FEM Modeling: Introduction

FEM Terminology

degrees of freedom (abbrv: DOF)

state (primary) variables: displacements in mechanics

conjugate variables: forces in mechanics

stiffness matrix

master stiffness equations

$$\mathbf{K} \mathbf{u} = \mathbf{f}$$

$$\mathbf{K} \mathbf{u} = \mathbf{f}_M + \mathbf{f}_I$$

Mechanical force

Particle velocity

Particle velocity

Charge density

Magnetic intensity

Heat flux

Fluxes

Physical Significance of Vectors u and f in Miscellaneous FFM Applications

in miscenaneous remarkations		
Application	State (DOF) vector u	Forcing vector f

Problem represents represents

Structures and solid mechanics Displacement **Temperature**

Heat conduction Acoustic fluid

Potential flows

General flows

Electrostatics

Magnetostatics

Displacement potential

Pressure Velocity

Electric potential

Magnetic potential

Where FEM Fits (from Chapter 1)

Idealization Process (from Chapter 2)

Mathematical Model Definition

Traditional definition

Scaled fabricated version of a physical system (think of a car or train model)

Simulation oriented definition

A model is a symbolic device built to simulate and predict aspects of behavior of a system

Implicit Modeling

Recall the "Breakdown" DSM Steps

Study Generic Elements next

... Because Most of the Remaining DSM Steps

Globalization
Merge
Application of BCs
Solution
Recovery of Node Forces

are **Element Independent**

Attributes of Mechanical Finite Elements

Dimensionality

Nodes serve two purposes:

geometric definition

home for DOFs (connectors)

Degrees of freedom (DOFs) or "freedoms" Conjugate node forces

Material properties
Fabrication properties

Element Geometry Is Defined by Node Locations

Classification of Mechanical Finite Elements

Primitive Structural

Continuum

Special

Macroelements Substructures

Primitive Structural Elements (often built from MoM models)

Continuum Elements

Special Elements

MacroElements

Substructures

Substructures (cont'd)

Boundary Conditions (BCs)

The most difficult topic for FEM program users ("the devil hides in the boundary")

Boundary Conditions Essential vs. Natural

Recipe:

- 1. If a BC involves one or more DOF in a direct way, it is <u>essential</u> and goes to the Left Hand Side (LHS) of Ku = f
- 2. Otherwise it is *natural* and goes to the Right Hand Side (RHS) of Ku = f

Examples of Structural Models: Dam under Ground Motion (Civil Engrg)

Examples of Structural Models: Rocket Nozzle (Aerospace Engrg)

(a) Typical solid rocket nozzle (Aerojet Corp., 1963)

(b) Finite element idealization

Examples of Structural Models: SuperTanker (Marine Engrg)

Typical internal structure of tanker

Examples of Structural Models: F16 External View (Aero)

Examples of Structural Models: F16 Internal Structure (Aero)

