Runge-Kutta and Collocation Methods

Florian Landis

Overview

- Define Runge-Kutta methods.
- Introduce collocation methods.
- Identify collocation methods as Runge-Kutta methods.
- Find conditions to determine, of what order collocation methods are.

Introduction

General Goal: Find approximation to the solutions of

$$\dot{y}(t) = f(t, y), \qquad y(t_0) = y_0$$

using one step methods.

3 Examples of one step methods (step size h=1) for the Riccati equation $\partial_t y = y^2 + t^2$:

Runga-Kutta Method

Definition 1 (Runge-Kutta) Let b_i , a_{ij} (i, j = 1, ..., s) be real numbers and let $c_i = \sum_{j=1}^s a_{ij}$. An s-stage Runge-Kutta method is given by

$$k_{i} = f\left(t_{0} + c_{i}h, y_{0} + h\sum_{j=1}^{s} a_{ij}k_{j}\right), \quad i = 1, \dots, s$$

$$y_{1} = y_{0} + h\sum_{j=1}^{s} b_{i}k_{i}.$$
(1)

Distinguish:

explicit Runge-Kutta $a_{ij} = 0$ for $j \ge i$

implicit Runge-Kutta full matrix (a_{ij}) of non-zero coefficients allowed Implicit function theorem: for h small enough, (1) has a locally unique solution close to $k_i \approx f(t_0, y_0)$.

Butcher Diagram

The coefficients of the Runge-Kutta method are usually displayed in a Butcher diagram:

Example for explicit Runge-Kutta:

Order of the Runge-Kutta method

A general one-step method has order p, if

$$y_1 - y(t_0 + h) = \mathcal{O}(h^{p+1})$$
 as $h \to 0$.

By the Taylor expansions

$$y(t_0 + h) = y(t_0) + h \cdot f(t_0, y(t_0)) + \frac{1}{2}h^2 \cdot \frac{d}{dt}f(t, y(t))\big|_{t=t_0} + \dots$$

$$y_1 = y_0 + h \sum_{i=1}^{s} b_i \left[f(t_0, y_0) + h \cdot \frac{d}{dh} f(t_0 + c_i h, y_0 + h \sum_{j=1}^{s} a_{ij} k_j) \Big|_{h=0} + \dots \right]$$

of y and y_1 of the Runge-Kutta method, one obtains the following conditions for the coefficients:

$$\begin{array}{rclcrcl} \sum_i b_i &=& 1 & \text{ for order 1,} \\ \sum_i b_i c_i &=& 1/2 & \text{ for order 2,} \\ \sum_i b_i c_i^2 &=& 1/3 & \\ & & & \\ & & & & \\ & & &$$

The Collocation Method

Definition 2 (Collocation Method) Let c_1, \ldots, c_s be distinct real numbers (usually $0 \le c_i \le 1$). The collocation polynomial u(t) is a polynomial of degree s satisfying

$$u(t_0) = y_0 (2)$$

$$\dot{u}(t_0 + c_i h) = f(t_0 + c_i h, u(t_0 + c_i h)), \quad i = 1, \dots, s,$$
 (3)

and the numerical solution of the collocation method is defined by

 $y_1 = u(t_0 + h).$

The Collocation Method

Theorem 1 (Guillou & Soulé 1969, Wright 1970) The collocation method for c_1, \ldots, c_s is equivalent to the s-stage Runge-Kutta method with coefficients

$$a_{ij} = \int_0^{c_i} \ell_j(\tau) d\tau, \qquad b_i = \int_0^1 \ell_i(\tau) d\tau,$$

where $\ell_i(\tau)$ is the Lagrange polynomial $\ell_i(\tau) = \prod_{l \neq i} (\tau - c_l)/(c_i - c_l)$.

Moreover:

$$u(t_0 + \tau h) = y_0 + h \sum_{j=1}^{s} k_j \int_0^{\tau} \ell_j(\sigma) d\sigma.$$

Thus, the existence of the collocation polynomial depends on the existence of the k_i (given for $h \to 0$).

Proof of Theorem 1

Proof. Let u(t) be the collocation polynomial and define $k_i := \dot{u}(t_0 + c_i h)$. By the Lagrange interpolation formula we have $\dot{u}(t_0 + \tau h) = \sum_{j=1}^s k_j \cdot \ell_j(\tau)$, and by integration we get

$$u(t_0 + c_i h) = y_0 + h \sum_{j=1}^{s} k_j \int_0^{c_i} \ell_j(\tau) d\tau.$$

Inserted into the definition of the collocation polynomial

$$\dot{u}(t_0 + c_i h) = f(t_0 + c_i h, u(t_0 + c_i h)),$$

this gives the first formula of the Runge-Kutta equation

$$k_i = f(t_0 + c_i h, y_0 + h \sum_{j=1}^{s} a_{ij} k_j).$$

Integration from 0 to 1 yields $y_1 = y_0 + h \sum_{i=1}^{s} b_i k_i$.

Collocation Coefficients

If a Runge-Kutta methods corresponds to a collocation method of order s,

$$a_{ij} = \int_0^{c_i} \ell_j(\tau) d\tau, \qquad b_i = \int_0^1 \ell_i(\tau) d\tau,$$

leads to:

$$C(q = s) : \sum_{j=1}^{s} a_{ij} c_j^{k-1} = \frac{c_i^k}{k}, \quad \forall i, \ k = 1, \dots, q$$

$$B(p = s) : \sum_{j=1}^{s} b_i c_i^{k-1} = \frac{1}{k}, \quad k = 1, \dots, p$$

since
$$\tau^{k-1} = \sum_{j=1}^{s} c_{j}^{k-1} \ell_{j}(\tau)$$
 for $k = 1, \dots, s$.

Note:
$$B(p) \Rightarrow y_0 + \sum_{i=1}^s b_i f(t_0 + hc_i)$$
 approximates the solution to $\dot{y} = f(t), \ y(t_0) = y_0$ with order p .

Order of The Collocation Method

Lemma 2 The collocation polynomial u(t) is an approximation of order s to the exact solution of $\dot{y} = f(t,y)$, $y(t_0) = y_0$ on the whole interval, i.e.,

$$||u(t) - y(t)|| \le C \cdot h^{s+1}$$
 for $t \in [t_0, t_0 + h]$

and for sufficiently small h.

Moreover, the derivatives of u(t) satisfy for $t \in [t_0, t_0 + h]$

$$||u^{(k)}(t) - y^{(k)}(t)|| \le C \cdot h^{s+1-k}$$
 for $k = 0, \dots, s$.

Proof of Lemma 2

$$\dot{u}(t_0 + \tau h) = \sum_{j=1}^{s} f(t_0 + c_i h, u(t_0 + c_i h)) \ell_j(\tau),$$

$$\dot{y}(t_0 + \tau h) = \sum_{j=1}^{s} f(t_0 + c_i h, y(t_0 + c_i h)) \ell_j(\tau) + h^s E(\tau, h)$$

$$||E(\tau, h)|| \leq 2 \max_{t \in [t_0, t_0 + h]} \frac{||y^{(s+1)}(t)||}{s!}$$

Integrating the difference of the above two equations gives

$$y(t_0 + \tau h) - u(t_0 + \tau h) = h \sum_{i=1}^{s} \Delta f_i \int_0^{\tau} \ell_i(\sigma) d\sigma + h^{s+1} \int_0^{\tau} E(\sigma, h) d\sigma$$

with
$$\Delta f_i = f(t_0 + c_i h, y(t_0 + c_i h)) - f(t_0 + c_i h, u(t_0 + c_i h)).$$

Proof of Lemma 2

Using a Lipschitz condition for f(t,y) on the Integral

$$y(t_0 + \tau h) - u(t_0 + \tau h) = h \sum_{i=1}^{s} \Delta f_i \int_0^{\tau} \ell_i(\sigma) d\tau + h^{s+1} \int_0^{\tau} E(\sigma, h) d\sigma$$

yields

$$\max_{t \in [t_0,t_0+h]} ||y(t)-u(t)|| \leq h \, C \, L \max_{t \in [t_0,t_0+h]} ||y(t)-u(t)|| + \text{Const.} \cdot h^{s+1},$$

implying $||u(t) - y(t)|| \le C \cdot h^{s+1}$ for sufficiently small h > 0.

Superconvergence

Theorem 3 (Superconvergence) If the condition B(p) holds for some $p \ge s$, then the collocation method has order p. This means that the collocation method has the same order as the underlying quadrature formula.

$$B(p)$$
:
$$\sum_{i=1}^{s} b_i c_i^{k-1} = \frac{1}{k}, \quad k = 1, \dots, p$$

Note: B(p) cannot be met for p > 2s.

Proof of Superconvergence

Proof. We consider the collocation polynomial u(t) as the solution of a perturbed differential equation

$$\dot{u} = f(t, u) + \delta(t)$$

with defect $\delta(t):=\dot{u}(t)-f\big(t,u(t)\big)$. Subtracting $\dot{y}(t)=f(t,y)$ from the above we get after linearization that

$$\underbrace{\dot{u}(t) - \dot{y}(t)}_{\dot{\mathcal{E}}(t)} = \frac{\partial f}{\partial y} \Big(t, y(t) \Big) \underbrace{\Big(u(t) - y(t) \Big)}_{\mathcal{E}(t)} + \delta(t) + r(t),$$

where, for $t_0 \leq t \leq t_0 + h$, the remainder r(t) is of size $\mathcal{O}\big(||u(t)-y(t)||^2\big) = \mathcal{O}(h^{2s+2})$ by lemma 2.

Conclusion

 Collocation methods with polynomials of degree s are equivalent to s-stage Runge-Kutta methods:

$$a_{ij} = \int_0^{c_i} \ell_j(\tau) d\tau, \qquad b_i = \int_0^1 \ell_i(\tau) d\tau,$$

- Collocation polynomials of degrees s lead to collocation methods of order s or better:
- If B(p) is met for p>s, the corresponding collocation method is of order p.

$$B(p)$$
:
$$\sum_{i=1}^{s} b_i c_i^{k-1} = \frac{1}{k}, \quad k = 1, \dots, p.$$

Proof of Lemma 2

The second statement follows from the first one:

Taking the kth derivative of

$$y(t_0 + \tau h) - u(t_0 + \tau h) = h \sum_{i=1}^{s} \Delta f_i \int_0^{\tau} \ell_i(\sigma) d\tau + h^{s+1} \int_0^{\tau} E(\sigma, h) d\sigma$$

gives

$$h^{k}(y^{(k)}(t_{0}+\tau h)-u^{(k)}(t_{0}+\tau h))=h\sum_{i=1}^{s}\Delta f_{i}\ell_{i}^{(k-1)}(\tau)+h^{s+1}E^{(k-1)}(\tau,h).$$

With

$$||E^{(k-1)}(\tau,h)|| \le \max_{t \in [t_0,t_0+h]} \frac{||y^{(s+1)}(t)||}{(s-k+1)!}$$

and a Lipschitz condition for f(t,y), $||u^{(k)}-y^{(k)}|| \leq C \cdot h^{s+1-k}$ follows.

Variation of Constants Formula

For homogeneous systems of linear equations

$$\dot{y}(t) = A(t)y(t)$$

with initial condition $y(t_0) = y_0$, the solution can be written as

$$y(t) = R(t, t_0)y_0 \Leftrightarrow \dot{R}(t, s) = A(t)R(t, s).$$

Using this *resolvent* of the homogeneous differential system, the solution to inhomogeneous problems

$$\dot{y}(t) = A(t)y(t) + f(t)$$

can be found with the variation of constants formula:

$$y(t) = R(t, t_0)y_0 + \int_{t_0}^t R(t, s)f(s) ds.$$

Proof of Superconvergence

With

$$\dot{R}(t,s) = \frac{\partial}{\partial y} f(t,y(t)) R(t,s)$$

The variation of constants formula then yields

$$y_1 - y(t_0 + h) = \mathcal{E}(t_0 + h) = \int_{t_0}^{t_0 + h} R(t_0 + h, s) \left(\delta(s) + r(s)\right) ds$$

as the solution of

$$\dot{\mathcal{E}}(t_0 + h) = \frac{\partial f}{\partial y} \Big(t, y(t) \Big) \mathcal{E}(t) + \delta(t) + r(t).$$

The contribution of r(t):

$$r(t) \sim \mathcal{O}(h^{2s+2}) \Rightarrow \int_{t_0}^{t_0+h} R(t_0+h,s)r(s) \,\mathrm{d}s \sim \mathcal{O}(h^{2s+3})$$

Proof of Superconvergence

The main idea now is to apply the quadrature formula $(b_i, c_i)_{i=1}^s$ to the integral of $g(s) = R(t_0 + h, s)\delta(s)$:

$$\int_{t_0}^{t_0+h} g(s) \, \mathrm{d}s = \sum_{i=1}^s b_i g(t_0 + hc_i) + \text{quadrature Error}.$$

From $\delta(s)|_{t_0+c_ih}=0$ follows $\sum_{i=1}^s b_i g(t_0+hc_i)=0$. Thus,

$$\int_{t_0}^{t_0+h} g(s) \, \mathrm{d}s = \text{quadrature Error} \le h^{p+1} \frac{\partial^p}{\partial s^p} g(s).$$

 $\frac{\partial^p}{\partial s^p}g(s)$ is bounded independently of h by Lemma 2. Therefore

$$\mathcal{E}(t_0 + h) = \int_{t_0}^{t_0 + h} R(t_0 + h, s) \left(\delta(s) + r(s) \right) ds \sim \mathcal{O}(h^{p+1}).$$