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� Numerical solution of complex problems – in Fluid Dynamics, Structural 
Mechanics

� General discretization procedure of continuum problems posed by 
mathematically defined statements – differential equations

� Difference in approach between Mathematician & Engineer
� Mathematical approaches –

1) Finite Differences
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1) Finite Differences
2) Method of Weighted Residuals
3) Variational Formulations

� Engineering approaches –
Create analogy between finite portions of a continuum domain and real 
discrete elements
– Example: Replace finite elements in an elastic continuum domain by 
simple elastic bars or equivalent properties
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� Finite Element Process based on following two conditions–
1) Finite number of parameters determine behavior of finite number of 

elements that completely make up continuum domain
2) Solution of the complete system is equivalent to the assembly of the 

individual elements 

� The process of solving governing equations using FEM –
1) Define problem in terms of governing equations (differential equations)
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1) Define problem in terms of governing equations (differential equations)
2) Choose type and order of finite elements and discretize domain
3) Define Mesh for the problem / Form element equations
4) Assemble element arrays
5) Solve resulting set of linear algebraic equations for unknown
6) Output results for nodal/element variables
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Ref 4 – Pg. 40, Fig 3.1



Differential Equation Boundary Conditions
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Being an approximate process 
– will seek solution of form �
where: Ni - shape functions or trial 
functions 
ai – unknowns or parameters to 
be obtained to ensure “good fit”

Defined: Ni = 0 at boundary of domain 



� Domain is broken up into number of non-overlapping elements
� Functions used to represent nature of solution in elements – trial / shape / 

basis / interpolation functions
� These serve to form a relation between the differential equation and 

elements of domain
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Ref 4 – Pg. 40, Fig 3.2

Ref 4 – Pg. 42, Fig 3.3



� Nm are independent trial functions

� Properties:
1. Nm is chosen such that u” � u as m 
� ∞ (Completeness requirement)
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� ∞ (Completeness requirement)

2. Nm depends only on geometry and 
no. of nodes
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• Piecewise defined trial functions: 
one dimensional linear

Varies linearly across each element

• Properties:
1. Nm = 1 at node m 
2. N = 0 at all other nodes
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2. Nm = 0 at all other nodes
3. ∑ Nm

e = 1 for element e
4. Number of nodes = number of 

functions
5. If Nm is a polynomial of order n-1, 

then 

Nk
e = , node k, element e, 

k ≠ i

Ref 4 – Pg. 44, Fig 3.4



◦ Simplex element
◦ Simplest geometric shape used to approximate an irregular surface
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Solving for α1, α2, α3 in terms of nodal coordinates, nodal values & rewriting 
expression for T(x,y)

Ref 4 – Pg. 49, Fig 3.7



��

where �
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and interpolation functions �

A – Area of triangle



� Similarly – quadratic triangular elements are also possible for better 
accuracy

� Higher orders are also possible
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2 – D Mesh: Quadrilateral Element

◦ In simplest form � rectangular element
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Ref 4 – Pg. 58, Fig 3.13



where: 
[K] – stiffness matrix;
{ T } – Vector of unknowns (like temperature);
{ f } – forcing or loading vector

Example (Heat Transfer) –
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Qi – Heat flux through node i;
e – element;
l – length of element; 
k – thermal conductivity;
A – Area.
Now, { T }e is the unknown temperature at either node

Example (Heat Transfer) –
Consider a single element on a one dimensional 
domain with nodes i, j.



u is solution to continuum problem
F,E are differential operators

Π is variational integral
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Π is variational integral

Now, u is exact solution if for any arbitrary δu   �

ie. if variational integral is made “stationary”

Now, the approximate solution can be found by substituting 
trial function expansion �



Since above holds true for any δa  �
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Since above holds true for any δa  �

Parameters ai are thus found from above equations

Note:
The presence of symmetric coefficient matrices for above equations is one of the 
primary merits of this approach



� Natural:
◦ Variational forms which arise from physical aspects of problem itself
◦ Example – Min. potential energy � equilibrium in mechanical systems

However, not all continuum problems are governed by differential
equations where variational forms arise “naturally” from physical aspects of 

problem
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problem

� Contrived:
1. Lagrange Multipliers: extending number of unknowns by addition of 

variables
2. Least square problems: Procedures imposing higher degree of 

continuity requirements
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� Method depends on theorem from theory of the calculus of variations –

The function T (x) that extremises the variational integral corresponding to the 
governing differential equation (called Euler or Euler–Lagrange equation) is the 
solution of the original governing differential equation and boundary conditions’
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� Process –

1) Derive Variational Integral from governing differential equation
2) Vary the solution function until Variational Integral is made stationary 

with respect to all unknown parameters (ai) in the approximation 
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Example -

Using the governing equation as the 
Euler-Lagrange equation �
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- where I is the Variational Integral

Ref 4 – Pg. 75, Fig 3.24



Integrating by parts �

And using the relation �
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And using the relation �
And applying boundary conditions

Variational Integral is =
Note: order of 

derivative 
in integrand



∏Let I =

Substitute the approximation into integral and forcing I 
to be stationary with respect to unknown parameters 

yields set of linear equations to be solved for the 
unknown parameters 
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K a = f

Let I =

Now, checking for stationarity of the 
variational integral by differentiating with unknown 

parameters �

Set of linear algebraic equations �



� One can observe from the variational integral that despite the governing 
equation being a second derivative equation, the integrand is only of the 
first derivative

� In cases where the second derivative tends to infinity or does not exist, this 
formulation is very useful as it does not require the second derivative

Example – Change in rate of change of temperature where two different 
materials meet might lead to such a case
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materials meet might lead to such a case
� Hence, the variational formulation of a problem is often called the Weak 

formulation
� However, this formulation may not be possible for all differential equations
� An alternative approach is - Method of Weighted Residuals
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� Residual = A(T”) – A(T) where: T – exact; T” – approximate; A – Governing 
Equation

� Since, A(T) = 0 � Residual ( R ) = A(T”)
� Method of weighted residuals requires that ai be found by satisfying 

following equation -

� K a = f
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where: wi(x) are n arbitrary weighting functions
Essentially, the average Residual is minimized � Hence, minimizing error in 

approximation. R � 0 when n � ∞
� weighting functions can take any values
� However, depending on the weighting functions certain special cases are 

defined and commonly used –
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1) Point Collocation: Dirac Delta Function

Equivalent to making the residual R equal to zero at a number of chosen points
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2) Sub-Domain:

Integrated error over N sub-domains should each be zero
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3) Galerkin:

Advantages include –
i. Better accuracy in many cases 
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ii. Coefficient Matrix is symmetric which makes computations easier

4) Least Squares: Attempt to minimize sum of squares of residual at each 
point in domain
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• One of the most important methods in using Finite Element Analysis.
• Here, the weighting function is the same as the trial function at each of the 
elements/nodes
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elements/nodes
• Interestingly, the solution obtained via this method is exactly the same as that 
obtained by the variational method
•It can further be shown that, if a physical problem has a natural variational 
principle attached to it or in other words if a governing equation can be written 
as a variational integral, then the Galerkin and Variational methods are identical 
and thus provide same solution



Now consider the integral of this form �

Here, the weighted residual integrated over
domain
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Now, on integration by parts � + Boundary Terms

C & D are operators with lower order of differentiation as compared to A, 
Hence lower orders of continuity are demanded from the trial functions.



Governing Equation �
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Consider domain to consist of 5 linear elements & 6 nodes

Approximate solution from Elements �

Ni, Nj are interpolation functions across node i
θi , θj are nodal unknowns

Ref 4 – Pg. 75, Fig 3.24



Galerkin method requires �
Since weighting function = shape function

Integrating by parts and 
applying boundary conditions �
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Algebraic Equation �
Equation of the elements



Assembling elements
together and solving for 
Unknown parameters = 

nodal temperatures
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Interestingly, this method provides better results when compared to
approximate methods that use a 

function profile that satisfies BC and is 
assumed before hand – MWR or Rayleigh-Ritz



� Based on two criteria for interpolation functions:
1. Compatibility
2. Completeness

� Compatibility:
◦ Field Variable and any of its partial derivatives up to one order less 

than highest in variational integral should be continous
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than highest in variational integral should be continous
◦ Example – Continuity of Temperature with reference to heat 

conduction governing equation

� Completeness:
◦ Within each element continuity must exist up to order of highest 

derivative in variational integral
◦ Essentially, as number of nodes � ∞, Residual � 0
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Assembly of two triangular elements
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Ref 4 – Pg. 324, Fig C.1
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Poisson Equation �

In 3-d Cartesian coordinates �

Laplace Equation �

In 3-d Cartesian coordinates �
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In 3-d Cartesian coordinates �

Essentially, Laplace equation is a special case of the Poisson Equation 
where the RHS = 0

A physical example is the Steady-State Heat Conduction equation; 
Others include fluid mechanics, electrostatics etc.

Using the Steady-state heat equation, FEM discretization is carried out in 
the following slides



Poisson Equation �

Boundary Conditions �

= 0
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Finiding the Variational Integral

Integrating by parts &
Using relation �



��

Approximating integral to achieve algebraic 
equations using shape functions �

Shape functions are determined based on domain
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Shape functions are determined based on domain
and accuracy required in analysis

��



On differentiating with respect to individual parameters ai  �
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Note:
Galerkin and Variational procedures must give the same answer for cases
where natural variational principles exist – example is the case above

We get system of linear algebraic equations to be solved 
for unknown parameters �



� As elements increase in order, the integrals required to solve for the 
element matrices become complex and algebraically tedious

� Hence, methods of numerical integration are used – especially in 
computational techniques like finite element
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� This simple summation of terms of the integrand evaluated at certain points 
and weighted with certain functions serves as the approximation
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Here, a polynomial of degree n-1 is used 
to approximate the integrand by sampling 
at n points on the integrand curve

Resulting polynomial is integrated instead 
to approximate value of the integral

IIT Madras

At n = 1 � Trapezoidal Rule

At n = 2 � Simpson’s Rule
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Ref 1 – Pg. 218, Fig 9.12a



Here, sampling points are not assigned but are
rather evaluated; thus, we get exact value of 
integral when integrand is of order ≤ p (≥ n),
also to be determined

≤
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Consider polynomial of order p; Use above 
summation approximation to evaluate integral 
with this polynomial as integrand and comparing 
coefficients with exact value we get     � p + 1 = 2 (n+1)

Thus, after sampling at n + 1 points � order of accuracy  = 2n + 1;
In earlier approach, order of accuracy = n only achieved

Ref 1 – Pg. 218, Fig 9.12b



Ref 1 – Pg. 83, Table 3.2
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� FEM – Numerical solution to complex continuum problems
� Breaks down domain into discrete elements which are then 

piecewise approximated and assembled back to get complete 
solution

� Differential Equation � Integral Form � Linear Algebraic Equations
� Variational Method : Rayleigh – Ritz 
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� Variational Method : Rayleigh – Ritz 
� Method of Weighted Residuals : Galerkin Method
� Laplace & Poisson Equations
� FEM Discretization – Poisson Equation
� Numerical Integration – simplify complex integrals
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