovered until several
lines later, so the line number may not be the line that actually contained the error. If an
error occurs in a function, then the function call is terminated and the error is propagated
back to the outermost level. In this case, the calling sequence is shown to assist in tracking
down the cause of the error. In the examples given, the file name and line number have
been omitted.

type error in expression: function call to null

This error indicates that the function call or array index operators were ap-
plied to anull expression such asfoo ( ), wherefoo is null. This error
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often results from misspelling a variable name or from forgetting to declare
a global variable using theglobal declaration in a function body. You can
generally locate this error by searching for parentheses on the offending
line.

type error in expression: typehas no such field

The field index operator was applied to an object of the specifiedtype, but
the object has no such field. You can generally locate this error by searching
for a period on the given line.

type error in expression: type1 operator type2
The specifiedoperatordoes not allow operands of the specified types. The
way to fix this error is to determine what operand types are allowed, as
discussed in Section11.4, and determine why one or more of your operands
are of the incorrect type.

parse error before string
At some time at or beforestring, the expression syntax was illegal. Often,
string is the cause of the error. You should now be back at the top level
prompt, in which case you can correct your error and try again.

size mismatch in expression: (a x b) operator (c x d)
The types of the operands were legal for the specifiedoperator, but the
sizes of the operands were illegal. The legal operand sizes are discussed in
Section11.4.



Chapter 11

The burlap Syntax

burlap has a rich variety of operators and functions for manipulating matrices, scalars,
strings, and FElt objects. Matrices are denoted by square brackets with matrix elements
separated by commas and matrix rows separated by semicolons. Scalars are floating-point
numbers such as3.14159 or 123. Any scalar can also be converted to a matrix with one
row and one column. Strings are enclosed in double quotation marks. Special enumeration
constants begin with an ampersand, as in&local x. Variable names are a sequence of
letters, digits, and the underscore character. Finally, comments are enclosed within/* */;
a pound sign (#) may also be used to indicate a comment until the end of the current line.

[1] a = 3.14159

[2] b = "hello"

[3] c = [1, 2, 3; 4, 5, 6]

[4] write (a)

3.14159

[5] write (b)

hello

[6] write (c)

1 2 3

4 5 6

The following sections discuss the operators and functions ofburlap in detail. They
are intended to be the definitive word on the semantics of the operators, functions, matrix
formers, etc.

123
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11.1 Literals

It seems appropriate to begin the discussion with the literals since they are the building
blocks of theburlap syntax. As previously mentioned, floating-point literals are numbers
such as123 or 3.14159. Specifically, a numeric literal consists of abasefollowed by an
optionalexponent. The base consists of a series of digits with an optional decimal point.
The exponent consists of the letterE or e followed by the digits of the base-10 exponent.
The digits in the exponent may be preceded by a+ or - to indicate a positive or negative
exponent, respectively. String literals are enclosed within double quotation marks, as in
"hello". The following escapesmay be used to introduce special characters within a
string literal.

audible alert \a carriage return \r

backspace \b horizontal tab \t

formfeed \f vertical tab \v

newline \n quote \"

Matrices are delimited by square brackets with rows separated by semicolons and el-
ements within a row separated by commas. An important thing to realize when writing
matrices is thatburlap may automatically insert a semicolon at the end of line. In particu-
lar, a semicolon is inserted at the end of a line ininteractive modewhen the last literal or
operator on the line can end an expression.

[1] a = [1, 2, 3

[2] 4, 5, 6]

[3] write (a)

1 2 3

4 5 6

[4] a = [1, 2, 3 +

4> 4, 5, 6]

[5] write (a)

1 2 7 5 6

Note that since an expression cannot end with+, the next line is taken to be a continu-
ation of the previous line. A matrix element may be an arbitrary expression; however, all
expressions on the same row must have the same height. Additionally, all rows must have
the same number of columns.
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[1] x = 1

[2] a = [0, x, 2]

[3] write (a)

0 1 2

[4] b = [a; 3, 4, 5]

[5] write (b)

0 1 2

3 4 5

[6] write ([b, b])

0 1 2 0 1 2

3 4 5 3 4 5

[7] write ([b, a])

stdin:7: inconsistent number of rows

11.2 Variables

Variables are named by a sequence of letters, digits, the underscore character, and the
question mark symbol. A variable must begin with a letter or the underscore character. The
question mark may only appear as the last character in a variable name. There is no limit
on the length of a variable name.

Variables are assigned values either through the assignment operator, parameter pass-
ing, or function definitions. A variable is eitherlocal or global. Local variables are those
variables referenced within a function body. Global variables are those variables referenced
outside a function body. To explicitly reference a global variable inside a function body, it
must be declared as global using theglobal declaration.

function foo (x)

global y, z

return x + y + z

end

The functionfoo references two global variables,y andz. If the function did not use
theglobal declaration theny andz would be local variables. The only exception to this
rule is a function call, as discussed in Section11.4.14.
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11.3 Constants

There are several predefined enumeration constants inburlap. Most of the constants corre-
spond to keywords used in the FElt input file to define properties such as the direction of a
load. The enumeration constants are listed in Table11.1.

analysis types: &static, &transient, &modal, &static_thermal,

&transient_thermal, &spectral

load directions: &local_x, &local_y, &local_z, &global_x,

&global_y, &global_z, &parallel, &perpendicular

degrees of freedom: &tx, &ty, &tz, &rx, &ry, &rz,

&fx, &fy, &fz, &mx, &my, &mz

element shapes: &linear, &planar, &solid

miscellaneous: &constrained, &unconstrained, &hinged,

&lumped, &consistent, &null, &true, &false

Table 11.1: Enumeration constants inburlap.

11.4 Operators

This section discusses the various operators available inburlap. The operators are dis-
cussed in order of precedence, with the lowest precedence first. In general, uppercase
letters denote matrices and lowercase letters denote scalars. For many operators, a pre-
cise definition of the operator is given, along with a table specifying the legal types of the
operands, and exampleburlapoutput.

11.4.1 Expression separators

X ; Y

X , Y

A semicolon is used to separate multiple expressions to be evaluated and to separate the
rows of a matrix. A comma is used to separate the arguments to a function and to separate
the elements within a single row of a matrix.

Since an expression usually ends at the end of a line, typing a semicolon at the end of
every line to separate one expression from the next would be extremely tedious. Instead,
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burlap will automatically insert a semicolon for you at the end of a lineunder certain
conditions. When reading from a terminal in interactive mode, if the last token on the line
may end an expression then a semicolon is inserted. When reading from a file, if the last
token on the line may end an expressionand the first token on the next line may begin an
expression then a semicolon will be inserted. A line can be explicitly continued by ending
the line with a backslash character.

[1] write ("hello"); write ("there")

hello

there

[2] a = 1 +

2> 2 + 3

[3] write (a)

6

[4] b = 1 \

4> + 2

[5] write (b)

3

[6] x = [1, 2, 3

[7] 4, 5, 6]

[8] write (x)

1 2 3

4 5 6

Although these semantics may sound complicated, they are designed so that 99.9% of
the time you don’t need to worry about when to add a semicolon. However, if you find
yourself with a nasty bug, you might want to review the rules for inserting semicolons or
try putting in an explicit semicolon or backslash.

11.4.2 Assignment expressions

X = Y; X := Y

The assignment operator has two equivalent forms and groups from right-to-left. An as-
signment expression assignsY to X and returnsX. X must be a variable name, a submatrix,
a field reference, or the result of a function call returning a global variable.

Generally, any expression can be assigned to a variable. However, in certain cases the
expression on the right-hand side is restricted. For example, ifX is a submatrix, created as
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the result of indexing a matrix, then the dimensions (number of rows and columns) ofX
andY must agree.

If X is the result of a field reference of a FElt structure then there may be type constraints
onY. For example, a matrix cannot be assigned to the component of a force. Some fields
are also read-only, such as the name of a constraint or the number of a node or element.

[1] a = [1, 2, 3]

[2] write (a)

1 2 3

[3] a = b = 0

[4] write (a, " ", b)

0 0

[5] a = (b = 2) + 1

[6] write (a, " ", b)

3 2

[7] nodes (1).number = 3

stdin:7: type error in expression: changing a read-only variable

[8] nodes (1).force.Fx = 4

[9] nodes (1).force.Fy = [1, 2, 3]

stdin:9: type error in expression: scalar = matrix

[10] a = [1, 2, 3; 4, 5, 6]

[11] write (a)

1 2 3

4 5 6

[12] a (1, 2) = 0

[13] write (a)

1 0 3

4 5 6

11.4.3 LogicalOR operator

x or y; x || y

The logical OR operator has two equivalent forms and groups from left-to-right. It
returns1 if either of its operands compares unequal to zero, and0 otherwise. TheOR

operator guarantees left-to-right evaluation:x is first evaluated; if it is unequal to0, the
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value of the expression is1. Otherwise,y is evaluated, and if it is unequal to0, the result
of theOR expression is1, otherwise the result is0.

x or y
def=

{
1 if x 6= 0 ory 6= 0
0 otherwise

Both x andy must be scalar expressions, as shown in Table11.2. It makes little sense
to compare a matrix or string with zero, for example. There are, however, common ways
of mapping a matrix to a scalar. Two such ways are provided by theany?() andevery?()
functions discussed in Section11.5.3.

X Y Z Z = X or Y

scalar scalar scalar z= x or y

Table 11.2: Type table for the logicalOR operator.

[1] write (1 < 2 or 5 > 6)

1

[2] write (1 > 2 or 5 > 6)

0

[3] write (1 or 1 / 0)

1

[4] write (0 or 1 / 0)

stdin:4: exception in expression: right division by zero

[5] a = [1, 2, 3]

[6] write (a or 1)

stdin:6: type error in expression: matrix in conditional context

[7] write (any? (a) or 1)

1

11.4.4 LogicalAND operator

x and y; x && y

The logicalAND operator has two equivalent forms and groups from left-to-right. It
returns1 if both of its operands compare unequal to zero, and0 otherwise. TheAND

operator guarantees left-to-right evaluation:x is first evaluated; if it is equal to0, the value
of the expression is0. Otherwise,y is evaluated, and if it is equal to0, the result of theAND

expression is0, otherwise the result is1.
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x andy
def=

{
1 if x 6= 0 andy 6= 0
0 otherwise

Both x andy must be scalar expressions, as shown in Table11.3. It makes little sense
to compare a matrix or string with zero, for example. There are, however, common ways
of mapping a matrix to a scalar. Two such ways are provided by theany?() andevery?()
functions discussed in Section11.5.3.

X Y Z Z = X and Y

scalar scalar scalar z= x andy

Table 11.3: Type table for the logicalAND operator.

[1] write (1 < 2 and 3 < 4)

1

[2] write (1 < 2 and 3 > 4)

0

[3] write (0 and 1 / 0)

0

[4] write (1 and 1 / 0)

stdin:4: exception in expression: right division by zero

11.4.5 Equality operators

X == Y

X != Y; X <> Y

The equality (==) and inequality (!= or <>) operators associate from left-to-right. The
result of the expression is1 if true, and0 if false.

x = y
def=

{
1 if x = y
0 otherwise

x != y
def=

{
1 if x 6= y
0 otherwise

Unlike the previously discussed operators, these operators, like most of the operators in
burlap, accept a variety of types as operands, as shown in Table11.4.
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X Y Z Z = X opY

matrix matrix matrix ∀i, j | Zi, j = Xi, j opYi, j

matrix scalar matrix ∀i, j | Zi, j = Xi, j opy

scalar matrix matrix ∀i, j | Zi, j = x opYi, j

scalar scalar scalar z= x opy (scalar comparison)

string string scalar z= x opy (lexicographic comparison)

object object scalar z= x opy (object identity comparison)

Table 11.4: Type table for the equality operators.

Although the table might look confusing, it provides a precise semantics for all possible
type operands. Essentially,burlap does element-by-element comparison for matrices and
scalars, string (i.e., lexicographic) comparison for strings, and identity (i.e., pointer) com-
parison on all other type objects. When comparing two matrices, their dimensions must be
identical.

[1] write ([1, 2, 3] == 2)

0 1 0

[2] write (2 != [1, 2, 3])

1 0 1

[3] write ([1, 2, 3] == [3, 2, 3])

0 1 1

[4] write ("hello" == "hello")

1

[5] write ("hello" == "there")

0

[6] write (nodes (1) == nodes (1))

1

[7] write (nodes (1) == elements (1))

stdin:7: type error in expression: node == element

11.4.6 Relational operators

X < Y
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X > Y

X <= Y

X >= Y

The relational operators are similar to the equality operators, with the only difference
being that they do not allow an arbitrary object type as an operand for comparison (Ta-
ble11.5).

X Y Z Z = X opY

matrix matrix matrix ∀i, j | Zi, j = Xi, j opYi, j

matrix scalar matrix ∀i, j | Zi, j = Xi, j opy

scalar matrix matrix ∀i, j | Zi, j = x opYi, j

scalar scalar scalar z= x opy (scalar comparison)

string string scalar z= x opy (lexicographic comparison)

Table 11.5: Type table for the relational operators.

The result of the expression is1 if the expression is true, and0 if the expression is false.
If two matrices are compared, then their dimensions must be identical.

[1] write ([1, 2, 3] < 3)

1 1 0

[2] write ([1, 2, 3] >= [3, 2, 1])

0 1 1

[3] write ("aardvark" < "aardwolf")

1

11.4.7 Range operator

x : z

x : y : z

The range operator produces a row vector starting atx and ending atz, with y used as
the step between successive elements.

x : y : z
def=

{ [
x x+y · · · x+

⌊
z−x

y

⌋
y
]

if (x≤ z andy > 0) or (x≥ z andy < 0)

null otherwise
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If y is not specified then1 is used as the step value. Each ofx, y, andz must be scalar
expressions, as shown in Table11.6.

X Y Z W W = X : Y : Z

scalar scalar scalar matrix (as defined above)

Table 11.6: Type table for the range operator.

[1] write (1:3)

1 2 3

[2] write (3:1)

null

[3] write (1:2:10)

1 3 5 7 9

[4] write (10:-2:1)

10 8 6 4 2

As illustrated above, if the range is improperly specified then anull value is returned.
Thenull value is illegal in most operations and is used to indicate an uninitialized value.

11.4.8 Additive operators

X + Y

X - Y

The type semantics of the additive operators are quite similar to the semantics of the
relational and equality operators, except that only scalars and matrices are allowed. As
shown in Table11.7, adding two scalars produces a scalar, as expected; adding a matrix to
a scalar simply adds the scalar to each element of the matrix; adding two matrices results
in standard matrix addition, again as expected.

Like the equality and relational operators, the additive operators associate from left-to-
right. Also, two matrices must have identical dimensions for addition or subtraction.

[1] write (1 + 2)

3
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X Y Z Z = X opY

scalar scalar scalar z= x opy

scalar matrix matrix ∀i, j | Zi, j = x opYi, j

matrix scalar matrix ∀i, j | Zi, j = Xi, j opy

matrix matrix matrix ∀i, j | Zi, j = Xi, j opYi, j

Table 11.7: Type table for the additive operators.

[2] write (1 + [2, 3, 4])

3 4 5

[3] write ([3, 4, 5] - 1)

2 3 4

[4] write ([1, 2] + [3, 4])

4 6

[5] write ([1, 2, 3] + [4, 5])

stdin:5: size mismatch in expression: (1 x 3) + (1 x 2)

11.4.9 Multiplicative operators

X * Y

X / Y

X \ Y

X % Y

The multiplicative operators, which associate from left-to-right, are distinct from the
other operators in that the results are not computed on an element-by-element basis.

As illustrated in Table11.8, multiplying two scalars results in scalar multiplication,
multiplying a matrix by a scalar is equivalent to scaling the matrix by the scalar, and multi-
plying two matrices results in standard matrix multiplication. In matrix multiplication the
inner dimensions must agree.

[1] write (2 * 3)

6
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X Y Z Z = X * Y

scalar scalar scalar z= x×y

scalar matrix matrix ∀i, j | Zi, j = x×Yi, j

matrix scalar matrix ∀i, j | Zi, j = Xi, j ×y

matrix matrix matrix ∀i, j | Zi, j = ∑n
k=1Xi,k×Yk, j

Table 11.8: Type table for the multiplication operator.

[2] write (2 * [1, 2, 3])

2 4 6

[3] write ([1, 2, 3] * [1; 2; 3])

14

[4] write ([1; 2; 3] * [1, 2, 3])

1 2 3

2 4 6

3 6 9

[5] write ([1, 2] * [3, 4])

stdin:5: size mismatch in expression: (1 x 2) * (1 x 2)

burlap supports two forms of division: left division and right division. The right divi-
sion ofX andY is (approximately) equivalent to multiplyingX by the inverse ofY.

X Y Z Z = X / Y

scalar scalar scalar z= x/y

scalar matrix matrix ∀i, j | Zi, j = x×Y−1
i, j

matrix scalar matrix ∀i, j | Zi, j = Xi, j/y

matrix matrix matrix Z | ZY = X

Table 11.9: Type table for the right division operator.

The first three cases in Table11.9are as expected. Note that in the second case, whereY
is a matrix, its inverse must be explicitly computed, which may result in numeric instability
and thus should be avoided. In the fourth case, where two matrices are “divided”, then an
LU-factorization, combined with transposition, is used to compute the “inverse” without
introducing numeric instability, as shown in Equation11.1. In all cases, the number of
rows ofX must equal the number of columns ofY.
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Z = X/Y ≡ Z = XY−1

≡ ZY = X (11.1)

≡ (YTZT)T = (XT)T

[1] write (1 / 2)

0.5

[2] write (1 / 0)

stdin:2: exception in expression: right division by zero

[3] write ([1, 2, 3] / 10)

0.1 0.2 0.3

The left division ofX andY is (approximately) equivalent to the inverse ofX multiplied
by Y. Left division is most often used to solve equations of the formAx= b.

X Y Z Z = X \ Y

scalar scalar scalar z= y/x

scalar matrix matrix ∀i, j | Zi, j = Yi, j/x

matrix scalar matrix ∀i, j | Zi, j = X−1
i, j ×y

matrix matrix matrix Z | XZ = Y

Table 11.10: Type table for the left division operator.

As shown in Table11.10, the third case involves the explicit computation of the matrix
inverse, and thus should be avoided. Left division is also known as abacksolve, since
if performed on two matrices, an LU-decomposition (or Crout factorization for compact
matrices) is computed followed by a backsolve operation. (This is easy to remember since
thebackslash is used to perform abacksolve). The number of columns ofX must equal the
number of rows ofY.

[1] write (2 \ 1)

0.5

[2] write (0 \ 1)

stdin:2: exception in expression: left division by zero

[3] write (10 \ [1, 2, 3])

0.1 0.2 0.3

[4] write ([1, 2; 3, 4] \ [5, 6])
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stdin:4: size mismatch in expression: (2 x 2) \ (1 x 2)

[5] write ([1, 2; 3, 4] \ [5; 6])

-4

4.5

Finally, burlapalso supports a remainder operation as shown in Table11.11. In the left
division, right division, and remainder operators, a division by zero will cause a mathemat-
ical exception.

x mody
def= x−bx/ycy

X Y Z Z = X % Y

scalar scalar scalar z= x mody

scalar matrix matrix ∀i, j | Zi, j = x modYi, j

matrix scalar matrix ∀i, j | Zi, j = Xi, j mody

matrix matrix matrix ∀i, j | Zi, j = Xi, j modYi, j

Table 11.11: Type table for the remainder operator.

11.4.10 Exponentiation operator

x ** y; x ˆ y

The exponentiation operator has two equivalent forms as associated from right-to-left.
Bothx andy must be scalar expressions, as shown in Table11.12.

x y z z = x ** y

scalar scalar scalar z= xy

Table 11.12: Type table for the exponentiation operator.

Additionally, x must be non-negative ory must be an integer; otherwise a mathematical
exception will result.

[1] write (2 ** 3)

8

[2] write (2 ** .5)

1.41421
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[3] write (-2 ** .5)

stdin:3: exception in expression: illegal base and exponent

11.4.11 Transposition operator

X’

The transposition operator returns the transpose of its operand and associates from left-
to-right. The transpose of a scalar is defined to be itself, as shown in Table11.13.

X Y Y = X’

scalar scalar y = x

matrix matrix Y = XT

Table 11.13: Type table for the transposition operator.

11.4.12 Unary operators

- X

+ X

not X; ! X

The prefix unary operators associate from right-to-left. The unary minus operator sim-
ply returns the negative ofX. The unary plus operator simply returnsX, which must be a
matrix or scalar expression. The logical negation operator (not or !) logically negates each
element ofX.

notx
def=

{
1 if x = 0
0 otherwise

The type tables for the unary operators are shown in Table11.14.

X Y X = opY

scalar scalar x = opy

matrix matrix ∀i, j | Xi, j = opYi, j

Table 11.14: Type table for the unary operators.
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11.4.13 Index expressions

X (I)

X (I,J)

An index expression is used to access the components of matrices. Each index must be
an expression that is either a scalar, a vector whose elements arecontiguous and increasing,
or the special vector:, which is used to specify all rows or columns of a matrix and should
not be confused with the range operator. IfI or J is a vector then it specifies a range of
indices that are to be used. Thus,: is a shorthand for writing1 : rows (X) for I or
1 : cols (X) for J.

If X is a matrix thenX(i) is its ith column andX(i,j) is the value of the element of
its ith row and jth column. However, ifX is a vector thenX(i) is its ith element. Since a
scalar is a matrix with one row and one column, it may also be indexed.

[1] A = [1, 2, 3; 4, 5, 6]

[2] x = [1; 2; 3]

[3] y = [1, 2, 3]

[4] write (A)

1 2 3

4 5 6

[5] write (A(2))

2

5

[6] write (A(2,3))

6

[7] write (x)

1

2

3

[8] write (x(2))

2

[9] write (y)

1 2 3
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[10] write (y(1))

1

[11] write (A(:,[2,3]))

2 3

5 6

Thus, there is some ambiguity in usingX(i) since ifX is a column vector then the result
will be its ith element and ifX is a matrix then the result will be itsith column. Therefore,
caution should be used;octavedoes not support indexing a matrix with a single index.
However, the single index notation can be useful and is consistent with the semantics of the
for expression of Section11.7.3.

11.4.14 Function expressions

F (...)

A function call is an expression,F , followed by parentheses containing a possibly
empty, comma-separated list of arguments, which may be arbitrary expressions. The ar-
gument list is evaluated in order from left to right. The result of the expression is the return
value of the function named byF . If more arguments are specified than required by the
function, the extra arguments are simply discarded. If too few arguments are specified, then
null values are appended to the argument list. Thus, it is impossible to distinguish anull

value due to an uninitialized variable from a missing argument.

If F evaluates tonull and is an identifier, such aswrite, then the global scope is
searched for a function calledF. If a function exists then it is executed. Otherwise, the
directories named by the environment variableBURLAP PATH are searched in order for a file
named firstF and thenF.b. If a file is found then it is processed just as ifinclude() were
called. After the file is processed the global scope is searched again. If the function still
cannot be found then a type error results. This is the only case in which a global variable
used inside a function does not need to be explicitly declared in aglobal declaration.

11.5 Intrinsic functions

The intrinsic functions are those functions that areburlap provides by default. They are,
however, just variables and their values can be reassigned, although this is not typically
done. The functions can be grouped into five basic categories:
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• mathematical functions: sin(), sqrt(), floor(), etc. (Section11.5.1)

• matrix functions: lu(), qr(), eig(), etc. (Section11.5.2)

• predicate functions: null?(), any?(), matrix?(), etc. (Section11.5.3)

• finite element functions:assemble(), area(), etc. (Section11.5.4)

• miscellaneous functions:concat(), write(), exit(), etc. (Section11.5.5)

11.5.1 Mathematical functions

burlap supports most of the functions available in the C math library, as shown in Ta-
ble 11.15. Each of the functions can take either a scalar or a matrix as an argument. If a
matrix is passed as an argument, then the result is also a matrix with the function applied
to each element individually.

abs (x) |x| hypot (x,y)
√

x2 +y2

ceil (x) dxe log (x) lnx

cos (x) cosx log10 (x) logx

exp (x) ex pow (x,y) xy

fabs (x) |x| sin (x) sinx

floor (x) bxc sqrt (x)
√

x

fmod (x,y) x mody tan (x) tanx

Table 11.15: Intrinsic functions from the math library.

In the case of thehypot() function which requires two arguments, the type semantics
are the same as that of the addition operator. Thefmod() function is equivalent to the
remainder operator (%); the pow() function is equivalent to the exponentiation operator
(**).

11.5.2 Matrix functions

burlap provides a variety of functions for manipulating and factoring matrices. All of
these functions, with the exception ofrows() andcols() functions, could be written in
burlap itself; however, the built-in versions will execute faster. Detailed explanations of
the various factorizations can be found in any basic linear algebra text.
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chol (X) Returns the cholesky factorization ofX. The cholesky decomposition of a
matrix X is a matrixB such thatBBT = X, provided thatX is symmetric
and positive definite. The cholesky decomposition of a scalar is simply its
square root.

cols (X) Returns the number of columns of the matrixX. A scalar is defined to have
a single column. A synonym for this function iscolumns().

compact (X)

Returns acompact-columnmatrix whose elements are identical to those of
X, provided thatX is a symmetric matrix. Matrices are normallyfull matri-
ces, with the size of anm×n full matrix requiringO(mn) space. The space
required by a compact-column matrix is approximately equal to the num-
ber of non-zero entries. Most of the FElt functions expect compact-column
matrices. The compact representation of a scalar is itself.

det (X) Returns the determinant ofX, |X|, provided thatX is a nonsingular matrix.
The determinant of a scalar is itself.

eig (X, V) Returns a column vector,Λ, containing the eigenvalues ofX, provided that
X is a square matrix. Therefore,∀i ∃y |Xy= Λiy. If a variableV is specified
and X is a symmetric matrix thenV will contain the matrix of eigenvectors
on return. Each column ofV will contain a single eigenvector. Therefore,
∀i | XVi = ΛiVi . If V is missing orX is not a symmetric matrix then only the
eigenvalues are returned.

eye (m, n) Returns an identity matrix of sizem×n, Imn. If n is omitted then anm×m
matrix is returned. Bothmandn must be scalar expressions that are greater
than zero.

inv (X) Returns the inverse ofX (X−1), which must be either a nonsingular matrix
or a non-zero scalar.

lu (X, L, U, P)

Computes the LU decomposition ofX, which must be a nonsingular ma-
trix. The return value is a row permuted superposition ofL andU , with the
diagonal ofL not being stored sinceL is unit lower triangular. Thus, the
result is not very useful. However, ifL is specified as an argument, it will
contain the unit lower triangular matrix on return. Similarly,U will contain
the upper triangular matrix andP will contain the permutation matrix, such
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thatPLU = X.

norm (X, s)

Returns the norm ofX, ‖X‖. The type of the norm depends upon the type
of X and the value ofs, which must be a string, as shown in Table11.16.

s

X null "1" "2" "fro"

scalar |X| |X| |X| |X|
vector ‖X‖2 ‖X‖1 ‖X‖2 ‖X‖F

matrix ‖X‖F ‖X‖1 illegal ‖X‖F

Table 11.16: Argument table for thenorm() function.

The notation‖X‖F indicates theFrobeniusnorm ofX; the Frobenius norm
of a vectorX is equivalent to its 2-norm,‖X‖2. Since a scalar value can
always be converted to a string value, it is legal to usenorm (X, 1) or
norm (X, 2), but notnorm (X, fro) unlessfro evaluates to"1", "2" or
"fro".

ones (m, n)

Returns anm×n matrix whose elements are all1. If n is not specified then
anm×m matrix is returned. Bothm andn must evaluate to scalars greater
than zero.

qr (X, Q, R)

Computes the QR factorization ofX such thatQTX = R andQQT = I . The
result is a right upper triangular matrix,R. The orthogonal matrix,Q, may be
retrieved by specifying it as the second parameter;R may also be retrieved
in this manner if desired. The matrixX must be overdetermined (i.e., tall
and thin).

rand (m, n, s)

Returns anm×n matrix whose elements are randomly distributed in[0,1).
If n is not specified then anm×m matrix is returned. If bothm andn are
not specified then a scalar is returned. The third argument,s, will be used to
seed the random number generator if it is specified and is a non-zero scalar.
burlap initially seeds the generator with the current time.

rows (X) Returns the number of rows of the matrixX. A scalar is defined to have a
single row.
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zeros (m, n)

Returns anm×n matrix whose elements are all0. If n is not specified then
anm×m matrix is returned. A synonym for this function iszeroes().

Theeye(), ones(), rand(), andzeros() functions provide alternative ways of creat-
ing a matrix without using the matrix formers.

11.5.3 Predicate functions

Predicate functions (Table11.17) return1 if the predicate is true and0 otherwise. The
names of all predicate functions inburlap end with a question mark,?, but this is simply a
convention and is not required should you write your own functions.

any? (X) Is any element ofX non-zero?

compact? (X) Is X a compact-column matrix?

every? (X) Is every element ofX non-zero?

null? (X) Is X null?

matrix? (X) Is X a matrix?

scalar? (X) Is X a scalar?

symmetric? (X) Is X a symmetric matrix?

Table 11.17: Predicate functions available inburlap.

The any?(), compact?(), every?(), andsymmetric?() functions requireX to be
either a scalar or a matrix. The remaining functions will accept any type of object as an
argument.

[1] x = [1, 2, 3]

[2] y = 4

[3] write (scalar? (x), " ", scalar? (y))

0 1

[4] write (matrix? (x), " ", matrix? (y))

1 0

[5] z = x’*x

[6] write (symmetric? (z), " ", compact? (z))

1 0

[7] write (compact? (compact (z)))

1
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11.5.4 Finite element functions

The finite element functions provide an interface to the functions in the FElt library. The
functions can all be written inburlap itself, but the built-in functions will execute faster.

add definition (...)

Adds a new element definition. After the definition is added, elements of
that particular type can be loaded using thefelt() function. The types
of the arguments are given in order in Table11.18. Examples and a more
in-depth discussion of the arguments can be found in Section10.4.

name of definition string

set up function (K andM) function

stress computation function function

element shape scalar

number of nodes in element scalar

number of nodes that define shapescalar

number of stress values scalar

vector ofDOFs row vector

retain stiffness matrix indicator scalar

Table 11.18: Arguments to theadd definition() function.

area (e) Returns the area of the elemente. The element must be a planar element
(i.e.,e.definition.shape should be&planar).

assemble (M, C)

Computes and returns the global stiffness matrix,K, for the currently de-
fined FElt problem by computing the local stiffness matrices and assembling
them into the global matrix. For transient problems, ifM is specified then
it will contain the global mass matrix on return. Similarly,C will contain
the global damping matrix. All matrices are compact-column matrices. The
DOF-related fields of theproblem structure must be initialized, as by calling
thefind dofs() function.

clear nodes ( )

Clears the displacements and equivalent nodal force vectors for all nodes
defined in the current FElt problem. The return value isnull.
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compute modes (K, M, X)

Computes the modes for given stiffness matrix,K, and mass matrix,M. The
result is the vector of eigenvalues,Λ. If X is specified then it will contain
the matrix of eigenvectors upon return (seeeig() in Section11.5.2). The
DOF-related fields of theproblem structure must be initialized, as by calling
find dofs().

compute stresses (e)

Computes the stresses for the elemente. The return value is the return
value of the element’s stress function. Thestress field of the element
is initialized by this function. This function is merely a shorthand for
e.definition.stress (e).

construct forces (t)

Constructs and returns the global nodal force vector,f , for the current FElt
problem. The vector is constructed based on all nodal forces and the global
DOFs at those nodes. For transient problems,t may be a scalar expression
used to specify the current time. Ift is missing then it is assumed to be0.
The DOF-related fields of theproblem structure must be initialized, as by
callingfind dofs().

felt (s) Reads the FElt file named bys to define the current FElt problem. Ifs does
not name an absolute path (i.e., starts with/ or ˜) then the environment
variableFELT PATH is used to search for the file named bys. The variable
should be a colon-separated list of directories. The directories are searched
from left-to-right for a file first nameds and thens.flt. If the variable
FELT PATH is not set, then only the current directory is searched. Ifs is
null then an empty problem is defined.

find dofs ( )

Computes the set of activeDOFs for the current problem. As a result, the
DOF-related fields of theproblem structure are initialized. The number of
active DOFs is returned. This function must be called before most of the
other finite element related functions can be called.

global dof (n, d)

Returns the globalDOF corresponding to a localDOF. The localDOF is
specified by its node,n, and itsDOF, d. The node,n, may be specified as
either a node object or a node number. TheDOF, d, should be one of&tx,
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&ty, &tz, &rx, &ry, or&rz. TheDOF-related fields of theproblem structure
must be initialized, as by callingfind dofs().

integrate hyperbolic (K, M, C, p)

Solve the discrete equation of motion,Ma+Cv+Kd = f , using Newmark’s
method with the Hilbert-Hughes-Taylorα-correction for improved accuracy
with numerical damping. The return value is a matrix,D, of nodal displace-
ments, with each column ofD corresponding to a single time step. If the
nodes of the FElt problem have been renumbered thenp should be used to
specify the permutation vector, as returned by therenumber nodes() func-
tion. The sizes of the matrices must be consistent with the definition of the
current problem. Compact-column matrices are expected, but full symmet-
ric matrices will be accepted by coercing them to compact-column matrices.
The DOF-related fields of theproblem structure must be initialized, as by
callingfind dofs().

integrate parabolic (K, M, p)

Solves the discrete parabolic differential equationMv+Kd = f using a gen-
eralized trapezoidal method. If the nodes have been renumbered thenp
should be used to specify the permutation vector. The sizes of the matrices
must be consistent with the definition of the current problem. Compact-
column matrices are expected, but full symmetric matrices will be accepted
by coercing them to compact-column matrices. TheDOF-related fields of
theproblem structure must be initialized, as by callingfind dofs().

length (e) Returns the length of the elemente. The element must be a linear element
(i.e.,e.definition.shape should be&linear).

local dof (g, l)

Returns the number of the node corresponding to the globalDOF, g. If l ,
is specified then it will contain the localDOF on return. The number of
the node is returned rather than the node object itself since the nodes of the
problem may have been renumbered. TheDOF-related fields of theproblem
structure must be initialized, as by callingfind dofs().

remove constrained (K)

Removes the rows and columns ofK at all DOFs with a fixed boundary
condition and returns the new matrix.K itself is not modified.K should
be either a symmetric matrix or a column vector; the size ofK must be
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consistent with the definition of the current problem. TheDOF-related fields
of theproblem structure must be initialized, as by callingfind dofs().

remove definition (n)

Removes the element definition named byn. If the definition is successfully
removed then0 is returned. Otherwise,1 is returned. The definition must
not be in use by any elements.

renumber nodes ( )

Renumbers the nodes of the current problem using the Gibbs-Poole-
Stockmeyer and Gibbs-King node renumbering algorithms for bandwidth
and profile reduction. The result is a permutation vector,p, of the node
numbers.

restore numbers (p)

Restores the original node numbers of the current problem. The permutation
vector, as returned by therenumber nodes() function, is specified byp.
The return value isnull.

set up (e, s)

Calls the set-up function for elemente. The arguments may be used to
specify the mass mode and should be either&lumped or &consistent. If s
is not specified then no mass matrix will be computed fore. This function
is merely a shorthand fore.definition.set up (e, s).

solve displacements (K, f)

Solves the linear systemKd = f for the vector of global nodal displace-
ments,d. The sizes of the inputs must be consistent with the definition of
the problem. Additionally,K and f should both be condensed;K is ex-
pected to be compact. TheDOF-related fields of theproblem structure must
be initialized, as by callingfind dofs().

volume (e) Returns the volume of the elemente. The element must be a solid element
(i.e.,e.definition.shape should be&solid).

zero constrained (K)

Zeroes the rows and columns ofK at all DOFs with a fixed boundary con-
dition and returns the new matrix,Kcond. K itself is not modified.K should
be either a symmetric matrix or a column vector. IfK is a symmetric matrix
then a1 is placed on the diagonal of each zeroed row/column. The size ofK



11.5. INTRINSIC FUNCTIONS 149

must be consistent with the definition of the problem. TheDOF-related fields
of theproblem structure must be initialized, as by callingfind dofs().

These functions alone are sufficient to solve all static and transient problems thatfelt or
velvetcan solve. As shown in Figure11.1, it is relatively simple to solve a FElt problem
using the finite element intrinsic functions ofburlap.

11.5.5 Miscellaneous functions

The remaining intrinsic functions are concerned with a variety of topics, including file
access, input/output, and the user-interface.

concat (s, t)

Returns the concatenation ofs andt, both of which must be strings.

eval (s) Evaluates the strings as aburlap expression. The return value of the func-
tion is the return value of the evaluated expression.

exit (n) Exitsburlapwith exit coden. Normally, an exit code of0 indicates success
and a non-zero exit code indicates an error. Ifn is missing then0 is used.
Note that the built-in aliases defineexit asexit (!*), so from the prompt,
typingexit will exit burlapwith exit code0. There is no return value from
the function.

help (s) Requests help on topics. If s is not specified or is the empty string ("")
then a list of help topics is printed. Ifs is the name of an intrinsic function
then the help topic for that function is printed. Note that the built-in aliases
definehelp ashelp ("!$"), so from the prompt you need to typehelp
foo rather thanhelp "foo" to retrieve information on topicfoo; in fact,
help ("foo") will not work since it will expand tohelp ("(").

history (n)

Prints the command history list. Ifn is given then only the lastn events are
printed. The built-in set of aliases defineh ashistory (20).

include (s)

Includes the file named bys. The file is interpreted just as if it it were
specified on the command line. Therefore, it is executed in the global scope
andnot within a function body, even if theinclude() should be inside a



150 CHAPTER 11. THE BURLAP SYNTAX

find_dofs ( )

if problem.mode == &static then

K = assemble ( )

F = construct_forces ( )

Kc = zero_constrained (K)

Fc = zero_constrained (F)

d = solve_displacements (Kc, Fc)

else if problem.mode == &transient then

K = assemble (M, C)

D = integrate_hyperbolic (K, M, C)

else if problem.mode == &modal then

K = assemble (M, C)

Kc = remove_constrained (K)

Mc = remove_constrained (M)

Cc = remove_constrained (C)

l = compute_modes (K, M, X)

else if problem.mode == &static_thermal then

K = assemble ( )

F = construct_forces ( )

Kc = zero_constrained (K)

Fc = zero_constrained (F)

d = solve_displacements (Kc, Fc)

else if problem.mode == &transient_thermal then

K = assemble (M)

D = integrate_parabolic (K, M)

end

Figure 11.1: Solving problems with the finite element intrinsic functions.
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function body. Ifs does not name an absolute path (i.e., starts with/ or
˜) then the environment variableBURLAP PATH is used to search for the file
named bys. The variable should be a colon-separated list of directories. The
directories are searched from left-to-right for a file first nameds and then
s.b. If the variableBURLAP PATH is not set, then only the current directory
is searched.

length (X) Returns the length of the objectX. If X is a matrix then it returns the number
of elements inX. If X is a string then it returns the number of characters in
X.

load (s) Loads a file,s, of saved variables created with thesave() function. At
present, this function is not implemented.

read ( ) Reads a line from standard input and returns it as a string. Any newline
character is discarded. The function returnsnull upon end of file.

reads ( ) Reads a string (i.e., a sequence of characters separated by spaces) from stan-
dard input and returns it as a string. Anull value is returned upon end of
file.

save (s) Saves the current set of global variables in the file named bys. At present,
this function is not implemented.

system (s) Executes theUNIX command named bys. The command is executed in its
own subshell. The return value of the function is the return status of the
command.

type (X) Returns a string containing the type ofX, which may be of any type.

write (...)

Writes its arguments to standard output with no intervening spaces butwith
a newline at the end of the output. The arguments may be of any type. A
matrix is always written on a series of separate lines. The return value is
always0.

writes (...)

Writes its arguments to standard output with no intervening spaces andwith-
out a newline at the end of the output. The arguments may be of any type.
A matrix is always written on a series of separate lines. The return value is
always0.
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11.6 User-defined functions

function name( [argument[,argument] ...] )
expression-list

end

burlap provides a simple syntax for allowing users to define their own functions. A
function definition creates a new function with the specifiedname, overwriting any previ-
ously assigned value. Function names are simply variables just as in any of the previous
examples. Functions can be passed as parameters to other functions or returned from func-
tions, just like ordinary scalar variables.

Theexpression-listis a semicolon separated list of expressions that comprise the body
of the function. The return value of the function is the value of the lastexpression, al-
though usually aRETURN expression is used to explicitly return a value from the function
(Section11.7.4).

Each argument specifies the name of a formal parameter to the function (Sec-
tion 11.4.14). By default, all arguments are passedby value; the actual parameter is eval-
uated and a copy is passed to the function with assignment to the formal parameter having
no effect on the caller of the function. If the keywordshared is placed before the name of
the formal parameter (e.g.,shared foo) then the data associated with the formal is shared
with the data of the actual. An assignment to one is implicitly an assignment to both.burlap
uses this ability in several intrinsic functions (e.g.,lu(), eig()) to “return” more than one
value from a function.

function swap (x, y)

t = x; x = y; y = t

end

[1] a = 1; b = 2

[2] swap (a, b)

[3] write (a, " ", b)

1 2

The values are not swapped as desired since they are passed by value. For theswap()

function to work correctly the data of the formal and actual parameters must be shared.

function swap (shared x, shared y)

t = x; x = y; y = t

end
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[1] a = 1; b = 2

[2] swap (a, b)

[3] write (a, " ", b)

2 1

This type of parameter passing is also known ascall-by-referenceor var-parameters.
Fortran passes all parameters by reference; C passes all parameters by value.burlapadopts
the termshared parametersto illustrate that the space associated with the formal and actual
parameters is shared.

11.7 Control-flow constructs

burlap supports the standard control-flow constructs found in most programming lan-
guages. The principal difference is that control-flow constructs inburlap are expressions,
not statements, so they can be used anywhere.

11.7.1 IF expressions

if expressionthen
expression-list

[ else if expressionthen
expression-list] . . .

[ else
expression-list]

end

First, theif expressionis evaluated. If the result is non-zero, thethen expression-
list is executed. Otherwise each successiveif expressionis evaluated in turn, and if its
result is non-zero, the correspondingthen expression-listis executed. If none of theif
expressionsevaluates to non-zero, theelse expression-listis executed. Eachif expression
must evaluate to a scalar. TheIF expression has the highest precedence, sox := if y <

z then y else z works as expected.

The expression-listis a semicolon separated list of expressions. The result of the
expression-listis the result of the last expression in the list. Theelse if andelse con-
structs are optional. Theelse if syntax is combined into one keyword that allows the
entire IF expression to end with a singleend keyword. To haveelse if treated as two
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keywords, thus requiring multipleend keywords, place a semicolon or other expression
between theelse and theif.

If an expression-listis missing then it evaluates tonull. Similarly, if the finalelse is
missing and none of theif expressionsevaluated to non-zero, the result of the entireIF

expression will benull.

function max (x, y)

if x > y then x else y end

end

[1] write (max (1, 2))

2

In this example, theIF expression returnsx if x > y and returnsy if x≤ y. Since the
return value of a function is the value of the last expression, the functionmax() returns the
result of theIF expression.

function max (x, y)

if x > y then return x

else return y

end

end

This function illustrates a more conventional way of writing themax() function. The
result is the same regardless of which function is used.

11.7.2 WHILE expressions

while expressiondo
expression-list

end

As long as thewhile expressionevaluates to non-zero, theexpression-listis evaluated.
The expression-listis a semicolon separated list of expressions. If thewhile expression
evaluates to zero, thenWHILE construct terminates and the result is anull value. The
BREAK expression of Section11.7.4may be used to alter the result of theWHILE. The
while expressionmust evaluate to a scalar.

function sum_of_first (n)

i = 0
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s = 0

while i <= n do

s = s + i

i = i + 1

end

return s

end

[1] write (sum_of_first (3))

6

[2] write (sum_of_first (10))

55

[3] write (while 0 do end)

null

This example uses aWHILE expression to compute the sum of the firstn integers. The
lastwrite() function illustrates the result of theWHILE loop. TheWHILE expression has
the highest precedence, although this rarely matters.

11.7.3 FOR expressions

for expressionin expressiondo
expression-list

end

The FOR construct first evaluates thefor expressionand then thein expression. For
each element in thein expression, the element is assigned to thefor expressionand the
expression-listis executed. Theexpression-listis a semicolon separated list of expres-
sions. The result of theFOR expression is anull value unless aBREAK expression (Sec-
tion 11.7.4) is used to explicitly produce a result. TheFOR expression has the highest
precedence, although this rarely matters.

Thefor expressionmust be an expression that can be assigned a value (i.e., can appear
on the left-hand side of an assignment expression). Thein expressionmust be a matrix,
vector, scalar, or thenull value. If it is a matrix then each column of the matrix is assigned
to thefor expression. If it is a vector then each element is assigned. If it is scalar then
the scalar is assigned, and theexpression-listis evaluated only once. If thein expressionis
null, then theexpression-listis not executed.

function sum_of_first (n)

s = 0
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for i in 1 : n do

s = s + i

end

return s

end

[1] write (sum_of_first (3))

6

[2] write (sum_of_first (10))

55

[3] write (sum_of_first (-1))

0

This lastwrite() expression works correctly since the range1 : -1 produces anull
value and thus the body of theFOR expression is not executed.

function sum (x)

s = 0

for v in x do

for i in v do

s = s + i

end

end

return s

end

This example correctly computes the sum of all elements ofx for scalars, vectors, and
matrices. Ifx is simply3 thenv is simply3 and i is also3. If x is the vector[1, 2, 3]

thenv is successively assigned1, 2, and3 andi is simply assigned each value ofv. If x is
the matrix[1, 2, 3; 4, 5, 6] thenv is successively assigned the column vectors[1;

4], [2; 5], and[3; 6] andi is assigned the values1, 4, 2, 5, 3, and6 in that order.

11.7.4 BREAK, NEXT, and RETURN expressions

return [ expression]
break [ expression]
next

TheRETURNexpression may be used to return a value from a function. If theexpression
is absent then anull value is returned. ARETURN expression may only occur inside a
function body and has the lowest possible precedence.
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TheBREAK expression may be used to explicitly exit and return a value from aFOR or
WHILE loop. If theexpressionis absent then anull value is returned. ABREAK expression
is executed by first evaluating theexpressionif it is present, and then transferring control
out of the nearest enclosingFOR or WHILE loop. TheBREAK expression has the lowest
possible precedence.

function search (x, a)

found = 0

for v in x do

if v == a then

found = 1

break

end

end

write ("found = ", found)

end

If the valuea is found within the vectorx then there is no point in continuing with the
search after setting thefound indicator.

TheNEXT expression may be used to skip to the next iteration of the nearest enclosing
FOR or WHILE loop, and has the highest possible precedence.





Chapter 12

The Algorithms Behind FElt

12.1 Some background

In general, there is a massive base of experience in the numerical analysis community that
relates to programming the finite element method. Any time you see the method imple-
mented, chances are that the implementation is in some piece of software. So why is it
that good books on computational techniques are hard to come by and good books on the
underlying theory and mathematics abound? Go figure. As we mentioned in chapter2, if
you need some references to the latter we like Hughes’ [9] and Zienkiewicz and Taylor’s
[16] “classic” textbooks. Logan’s [13] book is a good introductory text. He approaches the
method from the same direction that many of us come to finite elements, through classical
matrix structural analysis. He’s a bit lean on the mathematical basis and theory, but that’s
probably why it makes a good introductory text. It is probably our ignorance, but we are
not aware of any definitive texts on the algorithmic implementation of the finite element
method. Texts that have been recommended, but that we have not really worked with in-
clude Segerlind [14], a very well-recommended introductory text by Burnett [1] and a book
by Hinton and Owen [8].

12.2 Elementary C programming

The advantages to coding FElt entirely in C rather than the more traditional (at least for
finite element analysis) choice of Fortran are: 1. keeping the package consistent – the
system and graphical interface stuff required working in C, having all of the mathematics
in C made interfacing the two aspects a lot easier. 2. C’s flexibility in working with data
structures makes it really easy to implement some of the concepts of finite element analysis

159
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in the code – elements have pointers to materials and loads, nodes have pointers to forces
and constraints. There is no need to keep track of lots of separate arrays of things; generally
speaking, passing the node and element arrays around is all the information that a routine
will need (or even just passing the elements around as they contain pointers into the nodes
array).

For those unfamiliar with C, here’s a quick and dirty lesson that might help you read
the code with a little more comprehension. Basically, in C you can declare new types
of variables, including entire data structures. What this means is that we can define a
structure called an Element which has several different members (think of each member as
a different field or record in a database). When we declare a variable to be of type Element,
that variable then contains all these different fields and we can get at all the information for
that element through that one variable. For instance, in FElt an element structure contains
all of the following:

Element {

unsigned number; /* this element’s global number */

Node node [ ]; /* array of pointers to element’s nodes */

Matrix K; /* element stiffness matrix */

Definition definition; /* definition structure (type) of element */

Material material; /* pointer to material property */

Distributed distributed [4]; /* array of distributed loads */

unsigned numdistributed; /* number of distributed loads assigned */

Stress stress [ ]; /* element stresses */

unsigned ninteg; /* number of integration points */

}

Several of these members are structures themselves:Node, Matrix, Distributed,
Definition, Material andStress are other structures used in FElt.

Because most of the FElt routines access the structures as pointers (that is usually when
the code references a structure it is actually referencing the address of that structure in
memory ... this is something you shouldn’t need to worry about to simply read and un-
derstand the mathematics), the usual way that you will see code that refers to elements
is like this: element -> node[1] -> x, or element -> material -> E. The first of
these examples gets the value of the x-coordinate of the element’s first node (not neces-
sarily globally numbered node 1). The second gets the value of the Young’s modulus of
the material assigned to this element. If the array of elements is under consideration, you
might seem something like this:element[3] -> stress[1] -> values[1] . This will
be the value of the first stress component at the first integration point on element 3. The
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other common data structures in FElt are:

/* A reaction force */

typedef struct reaction {

double force; /* reaction force */

unsigned node; /* node number */

unsigned dof; /* affected degree of freedom */

} *Reaction;

/* Element stress */

typedef struct stress {

double x; /* x coordinate */

double y; /* y coordinate */

double z; /* z coordinate */

double values [ ]; /* computed stress values */

} *Stress;

/* An element definition */

typedef struct definition {

char *name; /* element symbolic name */

int (*setup) ( ); /* element initialization function */

int (*stress) ( ); /* stress computation function */

Shape shape; /* element dimensional shape */

unsigned numnodes; /* number of nodes in element */

unsigned shapenodes; /* number of nodes which define shape */

unsigned numstresses; /* number of computed stress values */

unsigned numdofs; /* number of degrees of freedom */

unsigned dofs [7]; /* degrees of freedom */

unsigned retainK; /* retain element K after assemblage */

} *Definition;

/* A distributed load */

typedef struct distributed {

char *name; /* name of distributed load */

Direction direction; /* direction of load */

unsigned nvalues; /* number of values */

Pair value [ ]; /* nodes and magnitudes */

} *Distributed;

/* A force */
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typedef struct force {

char *name; /* name of force */

VarExpr force [7]; /* force vector */

VarExpr spectrum [7]; /* vector of input spectra */

} *Force;

/* A constraint */

typedef struct constraint {

char *name; /* name of constraint */

char constraint [7]; /* constraint vector */

double ix [7]; /* initial displacement vector */

double ax [4]; /* initial acceleration vector */

double vx [4]; /* initial velocity vector */

VarExpr dx [7]; /* boundary displacement vector */

} *Constraint;

/* A material */

typedef struct material {

char *name; /* name of material */

double E; /* Young’s modulus */

double Ix; /* moment of inertia about x-x axis */

double Iy; /* moment of inertia about y-y axis */

double Iz; /* moment of inertia about z-z axis */

double A; /* cross-sectional area */

double J; /* polar moment of inertia */

double G; /* bulk (shear) modulus */

double t; /* thickness */

double rho; /* density */

double nu; /* Poisson’s ratio */

double kappa; /* shear force correction */

double Rk; /* Rayleigh stiffness damping coefficient */

double Rm; /* Rayleigh mass damping coefficient */

double Kx; /* conductivity in x direction */

double Ky; /* conductivity in y direction */

double Kz; /* conductivity in z direction */

double c; /* heat capacity */

} *Material;

/* A node */

typedef struct node {
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unsigned number; /* node number */

Constraint constraint; /* constrained degrees of freedom */

Force force; /* force acting on node */

double m; /* lumped mass at this node */

double eq_force [ ]; /* equivalent force */

double dx [7]; /* displacement */

double x; /* x coordinate */

double y; /* y coordinate */

double z; /* z coordinate */

} *Node;

Hopefully the organization of the data structures is intuitive enough to someone familiar
with finite elements that a detailed understanding of the mechanics of the C language will
not be necessary.

12.3 Introduction to the generalFElt routines

Throughout FElt, simplicity and readability have generally won out over speed and effi-
ciency (at least where the mathematics are concerned ... the system and GUI code are
another story entirely). What this means is that FElt does not make use of many of the al-
gorithmic tricks that have been developed over the years for working with finite elements.
The most glaring example of this is probably the fact that the FElt matrix manipulation
library is fairly simple and does not make use of symmetry in most cases.

12.4 Details of a few generalFElt routines

12.4.1 Finding the active DOF

The first step in the solution of a FElt problem is to find all the degrees of freedom that the
different types of elements in the problem use. This information gets stored in two different
six-element arrays. In thedofs pos array a non-zero value in theith position indicates that
theith DOF is active. The actual number in theith position indicates which DOF this is for
the current problem (i.e. in a problem consisting solely of beams, a 3 in the sixth position
indicates that rotation about the z-axis is the third DOF in the current problem). The second
array isdofs num. In this array, the entries from one through the number of active DOF
are all non-zero. A value ofj in the ith position indicates that the standard DOFi is the
jth DOF for this problem (i.e., for our example problem consisting of beams only, a 6 in
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the third position indicates that the third active DOF for this problem is rotation about the
z-axis). Both of these arrays are available globally through theanalysis structure.

12.4.2 Node renumbering

We all know that the profile and bandwidth of a global stiffness or mass matrix – critical
factors in determing memory requirements and ultimate solution speed – are a function
of the global node numbering. The contribution from each element is assembled into the
global matrices based on the global numbers of the elements’ nodes. Better node number-
ing schemes take this into account and try to keep the contribution from each element as
near to the diagonal of the global matrix as possible. Given the compact column storage
scheme described below, a matrix with most entries very near the diagonal can use signifi-
cantly less storage than a very full matrix. The linear equation solver can also make use of
this reduced matrix and operate a lot faster by not having to operate on a lot of zero entries.

There are numerous algorithms available to try to optimize node numbering with just
such a goal in mind. The one that we use in FElt is popularly known as Gibbs-King [6], the
profile reduction variant of the Gibbs-Poole-Stockmeyer algorithm [7] which primarily tries
to minimize bandwidth. Other popular algorithms include Cuthill-Mckee [3] and Reverse
Cuthill-McKee [5].

12.4.3 Assembling the global stiffness matrix

This step of the process in FElt actually accomplishes three things. For each element,
this routine calls an element setup routine based on element type. Besides filling out
element -> K most element setup routines will also calculate the equivalent nodal forces
on the element’s nodes if appropriate (i.e., if there is a distributed load on the element).

Assembling the stiffness and mass matrices in a transient analysis problem works the
same way. For transient analysis, the element setup routines calculate a mass matrix ac-
cording to the the mass-mode set in the analysis parameters section. The global stiffness
and mass matrices are formed exactly as in the static case. Nodal lumped masses are su-
perposed after the element mass matrices have been assembled.

The damping matrix can be formed in either of two ways – both of them based on
a Rayleigh damping model. In the first method, the damping matrix is assembled at the
same time as the stiffness and mass matrices by creating and assembling element damping
matrices based on the Rayleigh damping coefficient for each element’s material,

Ce = Rk
eKe+Rm

eMe. (12.1)
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WhereRk
e andRm

e are the Rayleigh damping coefficients for the given material. Alterna-
tively, if non-zeroRk andRm values are given in the analysis parameters of the FElt file,
then these coefficients will be applied to form a global damping matrix only after the global
mass and stiffness matrices have been completely assembled,

C = RkK +RmM. (12.2)

12.4.4 Compact column representation

All of the global matrices are assembled directly into a compact column representation.
This representation tries to minimize storage requirements by taking each column of the
matrix and only storing the entries from the first non-zero entry to the diagonal. In this
scheme the following 6×6 would require a vector of length 14 to store as opposed to a
matrix with 36 entries, 

x 1 0 0 0 0
x 1 0 1 0

x x 1 0
x 0 1

x x
x


.

Assembly is done in two passes through the elements. The first pass is used to optimize
the storage scheme by finding out just how tall each column needs to be. Given this in-
formation, vectors are actually allocated to hold the global matrices. This first pass is also
used to construct a vector of diagonal addresses. For each row of what would be the full
matrix, this vector contains the position in the compact form of the diagonal of that row.
For our above example, that vector would be[

1 3 5 7 11 14
]
.

The second pass of the assembly process actually inserts the appropriate contribution from
each element into these vectors.

Any routine that needs to access the global stiffness or mass matrices can behave just
as if they were full two-dimensional matrix representations. We achieve this transparency
through calls to a function which uses the information in the diagonal addresses array
(which is attached as a member of the standard matrix data structure) to convert from a
row-column location to a single address in the global vector representations.
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12.4.5 Dealing with boundary conditions

FElt can handle several types of boundary conditions. The simplest is a fixed DOF at a
given node. In this case, the row and column of the global stiffness matrix corresponding
to the fixed DOF are simply filled with zeros and a one is placed on the diagonal at that
location; a zero is placed in the appropriate DOF of the global force vector just for clarity.

The second type of condition is a displacement condition such as might be found in
a settlement of support problem. In this case, before we eliminate the rows and columns
of the stiffness matrix, we need to adjust the force vector to account for the displacement.
Given a globally numbered DOF,n, which has a displacement condition,dx, global force
vector,F , and global stiffness matrix,K, then for each DOF,i, in the problem,

F(i) = F(i)−K(i,n)dx. (12.3)

After this adjustment, the rows and columns ofK associated with DOFn can be zeroed
out as in the ordinary fixed case. The magnitude of the displacement condition,dx, is
placed in theF(n) to insure thatdx will re-appear exactly in the final solution for nodal
displacements.

The final type of condition is a hinge and because the primary adjustments that this
condition requires were made in the element stiffness matrix routines, all we do here is
zero out rows and columns of the stiffness matrix and force vector as in the fixed case.

12.4.6 Solving for nodal displacements

The FElt routine to solve for nodal displacements (or to solve any linear system of equa-
tions) takes the compact column representation and solvesKd = F for the global displace-
ment vector using a skyline solver. This procedure basically involves a Crout factorization
and forward and backward substitution on the compact column representation of the global
stiffness matrix.

12.4.7 Time integrating in transient structural analysis

Time-stepping in a transient structural analysis problem is done with the Hilbert-Hughes-
Taylor alpha variant of Newmark integration. There are three critical parameters in this
algorithm. The first two,β and γ, are the standard parameters of Newmark integration.
Depending on the values for these two parameters we can implement several well-known
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algorithms. Settingβ = 1
4 andγ = 1

2 results in an unconditionally stable average acceler-
ation (trapezoidal rule) implementation.β = 1

6 andγ = 1
2 results in a linear acceleration

algorithm.

The HHT-α algorithm adds a third parameter,α, to account for the decrease in order
of accuracy that results when you introduce numerical damping into the Newmark method.
Settingα = 0 reduces the problem to a standard Newmark method. Choosingα ∈ [−1

3,0],
γ = (1−2α)/2 andβ = (1−α)2/4 results in an unconditionally stable, second-order ac-
curate algorithm [9].

With these three parameters, the time-discrete equation of motion in the HHT-α method
is written as

Mai+1 +(1+α)Cvi+1−αCvi +(1+α)Kdi+1−αKdi = F (ti+1 +α∆t) . (12.4)

The standard Newmark finite difference formulas are used as approximations fordi+1 and
vi+1,

di+1 = d̃i+1 +β∆t2ai+1, (12.5)

vi+1 = ṽi+1 + γ∆tai+1, (12.6)

where the predictor variables,d̃i+1 andṽi+1 are defined as

d̃i+1 = di +∆tvi +∆t2
(

1
2
−β

)
ai , (12.7)

ṽi+1 = vi +(1− γ)∆tai . (12.8)

We can form an implicit update equation withdi+1 as the only unknown by rearranging
equation12.5 and substituting the result along with equation12.6 into the equation of
motion (equation12.4). If we denote the left hand coefficient matrix asK′ and the right
hand contributions not due to the force vector asF ′ then the update equation is

K′di+1 = F ′
i+1 +F (ti+1 +α∆t) . (12.9)

where

K′ = M + γ∆tC+(1+α)β∆t2K, (12.10)

and

F ′
i+1 = [M + γ∆tC] d̃i+1− (1+α)β∆t2Cṽi+1 +αβ∆t2 [Cvi +Kdi ] . (12.11)
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12.4.8 Time integrating in transient thermal analysis

As in transient structural analysis, the time-stepping in a transient thermal analysis problem
is done using an approach similar to Newmark integration. In this case, however, there is
only one integration parameter,α, because of the simpler nature of the governing ODE in
the thermal analysis case. Using a generalized trapezoidal rule we express the temperature
vector update equation as

Ti+1 = Ti +∆t
[
(1−α) Ṫi +αṪi+1

]
. (12.12)

Through some algebraic manipulations of the governing equation at time stepsi and i +
1 and subsitution of equation12.12to eliminate time derivative terms, we can write the
implicit update equation forT as

K′Ti+1 = [M−∆t (1−α)K]Ti +(1−α)∆tFi +α∆tFi+1, (12.13)

where

K′ = M +α∆tK, (12.14)

and everything on the right-hand side is known.

Logan [13] gives the following summary of the methods that result from various choices
of α: α = 0, simple forward difference scheme which is only conditionally stable;α = 1

2
Crank-Nicolson or trapezoidal rule which is unconditionally stable;α = 2

3, Galerkin which
is also unconditionally stable;α = 1, backward difference which is unconditionally stable.

12.4.9 Solving the eigenvalue problem

FElt uses a relatively unsophisticated procedure to solve for the eigenvalues and eigenvec-
tors in a modal analysis problem. The first step is to actually remove constrained DOF
from the global stiffness and mass matrices. This procedure is less efficient than the simple
zeroing out of constrained DOF used in transient and static analysis, but it is necessary for
the actual numerical algorithm used to solve the eigenvalue problem.

In terms of the reduced mass,M, and stiffness,K, matrices, the generalized eigenvalue
problem can be written

Kx = λM, (12.15)

whereλ andx are the eigenvalue and eigenvector in a given mode. We can transform this
to standard form,

(A−λI)x = 0, (12.16)
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by forming the Cholesky factorization of the mass matrix,M = QQT , and realizing that
Q−TMQ−1 = I . With this factorization, we just need to make the substitutionx = Q−1x̂
and pre-multiply both sides of equation12.15by Q−T ; the problem then becomes

Q−TKQ−1x̂ = λI x̂ (12.17)

which is now in standard form. FElt solves this standard eigenvalue problem by applying
the QL method to the tridiagonal form of the transformed coefficient matrix.

Note that this procedure will not work if there are zeros on the diagonal of the mass
matrix (the global mass matrix must be positive-definite for the Cholesky factorization
to be non-singular). This kind of condition often occurs in problems with lumped mass
formulations of the element mass matrices.





Chapter 13

Adding Elements toFElt

13.1 How to get started

Adding additional element types to FElt is meant to be fairly straightforward. Coding an
element definition is always an excellent way to really understand the ins and outs of finite
element analysis.

A good starting point is probably to look at the source code for the currently available
elements, not so much because they are mathematical / algorithmic wonders, but simply
because they provide examples of how the analyst has to interface the mathematical code
with the system code – elements take up memory so memory will need to be allocated; the
generalized analysis routines will expect that the element routines take certain parameters
and return certain values, or perhaps initialize certain arrays. Besides simply defining an el-
ement stiffness matrix, it is the responsibility of the element routines to calculate equivalent
nodal forces due to distributed loads and to calculate their own stresses once the general
routines have computed the nodal displacements. If you want to be able to do transient
analysis, the same element set-up routine that initializes the element stiffness matrix must
also build the element mass matrix.

If you’re unfamiliar with the C programming language, you should probably start there.
You might be able to get away with just hacking something together based on existing ele-
ments, but efficiency and elegance will probably suffer. The material in [12] is considered
by many to be the definitive word on C; you may want to start there. Other good books on
C undoubtedly abound. Another simple starting point for C novices would be section12.2
on understanding the data structures used in FElt.
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13.2 Necessary definitions and functions

The general routines will expect three things to be defined. Aside from these three things
the element routines can use whatever local functions and methods that they want. There
must be a definition struct defined for the element type. This structure contains information
that everything else needs to know about elements of a given type: symbolic name, shape,
number of nodes, number of nodes which define the shape, number of degrees of freedom
per node, the degrees of freedom which this element affects, and what functions to use
for element setup and stress calculations. Secondly, there must be a routine to create and
define the element stiffness matrix for elements of this type. The setup function should also
calculate and fill-in the equivalent nodal forces if there is a distributed load on an element
and create the element mass matrix if necessary for the current analysis. Lastly, there has
to be a routine which calculates the stress or internal loads on an element. If no stress
information will be computed there must still be a routine which tells the global routines
that no stresses will be computed.

13.2.1 The definition structure

From our previous discussion of the structures in FElt you might remember that each ele-
ment had a pointer to a definition structure which looked like

typedef struct definition {

char *name; /* element name */

int (*setup) ( ); /* initialization function */

int (*stress) ( ); /* stress computation function */

Shape shape; /* element dimensional shape */

unsigned numnodes; /* number of nodes in element */

unsigned shapenodes; /* number of nodes which define shape */

unsigned numstresses; /* number of computed stress values */

unsigned numdofs; /* number of degrees of freedom */

unsigned dofs [7]; /* degrees of freedom */

unsigned retainK; /* retain element K after assemblage */

} *Definition;

For an arbitrary element, foo, the definition structure might be filled out to look some-
thing like this:

struct definition fooDefinition = {

"foo", fooEltSetup, fooEltStress,

Linear, 2, 2, 3, {0, 1, 2, 3, 0, 0 , 0}, 0
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};

This defines an element for which the symblic name will befoo. It is a linear element
with two total nodes, two nodes which define its shape and three DOF per node. The
general FElt routines will call the functionsfooEltSetup andfooEltStress for element
setup and stress calculations. The DOF array always starts with a zero in the 0th position.
The rest of the array tells the general FElt routines that foo elements affect global DOF 1,
2, and 3 (Tx, Ty, andTz) and thatTx is its first DOF,Ty its second andTz its third. The
last member of the structure is the flag to retain or destroyelement -> K after it has been
assembled. In this case we don’t need it around so we setelement -> retainK to zero
(false). If you don’t quite see how this all works yet, it may help you to know that foo
elements have the same definition as truss elements in the actual FElt library.

A slightly more complicated example is the definition structure for a beam.

struct definition beamDefinition = {

"beam", beamEltSetup, beamEltStress,

Linear, 2, 2, 3, {0, 1, 2, 0, 0, 0, 3}, 1

};

The difference between this definition and that for the foo element is that while beams
affect three DOF, the third DOF isRz (position six in the DOF array). Also, we’ll want
to keep the element stiffness matrix around after we assemble it into the global stiffness
matrix (beams use it for internal force calculations), so we setelement -> retainK to 1
(true).

For the general four to nine node isoparametric element (for plane stress), the definition
structure is:

struct definition iso2d_PlaneStressDefinition = {

"iso2d_PlaneStress", iso2d_PlaneStressEltSetup, iso2d_PlaneStressEltStress,

Planar, 9, 4, 2, {0, 1, 2, 0, 0, 0, 0}, 0

};

Here, the basic type is planar rather than linear, the total number of nodes is nine, the
number of nodes which define the element shape is four (i.e., the first four nodes com-
pletely define the geometric shape of the element) and the number of DOF per node is two.
Two-dimensional isoparametric elements only affect translations in the x and y directions
(positions one and two in the DOFs array). There is no need to retain the element stiffness
matrix after assembling soelement -> retainK is set to 0 (false).
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The definition structure is the only tricky part of setting up a new element. Once FElt
knows how an element interacts and “looks” all that remains is for you to tell it how to
define the element stiffness and mass matrices and how to compute element stresses (or
internal forces) given nodal displacements.

13.2.2 Inside the element setup functions

For our mythical foo element the setup routine would look like this.

int fooEltSetup (element, mass_mode)

Element element;

char mass_mode;

{

}

The name of the element setup function must match the function name given in the
element definition structure. The setup function must return an integer (the number of
errors encountered in performing their respective function, zero on success) and must take
a single element and a flag indicating the mass matrix to compute as input. If this is a static
problem that flag will be zero. If transient analysis is being performed then the flag will
either be ’c’ or ’l’ depending on whether the setup routine should calculate a consistent or
lumped mass matrix. If no element mass matrix is required then the massmode will be
zero.

Given the element, you have access to the material property, distributed loads, and nodes
assigned to that element. ThefooEltSetup routine’s primary responsibility is to allocate
and fill out the element stiffness matrix (and mass matrix if necessary) for this element.
However, if there are distributed loads on this element, then this routine must also compute
the affects of those loads on the element’s nodes’ equivalent forces.

13.2.3 Inside the element stress function

Like thefooEltSetup routine, thefooEltStress function must also be defined in a stan-
dard way:

int fooEltStress (element)

Element element;

{

}
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The fooEltStress routine’s only responsibility is to fill a Stress structure for that ele-
ment. This will likely involve computations with the nodal displacements (accessible via
element -> node[j] -> dx[k]) and element geometry. If necessary, element stresses
or internal forces can be adjusted for equivalent nodal loads.

There is no pre-allocated space for element stresses because the number of stresses and
the number of magnitudes for each stress structure vary so greatly from element to ele-
ment. For this reason, you as the element writer are responsible for allocating an array of
stress structures (basically you will need one structure for each point within the element
where you will compute stresses; you should also setelement -> ninteg to this num-
ber) and for the stress magnitude array within each of these structures. For example for
a three-dimensional beam element, six stress components are computed at both ends (the
six possible internal forces). In this case then, we need to allocate space for two stress
structures, setelement -> ninteg to two, and allocate space for six magnitudes in each
stress structure.

13.3 TheFElt matrix and memory allocation routines

When looking through any of the FElt code, you will notice that we make use of several
convenience functions and macros. The most important of these deal with two additional
variable types that FElt defines. Besides the general finite element type data structures, FElt
makes available aMatrix and aVector type. Because these types are really structures,
a reliable way to get at the data isMatrixData (a) [1][1] or VectorData (a) [7].
These macros simply expand toa -> data[1][1] anda -> data[7][1]. The macro
method is preferrable simply because the actual definition of the types may change as FElt
develops and the macros will make any such changes transparent.

The following list illustrates how each of the matrix routines can be used. In general,
a, b, andc represent variables of typeMatrix or Vector, width andheight define di-
mensions and status is an integer error code. Note that the actual operational functions
(transpose, multiply, add, etc. as opposed to create, delete) can take either matrices or vec-
tors interchangeably. Appropriate dimensions must always match of course. All matrices
that go into the matrix routines (both source and destination matrices) must be previously
created by one of the matrix creation routines. The operational matrix routines (as op-
posed to create and destroy functions) all return integer status codes with zero indicating
a successful operation; non-zero return values are defined ininclude/status.h. Finally,
Vector andMatrix types are unit offset. The create and destroy routines should make this
transparent to the developer.
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a = CreateMatrix (width,height)

Creates matrix of the given width and height. This function allocates space
and initializes fields within the matrix structure.

a = CreateVector (height)

Creates a vector of lengthheight.

DestroyMatrix (a)

This will free the memory associated with a previously created matrix. Once
destroyed a matrix variable should not be used again until it is recreated.

DestroyVector (a)

This will free the memory associated with a previously created vector.

status = MultiplyMatrices (a,b,c)

Multiplies matricesb andc and stores the result ina. This is one of the few
functions in which your destination matrixa cannot be one of your source
matrices,b or c.

status = TransposeMatrix (a,b)

Transposes matrixb and puts the result intoa. Source and destination ma-
trices cannot be the same.

status = MirrorMatrix (a,b)

This function is useful for filling in symmetric matrices. Given a symmetric
matrix b with only the diagonal and above diagonal terms filled in, this
function will complete all entries below the diagonal. The result,a will be
the complete symmetric matrix.

status = ZeroMatrix (a)

Fills all entries in matrixa with zeros.

status = ScaleMatrix (a,b,x,y)

Given a matrixb, multiplies all terms by the scalar factorx and then addsy.
The result is stored ina.

status = AddMatrices (a,b,c)

Adds matricesb andc and stores the result ina.

status = SubtractMatrices (a,b,c)

Subtracts matrixc from matrixb and stores the result ina.
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In addition to the matrix functions, we often use several convenient macros to make
memory allocation for non-matrix types a little easier. Examples of these macros are

ptr = Allocate(type,size)

This is equivalent toptr = (type *) malloc (sizeof(type)*size),
i.e., this creates space forptr to holdsize items each of typetype.

UnitOffset (ptr)

The allocation macro creates a matrix or vector that is zero offset. Since
most FElt arrays are one offset, we use this macro to make the change.

ZeroOffset (ptr)

If ptr has been previously unit offset, this macro will reset it zero offset.
You must use this macro before de-allocating a pointer that has previously
been unit offset.

Deallocate(ptr)

This frees any memory associated withptr.

13.4 Element library convenience functions

The file lib/Elements/misc.c contains several functions which are useful across a
wide variety of element types. If you want to use these functions you should#include

"misc.h" in your source file. These functions are

D = PlaneStressD (element)

Returns a constitutive matrix suitable for use in plane stress analysis.

D = PlaneStrainD (element)

Returns a constitutive matrix suitable for use in plane strain analysis.

l = ElementLength (element, n)

Given a dimension,n, this function returns the length of an element inn
dimensions.

GaussPoints (n, points, weights)

Given the number of Gaussian integration points,n and the addresses of
two pointers to double,weights andpoints, this will fill these two arrays
with the appropriate values for use in Gaussian quadrature. Currently, this



178 CHAPTER 13. ADDING ELEMENTS TO FELT

function only knows the values for 1, 2, and 3 point Gaussian quadrature.

ResolveHingeConditions (element)

If you want your element to deal with the possibility of hinged DOFs then
you can use this routine to modify the element stiffness matrix appropri-
ately. Generally, you would call this routine only after completely defining
element -> K. The given element’s nodes are checked for hinged DOF;
if a DOF is hinged the the coefficients of the element stiffness matrix are
adjusted according to the following procedure: given a hinged DOF,do f,
then for all entries ink (the element stiffness matrix) not associated with
do f (all entries not in row or columndo f),

k(i, j) = k(i, j)− k(do f, j)
k(do f,do f)

k(i,do f). (13.1)

The inherent problem in this method of dealing with hinged conditions is
that we cannot calculate any displacements associated with the hinged DOF.
In general, these displacements will not be zero.

SetupStressMemory (element)

After setttingelement -> ninteg to determine the number of points in
your element for which you want to calculate stresses, you can call this
routine to allocate all of the necessary memory for stress structures and the
arrays of stress values in those structures.

SetEquivalentForceMemory (element)

This routine will allocate space for theeq force[] array on an element’s
nodes if such an allocation has not already been done from a previous ele-
ment.

MultiplyAtBA (C, A, B)

Given matrices A, B and a pre-allocated destination matrix C, this routine
will form the matrix product of A(transpose)*B*A. This function is par-
ticularly useful for doing the multiplication TtKT without any temporary
storage and without ever explicitly forming the transpose.

Finally, in order to insure a consistent error protocol across the different interfaces to
FElt, there are a few error routines which your routines should call when they encounter
trouble (either of the recoverable or irrecoverable variety).
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error (error message, var1, var2, ...)

This is the general routine for reporting a non-fatal (recoverable) error. The
calling syntax is exactly like that forprintf. There is a format string
(error message) and a variable length list of variables which are substi-
tuted into the message.

Fatal (error message, var1, var2, ...)

This is the routine for non-recoverable errors. Generally we use this routine
when memory allocation fails. After displaying the message (which again
should look like the syntax forprintf) the program will automatically exit.

AllocationError (element, string)

This is a simple little convenience routine for fatal errors during mem-
ory allocation in the element routines. The message displayed will be
allocation error computing element n string wheren is the ele-
ment number andstring is some short descriptor of the program location
(i.e.,stiffness matrix).

13.5 Putting it all together

Once the routines have been written, you’ll need to update the Makefile for the ele-
ment library and the initialization routine that tells FElt applications what kinds of el-
ements are available by default. Add the filename of your new element to theOBJS=
line in lib/Elements/Makefile. You can typemake in that directory to make sure
the code compiles. Once you think you’ve got all the bugs worked out and the new
element library is made, you need to add two lines to the initialization procedures in
lib/Felt/initialize.c. To the list ofextern struct declarations in that file add a
line that looks like

extern struct definition fooDefinition;

and to the list ofAddDefinition function calls in the functionadd all definitions add
a line that looks like

AddDefinition (&fooDefinition);

(replacefooDefinition with whatever variable name you gave to the definition structure
for your element of course). Once those changes are made just do a make inlib/Felt

and then a make in each application directory (e.g.,src/Velvet, src/Felt) to relink
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the applications with the modified libraries. Your new element should now be ready for
use. Writing up a simple test file that uses the new element and running this through the
command line applicationfelt is usually the easiest way to check numerical results.

13.6 A detailed example

If everything above is still a bit unclear, fear not; it’s really not as bad as it looks. Let’s
walk through a step-by-step description of how the Timoshenko beam element was added
to the FElt library. This is a very simple element. We only consider bending and shear
deformation (no axial stiffness is taken into account) and we don’t allow distributed loads
applied in the global DOF. For some basic mathematical details for this element refer to
section4.2.3. More details are available in [4, 10, 15].

In general, all the code for a given element type will be contained in one source file.
Hopefully the routines in this file will be completely specific to that element type. In a
perfect world, common functionality would be available as convenience functions. This is
the basic model that we will follow here. All of the following code is taken from the file
timoshenko.c in the directorylib/Elements.

We start by including the necessary header files, prototyping our local functions (we
make themstatic to insure that they will be local to this file), and setting up the
definition structure.

/************************************************************************

* File: timoshenko.c *

* *

* Description: This file contains the definition structure and *

* set-up functions for a Timoshenko beam element. *

* *

* History: V1.4 by Jason Gobat and Darren C. Atkinson *

************************************************************************/

# include <math.h>

# include "allocate.h"

# include "element.h"

# include "misc.h"

/*

* Here’s the definition structure. This is a very simple

* implementation, 2 nodes, possible effect on 3 global DOF

* per node. We need to prototype the setup and stress functions
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* first thing so we can use them in the definition declaration.

*/

int timoshenkoEltSetup ( );

int timoshenkoEltStress ( );

struct definition timoshenkoDefinition = {

"timoshenko", /* the symbolic name used in input files */

timoshenkoEltSetup, /* the element setup function */

timoshenkoEltStress, /* the element stress function */

Linear, /* The shape of this element */

2, /* 2 nodes per element */

2, /* 2 nodes define the shape (it’s a line!) */

2, /* 2 magnitudes in each stress structure */

3, /* 3 global DOF / node */

{0, 1, 2, 6, 0, 0, 0}, /* DOF 1 is Tx, DOF 2 is Ty DOF 3 is Rz .. */

1 /* retain stiffness after assembling */

};

/*

* We’ll declare these three functions as static because other

* people might use these same names for their element. The

* static declaration makes them private to this file.

* There is nothing magical about them. They could be called

* anything, your element may not use any local functions,

* etc., etc. It’s all a matter of preference and style.

*/

static Matrix LocalK ( );

static Matrix TransformMatrix ( );

static Matrix LumpedMassMatrix ( );

static Matrix ConsistentMassMatrix ( );

static int EquivNodalForces ( );

The next thing we want to do is define the element setup routine which will define
element -> K for every Timoshenko beam element. All this function really does is set
some memory, call a few functions and do a few matrix multiplications. The brute force
filling in of matrices occurs in our own private routines.

/*

* The element setup function (the one that the general

* routines actually call to define element -> K for
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* Timoshenko beams). We’ll break it up a little more

* for our own internal purposes and call some functions

* of our own to actually fill out the guts of the thing.

*/

int timoshenkoEltSetup (element, mass_mode)

Element element;

char mass_mode;

{

int count; /* a count of errors encountered */

Matrix T; /* transform matrix */

Matrix khat; /* local coordinate stiffness matrix */

Matrix mhat; /* local coordinate mass matrix */

/*

* Since we’re nice and we like to do as much error checking

* as possible, we’ll also check to make sure that all necessary

* material properties are set for this element

*/

count = 0;

if (element -> material -> E == 0.0) {

error ("timoshenko element %d has 0.0 for Young’s modulus (E)",

element -> number);

count++;

}

if (element -> material -> Ix == 0.0) {

error ("timoshenko element %d has 0.0 for moment of inertia (Ix)",

element -> number);

count++;

}

if (element -> material -> G == 0.0) {

error ("timoshenko element %d has 0.0 for bulk modulus (G)",

element -> number);

count++;

}

if (element -> material -> A == 0.0) {

error ("timoshenko element %d has 0.0 for bulk modulus (G)",

element -> number);

count++;

}

/*

* nu and kappa are somewhat special because we have to have
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* at least one. If we have nu we’ll use it to estimate

* element -> kappa according to Cowper’s (1966) approximation.

* If we have kappa we will of course always use it. If

* we have neither, it’s an error

*/

if (element -> material -> kappa == 0.0) {

if (element -> material -> nu == 0.0) {

error ("timoshenko element %d has 0.0 for Poisson’s ratio (nu)",

element -> number);

count++;

}

else {

element -> material -> kappa =

10.0*(1.0 + element -> material -> nu)/

(12.0 + 11.0*element -> material -> nu);

}

}

/*

* if we’ve had any errors there is no point in continuing

*/

if (count)

return count;

/*

* get the local stiffness matrix and the transform matrix.

* we never allocated any memory for these two because the

* functions that we are calling will do that.

*/

khat = LocalK (element);

if (khat == NullMatrix)

return 1;

T = TransformMatrix (element);

/*

* We can form the element stiffness matrix now through

* some simple matrix multiplications. The special multiply

* function here just saves us having to allocate

* some temporary space and actually transposing the transform

* matrix, it will simply carry out k = T(trans) * K * T
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*/

element -> K = CreateMatrix (6,6);

if (element -> K == NullMatrix)

AllocationError (element, "stiffness matrix");

MultiplyAtBA (element -> K, T, khat);

/*

* Things can get a little tricky here; we’ll check if there

* are any distributed loads - if there are we need to resolve

* them and modify this element’s node’s equivalent nodal forces.

* If not we’re home free. In this case I have

* relegated all the distributed load handling to a separate

* little module.

*/

if (element -> numdistributed > 0) {

count = EquivNodalForces (element, Tt, NULL, 1);

if (count);

return count;

}

/*

* there’s also the possibility that some of this element’s nodes

* have a hinged DOF ... that’s easy to deal with because we have a

* convenience routine to do all the checking and modifying for us.

*/

ResolveHingeConditions (element);

/*

* check to see if we need to form a mass matrix. If we

* need to we call a local function just like we did for

* the local stiffness matrix (depending on the mass_mode)

* then use the same multiplication function to transform

* to global coordinates.

*/

if (mass_mode) {

if (mass_mode == ’c’)

mhat = ConsistentMassMatrix (element);

else if (mass_mode == ’l’)

mhat = LumpedMassMatrix (element);
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if (mhat == NullMatrix)

return 1;

element -> M = CreateMatrix (6,6);

if (element -> M == NullMatrix)

AllocationError (element, "mass matrix");

MultiplyAtBA (element -> M, T, mhat);

}

/*

* we made it here, everything must have worked!

*/

return 0;

}

Not bad, right? Note our use ofResolveHingeConditions in the above because we
want these elements to be able to deal with hinged DOF. For many elements, hinges are
meaningless and this check would not be necessary.

The next function we need is the element stress routine. Again, this is pretty simple
because we do a lot of the work elsewhere in this case. In order to retrieve the four internal
forces that we are interested in, all we need to do is transform the element stiffness matrix
back to local coordinates, transform the nodal displacements back to local coordinates,
multiply and subtract any equivalent nodal forces.

/*

* The element stress function that actually gets called

* to fill in the element’s stress structures. I realize

* that a lot of this seems awfully inefficient ... beam type

* elements are a bit of an anomaly because they need their

* stiffness matrix back and a bunch of local<->global transforms.

*/

int timoshenkoEltStress (element)

Element element;

{

unsigned i; /* loop index */

int count; /* count of errors */

static Vector dlocal = NULL; /* local nodal displacements */
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static Vector d; /* global nodal displacements */

static Vector f; /* actual internal forces */

Vector equiv; /* equivalent nodal forces */

Matrix T; /* transform matrix */

static Matrix khat; /* local stiffness matrix */

static Matrix Tt; /* transpose of transform */

static Matrix temp; /* temporary matrix for multiply */

/*

* our usual trick to set-up the matrices and vectors that

* we need memory for, but that are really just local to

* this function.

*/

if (dlocal == NULL) {

dlocal = CreateVector (4);

d = CreateVector (6);

f = CreateVector (4);

khat = CreateMatrix (4,4);

Tt = CreateMatrix (6,4);

temp = CreateMatrix (4,6);

if (dlocal == NullMatrix || d == NullMatrix || f == NullMatrix ||

khat == NullMatrix || Tt == NullMatrix)

AllocationError (element, "stresses");

}

/*

* set the number of points where we will calculate stresses.

* In this case it’s two (one at each end).

*/

element -> ninteg = 2;

/*

* Fill out a vector with the element’s nodal displacements.

* These are in global coordinates of course. We need to

* do a transformation to get them into local coordinates.

*/

VectorData (d) [1] = element -> node[1] -> dx[Tx];

VectorData (d) [2] = element -> node[1] -> dx[Ty];

VectorData (d) [3] = element -> node[1] -> dx[Rz];

VectorData (d) [4] = element -> node[1] -> dx[Tx];
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VectorData (d) [5] = element -> node[2] -> dx[Ty];

VectorData (d) [6] = element -> node[2] -> dx[Rz];

T = TransformMatrix (element);

MultiplyMatrices (dlocal, T, d);

/*

* We already have the element stiffness matrix because we

* set element -> retainK = 1 in the definition structure. This

* means that the global stiffness assembly routine didn’t

* trash element -> K after it was done with it and we can

* use it again. We will have to transform it back to local

* coordinates, however.

*/

TransposeMatrix (Tt, T);

MultiplyMatrices (temp, T, element -> K);

MultiplyMatrices (khat, temp, Tt);

/*

* we can get the internal force vector through a simple

* matrix multiplication.

*/

MultiplyMatrices (f, khat, dlocal);

/*

* Of course, we may need to modify that for equiv nodal forces

*/

if (element -> numdistributed > 0) {

count = EquivNodalForces (element, NULL, &equiv, 2);

if (count)

return count;

for (i = 1; i <= 4; i++)

VectorData (f) [i] -= VectorData (equiv) [i];

}

/*

* set-up some memory for the stress structure and for the values

* in the stress structure. We’ll just use a quicky little

* convenience routine to do it for us. It’s important to
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* set element -> ninteg before we call this function.

*/

SetupStressMemory (element);

/*

* establish the location of the stresses and the magnitudes

* of the stresses at each point. This particular loop

* only works because there are two stress points and two

* stress values at each point.

*/

for (i = 1; i <= 2; i++) {

element -> stress[i] -> x = element -> node[i] -> x;

element -> stress[i] -> y = element -> node[i] -> y;

element -> stress[1] -> values[i] = VectorData (f)[i];

element -> stress[2] -> values[i] = VectorData (f)[i+2];

}

return 0;

}

Now we get into the few routines that are local to this file (i.e., private routines which
we would only call when we were defining Timoshenko beam elements). The first of these
simply fills in the 4×4 local stiffness matrix. There is no fancy integration here because we
know how it all turns out so we save ourselves some computations by plugging straight into
the entries in the matrix. The second of these two routines will compute a transformation
matrix for these elements.

/*

* Our own function to define the stiffness matrix in

* local coordinates.

*/

static Matrix LocalK (element)

Element element;

{

static Matrix k = NULL; /* the local stiffness matrix */

double L; /* the element length */

double phi; /* bending stiffness / shear stiffness */
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double factor; /* common factor in stiffness matrix */

/*

* We use a trick to make sure we only allocate this memory

* once and then use it over and over again each time we need to

* create an element of this kind.

*/

if (k == NULL) {

k = CreateMatrix (4,4);

if (k == NullMatrix)

AllocationError (element, "local stiffness");

}

L = ElementLength (element, 2);

if (L <= TINY) {

error ("length of element %d is zero to machine precision",

element -> number);

return NullMatrix;

}

phi = 12.0/(L*L)*(element -> material -> E*element -> material -> Ix/

(element -> material -> kappa*

element -> material -> G*element -> material -> A));

/*

* We know how the integration works out for the stiffness

* matrix so we’re just going to fill it out an entry at

* a time. For some element types this wouldn’t be possible and

* we would do some integrating right here to fill in k.

* Also, because this is a symmetric matrix we’ll just

* fill in everything above the diagonal and then use MirrorMatrix

*/

MatrixData (k) [1][1] = 12.0;

MatrixData (k) [1][2] = 6.0*L;

MatrixData (k) [1][3] = -12.0;

MatrixData (k) [1][4] = 6.0*L;

MatrixData (k) [2][2] = (4.0 + phi)*L*L;

MatrixData (k) [2][3] = -6.0*L;

MatrixData (k) [2][4] = (2.0 - phi)*L*L;

MatrixData (k) [3][3] = 12.0;

MatrixData (k) [3][4] = -6*L;
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MatrixData (k) [4][4] = (4.0 + phi)*L*L;

MirrorMatrix (k,k);

/*

* the above numbers aren’t quite right, we’ve got a term out

* front of the matrix that we need to scale the entire

* matrix by

*/

factor = (element -> material -> E*element -> material -> Ix)/

((1.0 +phi)*L*L*L);

ScaleMatrix (k, k, factor, 0.0);

/*

* that’s all for this part

*/

return k;

}

/*

* a simple little function to compute the transform matrix

* for a simple 2d beam element with no axial DOF.

* This should be a convenience routine, but none of the other

* elements actually use this one because they are more complicated.

*/

static Matrix TransformMatrix (element)

Element element;

{

double s,c; /* direction cosines */

static Matrix T = NULL; /* transform matrix to return */

double L; /* element length */

/*

* no surprise here, we only want to allocate memory for this

* guy once!

*/

if (T == NULL) {

T = CreateMatrix (4,6);
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if (T == NullMatrix)

AllocationError (element, "transform matrix");

}

/*

* This is a pretty sparse matrix so we’ll just zero it out

* then fill in the few relevant entries.

*/

ZeroMatrix (T);

L = ElementLength (element, 2);

c = (element -> node[2] -> x - element -> node[1] -> x) / L;

s = (element -> node[2] -> y - element -> node[1] -> y) / L;

MatrixData (T) [1][1] = -s;

MatrixData (T) [1][2] = c;

MatrixData (T) [2][3] = 1.0;

MatrixData (T) [3][4] = -s;

MatrixData (T) [3][5] = c;

MatrixData (T) [4][6] = 1.0;

return T;

}

Now we need two local functions to create the two different kinds of mass matrices.
They look an awful lot like the local stiffness matrix because once again we don’t actually
need to do any numerical integration; we know how it all turns out so we just have to fill in
some matrix entries.

/*

* much like the local K function above all we do here is fill in

* the mass matrix - this function fills it out for consistent

* mass, the following function is used if the user wanted a lumped

* mass

*/

static Matrix ConsistentMassMatrix (element)

Element element;

{

static Matrix m = NULL; /* the local stiffness matrix */

double L; /* the element length */

double phi; /* bending stiffness / shear stiffness */
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double phi2; /* phi squared */

double const1; /* constant term for rotational mass */

double const2; /* constant term for translational mass */

if (m == NULL) {

m = CreateMatrix (4, 4);

if (m == NullMatrix)

AllocationError (element, "mass matrix");

}

/*

* the constants that we’ll need, including the constant terms

* in front of the rotational (first terms) and translational

* (second terms) portions of the matrix.

*/

L = ElementLength (element, 2);

phi = 12.0/(L*L)*(element -> material -> E*element -> material -> Ix/

(element -> material -> kappa*

element -> material -> G*

element -> material -> A));

phi2 = phi*phi;

const1 = element -> material -> rho *

element -> material -> Ix /

(30.0*(1.0 + phi)*(1.0 + phi)*L);

const2 = element -> material -> rho *

element -> material -> A * L /

(210.0*(1.0 + phi)*(1.0 + phi));

/*

* fill out the top half of the mass matrix (no need to

* explicitly integrate of course)

*/

MatrixData (m) [1][1] = 36.0*const1 +

(70.0*phi2 + 147.0*phi + 78)*const2;

MatrixData (m) [1][2] = -L*(15.0*phi - 3.0)*const1 +

(35.0*phi2 + 77.0*phi + 44.0)*L/4.0*const2;

MatrixData (m) [1][3] = -36.0*const1 +

(35.0*phi2 + 63.0*phi + 27.0)*const2;

MatrixData (m) [1][4] = -L*(15.0*phi - 3.0)*const1 -

(35.0*phi2 + 63.0*phi + 26.0)*L/4.0*const2;

MatrixData (m) [2][2] = (10.0*phi2 + 5.0*phi + 4)*L*L*const1 +
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(7.0*phi2 + 14.0*phi + 8.0)*L*L/4.0*const2;

MatrixData (m) [2][3] = -MatrixData (m) [1][4];

MatrixData (m) [2][4] = (5.0*phi2 - 5.0*phi - 1.0)*L*L*const1 -

(7.0*phi2 + 14.0*phi + 6.0)*L*L/4.0*const2;

MatrixData (m) [3][3] = 36.0*const1 + (70.0*phi2 +

147.0*phi + 78.0)*const2;

MatrixData (m) [3][4] = -MatrixData (m) [1][2];

MatrixData (m) [4][4] = (10.0*phi2 + 5.0*phi + 4.0)*L*L*const1 +

(7.0*phi2 + 14.0*phi + 8.0)*L*L/4.0*const2;

/*

* complete it by mirroring

*/

MirrorMatrix (m, m);

/*

* and we’re done;

*/

return m;

}

static Matrix LumpedMassMatrix (element)

Element element;

{

static Matrix m = NULL; /* the local stiffness matrix */

double factor; /* constant term */

double I_factor; /* inertia term for rotation */

double L; /* element length */

if (m == NULL) {

m = CreateMatrix (4, 4);

if (m == NullMatrix)

AllocationError (element, "mass matrix");

ZeroMatrix (m);

}

L = ElementLength (element, 2);

factor = L * element -> material -> rho * element -> material -> A / 2;

I_factor = factor*L*L/12;
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MatrixData (m) [1][1] = factor;

MatrixData (m) [2][2] = I_factor;

MatrixData (m) [3][3] = factor;

MatrixData (m) [4][4] = I_factor;

return m;

}

The last local function is the routine to compute equivalent nodal loads based on dis-
tributed loads which the user has applied to this element. These routines can get kind of
tricky because there is a lot of error checking and lots of different possibilities that we have
to deal with (directions, node ordering, etc.). Furthermore, this one needs to take care of
two different ways in which it might be called. The stiffness function calls this routine to
set the equivalent forces on its nodes. We get these forces by transforming our equivalent
force vector to global coordinates and then adding the terms of this global vector onto the
eq force[] arrays of the element’s nodes. The stress function calls this routine because
it needs to adjust the internal force vector to account for equivalent nodal forces. It only
needs the basic vector in local coordinates.

/*

* We need to compute the equivalent nodal load

* vector here. Just for convenience we are going to call

* this function in two different ways (mode=1 and mode=2).

* The first way is for the element stiffness function

* which just wants to get the forces applied to the

* element’s nodes. The second is for the stress routine

* which actually needs the equiv force vector in local coordinates.

* There are lots of ways to handle all these cases;

* see the Bernoulli beam elements for example. In mode 1,

* eq_stress can be NULL, in mode 2, Tt can be NULL.

*/

static int EquivNodalForces (element, Tt, eq_stress, mode)

Element element;

Matrix Tt; /* passing it in saves a few FLOPs */

Vector *eq_stress; /* vector pointer to set in mode 2 */

int mode; /* mode of operation */

{

static Vector equiv = NULL; /* the equiv vector in local coord */

static Vector eq_global; /* equiv in global coordinates */

double wa, wb; /* values of load at nodes */

double L; /* the element length */



13.6. A DETAILED EXAMPLE 195

unsigned i,j; /* some loop conuters */

double factor; /* constant factor for sloped load */

double phi; /* bending / shear stiffness */

int count; /* error count */

if (equiv == NULL) {

equiv = CreateVector (4);

eq_global = CreateVector (6);

if (equiv == NullMatrix || eq_global == NullMatrix)

AllocationError (element, "equivalent nodal loads");

}

ZeroMatrix (equiv);

count = 0;

/*

* Again, we want to do as much error checking and descriptive

* error reporting as possible. Seem like overkill? It probably

* is, but it’s not hurting anybody either :-)

*/

if (element -> numdistributed > 2) {

error ("Timoshenko beam element %d has more than 2 distributed loads",

element -> number);

count++;

}

L = ElementLength (element, 2);

if (L <= TINY) {

error ("length of element %d is zero to machine precision",

element -> number);

count++;

}

for (i = 1; i <= element -> numdistributed; i++) {

if (element -> distributed[i] -> nvalues != 2) {

error ("Timoshenko beam element %d must have 2 values for load",

element -> number);

count++;

}

/*
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* We only want to deal with loads in the perpendicular (LocalY)

* direction ... this is a very simple instantiation of this

* element after all.

*/

if (element -> distributed[i] -> direction != LocalY &&

element -> distributed[i] -> direction != Perpendicular) {

error ("invalid direction for element %d distributed load",

element -> number);

count++;

}

/*

* make sure that the user isn’t try to apply part of this

* load to a non-existent node (some local node other than

* number 1 or 2)

*/

for (j = 1 ;j <= element -> distributed[i] -> nvalues; j++) {

if (element -> distributed[i] -> value[j].node < 1 ||

element -> distributed[i] -> value[j].node > 2) {

error ("invalid node numbering for elt %d distrib load %s",

element -> number,element -> distributed[i] -> name);

count++;

}

}

if (element -> distributed[i] -> value[1].node ==

element -> distributed[i] -> value[2].node) {

error ("incorrect node numbering for elt %d distributed load %s",

element -> number, element -> distributed[i] -> name);

count++;

}

}

/*

* Have we had any errors? If so bail out.

*/

if (count)

return count;
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phi = 12.0/(L*L)*(element -> material -> E*element -> material -> Ix/

(element -> material -> kappa*

element -> material -> G*element -> material -> A));

/*

* loop over all of the applied distributed loads, superposing

* the effects of each

*/

for (i = 1 ; i <= element -> numdistributed ; i++) {

/*

* First we have to sort out what order the load values

* were supplied in. We need to get it so that wa is

* the value on element node 1 and wb is the value on

* element node 2.

*/

if (element -> distributed[i] -> value[1].node == 1) {

wa = element -> distributed[i] -> value[1].magnitude;

wb = element -> distributed[i] -> value[2].magnitude;

}

else if (element -> distributed[i] -> value[1].node == 2) {

wb = element -> distributed[i] -> value[1].magnitude;

wa = element -> distributed[i] -> value[2].magnitude;

}

/*

* Again, since we know how the integration turns out, we’ll

* just go head and plug straight into the entries in the equiv

* vector. The order of entries in equiv is Fy1,Mz1,Fy2,Mz2.

* There are three cases we need to deal with. The first is

* a uniform load. The second two are sloped loads which we’ll

* treat as the superposition of the uniform case and a case

* in which the load can be treated as q(x) = q0*(1 - x/L)

* (i.e., a load which goes from q0 to 0)

*/

if (wa == wb) { /* uniform distributed load */

VectorData (equiv)[1] += -wa*L/2.0;

VectorData (equiv)[3] += -wa*L/2.0;

VectorData (equiv)[2] += -wa*L*L/12.0;

VectorData (equiv)[4] += wa*L*L/12.0;
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}

else if (fabs(wa) > fabs(wb)) { /* load sloping node 1-node 2 */

factor = (wa - wb)*L/120.0/(1.0 + phi);

VectorData (equiv)[1] += -wb*L/2.0 - factor*(42.0 + 40.0*phi);

VectorData (equiv)[3] += -wb*L/2.0 - factor*(18.0 + 20.0*phi);

VectorData (equiv)[2] += -wb*L*L/12.0 - factor*(6.0 + 5.0*phi)*L;

VectorData (equiv)[4] += wb*L*L/12.0 + factor*(4.0 + 5.0*phi)*L;

}

else if (fabs (wa) < fabs (wb)) { /* load sloping node 2-node 1 */

factor = (wb - wa)*L/120.0/(1.0 + phi);

VectorData (equiv)[1] += -wa*L/2.0 - factor*(18.0 + 20.0*phi);

VectorData (equiv)[3] += -wa*L/2.0 - factor*(42.0 + 40.0*phi);

VectorData (equiv)[2] += -wa*L*L/12.0 - factor*(4.0 + 5.0*phi)*L;

VectorData (equiv)[4] += wa*L*L/12.0 + factor*(6.0 + 5.0*phi)*L;

}

}

/*

* if this is mode 2, we’re done, just hand the equiv vector

* back by setting eq_stress.

*/

if (mode == 2) {

*eq_stress = equiv;

return 0;

}

/*

* We have the load vector in local coordinates now.

* All of this is taken care of by a convenience routine.

* What it is doing is checking if the eq_force array has been

* allocated for this element’s nodes. If it hasn’t it will set

* it up. If it has it will do nothing and simply return

* to us. It has to allocate space for six doubles (even

* though we will only ever use two entries for Timoshenko

* elements) because other element types may try to insert

* something into this array in different locations. Also,

* remember that we will access it as a standard array,

* it’s not a Vector or Matrix type.

*/

SetEquivalentForceMemory (element);

/*
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* The equiv vector has four things in it. We need to transform

* these to global coordinate and then add them

* incrementally into the eq_force [] array on the nodes

* because some other element may have also already added

* something onto this node. Note the use of Tx, Ty and Rz

* to access the eq_force array. These are just enumerated

* so that they expand to 2 and 6 ... no real magic there, it

* is just little more intuitive to look at.

*/

MultiplyMatrices (eq_global, Tt, equiv);

element -> node[1] -> eq_force[Tx] += VectorData (eq_global) [1];

element -> node[1] -> eq_force[Ty] += VectorData (eq_global) [2];

element -> node[1] -> eq_force[Rz] += VectorData (eq_global) [3];

element -> node[2] -> eq_force[Tx] += VectorData (eq_global) [4];

element -> node[2] -> eq_force[Ty] += VectorData (eq_global) [5];

element -> node[2] -> eq_force[Rz] += VectorData (eq_global) [6];

return 0;

}

Now that we have written the source filetimoshenko.c in the directorylib/Elements
we need to change theOBJS= line inMakefile in this directory to include our new file. That
line should now read like:

OBJS = beam.o beam3d.o cst.o truss.o iso_2d.o iso_quad.o misc.o \

timoshenko.o

All we have to do now is typemake at the shell prompt and of course because we do such
good work there are no errors. On the off chance that you’re not so lucky and you do have
a few errors, all you have to do is fix up your source file and keep tryingmake until they
go away. Once we have the new element library made, we need to update the initialization
procedure which will define the default set of elements for a FElt application. We do
this by editinglib/Felt/initialize.c and addingextern struct definition and
AddDefinition lines just like the lines already in that file. With that change made do a
make inlib/Felt.

Now that all of the necessary libraries have been built to be aware of the new element
we need to re-link an application with the updated libraries.felt is the easiest because it is
so simple. Go to thebin/Felt directory and do a make. Then, create a simple test file that
uses your new element and run it throughfelt. If the numbers don’t come out right you can
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modify the source inlib/Elements, do amake in that directory and a make inbin/Felt
to re-link your changes. Repeat this process until everything comes out to your satisfaction.
Eventually you should do a make in the directory for each separate application so that your
new element is accessible from all of the application in the FElt system.



Appendix A

Installing and Administering FElt

A.1 Building the FElt system from source

The FElt package is intended to be easily portable. It should build on most reasonable
Un*x systems without any modifications. To start the buildcd to the toplevel directory
of the FElt source tree. From there do a./configure. This will try to automatically
determine where to find relevant include files and libraries on your system and create a
newetc/Makefile.conf file. If you feel comfortable with it you can go in and tweak the
Makefile.conf file by hand if something does not go right. After configuring, do amake

clean followed by amake all. To install the package after it has been successfully built
do amake install.

The entire package has been compiled and tested under SunOS (4.x and 5.x), and Linux
(the OS under which it was developed). This version or earlier versions compiled under
HP-UX 8.0 and 9.0 SystemV386 (R3.2.2), and various SGI, DEC, and IBM workstations
(using Irix, OSF/1 and Ultrix, and AIX) with little or no problem. The filesfelt.exeand
feltvu.exe(a graphing application) are available as pre-compiled executables for the DOS
environment.

The most recent version of the source code for FElt should always be available via
anonymous ftp at felt.sourceforge.net in the directory/pub/FElt. We also try to make
pre-compiled binaries available for a wide variety of platforms and operating systems. If
you want to be made aware of each revision of the FElt system then we strongly encour-
age you to subscribe to the FElt mailing list. To subscribe visit the list information page
athttp://lists.sourceforce.net/mailman/listinfo/felt-announce. Only major
revisions and changes will be announced broadly via Usenet.
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A.2 Translation files

The translation files which map non-English terms to the English terms which FElt expects
should be installed in the library directory which you specified during the build. This path
will automatically be searched whencpp goes looking for include files (which is really
what the translation files are). If they are not in some standard place, users need to specify
a-I flag on thefelt command line to tellcppwhere to look for them. The current filenames
are in English, you’ll obviously want to link them or move them to something reasonable
on your system and make users aware of what the appropriate file to include is called.

The following tables list the currently available translations (that we have at least).
You can look at the currentgerman.trn andspanish.trn files if you want to change
something or provide a new one. If you do write a new one, please send it to us. This
is only a first cut at internationalization, but as we get more translations we will be in a
better position to see how we can make it all work a little more fluently. Also, remember
that because this is a first cut all you can really do is type in a FElt file by hand using
these translations. Anythingvelvetsaves or even the file thatfelt writes with the-debug
command will be in English even if the input file was given in another language. All output
is still in English. Lastly, if you use these translations, you have to use them exactly as
they are given here. They are not case insensitive, and if there are underscores in the place
of spaces, you must use the underscores. Things that are user specifiable to begin with
(object names, problem title) can still be whatever you want of course. If a keyword is not
listed in a table below, use the original English keyword (the English and non-English were
probably equivalent).
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For German, use . . . Instead of . . .
problembeschreibung problem description
titel title
knoten nodes
elemente elements
krafte force
kraefte forces
zwangsbedingung constraint
zwangsbedingungen constraints
materialeigenschaften material properties
richtung direction
senkrecht perpendicular
GlobalesX GlobalX
GlobalesY GlobalY
GlobalesZ GlobalZ
LokalesX LocalX
LokalesY LocalY
LokalesZ LocalZ
werte values
verteilte distributed
lasten loads
last load
gelenk hinge
ende end

For Spanish, use . . . Instead of . . .
descripciondel problema problem title
titulo title
nodos nodes
elementos elements
fuerza force
fuerzas forces
restriccion constraint
restricciones constraints
propriedadesdel material material properties
direccion direction
paralela parallel
valores values
cargasdistribuidas distributed loads
carga load
articulacionplana hinge
final end
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A.3 Defaults and material databases

Though the defaults files and material databases are not a necessity forvelvet, they are
convenient and it might be desirable to install them in a location where all users have easy
access to them, probably the same library directory as the translation files. These files too
are really nothing more than include files which can be included as a convenience for the
user.



Appendix B

The GNU General Public License

Printed below is the GNU General Public License (theGPL or copyleft), under which
FElt is licensed. It is reproduced here to clear up some of the confusion about FElt’s
copyright status—FElt isnotshareware, and it isnot in the public domain. The FElt system
is copyright c©1993–1995 by Jason Gobat and Darren Atkinson. Thus, FEltis copyrighted,
however, you may redistribute it under the terms of the GPL printed below.

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc. 675 Mass Ave, Cambridge,
MA 02139, USA Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

B.1 Preamble

The licenses for most software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public License is intended to guarantee your freedom to
share and change free software–to make sure the software is free for all its users. This Gen-
eral Public License applies to most of the Free Software Foundation’s software and to any
other program whose authors commit to using it. (Some other Free Software Foundation
software is covered by the GNU Library General Public License instead.) You can apply it
to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish), that you receive source code or
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can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

B.2 Terms and Conditions for Copying, Distribution, and Modifica-
tion

0. This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this General
Public License. The “Program”, below, refers to any such program or work, and a
“work based on the Program” means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term “modification”.) Each licensee
is addressed as “you”.

Activities other than copying, distribution and modification are not covered by this
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License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work
based on the Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any warranty; and give
any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming
a work based on the Program, and copy and distribute such modifications or work un-
der the terms of Section 1 above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright
notice and a notice that there is no warranty (or else, saying that you provide a
warranty) and that users may redistribute the program under these conditions,
and telling the user how to view a copy of this License. (Exception: if the
Program itself is interactive but does not normally print such an announcement,
your work based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do
not apply to those sections when you distribute them as separate works. But when
you distribute the same sections as part of a whole which is a work based on the
Program, the distribution of the whole must be on the terms of this License, whose
permissions for other licensees extend to the entire whole, and thus to each and every
part regardless of who wrote it.
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Thus, it is not the intent of this section to claim rights or contest your rights to work
written entirely by you; rather, the intent is to exercise the right to control the distri-
bution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Pro-
gram (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in
object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following:

a. Accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source dis-
tribution, a complete machine-readable copy of the corresponding source code,
to be distributed under the terms of Sections 1 and 2 above on a medium cus-
tomarily used for software interchange; or,

c. Accompany it with the information you received as to the offer to distribute
corresponding source code. (This alternative is allowed only for noncommercial
distribution and only if you received the program in object code or executable
form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making mod-
ifications to it. For an executable work, complete source code means all the source
code for all modules it contains, plus any associated interface definition files, plus
the scripts used to control compilation and installation of the executable. However,
as a special exception, the source code distributed need not include anything that is
normally distributed (in either source or binary form) with the major components
(compiler, kernel, and so on) of the operating system on which the executable runs,
unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
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distribute the Program is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

5. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its deriva-
tive works. These actions are prohibited by law if you do not accept this License.
Therefore, by modifying or distributing the Program (or any work based on the Pro-
gram), you indicate your acceptance of this License to do so, and all its terms and
conditions for copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein. You
are not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or
for any other reason (not limited to patent issues), conditions are imposed on you
(whether by court order, agreement or otherwise) that contradict the conditions of
this License, they do not excuse you from the conditions of this License. If you
cannot distribute so as to satisfy simultaneously your obligations under this License
and any other pertinent obligations, then as a consequence you may not distribute the
Program at all. For example, if a patent license would not permit royalty-free redis-
tribution of the Program by all those who receive copies directly or indirectly through
you, then the only way you could satisfy both it and this License would be to refrain
entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other prop-
erty right claims or to contest validity of any such claims; this section has the sole
purpose of protecting the integrity of the free software distribution system, which is
implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.
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This section is intended to make thoroughly clear what is believed to be a conse-
quence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the Gen-
eral Public License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and “any later version”, you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify
a version number of this License, you may choose any version ever published by the
Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distri-
bution conditions are different, write to the author to ask for permission. For software
which is copyrighted by the Free Software Foundation, write to the Free Software
Foundation; we sometimes make exceptions for this. Our decision will be guided by
the two goals of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY AP-
PLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE
COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM
“AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IM-
PLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PRO-
GRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU
ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR COR-
RECTION.
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12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO
IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY
WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMIT-
TED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GEN-
ERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT
NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCU-
RATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE
OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBIL-
ITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

B.3 Appendix: How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the pub-
lic, the best way to achieve this is to make it free software which everyone can redistribute
and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

〈one line to give the program’s name and a brief idea of what it does.〉Copyright
c©19yy 〈name of author〉

This program is free software; you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave,
Cambridge, MA 02139, USA.
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Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an
interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author Gnomovision

comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’. This

is free software, and you are welcome to redistribute it under certain

conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts
of the General Public License. Of course, the commands you use may be called some-
thing other than ‘show w’ and ‘show c’; they could even be mouse-clicks or menu items–
whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if
any, to sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter
the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program ‘Gnomo-
vision’ (which makes passes at compilers) written by James Hacker.

〈signature of Ty Coon〉, 1 April 1989 Ty Coon, President of Vice

This General Public License does not permit incorporating your program into propri-
etary programs. If your program is a subroutine library, you may consider it more useful to
permit linking proprietary applications with the library. If this is what you want to do, use
the GNU Library General Public License instead of this License.
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