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SYNOPSIS 

A comparative study of step-by-step methods which are commonly used in 

the numerical analysis of the dynamic response of structures is presented. The 

method of analysis is based on the general theory of the calculus of difference 

e~uations and the algebra of matrices. The available step-by-step techniques 

discussed are classified into three groups~ 

1. Acceleration methods, 

2. Difference equation. methods, 

3. Numerical solutions of differential equations. 

Comparisons have been made between the available techniques with respect to the 

accuracy of a single step, propagation of errors after a length of time, limita

tions imposed by instability and lack of convergence, time consumption, and self

checking provisions of the procedures. The purpose of the work has been to 

determine the range of applicability of the various techniques. 



1.1 Summary 

COMPARISON OF STEP-BY-STEP METHODS FOR ANALYZING THE 
DYNAMIC RESPONSE OF STRUCTUPBS 

10 INTRODUCTION 

This dissertation is concerned with the analysis of step-by-step methods 

commonly used in numerical solutions of the dynamic response of structures. 

Rigorous solutions are not always possible for structures with non-linear charac-

teristics under dynamic loads such as wind, impact, blast, earthquake or Vibratory 

motions, particularly in the case of mu][-degree-of-freedom systems with plastic 

resistance or with a varying elastic behavior as a function of time" Consequently 

a numerical approach is indispensable for such conditions and step-by-step studies 

of motion with respect to time are extremely useful. 

The purpose of this dissertation is to study the accuracy and range of 

applicabili ty of various step-by-step techniques now available and frequently 

used in problems of dynamic response of structuresu These step-by-step procedures 

may be classified for convenience of discussion into three groups~ 1. Accelera-

tion methods; 2. Difference equation methods; and 30 Numerical solution of 

differential equations. In the acceleration methods the displacement anQ velocity 

at the end of a time interval are each expressed in terms of the displacement and 

velocity at the beginning of the time interval, together -vti th the accelerations 

which occur at the ends of the interval, a law of variation of the acceleratton 

within this time interval being assumed. The acceleration is in turn governed 

by the differential equation of motion and the problem may then be solved by an 

algebraic solution of simultaneous equations or by cut-and-try iterations. 

The second group of methods involves the application of finite differ-

ence equations which are obtained from the given differential equations of motion. 
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Displacement at each successive step during the motion can be derived from the 

displacements previously obtained by means of finite difference e~uations, ?or 

multi-degree-of-freedom structures the solution may be accomplished by solving 

a set of linear simultaneous e~uations or by inverting a matrix. 

The third group of methods includes conventional devices developed by 

mathematicians for the numerical solution of various differential e~uatim:!.s and. 

which are quite general in application. They may be adopted even in more compli

cated problems than those involved in the e~uation of motion which we uS~J,ally 

encounter. 

The analyse the characteristics of each of the available techniq'.les j,t 

is "best to obtain beforehand an algebraic e~uation representing each of the -Ja=-~ious 

techniques of step-by-step procedures, then to compare it with the rigorous solu

tion of the differential equation of motion and investigate its propagation of 

errors. This can be done in one of the following ways. First, it is possible to 

express the approximate solution in the form of a finite difference equation i7'). 

terms of displacements and find its complementary and particular solutions b:" means 

of the calculus of finite difference. If the approximate procedure is :!:'eadily 

given in a fiJite difference form) no work is necessary in transforming the 

origiDal procedure into finite difference equations. Secondly J the set of li::lear 

equati.oIls used in the approximate technique may also be expressed in a mat:!:'ix 

form such that a column matrix consisting of displacement, velocit.y and accelera

tion at the end of the time interval is equal to the prod.uct of a square matr.-ix 

into a column matrix consisting of displacement, velocity and acceleration at the 

begin~ing of the time interval Hhen the procedure is successively carried out 

n times, the square matrix multiplies itself to the nth power and shows the re

latton between the initial and final conditions, The former way is more simple 

as far as mathematics is concerned but reveals directly the d.ynamic response only 

in displacement, while the latter, though involving more algebra, gives not only 
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displacement, but velocity and acceleration as well if desired. 

The dynamic analysis of a structure is usually based on the following 

umptions ~ 

1. The mass of the structure may be represented by a number of separate 

.lcentrated masses supported by a flexible and weightless framework. 

2. The resistance-deflection relationship of the structure can be deter-

ned beforehand over the whole range of action, and the time history of displace-

:nt or external forces is known. 

Without loss of generalization, the present analysis has been confined to 

single-degree-of-freedom system. Nevertheless the motion of more complicated. 

ulti-degree-of-freedom systems can be considered as being made up of the motion 

n several modes, each mode acting as a single-degree-of-freedom. 

Generally speaking, accuracy may be attained if the time interval is 

3ufficiently small while too large an interval may produce very misleading results. 

dowever J since different degrees of accuracy can result from different methods of 

ap?lication, the choice of time interval depends upon the accuracy desired and the 

amount of work required. 

Acceleration methods need no special training for their application since 

they are based on fundamental concepts 7 but these methods are always handi.capped 

( l)~~ 
by the criteria of convergence and stability. The constant acceleration method\ 

is objectionable because of its rapid divergence of amplitude. Timosher_ko's 

modified acceleration method(l) gives better results than that of constant accel-

eration, yet the frequency error is still appreciable. It is, however, free from 

stability difficulties and has no enlarging or diminishing effect of the velocity 

response. Newmark's linear acceleration method (2) has better agreement in 

frequency, but overshoots a little in amplitude due to the enlarged velocity 

response. Newmark's parabolic acceleration method(2) has even better agreement 

* Numbers in parentheses refer to items in the Bibliographyu 



4 . 

. n frequency;> but unf'ortunately its amplitude diverges exponentially) and it ~.s 

~herefcre of less value for a long lapse of time in spite of its accuracy in the 

:irst cycle of vibration. Newmark's ~-method(3)(4) may be regarded as a genera-

lized acceleration method, introducing a new parameter j3 in the displacement 

equation so as to control the effect of acceleration. With ~=1/4, it is identical 

wi.th Timoshenko! s modified method. Wi th ;3 =1/6, it is tbe same as the linear 

acceleratio:l m.ethod. It corresponds to the difference equation method ad.opted. by 

Levy(5) whe:l (3= 0, and to that given by Salvadori(6) when 13= 1/12. The gr'eat 

adva~tage of this generalization is that it permits a convenient choice of the 

time interval determined by the convergence criterion during the operation. 

Difference equation methods also have criteria for stability. These 

procedure s are not self -checking. A little more time economy may "be gai.ned s inee 

OLly the displacement is necessary for the computation and the velocity may "8e 

disregarded in each step thus saving time in calculations. As stated be~'ore J the 

difference equations adopted by Levy and Sal vadori may be considered as id.er.J.tical 

to Newmark 1 s ;3 -method when (3 = 0 and (3 = 1/12 re spect i vely, except that the 

initial conditions are treated differentlYe Houbolt 1 s metbod.(7) is said to be an 

improvement over Levy' s method, since it employs a cubic curve of d.isplaceI1J.ent for 

the difference equation, yet it suffers from the converging characteri.stic of the 

ampli tud.e and from a large error in period. The computed amplitude of an undamped 

system as computed by this method will decay rapidly after a few cycles of vj.1Jra-

tioD. even when a small time interval is used. 

The accuracy of the numerical solutions of differential equations 

developed by Euler, Runge and Kutta (8)(9) is discussed in many books and papers. 

The application of these methods to linear vibration problems is somewhat time-

consuming in comparison with the methods above mentioned particularly in multi-

degree-of-freedom systems. Runge-Kutta 1 s method has an advantage for gene~al 

applicability in that it is always stable and it has the proper criterion for 
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ritical damping in viscous damping conditions. 

Comparisons of true amplitude and period with 'pseudo' or computed al!lpli

;ude and period in each method of numerical solution are made to investigate the 

:ffects of length of time interval, natural frequency of the structure and other 

?arameters. Additional discussion of these factors is presented in la:ter chapters 0 
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II . GENERAL :METHODS OF ANALYSIS 

.1 Calculus of Finite Difference Equations 

Analysis may be made for each method by expressing the given differential 

luation of motion, combined with the procedure of operation, into a difference 

~uation, Then the properties of this difference equation represent the character-

sties of the corresponding numerical method. In the second group of available 

echniques described in the last chapter, finite difference equations are readily 

'armed from the differential equation of motion by replacing the higher orders of 

leriv~tt.veg by centr~l difference patterns. In the first and third greups of 

~v~ilabte tecAn.i~~es more algebr~ic work is requir~d to convert the equations of 

ftotion into a dif~erence eq~~tion. Howeve~, the equations of operation ~rescrib-

ing the given metion can always be e4pressed in terms of displacements and veloci-

ties ip a linear relation, and Can easily be put in a difference equation form. 

In acceleration metbods the equations of operation may at first contain some 

acceleration terms but one can soon eliminate them since the fina.l accelera.t;i.on 

itself can be e~pressed in terms of displacement~ velocity and initial accelera~ 

tion. Thus if the equation of motion is given in the form 

ji + 2rpj + PY = f(t) (2.1.1) 

where p is the natural frequency of vibration and r the coefficient of viscous 

damping in terms of p, it is possible to represent the numerical procedure by a 

finite difference equation in the form 

(2.1.2) 

or, in the case of the parabolic acceleration method or Houbolt1s method, 

at Ynf-I r azyn + ClJYn-1 + ~ Yn .. 2 

= b, F(ti7+)f b~ F(tl1)+ ~ F(C" .. ) + b4- f(tn...z) 



The solut~ons of these difference equations are 

yn :::: 

~ecti velY9 where xl s x2J and x3 are the roots of the equation 

a, x2. f az x + OJ = 0 

a, ;;(3 + O2 x 2 + a3 x + a4 = 0 

'respo~ding to Eqs. (2.1.2) and (2.1.3)" and cl, c2 , and c3 are constants 

~ermined from the initial conditions. 

(2.1.4) 

(2.1·5) 

(2.1.6) 

:r the roots xl an.d x2 are conjugate complex roots J the response of the 

merical procedure is periodic although there may exist errors in both amplitude 

.d frequen.cy 0 One the other hand when all the x roots are real,? the solution 

:c:omes aperi.odic: and u?:.stable 0 By I stable i we mean. that the response of the 

2merical solution remains periodic and without fluctuation or rapid divergence in 

nplitude. As far as time period is concerned, the observatior.. of these roots 

erves therefore as a criterion of stability. Divergence of amplitude may also be 

'egarded as kind of instability and it will be shown in later chapters t.hat it is 

lue to the presence of a factor with an exponential power of time which occurs in 

she general equation of response 0 If the factor equals one) the amplitude wi_ll 

neither diverge nor converge and is therefore stable. When the factor is larger 

than one" the amplitude diverges with a rate which depends on the magnitude of the 

factor. Slow divergence is generally acceptable in some problems J it i.s c,-etermtrred 

by the allowable error in amplitude and not by the criterion of sta-bili t.y. 

Particular solutions of these difference equations may be obtained by the 

calculus of finite differences though sometimes this may involve difficulties in 

more complicated forcing functions. However J an approximation can generally be 

made by expressing the forcing function in a power series or a Fourier expansion 

whi.ch is always solvable in this kind of finite difference equations 0 

The finite difference equations (2.1u2) and (2.1.3) consist entirely of 
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displacement terms and therefore the general solution shows only the response in 

d.isplacement of the structure at the end of t.he time interval due to thE: disp.lace-

ment and velocity at the beginning of the time interval and also due to the exter.ior 

forces if t.here dye any. In order to bring out the response in velocity of the 

structure J another set of difference equation containing all velocity terms must 

he formed from the fundamental equations of the numerical solution, such as 

at Yntl + a2 Yr; + a3Yn-1 ::: b, F(t,,+) + hzf (tn ) + 0.3 F (tn-;) (2.1.8) 

or a,y,,+t + a2Yn -r aJ,Yn-1 + Cl4 y,,-z = qf(fnf)'" be F(tn) + h.3 F(t,,-)+ b4-F(t17-z) 

Similarly? thE: finite difference equations may also contain only acce1era-

+,ion terms in the form of 

a, YI7fI + Qz yl? + QJ YI7-1 == b, r (tnn) of be F (tn ) 1" 0.3 F (tl7-) (2.1.10) 

QIYnrl f aZYI? + 0;1:-1 + a.rYn_z =: qF(tl!+I)+ b2 F(tn)+ bJ F(t17-)+ b4 F(tl1- 2) 
OJ' 

(2.l.11) 

i~ thE: response in acceleration is required. 

All tl:.e result.s of numerical solutions are henceforth to be compared with 

the exact solut.io'J.o In th.:: present analys1.s the motion of a structure whi.ch is 

assumed to be cf elastic behavior is prescribed by the well-known differential 

equatior.. (2.1.1) whose general solution is known to De 

- - r!)t " c-::; t r-::; t) -.y = e ' (A Cos ~ /- r:t. p + 8 st'n -V /_ (2 P + YP (2.1.12) 

where v 1.s the particular solution, and A and B are constants determined from the 
"P 

initial conditions. 

and 

For free vibration, F (t) 

; + 2rpy .,. p2y = 0 

0, yp 0, and the equation of motion becomes 

(2.1.13) 

(201.14) 



9· 

~ free vibration without damping, the equation of motion can further be 

to 

1ution is . 
7 = if) cos pt + ~()~;, ,Pt 

9' == j() ClJS,Pt P Yo s/n pt 

;:;bra 'of Matrices 

(2.1.17) 

(2.1.18) 

This is applicable to the first and third groups of methods provided that 

~lacement, velocity and acceleration at the end of any time interval can be 

ed in a linear form in terms of the displacement, velocity, acceleration 

ne other parameters at the beginning of the time interval. For example, 

• .. 
ft - aI/Yo + a.,z yD + ~/J .YC + al4 

}, all y6 -I- az:z.jo 
.. 

II = wi- 4Z1 yo f 4Z4 
(~.2.1) .. . . . 

YI :::: ClJI ~ + ajZ Yo + ~JJ YD + aM-

~rix form representing these linear simultaneous equations can be written as 

It aJl a'2 a,l a/~ Yo . 
YI aZI a 2.2- ClZ1 aZ4/- Yo (2.2.2) 

-... .. 
y, a.J1 aiZ. al3 au Yo 

0 0 0 I / 
, or, in more abbreviated 

rill:; 

[YfJ = [A] [yo] . 

hen the numerical solution is carried through n successive steps of equal time 

~uration., with the final displacement function of a previous time interval be-

~oming the initial condition of a new time interval, the matrix [AJ operates on 

itself n times, so that 



~ [AJll can be expanded by means of the Cayley-Hamilton theorem and 

IS theorem as soon as the characteristic roots are obtained. 

10. 

The characteristic roots of the matrix [A] not only gives the exp~~sion 

but also determines the criterion of stability exactly as in the finite 

ce method described in the preceding article. The presenoe of a pair of 

~e complex characteristic roots signifies stability and periodic response 

numerical solution while all real roots indicate that the response is a-

.c 0 

The method may become very tedious in the case of forced vibrations since 

esence of more than two characteristic roots in the matrix will add too much 

:-aic vwrk to the simplification process 0 The method of analysis by finite 

r.enee equations is preferrable in this case. 
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III. ANALYSIS OF AVAILABLE TECHNIQUES 

3.1 Acceleration Methods 

3.1.1 Constant Acceleration Method 

The basic assumption of this method is that the accelerat~on of the mass 

in motion remains unchanged throughout a small time interval and is equal in 

direction and magnitude to the acceleration at the starting point o:F the concern-

ing time interval. The assumption is a rough one, and provideB a rapid but in-

accurate procedure. The error in this method is so large that it is seldom used. 

A slight modification and a ;Little more work improve the results considerably" 

The advantage of speed of operation cannot compensate for the loss in accuracy. 

Let us consider finst a single mass in free vibration without dampingo 

Then from elementary mech~nics we obtain the following expressions: 
. . 

f yn h Ynfl = Yn 

Ynfl :::: Yn + ( • .) h Yn + Yn+1 Z 

== Yn 1- y" h + }111- (3·1.1.2) 

where h denotes the time interval. 

Now the differential equation of motion for a body in free vibration 

without damping is 

from which the relation 

•• 2 
Yn = -,P 'Y17 

is obtained. Substituting in Eqs. (3.1.1.1) and /(3.1.1.2), we get 

;"+1 = - r h.Yn +.:in 
and )'11+1 = (1- ~h2) y" 1- h;11 

(2.1.16) 

(3·1.1.4) 

(3.1.1.5) 

From these relations of displacement and velocity, one gets a finite difference 



ation in terms of displacements corresponding to the computed results from the 

.stant acceleration method~ 

The solution of this finite difference equation, together with Eq . 

. 1.1.5), yields the general equation for the displacement predicted by the 

~omparing this with Eq. (2.1.17) of the exact solution, it is obvious that ',Then 

the time interval h is very small, this approximate method approaches the exact 

solution as a limit. Since the time interval is not zero, there is an error i::l 

the procedureo We split the resulting error into two parts, one is the error ,~ 

frequency or period, the other is in amplitude. The phase angle n~ should be 

equal to pt if the solution is exact. In other words, the exact value of ~ 

should be pt/n or ph. Rence we obtain a relationship between the pseudo peri.od 

of the numerical solution and the true period of the exact solution, i oe ,. 

Ts _ ~ 
T - # (3·1.1·9) 

The frequency has an error of 3 percent for ph = 0·5 and of 10 percent for ph = _ 

1.0. 

The error in amplitude is objectionably large since the computed d:i.s-

placement is subjected to a magnifying factor 
02h2) .l!. (1+ r-Z 2 which diverges 

rapidly with the number of steps of operations no This source of error is dominant 

although there also exist some other errors in the coefficients of Yo and ~~O' 

f!.l.h l n ph ) 
The coefficient of Yo becomes (!+ T)"Z (/- 40 _ !!!if tan nJ<-. instead of ::. 

/ IG r l2.7.hZ) t-
• l/+ z-

and varies as a function of n and ph. The coefficient of' Yo becomes ~ / I5iU 
10/ I-T

instead of lip, which also shows a rapid divergence of amplitude, Fig. 1 
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.lust!'ates the rapid divergence of the envelope of amplitude for a siD.gle moving 

iSS subject to yo=O and yo=p. 

The criterion of stability shows that ph should be less than 40 Any 

alue of ph greater than 4 yields aperiodic response of displacement and velocity. 

No criterion of convergence exists for this method since one operation is 

mfficient for each step since no repetition or trial necessary" 

For free vibration with viscous damping, the analysis is more complicated 

since it involves one more parameter r, the damping factor of the motion. The 

difference equation now becomes 

YI1+I - 2 (1- '1h - I:t) Y" + (f - rph)(f + .e;./,2) Yh-/ = 0 (3 .1.1.10 ) 

and its solution is h • 
1: r!/J.: '?r: Yt,(f- t;,.j+ ~(i-rph) r j 7 

Y = (I-!,Ph) (IT ~ Jip';, CIJS 11)" + -It ,. .3r I? M' SII/ ¥:J 
1- ;;p - "'+ f' - /~ (3.1.1.11) 

t Z 3r;,' t;)~z 1_ !:E2 _ /:.2.;'2-
where /- ;;;: - 7ir 'rl- '7f;; = 2. 4-

h I arc cos.~ o'L.i 
(i-lJ'h )(1+ 12; J y(l- rfh)(I+ '-£- ) 

~he ratio of pseudo period to true period becomes 

Ts = E.h~ (3.101012) 
T fo 

Comparison of amplitudes may be made from Eqs. (3,101.11) and ~01.14)o Figs. 2 

and 3 shows the comparisons of period and amplitude for different damping factor 

r. 

Two kinds of comparison in amplitude are made for all techniques des-· 

cribed in this thesis 0 The first one deals with the magnitude of the envelope 

of vibration at pt = 1, regardless of the magnifying effect of the sine term in 

the general expression. In other words, this is a comparison of the exponential 

factor which multiplies the solution. The purpose of this comparison is to 

demonstrate the rate of divergence or convergence and then to judge its applica-

bility. This ratio varies exponentially with pt~ and therefore the amplitude 

ratio at any instant of time may be found by its exponential relation with the 
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Lo at pt = 1 c 

... ll..D.other comparisoT2 deals v.Ti th the peak amplitudes in. the fi:r.st c:v::::le of 

ratio!'. due to an ir;.itia1 velocity Yo = p. The first peak amplitude o~cu:rs at 

= )(/2 theoretically) but it may deviate from the true value in numerical sol11.-

)US due to the error in period which therefore plays an important role iD the 

eudo peak: amplitudes. This ki.nd of comparison may give a better pi.cture l,)oth of 

.e actual. oscillatory motion and of the pseud.o motion derived from the approxi'-

l.te techniques" 

The criterion for stability of the constant acceleration methoc.. is 

xp~essed by the following equation 

rh'2 + /2 rph - /(, (1- !/) == 0 . (3 1 ~ '3",1 . • -- .1. ,.J.. I 

2his shows that ",~hen ph > (4~Zrz..;. I - ~r) J the computed displacement of 

notion is aperiodic which is not true for r less than 1. For the critical damp-

ing conditio!:., i.e. r = 1, ph should be made equal to or greater than 009282 in 

ord.er to procure ar.. aperiodic response 0 

The constant acceleration method is too crude in accuracy and therefore 

not much used in practice. It is only accurace to the second order of hand erro!B 

ma;{ arise from the third power of the time interval since 

y, = (1- ~h2) 'it; -f (1- rph) hYo 

3.1.2 Timoshenkois Modified Acceleration Method 

(,3 1 1 1\' ':\ 
" • .J.... 0 W:) 

This is an improved method obtained from the last one by modifying the 

acceleration of the moving body. The acceleration here is assumed constant 

throughout the time interval and equal to the average-of its initial aEd final 

values 0 The elementary equations of motion are therefore 
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..L. ( • ". h · L ..L"- L2 -'.... h 2-= YI1 f 2 y" + y".;./) = YI7 + Yn n -r 4 Yn n f"if Yi'/';'/ 

be noted that the above equations may not be consistent. When comtined 

iifferential equation of free vibration without damping, these equations 

:erence equation in terms of displacement now becomes 

. 
X. ::: y.. c.os ~ + ?..s in 0/-

I 

'ph 
- arc CCJS 

Similarly it can also be shown that .. . 
Yn == Yo COS nr - pya Sin n;u 

This approximate solution has no error in amplitude; neither the initial 

placement nor the initial velocity produces errors which would affect the 

snitude of displacement or velocity thereafter computed. (See Fig. 4) The 

ly error arising in this method is due to the difference of phase-angles or 

1e discrepancy in period or frequency which can be expressed by the equation 
Ts ph 
-T :::: /)..-, s· . p~ ( 3 .1.2 09). 

'-"" c In l-t£hi. 

lnd is p1ott.ed in Fig c 5 0 ~ 

Another advantage of this method is that no criterion for stability need 

be imposed. The length of the time interval can be chosen corresponding to the 

accuracy desired. Unfortunately, the error in period is so large that even a 

time interval of about 1/6 of the natural period will result an 8 percent error 

in frequency. 

If viscous damping is considered, one can obtain the following equations 



\? oi-.
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~ity is determined from a definite integral of acceleration over the range of 

) and the displacement is, ir- turn, an integral of the velocity. The elemen-

. equations of motion are therefore consistent. 

The linear acceleration method is first considered" The equations of 

ion aTe 

•• 
In case of free vibration without damping.? Y = _ p2y 

rom which the difference equation 
p2h~ -1 (2 - /+ e.z.hZ)Yn + Yn-I = 0 

T 
Ls derived 0 The solution of :this difference equation is 

Yo 

where 

1) i.milar ly ;; 

The 

Making comparisons with the exact solution as before, the error in the 

approximate solution consists of two parts~ -the error in period and the error' in 

amplitude 0 The error in period is expressed by the ratio 

Ts -- ::: 
T 

ph 
arcsIn eh0- !if! 

I+~ 

~he amplitude error in this case is constant for a given time interval, it does 

not vary with the lapse of time and is solely a function of the initial velocity 

of the mass" If the mass starts from rest no amplitude error will occur, Hence 

the amplitude error depends on the proportion of initial displacement and velocit~ 



large for a motion due to a small initial displacement and large 

and will be small for a motion due to a small initial velocityc 

. 
response of a single mass due to Yo = 0, and Yo = p. 

terion of stability is found to be ph < Vl2. Any value of ph 

L2 will result in aperiodic response by the approximate solution. 

case of free Vibration with damping, the difference equatiOE of 

Jecomes 

rion for stability is now 
z nZ/,z. 

/- t - '12 =- 0 for r< 1 (3·1,,3013) 

Characteristics of the pseudo period and pseudo amplitude are shown on 

and 9. 

The parabolic acceleration method differs from the above method in assum-

... ". L hZ .at the acceleration has a parabolic variation; thus ~+I=)lh + k,h + ~2 ~ 

rocedure of operation is similar to the linear acceleration method except 

one more initial condition is required to start with. That is, one needs 

previously known steps to carry out a new step. The procedure may be started 

one of the following ways~ 

I" Use linear acceleration for the starting interval. 

20 Use linear acceleration for a starting interval which is only half 

s long as the regular interval, then get a special parabolic acceleration in-

:,erval half as long as the regular interval and proceed. 



The equations of motion from elementary mechanics are 

y,,;:: YI7'" f Ii (- In-z f 8 in-I f S;:) 

Yn :: Yn-I + ;',_1 h + fi. (- ;"-2 t 10;"_1 + 3 in ) 
. t' 2-

and the differential equation of an oscillatory motion without damping lS y+py:::O 

The difference equation corresponding to the above equations is 

The solution of this equation can be expressed in the form of Eq. (2,.1.5) l.rhL::h 

can also be written as 

where A, Band C are constants determined from initial conditions, p, R and ~ are 

functions of ph. The value of p is small and terms containing it are oi' less im~ 

portance than other terms of the expression. R is dominant since it is greater 

than 1 and of exponential power n as steps of time proceed. Therefore, the pro-

cedure is of a divergent nature and is not desirable over a long lapse of time, 

Furthermore, the criterion of stability ph < 30357758 limits the applicability of 

long time intervals. Although the parabolic acceleration method is more ac:curate 

than the linear one as far as the first cycle of oscillation is concerned, t.he 

errors in amplitude enlarge rapidly from the second cycle onward. (See Fig" 100) 

Figs 0 11 and 12 show how Ts/T and AsiA vary with ph, neglecting the first term of 

An attempt has been made to improve the accuracy of the linear accelera~ 

tion method and to lessen the work of computation of the parabolic acceleration 

method by applying linear and parabolic accelerations alternately in successive 

steps, iue., using linear acceleration in the first step, parabolic in the secon~ 

linear in the third, parabolic in the fourth, and so o~o The result, as one may 

expect; turns out to be intermediate between the two methodsu The difference 

equatiop for the displacements at an even number of steps in the case of free 



arcsin 'ph .32 ItO - 72 90P2f/z 
f 1696 P 4- - .97 p_;'6 

where p. = 
2304--1-/344 fJ2hz +388 p4h4+ S6p'h G+ 3p81;8 

::: arcCos z( 24 - 41 e..zhz. + S p4-h4) 
(30103020) 

-"';2304 + /344 p'h 2 -f- 3gB f 4h4+S6p6h'+3pll 

and R :::. 
~2304'" /344 pZhz.;- 388 p4l;4';-S6P'/,6 f 3p8h 8 

(3·1 .. 3.2l) (8.,. pZhZ.;( 0 + p'Zh2) 

The values of Ts/T and AsiA are plotted against ph in Figs. 11 and 120 

It is evident that the propagation of error is divergent 4 The criterion of stabi-

lity of this alternate linear-parabolic acceleration method for free vibration 

without da~ping is found to be ph = 1.6171 which is quite unfavorable for long 

time intervals 0 

3.1.4 Newmark~s ~-Method 

This is a generalization of first degree acceleration methods obtained by 

introducing a parameter ~ into the elementary equations of kinematics. 

· h'· h·· :::: Yh + Z Yn + 2 Yn+1 

::: Yn + j;, h -I- (i-fd))in h2 + (3 ;11.1'/ hz 

Thus 

(3.1.4.1) 

(3·1,!.L2) 

It is obvious here that this is equivalent to Timoshenko's modified 

,-method when f3 ::;: 1/4 and to Newmark 1 s linear acceleration method when f3 = 1/6. 

In the case of free vibration without damping, the difference equation 

of displacements appears as 

pZh% ~) 
Ynrt - (c- If fip'hZ)Yn -I- Yn .. / = 0, 



iifference equation· becomes 

/ . 
¥1_(i-(3)p2h2 Sin nr 

ri-(3)pZh'2. _ /_ (f-/3)~2h2. 
(l pZh2 - arc CL)S / + f3>pz Z 

pseudo period with the true period" it can be seen that 

dressed in a series form of 

1/12, the ratio Ts/T will be closest to unity for any 

~. This means that ~ = 1/12 will give the best result in 

ed amplitude. is neither divergent nor convergent as time pro-

some error is involved in the response to an initial velocity. 

NS that the term containing Yo does not contain any error in 
/ 

1e one with Yo is amplified by the factor ~ /- (-f - (6) pzh'Z 

~pendent on ~ and ph and is free from influence of the proceeding 

illustrates the variation of the velocity amplification factor 

with ph for different values of 

criterion for stability is 
p2h'Z. 

~, this condition is always fulfilled for any value of ph and therefore 

~y criterion need be imposed. With ~ > 1/4, no ph can possibly satisfy 

'ion. Wi th fj < 1/4, the larger f3, the longer the time interval which can 

For ~ = 0, the critical ph is equal to 20 

The criterion for convergence is 

ph < ~ (3.1.4.8) 

3hows that a larger f3 permits a smaller applicable time interval. For ~ = ° 
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ocedure immediately converges regardless of the time interval used. 

For problems of free vibration with viscous damping, the difference equa-

Jf the procedure may be written as 

Now the error in period is not only dependent on ~ and ph, but also on r. 

ain, if the ratio Ts/T is expressed in a series form as 
.Ji. _ phyll- rZ 
T : / }Z (/ Z /.! - I ) - I/- (6p + / ) t Z + 8 r.J /)2/,2. f ____ . 

+ Z4- ( 1- /,:l) r I 

~ will be found that (3 = (/ + ft Z - 8 r-l-J/IZ (1- 2(2) 

s the best value as far as period is concerned" 

(3.1.4.12) 

(3.1,4.13) 

The error in amplitude is dominated by the exponential factor multiplying 

~he whole expression in Eq. (3.1.4.10) particularly after a long sequence of time. 

Neglecting the c0efficients which combine with Yo and Yo in the expression, one 

may compare amplitudes by taking the ratio 

(
A ) _ r( / -r# + (dp2hz _ ) rjh 
AS at pt=1 - e I+rfh + ~p'1hz! (3·1.4.14) 

For best agreement in amplitude, 

The criterion for stability is 
4- (1- t:l) 
1- 4f3 

for r(l. Except when ~ = 1/4, the numerical procedure does not present an agree-

ment on the criterion of critical damping, greater discrepancy usually occurs for 
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lrger time intervals. Critical damping may occur in-the numerical procedure even 

or low values of r if too long-a time interval is taken. 

The criterion for convergence is 

There is one more restriction of this method in the viscous damping pro-

)lem. 
rph 

A degenerate case of the difference equation will occur if / + ~ p"h 2-

is equal to +1 or -1. Under this condition the method is not workable. However, 

when rph = / 
/1- (3 pZhz 

i.e. rfh -I- (3p7.h2 = 1+ 2(3p2.h 2 
) 

we see that the convergence criterion is violated 0 On the other hand, when 

rph 
/ +- ~ p% h 2 = -/ 

the spring constant is negative 0 

The ~-method is also applicable to forced vibrations as represented by 

Eq. (2.1.1) with good accuracy. The error due to the presence of a forcing 

function F(t) may be seen by comparison with the exact particular solution. Now, 

let Yp be the particular solution of the given differential equation of motion, 

Ego (2.1.1), and let yp be the corresponding solution obtained by the numerical 

procedure. Analysis is made for an undamped system of single mass subject to an 

applied force F(t) as follows~ 

Given the equation of motion 

the exact solution is . . 
y = (Y. - YPfJ)COS pt r .Yo;, Y/,o SIn pt r y" 

where y is the particular solution. 
p 

The corresponding difference equation when using the ~-method is found 

, to be 

(3·1.4.19) 
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and its solution is 

where Yp is the particular solution of the difference e~uation and 

· f>/;/t-(f-f3}p'h 2 = /- (i-;B);';h 2 

/.1 ::: ClA"C.$I1'1 - arc ~.s 
/''' 1+ ~p~hZ, 1+ ~p'lh2 

A = Yc - Yfo 

and B = fv1+~-4)li/ {i+ l{F(f.)-f/'J+~h[F(tj)-F(t.J- (1+1('h~{jpl-YpJ) 
Comparing E~s. (3.1.4.18) and (3.1.4.20), we see that when h-+O, if y -+ Y , the 

p p 

numerical solution will approach the exact solutiouo The following comparisons 

are made for different kind of forcing functions~ 

(a) The forcing function is a polynomial in time, i.e . 

.F ( t ) == a~ -I- a, t + til. t Z f a:; t a + -- - - - (3 .1.4 .21) 

then 

(3.1.4022) 
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~= 1 

~ = / + fz (12(3 - /)p2h2 

k3 = I + t (/2(3 - / )p1.h2
.,. J~O (3~O;S2.-6o~ + l)p4h4 

k,. = I + i (/ 2 ~ - / ) p0/72. -f to (ao ~~ 40 ~ -+ I) p""h 4+ 2q~60 (24160;33.. $Of0(1:r25Z/-Vf'h' 

ks- = / -I- :f(t2~- / )p7J?2+ 7~O {4,440f2_740(3+ t)p4h4+ 30';40f20,960(J3_3qZ40(l~t764j3-/~I/I/ 

f ~ 8/~/400 (;,8/4,400jJ4_Go4;8oo(fi-.s-z920j32_/,020(3 + I) p8h8 

From the above we see that the numerical solution is exact for a third 

!e polynomial at any value of~, and for a fifth degree polynomial when ~ = 

(b) The forcing function is trigonometric, i.e. 

f(t):: A S;/1 at + B cos bt (3.1.4.24) 

- A . t B ccs l..t yp = p2_ a% Sin a + /2-_ b% ~ 

_ A s/n at + B CoS bt 
Jp - 2 2 sinzah z 2 si17 2 bh 

? - (1+ ~s ah - 2j3sl'rJ2 oh )hZ P - (If- cosbh - 2(3sin Zbh) h 2 

(c) Exponential forcing functions, as 

F(t) = at 
at 

>P :::: f2+ (log a)Z 
at 

(3.1.4.25) 

(3.1.4.26) 

(3.1.4.28) 

(3.1.4.29) 

In all cases above, when h ~ 0, yp ....... yp' and therefore the numerical solu

~i.on approaches the exact solution as a limite 

The ~-method may also be applied to other form of motion than the one re-

presented by Eqe (2.1.1). Consider the motion prescribed by the linear differen-

tial equation 

y-y:::t 



26. 

n of which is known to be 

.stant determined from the initial conditions. Applying the f3-' . 

~roblem) one finds the difference equation of d~splacement to be 

tl solution is 

; (I + h + 2 _ ;';~h r -(t + I) 
le of ~ for this case is 1/6 . 

. s of Finite Differences 

fiS Method 

, method proposed by Levy replaces the second derivative Y~ in the equa-

.)tion by finite differences, -f1 (YI1+1 - 2 y!1 + YI1-I) For a free 

1 with no damping prescribed by the given differential equation 

(2.1016) 

.:;ituting 
•• I ( ) y" ::: 7i2 y,,+1 - 2 y,., + Y"-I ) one obtains 

(3·2.1.1) 

3 obviously identical with Newma.rkis generalized acceleration method for f3=O, 

J that the treatment of initial velocity is different. The general solu.tion 

. (3.2\,1) is 

Yn :::: A cos I?,;t' + B s!;; tp 

e fA- = arcSIn ph/;- 12::" = arc a;s (1_ ~h) 

L A and B are constants determined from ini tial conditions, with ph < 2 as 

ability criterion. There is no difficulty in finding A which is always equal 

) Y J but trouble arises in the determination of B which depends on the o 



?-rpretation of the initial velocity, or in other words, on the way in which Yl 

obtained from the known values of Yo and Yo' When Yo = 0, one may assume that 

Y-l' then solve simultaneously with Eq. (3·2.1.1) to get Yl' Otherwise, if 

~ 0, some other assumption must be used. 

If one begins with Newmark's ~-method of ~ = o for the first step in order 

obtain Yl' then 

f E!.),'J) h • y; :.= (/- 2:"" ~ + ~ (3.2.1.4) 

l.d the result will -oe the same as Newmark! s ~-method for t' = 0, i.e., 
jf) 

B ::: ?VI _ ~ (3.2.1·5) 

If, taking the formula of elementary mechanics 

y, = Yc -I- hfo 
re obtain • h ~il-~Yo 

rhe result is, of course, less accurate. 

On taking for the first half time interval 

(3.2.1.8) 

solving for Yl' 

B =- /h / _ e;p! 
This is only true when )Vo= , and is only used when Yo 

is uncertain. 

In viscous damping problems, by replacing Yn by ih (;h.;., - y".,) and 

Y~ by ;% (Yt1.f1 - 2 y" + Yh-I) in the differential equation of motion, 

;/ + 2 f? Y ~ pz. y = 0 , (2.1 G 13) 

one may obtain the difference equation 

(3.2.1.10) 
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:h is idential to Eq. (3.104.9) for ~ = O. The result will be the same as that 

Newmarkis generalized acceleration method for ~ = 0 with exception of~the trea~ 

.t of initial velocityc The discussion is therefore not repeated here a 

For comparison of pseudo and true periods and amplitudes of this method, 

Figs n 14 and 15 c 

2.2 Salvadori~s Method 

This is an application of aj procedure due to Fox vibration problems 0 The 

~cond derivative y is replaced by the first two terms of the central difference 

{pans ion, 
,. / (2 A'I-) 
y=p~-IzY 

here a.2 and il4 are the second and fourth central differences of y 

,62 y" 

L::>.4 Yn 
:::: Yhofl - 2 yn -I- jln-I 

= Yhr2 - 4 yn-tl + "YI1 - 4-Y"-I + Y" .. z 
~z) 

)perating then with (If;;Z- on each term of the equation 

Dropping the sixth-difference terms, the equation may be simplified to 

p2hZ ) YIN-I - (Z - i e.Zh2 y" f YII~I :::= 0 
J+ 7r 

(3.2.2.2) 

which is obviously the same as Newmark's generalized acceleration method for 

13· = 1/12 D (See Eq 0 (3.1.4.3).) The solution is in the form 

y" = A C()S~ + Bs/n~ 
where %2 .s p2h2 Dh/l- ? / - /z /A = arcsin r' 77z - arc us ----=pT1h7-r":t-

/ -f P-/; I + 7Z 

The constants A and B are determined from the initial conditions. For free vibra-

tions, A is always equal to Yo' while B depends on the way in which Yl ±s obtained 

from the initial velocity Yo' 

If the procedure is started with Newmark!s ~-method for ~ = 1/12 until Yl 



is obtained, that is if 

Yi = /+ ~:te ((1_ /~pzhZ)~ + 17;'] ) 
/Z C 

the result will be the same as that given by Newmark's ~-method for ~ 

8 = .Yo 
?VI- q 

If we take the formula of elementary mechanics 

Yt = Yo+hyo, 

( 1+ £th2) ~ + ph Yc 
/2 e 2 B = then 

29· 

(3.2.205) 

= 1/12. 

(3·2.2.6) 

which involves more error than the previous result. However, the accuracy of the 

velocity response can be improved if the initial velocity is properly treated. 

In the case of forced vibrations with a forcing function ~(t), the 

difference equation of Salvadori~s method becomes 

!tNt -(z- S1i~~ + ~-I = /zt: o/1:j{F(tM,)+ /oF(tll)+ F(tl1-t)} 

which is again the same as Newmark's method for ~ = 1/120 (See Eq. 3.1.4.19).) 

This method is accurate to the order of h5 provided that the motion starts from 

rest. If the motion begins with a finite velocity, the treatment of the initial 

yelocity for the difference equation determines the accuracy. The discussion of 

this method is included in Newmark's method in previous and later chapters, and 

is not ~estated here. 

Salvadori treats the damped motion problem in the same way as Levy does 

by transforming the damped motion equation into an algebraic equation by the 

substitution of central averaged differences for the derivatives. The difference 

equation thus formed is 

(1+ tph )y,,/-I - (2-pzh2)y" f (1- rph) Y"--I ::: 0 (3.2.2.10) 

which is the same as Eq. (3.2.1.9). There is a difference in~lprocedure when 

applied to a multi-degree-of-freedom structure but it does not affect the nature 

of the error s . 



3 Houbolt 1 s Method 

Houbolt 1 s method is based on the assumption of a cubic curve for the dis-

~ement of the moving body, considering that four successive ordinates can be 

sed through by a cubuc curve. With this assumption the following difference 

ations for the final derivative may be obtained 0 

)/17 == ;2 (2 Yn - 5 Y"-I + 4 Ytl-2 - Yh-3) 

)ttl = ih (/1/11 - 18 YI1~1 +- 9 y,,-z - 2 Y"·3) 

(3.20301) 

(3 0 203.2) 

The derivatives at the third of the four ordinates are sometimes of use 

.d are as follows ~ 

Yn = fz (Ylltl - 2 YI1 + YI1-I) 
in = {Ph (2 y",., -I- 3 y" - 'YI1-' + Yn-2) 

(302.3·3) 

(3.2.3.4) 

For free vibration without damping, substitute Eqo (3.2.3.1) into the 

[ifferential equation of motion 

(2.1.16) 

The following difference equation is obtained. 

Its solution is 

y" = C, XI" + Cz XZh r C3 X,/' 

where xlJ x2' and x3 are the roots of the equation 

(Z + fth 7) X 3 - 5 xz. + 4 'X - I = 0 

It can be shown by the theory of equations that this equation contains one real 

root and two conjugate complex roots for any value of ph. Therefore the solution 

has always an oscillating nature and no criterion of stability governs the choice 

of the time interval J although the amplitude may be damped out very rapidly as 

time proceeds (see Fig. 18). Eq. (3.203.6) may also be written in the form 

y" = A e -apt f e-bpt ( 8 ~: cpt + C SIn C,f)t) (3.203.8) 

where a, b, and c are all functions of ph. Here A, Band C are constants deter-

~ined from the initial conditions" The first term of the equation is negligibly 
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small while the second term multiplied by e-
bpt 

is dominant. Tab~e (30203.1) lis~ 

the numerical values of a, band c for various ph, Fig. 19 shows the ratio of 

pseudo period to true period Ts/T, and Fig. 20 shows the ratio of amplitudes As/Ao 

The disadvantages of this method are two-fold. First, it needs one more 

i~itial condition to start with 0 Although this can be found by taking account of 

the initial acceleration it also involves effort to trace the back differences 

including the simultaneous solution of equations Eqso (3.2.3.1) to (30203.4). If 

the initial conditions are awkwardly treated, e.g. by making the assumption that 

the fictitious displacements at t = -h and t = -2h are zero, the error introduced 

by these erroneous assumptions would be greater than that of the method itselfo 

The step-by-step evaluation of succeeding displacements cannot proceed in a 

straightforward manner until three initial displacements have been established. 

Secondly, the amplitude of a slightly damped system decreases so rapidly even for 

a time interval of about one-sixth of the natural period, that the amplitude is 

reduced 50 percent after one and one-half cycles of vibration. (See Fig. l~.) 

Finer time intervals and thus more computational effort must be used to reduce 

the damping effect of the procedure. 

For free vibration with viscous damping, the difference equation of this 

method becomes 

(2-1- fl'ph+p2hzjy" - (5+ ~rp/;)YI1_1 + (4+3rph)y"..z. -(1- jr;:;h)Yh-3 = 0 (3.2.3.9) 

The solution is in the form of Eqo (3.2.3.8) ~ith a, b, and c functions 

of r and ph. The criterion for stability becomes 

Values of a, band c are listed in Table 3.2.301 for various ph. The ratios of 

T"s/T and AsiA are also plotted against ph in Figso 19 and 20. It can be seen 

that the error in period increases with time interval h and the damping factor r. 

The amplitude ratio is less than 1 for systems with slight damping and greater 

than 1 for system with higher damping factor r. 



32. 

20301 -- Values of a, b and c of E q. G. 2 . 3 08)0 

ph a b c 

005 1.5587 0.0318 0.9208 
1.0 0·9024 0.0981 0.8016 
1·5 0.6724 0.1461 0.6940 
2.0 0~5494 001733 0.6047 
2·5 0.4706 0.1868 0.5325 
3·0 0.4149 0.1922 004740 

J.25 0·5 104176 0.2074 0.8808 
100 0.8185 0.1963 0-07357 
1.~ 0.6108 001959 006213 
2.0 0.4987 0.1941 0·5350 
205 004262 001882 0.4687 
3·0 0·3746 0.1820 0.4165 

0050 005 1.2436 0.3766 0.8312 
100 007304 002787 0.6836 
1.5 005528 0.2371 005694 
2.0 0.4547 0.2122 0.4871 
2·5 003900 0.1942 004258 
3·0 0·3435 0.1799 003785 

= 0·75 0·5 1.0018 0.5638 0.7848 
1.0 0.6349 0·3544 0.6439 
1.5 004960 0.2739 005307 
2.0 0.4142 0.2302 0.4519 
2.5 0·3584 0.2019 0·3945 
3·0 0·3173 0.1815 0·3507 

3 Numerical Solution of Differential Equations 

3.1 Euler's and Modified Euler Method 

Euler's approximation is based on the assumption that if y is expressed 

s a function of x by the equation ~~ = f (x .. y) , the increment in y corre .... 

ponding to an increment, A x, in x is given approximately by the equation 

6y = !(X"Y)AX , the value of f(x,y) being that at the beginning of 

the interval .Ax 0 Applied to the problem of free vibration, with damping, 

.. • z 
governed by the differential equation y + 2 rpy + p y ::: 0, the formulas for new 

displacement and velocity at end of a time interval are found to be 

:11 = YD + h~ 
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and (3·3.1.2) 

When this procedure is carried on in a step-by-step manner, using the displacement 

and velocity found from the previous time interval as the initial condition of the 

new time interval, the difference equation becomes 

The solution of this equation is 
~ r,Yo + ..sln~) y" R"(YfJ US~ + 12 (3.3.1~4) - ¥'I-
/ 'Z 

where R. VI- zrph + phZ - (3.3.1,,5) 

fo = . I'h~ - arc: cas /- rph 
(3 03 01 .6) and arc-Sln R. R 

The error is of the second order and the amplitude damps out gradually 

with time~ There is no limiting criterion for stability in case of free vibration 

with no damping. Any time interval will obtain oscillatory response 0 For free 

vibrations with damping, the criterion for critical damping is the same in the 

numerical solution as in exact solution, ieee aperiodic motion at critical damping 

occurs when r = le 

Figse 21 and 22 show the errors in period and amplitude at pt = 1 for 

various ph. 

The modified method of Euler takes the true average value of dy/dx over 

an interval instead of dy/dx at the beginning of the interval for the equation 

&-4~ -- I"(x' y)' ~ , This method gives a more accurate value of the increment of 

y due to increment of x than Euler1s original method and the error is of third 

order of (~X)3e This method may be represented by the formula 

Li y = i ( ~ / + ~II) 

'W"here A ~ = f ( X()" y~ ) L1 X 

~II = f ( Xc -I- ~ X / Yo + ~ Y ) LJ 'X 

When applied to the problem of free vibration with damping, the displacement and 



velocity at the end of an interval now become 

)',,+1 == (1- ~))liI + (/- tph) h Yn 
YI1+1 ;:: [i-zrph- (i-zrZ)p2hz];in + (-I f rph)p2h yn 

This procedure may be represented by the difference equation 

the solution of which is found to be ~ 
Yo 

Yn ::: R "( ~ CoS o/A + :$1: t T Sfn 'J# ) 

where R = N / - 2rj:Jh + zr2p2hZ - t f~h3 + i f~h4-
~ = arcSin ph(i-rp/,)A/'I-rz- =~Ct;s l-rpJ,-rt-r2)pz/,z 

R R. 

(303 .. 1.8) 

(3·301·9) 

(3.3.1.11) 

(3.3.1.12) 

Again, there is no limiting criterion for stability in the case of free 

vibration without damping, but the amplitude of vibration seems to damp out 

gradually if the range is carried too far. In damped vibration problems, the 

numerical method has the same criterion for critical damping as the exact solutro~ 

Figso 23 and 24 show the errors in period and amplitude for various ph 

of this method. 

3Q302 Runge, Heun and Kutta1s Third Order Rule 

Various formulas have been devised for numerical integration of the 

differential equation ;~ = f(-x,y) by Runge, Heun and Kutta. These methods, 

accurate to the third order of ~x, are summarized as follows~ 

where 

1. Runge1s Original Formula~ 

~ y ::: ~ /1// + j r i ( L:/ + ~ /11) - A/III} 

At = f (XI Y ). ~ X 

c/I = f ( ;X + ~ X; Y + Lj/ ) .. LJ I( 

AlII = f ( 'X + L\ X;, y f ~ 1/ ) • Ll X 

If'''l = f (X -I- i~ 'X.; Y + flll) .. ~)( 



where 

where 

2 0 Reun~ 

~ y :;::. it ( L::/ T 3,6///) 

~/= f(X~Y)'~X 

~//:::. f(X+ f~~; y + jc;/),,6X 
t1111:: f (X + j ~ X., Y + j 6/1 ' A -X 

3" Kutta i s Third Order Rule: 

.6. y ::. ~ (a/ - 4~// + ,6///) 

~~ =: f(X~Y)' LJI( 

~// = I (?( + f~xl y+ f ~/). LJX 

~///= /(X+AX;, y+ 2LJ;'I- ill)'AX 

All these formulas when applied to free vibrations with or without damp-

ing yield the same resultso When applied to forced vibrations, their results have 

slight discrepancies but all contain errors of the fourth order 0 It is hard to 

say which of the above formulas is best because the agreement with the exact solu-

tion depends on the type of forcing function, damping coefficient and time interval 

in a very complicated manner. 

Considering the free vibration problem with damping, the follDwing 

discussion is common to all three of the methods above mentioned 0 

The displacement and velocity at end of a time interval are found to be 

x:; (i- i p1hZ
f f pll)Yo + [I-rph - i{t-4/Z)pZ!l1.j hfc (3 0 3. 20 4) 

>1 := - f- 'fh - i(;-4 /1 )Pt/'j p2hx, f {I-2 rfh -f(;-4r 1011,1+ j t(J-2r~?J/lJjo (3.3 0205) 

These e~uations, if applied successively by using the final value of previous 

step as the initial value of the new step, lead to the difference e~uation 

y;,tl - [z-2tph-(t-Ztz)p2hl..;. f(3-4tt)pJ/;])h 

+ {;- 2 rph -f 21t;PZ/,Z- .jr~JhJ-It(i-8r~ptl-h4_ i ;;s/rS+ 16 p1hjYn_, = 0 

(30302.6) 



The solution o£ this e~uation is 

where 

As before, these methods have no limiting criteria of time interval for 

stability in problems of free vibration without damping, nor there is any dis-

crepancy in the damping coefficient r at the point of critical dampingo 

3.303 Kutta's Fourth Order Rules 

where 

where 

The formulas with -error of order (~x)5 derived by Kutta are~ 

1. Kutta's Simpson's Rule 

6 y = t ( a/ + 26/1 + 2 ..6 //Iof A //1'/) 

t:/::: !(XDI/O)·Lj"X 
~/I = f (")(0 + i.ax/ Yc + tl:ll) , AX 

1::.111 = f (I<~ -1- t tJX" Yo + -i Ljll) .. L1 X 

~III~ f ( -;(6 + t:J X / ./0 + L:/I/) • Ll. X 

2. Kutta T s Three-eighthRule 

~ y = t C ~ / + J ~/I -; 3 ~III ..,.. A, 1111 ) 

tJ/= f(~/~),tj")( 

A/I: f(X()-I-fAX/YoffA/)'~X 

LfI':::: I (X(;+ j-~)(, Yo + A//- j A/)' AX 

/:!IIII =- f ( Xc + Ll X I Yo + ~ III - ~ II + Ll' ). Ll X 

(3·3·3·1) 

(3·3·3·2) 

No difference in results between these two rules occurs when applied to 

free vibration problems 0 For forced vibrations the results will differ slightly 

but both are of the same order of error. The agreement with the exact solution 
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varies with r, ph and t. 

The displacement and velocity at end of a time interval in the problem 

of free vibration with damping are found by either of the two rules to be 

)', == {I - -j pZh7
f jrp3h'f-i4 (1-4r2)p4h4] Yo 

+ [1- (ph - f(t-4r Z)pZhZ
-f i (1- 2rz)p3h3

] hjo 

Yt :::! [-I + rph + t{t-4-(2)p1.h 2
- i (1- 2/ 2)p3h3

] p2hyo 
+ [1-2rph- i(I-4r2)pZh2+ ¥(t-zrZ)pJh3

-f .g(I-/2r~/forjp4hji 

This may be put in difference equation form for the step-by-step method, as follows 

Ynfl -[2-zrph -(1-2t1p0/72f J(.3-4rzJp3!i;+ fz (1-8r2
-1- 8 r4)p4),1Yn 

-f [1-2tph-f 2fj}h'2-J rJpJ/,3f lr"p4h4 + fz (t-4r2)pS!r5 
- fi(I-~r2)p'h"- fitp 7h7f ..s~'fe;;e)Yt,_1 == 0 (3·3.3.5) 

The solution is found to be • 

",{ ryo + i- ' ) Yn := R fi CtJ.!' nM 1- '" / 5117 nr 
7· 'V / - rt. 

where R == [J- zrph f 2tzpzh 2 - -jrip3h3 f J r4p4h4 

f Ii (;-4r1p·h·-Iz{!-~rz)pt.ht.- fzrf'IJ7+ ?;a?WJi 
.M- :: arcsin ph[l- rph- i(I-4rZ%/;2+[(I-zrtJp'/,3j ~ 

__ / -I'ph - i (-ztz}po/, 2+ f(3- 4rz)eihJ.;- -f4 (t- 8rZ+8r1e"/;4 
~~s K 

(3·3·)·8) 

Like all other methods of this kind, the fourth order rules have no 

limiting criteria for stability. Any time interval can be used according to the 

accuracy desired. When the system reaches its critical damping, ioeo, r = 1, the 

numerical solution becomes aperiodic. A difficulty associated with the method is 

that the amplitude will gradually damp itself out even in the case of an undamped 

system, and the method is therefore not desirable for a long period of time. 



IV. DISCUSSION 

4"1 Accuracy 

It is usually convenient to compare the accuracy of various methods by 

the order of time interval h involved in the error produced. The final displace-

ment over a time range computed by numerical methods can be expanded into a 

polynomial of ph and then compared term by term with a standard power series 

-:3.~ri ved from the exact solution 0 The error occurring in each step of the step-by-

step method may thus be observed, especially as to the order of ph involved. 

Considering first the case of free vibration, with damping, which is governed by 

the differential e~uation 

J + 2rpy + p'y = 0 

may be expressed in a power series for a time interval h 

Ynfl:::: Yn [I-irl/'Z+ ff¥JJ+ !4(1-4rZ)p4-h+- k(I-z.rzJfhS., .... ] 
f jnh{t-rph- i{t-4,1pfl+ tv-Zt3)ph3+ fza (1-/2 tZ:; /!t;r4),P~h4+ •.•• :1 (4.1.1) 

The following is a collection of e~uations which show the accuracy of 

different numerical methods~ 

Constant acceleration method~ 

Newmark'S ~-method: 

1h+I:::: [1- i;rh'l.+ 2~rp3hJ- i(4~r2-;B )p4h~ 
f i(4~rJ-(3r- 4~2r)prJ,.s- i(4(3~~r-g~z'Z+f1Vf'h'f .-J/J, 

+ [/- rplr+ (4-lrZ-f.;)fi-;~- 4(r~ - 2ftBJ,ihJ 
+ (4r(; - 2f'P - ~r~2 + tB z )p4h4 + •... J 17ft, 

(3·1.1.13) 

(4.1.2) 
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For ~ = 1/4 (Timoshenko 1 s modified methodo) 

Y,,+I = [1- -j p"h 2 f f pShi_ ... "JJn + [1- rph - f(t-4r~)pZh%-I- .·.JhY" 
For ~ = 1/6 (Linear acceleration method.) 

Im-' = [1- j pZiJ2+: pdhJ-f -!z(1-4r2)p4h4 + - _ .. ] .Yn 
+ [1- rph - i;(;- 4rz)f zh;.+ ?j(Z- ft)plj,1+ .... ] hy" 

For ~ = 1/12 (Salvadori's method.) 

/1rH = [1- f;'/l+ffhJ+ /;j{t-4t;}p4/,4_ i('-3r~flh5"+--JYn 
+ [1- rph - ii(l- 4(2)pZj.,z+ .... ] hYi7 

For ~ = 0 (Levy's method.) 

y,,+1 = {I- i f 2,42] Ji7 + (1- "ph] hy" 
Parabolic acceleration method: 

Yn~1 = {I- -jp¥,Z+ J (ltr+ 24.{I-4f9p~h4+ 1;;8(.sb3-/g2tVr~~ ···JYiI 
+ [;-rph- t(i-4fVp2h2+ f(;- 2!~rh3_1z.{!-I"r2fgbl~)llh~ .. --j;,y" 

Houboltis method~ 

jn+1 :::: {I- -j pZh~+ {-Ph 3 -I- /;(i-4rzJp4-~ 4-+ - -- -] Yn 
+ [I - rph - f(l- 4rz)p-zh z i- f (1- zrz.)/}hJ-f- ----] hi 

Euler T s method~ 

Modified Euler Method~ 

P!/'-' . 
Yh-r/::= (1- z) Yn + (1- rph)~Yn 

Runge, Heun and Kutta's third order rule~ 

Kutta I S method: 

/n+1 == [1- fp~2+ Jp31?~f!4 (1- 4rVPh 4
] Yn 

f [1- rph - t(t-4r~p% '2+ f{l- 2ri}p3if J h~ 
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(4.1.3) 

(4.1.4) 

(4.1.5) 

(4.1.6) 

(4.1.7) 

(4.1.8) 

(3·3.1.6) 

(3·3·2.4) 

From the above listings of equations for v~us methods, one may observe 

10 The constant acceleration, linear acceleration and parabolic accel

eration methods have, respectively, an accuracy of the order of h2, h3 and h4 in 

Doth displacement and velocity. The accuracy of Newmark's ~-method depends on 
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2. Levy's and Houbolt 1 s methods have, respectively, an accuracy of the 

crder of h2 and h3 in both displacement and velocity responses. 

3. Salvadori's method is of order h5 only in displacement response and 

only for undamped systemsc If r and Yo are not zero, this method is only of h2 

accuracy unless a good interpretation of Yo is made. 

4. Euler=s method is of the first order; modified Euler metnod, second 

or~er; Runge and Heun, third order; and Kutta's Simpson's rule or three-eighth 

ruJ'2 j :fourth order generally. 

5. In some special cases the accuracy of the above methods may be pro-

moted. on.e more order. These will be listed in Chapter 5. 

In t,he case of forced vibrations, the error which enters the particular 

solution also governs the accuracy of the method since it determines the constants 

for the ini ti.al conditions. As before, Newmark 1 s linear acceleration method is of 

'thi!'d order accuracy :for any system with or without damping. For an undamped 

system startir_g at rest, Salvadori' s method has an accuracy of fifth order. Eulert~ 

moiified Euler, Ru~ge-Heun and KuttaTs methods are still of first, second, third 

and fO~ITth order respectively. 

The comparison of errors by polynomials is only good for ph less than 1, 

~::ecause the error would otherwise be dominated by the higher powers of ph which 

would vit.iate the analysis. Nevertheless, usual practice indicates that a large 

tim.e interval, say from 1/4 to 1/2 of the natural period of vibration (ph=1.5708 

to 3.1416) is highly desirable in rapid and rough estimations. The effect of 

l.a:rge tim.o::? intervals is shown in the graphs of Appendix 30 

4.2 Propagation of Errors 

The preceding article concerns the accuracy of displacement response of 

various methods in one single st~p of operation, the error indicated in the 
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expanQed polyn.orr.ial being compared with a common initial condition. :But if' step-

-by-step eval~lations are set up, with a common initial condition for the first step, 

t]:le j_ni tial condition of the second step will contain error which is different in 

vaTious methods After a chain of steps is completed, the error propagates in 

different 'iiiays, divergent or convergent, accumulating or self-eliminating, as a 

fru:.ction cf -t,ime, length of time interval, natural frequency and. damping factor. 

Sho,,;,,-n in previous chapters are the equations for Yn and in Ar:pendix 3 

a:ce graphs 0::: T~/T and. AsiA for various methods. These may serve for an estimate 

o£ the propagatioTI of errors. 

Errors are of two fundamental types, error in period and error in ampli-

t1.ldeo The error in period or in frequency is solely due to the discrepancy in 

phase angle ";\"hich is directly proportional to the lapse of time. The err'or in 

amp2.it~i.de, on thE: other hand, chiefly depending on the factor Rn in the equations 

O-P --
,'"- "Y n) is aLi. ex:pcnential function of time. From the equations for Yn d.erived and 

listed i'" Chapter 3 ; it is evident that the condition for no error in period is 

p11 = ~l and that fer no divergent error in amplitude is Rerph = 1. All pseudo 

periods and pseud.o amplitudes have been compared with true periods and true ampli-

tv.des i:o.. tt~e rreceding chapter. The ratio of periods is given by the relation 

Ts = ph~ 
T r (~·.2.1) 

ar'.c. tr}:; aru;p]_i tud.~s by As/ A c There are two ways of comparing the ampli tud.es. The 

f:Lrs-s one CO:!.lCeTns the ordinate of the envelope which prescribes the period.ic 

~r.'esponse.~ Ylhi.le t.he se:::ond way takes account of the peak amplitude in the first 

cycle of 7i"t~ation;J sabject to a certain initial velocity 0 

In the :irst i.'1ay of comparison, one finds that 

== e -rpt (4.2.2) 

:c.eglec~;j_n.g tt~2 magni.fyieg effect of initial velocity in some cases. 

Since ~he ratio of amplitudes is not constant with time, it is reasonable 
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tc compare the methods at a certain designated time, say, at t lip, i.eo pt = 1. 

Note that the ~atio AsiA at pt=l here does not mean the comparison made 

with the pseudo amplitude actually computed which is not only affected by the 

factor R, but also usually by the change in velocity response. The velocity re-

s"Donse depends on ph as stated in Art. 3,1.4, and sometimes on the initial 

displacement as i:: Eq. (3.1.3.18). However; when the time interval is not clost:: 

tc the criterion. of stability; this error in amplitude due to initial velocity 

response is o~ a constant nature, doing much less harm than the exponential 

factor R after a considerable lapse of time, and. is not taken into consideration. 

'rherei'ore the ratic As/ A for the envelopes of the periodic curves is still ~~seful 

for judging the convergence and divergence oi' errors. 

Nevrmark! s t3-method for all values of ~ from 0 to 1/4, together "loli th 

T:'!..mos:::tenko; s TIlod.ified, NewlIlark i s linear acceleration, Levy: sand Salvadori i s 

methods, have As/A = 1 in free vibration of an undamped systemo Constant and. 

para-bolie acceleration methods are the ones which have di"'lergeng amplitudes I;\'hile 

the others, including Roubol t's, Euler 1 s, modified Euler, Runge IS, Heun; sand 

Lutta's methods, have convergent amplitude although the rapidity of d.ivergence or 

convergence is different. 

The presense of damping may add complication to the analysis 0 Plottings 

of As/A at pt = 1 shov.rl.1. in Appendix 3 are self -explanatory 0 The relation bett.Teen 

As/A at any time and As/A at pt = 1 is shown in Fig. 29. 

In the second method of comparison, peak amplitudes in the first cycle 

of vibration due to an initial velocity Yo = p are compared and sholNll in Appendix 

3. This comparisoL may be of more interest in p~actical problems of vibration 

since it gives actual amplitudes of periodic motion 0 The magnifying effect on 

the sine term of the general equation is generally taken into consideration except 



in the parabolic acceleration method and Houbolt's method where the magnification 

factor depends also on the treatment of initial conditions 0 Note that the magni-

tude of the peak amplitude does not depend only on the value of R, but also on the 

error in period as well 0 

Error in period is, as a rule, constant for a given ph. Generally 

speaking, the ratio-T IT increases or decreases with the broadening of time inter
s 

va.l 0 Ts/T) 1 indicates a larger pseudo period or a retardation of phase angle 

and vice versa. 

4.3 Stability and Convergence 

The apFlicability of different available techniques places some limita-

tions on the time interval used, not only as regards accuracy, but also as regards 

stability and convergence. All acceleration methods have a_limiting criterion of 

~cni,rergence because of their iterative Frocedure. All acceleration methods" 

except Timoshenko's modified method,_ also have a limiting criterion of stability 

beyond which aperiodic response will occur. This has been discussed in Art. 30_1.40 

(See Eq. (3.1.407) and (3.1.4.8)0) Larger values of ~ provide a wider range of 

time interval for stability, but a shorter range for convergence. On the other 

hand, when ~ = 0, -freedom from the convergence criterion is obtained at the loss 

of range for stability. The presence of damping will also affect both criteria; 

the greater the damping factor r, the shorter the range of time interval available. 

The difference equation methods have generally no limiting criterion 

for convergence because of the nature of the procedure. However, a criterion ror 

stability still governs those techniques which have been discussed in previous 

chapters. Levy's and Salvadori's methods have the same criterion for stability 

as that of Newmark's ~-method when ~ = 0 and ~ = 1/12 respectivelyo The 

Houbolt method criterion for stability has been given in Eq. (3.2.3.10). 

The methods of numerical integration described in Art 0 3.3 have the 
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~voiding limiting criteria both of stability and convergenceo The 

~ interval may therefore be made according to the accuracy desiredo 

visable to use any time interval greater than lip, that is, ph ;> 1, 

;ry misleading results may be obtained because of the fact that higher 

n will dominate the solution . 

. 'he criterion of critical damping in the exact solution is r = 1; while 

of the numerical solutions have the same criterion. Those which have 

_terion of critical damping are: Timoshenko 's modified method or' NewmarKls 

for t3 == 1/4, EulerTs method, modified Euler method, Runge's, Heun!s and 

lethods. In most of other methodscri tical· damping occurs even when r< 1. 

ar acceleration method, Salvadori's method, Levyts method and Newmark's 

i (with the exception of t3 == 1/4) are all of this group. The criterion. of 

stant acceleration method may be higher or lower than the actual criterion; 

Lng on the product of the natural frequency of the structure and the tim.e 

al used. Houbolt t s method generally exhibits periodic response for alJ_ 

of r and ph except in some cases when r is greater than 0.94 and ph very 

Fig. 30 illustrates the criteria of critical damping for various techni

The region above a curve is that of aperiodic response, while the region 

r a curve is that of periodic response. 

Procedures of Operation 

Acceleration methods require an iterative procedure starting from an 

,sumed value of acceleration and arriving at a derived acceleration by use of 

ne equations of motion until a close agreement is obtained between the assumed 

Lnd derived values 0 With a proper choice of time interval; three of four trials 

for each interval of time will usually be sufficient to reach convergence in a 

multi-degree-of-freedom system. The time consumed in completing a step by an 

electric desk co~puter is about nine minutes for a two-degree-of-freedom system 



~enty minutes for a five-degree-of-freedom one after the equations are 

a routine form is madec The result of each step is self-checking except 

:ial case of ~ = 0 in Newmark 7 s ~-method. Both displacement and velocity 

as a supplementary help for giving a clearer picture of motion and for 

Difference equation methods are faster because displacements are directly 

from the difference equations and no extra work to obtain velocities is 

However, they suffer from the absence of self-checking procedures unless 

cional device is provided 0 For problems of mul ti-degree-of -freedom systems, 

suggested a recurrence-matrix solution in which the equations of motion 

~ressed in a recurrence matrix equation and solved by inverting the matrix . 

. or1 expressed the equations of motion for every three adjacent masses so 

~ach equation contains only three unknowns and may be solved by relaxation, 

, and error, or successive approximations. The evaluation of displacements 

six significant figures for a five-degree-of-freedom took approximately ten 

,tes ij,fter the computations had been standardized)6) 

Rungeis and Kutta~s methods are the most time-consuming as far as the 

of an electric desk computing machine is concernedc It takes more than thirty 

.lutes to complete a step by Kutta v s fourth order formula for a two-degree-of-

eedom system. Furthermore, since there is no self-checking of calculations, 

Lstakes may easily be introduced into the computations due to the intricate work 

f cross-substitution in the procedure 0 



v 0 CONCliUS IONS 

The general results of this study are tabulated on the next page (Table 

in which the advantages and disadvantages of each of the available techniques 

.isted. Graphs showing the errors in period and amplitude for a range of time 

~val from 0 to about half of the natural period in various methods are given 

he end of this dissertation. It is therefore possible to choose a suitable 

Lnique for a specific problem according to the accuracy and amount of work re

~ed" In general, the larger the time interval, the cruder the results. Values 

ph less than 1 always give reliable results for all techniques, but variations 

.1 be great when ph)l, and these graphs. may be found useful fOl;" judgement when 

Lng large intervals. 

In orqanary problems of Vibratory motion, Newmark's ~-method is most 

.luable .because of its flexibility in application. The choice of ~ime interval 

iy be made for the desired rate of convergence and accuracy by adjustment of the 

- parametero The linear acceleration method, a special case of the ~-method for 

'31/6, is most consistent in degree of error when the motion is that of forced 

ribration with damping, with initial displacement and velocity. Timoshenko;s. 

method is best applied to an undamped system when the response in amplitude is 

importantc The constant acceleration method and Euler's method are not advisable 

owing to their inaccuracy. If the masses in motion are not damped and have no 

initial Velocity, Salvadori's method is most rapid and accurate. For rapid and 

less accurate work, Levy1s method may prove useful, but care should be taken in 

the treatment of initial velocity. Runge and Kutta's methods ~e noted for their 

accuracy and generality in application, having no restrictions with respect to 

stability and convergence, but they are handicapped by the tedious procedure which 

is not generally desirable for use as an ordinary engineering design technique, 



Table 5.1 Summarized Result of Analysis 

Order of Accurac~ 
Item Techniques Displace- Velocity Forced Amplitude 

Noo ment Vibra- when r=O 
Response Response tion 

10 Constant Acceleration 2nd 2nd divergent 

2. Timoo Mod. Acce10 2nd 2nd 2nd constant 
Newmark t3 = 1/4 (3rd when (3rd when (~rd·when 

r = 0) r = 1/2) r = 0) 

3· Linear Acceleration 3rd 3rd 3rd constant 
Newmark t3 = 1/6 (4th when (4th when 

r = 1/2) r = 0) 

4. Parabolic Acceleration 4th 4th 4th divergent 

50 Newmark's t3-method Depends on f3 constant 

6. Levy 2nd 2nd 2nd constant 
Newmark f3 = 0 (3rd when (3rd when (3rd when 

r = 0) r = 1/2) r = 0) 

7· Salvadori 2nd 2nd 2nd constant 
Newmark f3 = 1/12 (5th when (3rd when (5th when 

r = 0) r = 1/2) r = 0) 

8. Houbolt 3rd 3rd 3rd conv~ 

(4th when (4th when 
r = 1/2) r = 0) 

9· Euler 1st 1st 1st cony. 
(2nd when 
r = 0) 

100 Modified Euler 2nd 2nd 2nd conv. 
(3rd when 
r = 0) 

11. Runge, Heun 3rd 3rd 3rd cony. 
(4th when 
r = 0) 

12. Kutta 4th Order 4th 4th 4th cony. 
(5th when 
r = 0) 
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Table 5.1 -- Summarized Result of Analysis. (Concluded) 

Item :Ci'iterion of Criterion of Self'- Time 
No. Stability Convergence Check- Consump-

in~ tion 

1. ~Cl· (3.1.1.13) no no less 

2. no rph+ip'J.h2 < / yes fair 

3· Eqo (3.1.3.13) tph t ifZh1 < / yes fair 

4. ph < 3.357758 ph< 20828427 yes more 
for r = 0 for r = 0 

5· Eq. (3.1.4 015 ) Eq. (3.1.4016) yes fair 

6. ph < 4(1- rz) no no less 

7· ph < ~ (1- ,Z) no no less' 

8. ECl· (3.2.3010) no no l'air 

90 no no :.~.no less 

10. no no no fair 

11. no no no more 

12. no no no more 



APPENDIX 1. NOMENCLATURE 

The letter symbols and notations used in this thesis are defined as 

follows except otherwise noted. 

A = amplitude of the moving mass. 

As = pseudo amplitude obtained by numerical methode 

A, B, C, = constants determined from initial conditions. 

a, b, c, = coefficients used in equationse 

e 

F 

h 

k 

n 

= 2.7180 ... base of 'natural- logarithms 

= forcing functione 

= time intervalso 

= constants. 

= number of time intervals taken in the step-by-step evaluation, or 
subscript to designate displacement function at a particular time, 
as Yo' Yn or Yo' Yn · 

p = circular frequency of natural vibration. 

r = factor of viscous damping in terms of p. 

-'T = natural period of a general system, in general T = 21tjp. 

Ts = pseudo pe.Liod of vibration obtained by numerical method. 

t = time. 

t = time corresponding to end of nth time intervale 
n 

X = variable in general equations. 

y = displacement of mas s 

y = first derivative of displacement with respect to time, i.e. velocity 
of mass. 

y = second derivative of displacement with respect to time, i.eo accelera-
tion of mass. 

y = exact solution of differential equation 0 

Y = particular solution of difference equation for numerical methods 0 

n 
or 



APPENDIX 10 NO:MENCLATURE ( Concluded) 

Yp = exact particular solution of differential equation 0 

~ coefficient measuring proportion of acceleration at end of interval mn 
determination of displacement. 

= phase angle at end of the first time interval obtained by numerical 
solution. 
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