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Define Runge-Kutta methods.

ntroduce collocation methods.

dentify collocation methods as Runge-Kutta

methods.

Find conditions to determine, of what order
collocation methods are.



Introduction

General Goal: Find approximation to the solutions of

y(t) = f(t,y), y(to) = Yo

using one step methods.

3 Examples of one step methods (step size h = 1) for the Riccati equation
Ory = y* + t*

Explicit Euler Rule Explicit Trapezoidal Rule Explicit 3-stage Runge-Kutta method
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Runga-Kutta Method

Definition 1 (Runge-Kutta) Letb;, a;; (2,7 = 1,..., s) be real numbers
and let ¢; = ijl a;;. An s-stage Runge-Kutta method is given by

k; = f(t0+cih,y0+h2a¢jkj), ’iZl,...,S (1)
j=1
Y1 = yO"’thiki-
j=1

Distinguish:
explicit Runge-Kutta  a;; = 0 for j > 1

implicit Runge-Kutta  full matrix (a;;) of non-zero coefficients allowed
Implicit function theorem: for & small enough, (1) has a locally unique
solution close to k; == f(to, yo)-
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Butcher Diagram

The coefficients of the Runge-Kutta method are usually displayed in a
Butcher diagram:

Example for explicit Runge-Kutta:
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Order of the Runge-Kutta method

A general one-step method has order p, if
1 —y(to +h) = O(RP™) ash — 0.
By the Taylor expansions

to +h) = y(to) + h- Flto,y(to)) + 5h* - 5 Fy(®)],, + -

s p s
U1 :y0‘|‘hzbi [f(to,yo)+h- %f(to—|—Cih,y0—|—hzaijkj>‘hzo—|—...]
i=1 J=1

of y and y; of the Runge-Kutta method, one obtains the following conditions
for the coefficients:

>.bi =1 for order 1,
> .. bici = 1/2 fororder2,

> bic = 1/3
and Zi’jbiaijcj = 1/6 for order 3.
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The Collocation Method

Definition 2 (Collocation Method) Letcy,..., cs be distinct real numbers
(usually 0 < ¢; < 1). The collocation polynomial u(t) is a polynomial of
degree s satisfying

u(to) = Yo (2)
ﬂ(to + Czh) — f(to + c;h, u(to + Cih)), 1=1,...,s, (3)

and the numerical solution of the collocation method is defined by

— Scetch of Collocation Polynomial of degree 3
y1 = u(to + h). 5 Y
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The Collocation Method

Theorem 1 (Guillou & Soulé 1969, Wright 1970)  The collocation
method for ¢y, . . ., ¢, is equivalent to the s-stage Runge-Kutta method with
coefficients

C; 1
aij:A Ej(T)dT, bZ:A gi(T)dT,

where ;(7) is the Lagrange polynomial £;(7) = | [,.;(7 — a)/(ci — a1).

Moreover:

U(to —|—7'h) — Yo —|—th]/ gj(O') do.
0

g=1

Thus, the existence of the collocation polynomial depends on the
existence of the k; (given for h — 0).
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Proof of Theorem 1

Proof. Let u(t) be the collocation polynomial and define k; := u(tg + ¢;h) .
By the Lagrange interpolation formula we have u(tg + 7h) = ijl kj-t;(T),
and by integration we get

U(tQ—I—CZh) :yO—Fthj/ €j<7')d7'
0

j=1
Inserted into the definition of the collocation polynomial
iL(to -+ Czh) = f(to + Cih, u(to + Cih)),
this gives the first formula of the Runge-Kutta equation
ki = f(to + cih, yo + hz aijkj)-
j=1

Integration from O to 1 yields y; = yg + h 2;21 b;k;. []
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Collocation Coefficients

If a Runge-Kutta methods corresponds to a collocation method of order s,

C; 1
aij:A Ej(T)dT, bZ:A gz’(T)dT,

leads to:
S C]:C
Clg=s) Z:a,wc;C ! ?Z, Vi, k=1,...,q
j=1
- k-1 1
B(p=s) Zbicz- =7 k=1,...,p

since 7" =" () fork=1,...,5

919

Note: B(p) = yo + Y _;_; bif (to + hc;) approximates the solution to
y = f(t), y(to) = 1o with order p.
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Order of The Collocation Method

Lemma 2 The collocation polynomial (%) is an approximation of order s
to the exact solution of y = f(%,¥), y(to) = yo on the whole interval, i.e.,

lu(t) —y@)|| < C -t fort € [ty, to + A

and for sufficiently small h.
Moreover, the derivatives of u(t) satisfy for t € [tg,to + h]

1W® @) —y® @) < C-hTF fork=0,...,s
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Proof of Lemma 2

yi
’iL(to —|—7'h) = Zf(to —FCih,U(to —|—Cih)>€j(7’),
1 |
JS 'vtio t;”h -
glto+7h) = > f(to+cih,y(to + cih))4;(7) + h*E(r, h)
71=1
[yt @)

|E(T,h)]] < 2 max
t€[to,to+h] s!

Integrating the difference of the above two equations gives

y(to + 7h) —u(tog + 7h) = hZAfi/ li(o)do + hs+1/ E(o,h)do
0 0

1=1

with Af; = f(to + cih, y(to + cih)) — f(to + c;h, ulto + ¢;h)).
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Proof of Lemma 2

Using a Lipschitz condition for f(¢,y) on the Integral

y(to + 7h) — u(to + 7h) = hz Af; / li(o)dT + hsT / E(o,h)do
i=1 0 0

yields

t) —u(t)]| <hCL t) — u(t)]| + Const. - A+
epnax ly(8) —u(®)] < e dmaxly(®) = u(®)]| + cons |

implying ||u(t) — y(¢)|| < C - h**! for sufficiently small i > 0.
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Superconvergence

Theorem 3 (Superconvergence) If the condition B(p) holds for some
p > 8, then the collocation method has order p. This means that the
collocation method has the same order as the underlying quadrature formula.

- 1
B(p) : sz‘C?_l:E, k=1,...,p
j=1

Note: B(p) cannot be met for p > 2s.
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Proof of Superconvergence

Proof. We consider the collocation polynomial u(%) as the solution of a
perturbed differential equation

0= f(t,u)+5(t)

with defect 8(t) := u(t) — f (¢, u(t)). Subtracting §(t) = f(¢,y) from the
above we get after linearization that

i) i) = 5 (t.9(0)) (ut)) =) +5(0) + (1),

\ . 4
~

£®) £(t)

where, for tg < t <ty + h, the remainder r(t) is of size

O(l|u(t) — y(t)]]*) = O(h**2) by lemma 2.
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Conclusion

e Collocation methods with polynomials of degree s are equivalent to
s-stage Runge-Kutta methods:

C; 1
aij:/O gj(T)dT, bZ:/O gi(T)dT,

e Collocation polynomials of degrees s lead to collocation methods of
order s or better:

o If B(p) is metfor p > s, the corresponding collocation method is of
order p.

i B 1
B(p) Zbici-“ 12%’ k=1,...,p.
j=1
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Proof of Lemma 2

The second statement follows from the first one:
Taking the kth derivative of

y(to + 7h) — u(to + 7h) = hz Afi/ li(o)dT + st / E(o,h)do
0 0

i=1
gives
WF (y ™ (to 4+ 7h) — u™ (tg + Th)) = hz Afzfgk_l)(T) R ERD (- ),
i=1

With

S Oll
F(k—1) )| < |y
| (mhlls e s —F T 1)!

[u®) — y®|| < C - h¥1F follows.

and a Lipschitz condition for f (¢, ),
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Variation of Constants Formula

For homogeneous systems of linear equations

with initial condition (%) = o, the solution can be written as
y(t) = R(t,to)yo < R(t,s) = A(t)R(t, s).

Using this resolvent of the homogeneous differential system, the
solution to inhomogeneous problems

y(t) = A(t)y(t) + f(t)

can be found with the variation of constants formula:

o(t) = R(t to)wo + R(t,5)f(s) ds.

to
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Proof of Superconvergence

With

R(t,s) = a%f(t, y())R(t, 5)

The variation of constants formula then yields
to+h
y1 —y(to +h)=E(to +h) = / R(to + h, s) (5(8) — r(s)) ds
to
as the solution of
- of
dy

Ety+h) = (t, y(t))é’(t) +6(t) + r(b).

The contribution of 7(¢):

to+h
r(t) ~ O(h*1?) = / R(to + h, s)r(s) ds ~ O(h*13)
to



Proof of Superconvergence

The main idea now is to apply the quadrature formula (b;, ¢;);_, to the
integral of g(s) = R(to + h, s)d(s):

to+h s
/ g(s)ds = Z b;g(to + hc;) + quadrature Error.
to i=1

From 6(5)|¢g+e;n = 0 follows > 7, b;g(to + he;) = 0. Thus,

to+h P
/t g(s) ds = quadrature Error < hp_ng(s),
0

gjpg(s) is bounded independently of h by Lemma 2. Therefore

Eto + h) = /tﬁh R(to + h, s) (5(3) n r(s)) ds ~ O(RPTY).
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