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SYNOPSIS

A comparative study of step-by-step methods which are commonly used in
the numerical analysis of the dynamic response of structures is presented. The
method of analysis is based on the general theory of the calculus of difference
equations and the algebra of matrices. The available step-by-step techniques
discussed are classified into three groups:

1. Acceleration methods,

2. Difference equation methods,

3. Numerical solutions of differential equations.
Comparisons have been made between the available techniques with respect to the
accuracy of a single step, propagation of errors after a length of time, limita-
tions imposed by instability and lack of convergence, time consumption, and self-
checking provisions of the procedures. The purpose of the work has been to

determine the range of applicability of the various techniques.



COMPARISON OF STEP-BY-STEP METHODS FOR ANALYZING THE
DYNAMIC RESPONSE OF STRUCTURES

I. INTRODUCTION

1.1 Summary

This dissertation is concerned with the analysis of step-by-step methods
commonly used in numerical scolutions of the dynamic response of structures.
Rigorous solutions are not always possible for structures with non-linear charac-
teristics under dynamic lcads such as wind, impact, blast, earthquake or vibratory
motions, particularly in the case of mulli-degree-of-freedom systems with plastic
resistance or with a varying elastic behavior as a function of time. Consequently
a numerical approach is indispensable for such conditions and step-by-step studies
of motion with respect to time are extremely useful.

The purpose of this dissertation is to study the accuracy and range of
applicability of various step-by-step techniques now available and freguently
used in prcoblems of dynamic response of structures. These step-by-step procedures
may be classified for convenience of discussion into three groups: 1. Accelera-
tion methods; 2. Difference equation methods; and 3. Numerical solution of
differential equations. In the acceleration methods the displacement and velocity
at the end of a time interval are each expressed in terms of the displacement and
velocity at the beginning of the time interval, together with the accelerations
which occur at the ends of the interval, a law of variation of the acceleration
within this time interval being assumed. The acceleration is in turn governed
by the differential equation of motion and the problem may then be solved by an
algebraic solution of simultaneous equations or by cut-and-try iteraticns.

The second group of methods involves the application of finite differ-

ence equations which are obtained from the given differential equations of motion.



Displacement at each successive step during the motion can be derived from the

hnl
i

displacements previously obtained by means of finite difference equations. or
multi-degree-of -freedom structures the solution may be accomplished by solving
a set of linear simultaneous equations or by inverting a matrix.

The third group of methods includes conventional}devices developed by
mathematicians for the numerical solution of various differential equations and
which are guite general in application. They may be adopted even in more compli-
cated problems than those involved in the equation of motion which we usually
encounter.

The analyse the characteristics of each of the available techniques it
is best to obtain beforehand an algebraic equation representing each of the various
tion of the differential equation of motion and investigate its propagation of

errors. This can be done in one of the following ways. First, it is possible to

terms of displacements and find its complementary and particular solutions by means
of the calculus of finite difference. If the approximate procedure is readily
given in a finite difference form, no work is necessary in transforming the
original procedure into finite difference equations. Secondly, the set of linear
equations used in the approximate technique may also be expressed in a mairix
form such that a column matrix consisting of displacement, velocity and accelera-
ticn at the end of the time interval is equal to the product of a sguare matrix
into & column matrix consisting of displacement, velocity and acceleration at the
beginring of the time interval  When the procedure is successively carried out

n times, the square matrix multiplies itself to the nth power and shdws the re-
lation between the initial and final conditions. The former way is more simple
as far as mathematics 1s concerned but reveals directly the dynamic response only

in displacement, while the latter, though involving more algebra, gives not only



displacement, but velocity and acceleration as well if desired.

The dynamic analysis of a structure is usually based on the following

umptions:

1. The mass of the structure may be represented by a number of separate
1centrated masses supported by a flexible and weightless framework.

2. The resistance-deflection relationship of the structure can be deter-
ned beforehand over the whole range of action, and the time history of displace-
mt or external forces is known.

Without loss of generalization, the present analysis has been confined to
single-degree-of -freedom system. Nevertheless the motion of more complicated
ulti-degree-of -freedom systems can be considered as being made up of the motion

n several modes, each mode acting as a single-degree-of-freedom.

Generally speaking, accuracy may be attained if the time interval is
sufficiently small while too large an interval may produce very misleading results.
dowever, since different degrees of accuracy can result from different methods of
application, the choice of time interval depends upon the accuracy desired and the
amount of work required.

Acceleration methods need no special training for their applicaticn since
they are based on fundamental concepts, but these methods are always handicapped
by the criteria of convergence and stability. The constant acceleration method<l>*‘
is obJjectionable because of its rapid divergence of amplitude. Timoshenko's
modified acceleration method(l) gives better results than that of constant accel-
eration, yet the frequency error is still appreciable. It is, however, free from
stability difficulties and has no enlarging or diminishing effect of the velocity
response. Newmark's linear acceleration method (2) has better agreement in
frequency, but overshoots a little in amplitude due to the enlarged velocity

response. Newmark's parabolic acceleration method(g) has even better agreement

* Numbers in parentheses refer to items in the Bibliography.



n frequency, but unfortunately its amplitude diverges exponentially, and it is
sherefere of less value for a long lapse of time in spite of its accuracy in the
Yirst cycle of vibration. Newmark's @-method(3>(4> may be regarded as a genera-
lized acceleration method, introducing a new parameter /3 in the displacement
equation so as to control the effect of acceleration. With B=1/L, it is identical
with Timoshenko's modified method. WithAﬁ3=l/6, it is the same as the linear
acceleration method. It corresponds to the difference equation method adopted by
Levy!3) when B= 0, and to that given by Salvadori(®) wnen B= 1/12. The great
advantage of this generalization is that it permits a convenient choice of the
time interval determined by the convergence criterion during the operaticn.

Difference equation methods also have criteria for stability. These
procedures are not self-checking. A little more time economy may be gained since
only the displacement is necessary for the computation and the velccity may e
disregarded in each step thus saving time in calculations. As stated before, the
difference equations adopted by Levy and Salvadori may be considered as identical
to Newmark'®s /(8 -method when /8= 0 and ﬁ: 1/12 respectively, except that the
initial conditions are treated differently. Houbolt's method(7) is said tc be an
improvement over Levy's method, since it employs a cubic curve of displacemenf‘for
the difference equation, yet 1t suffers from the converging characteristic of the
amplitude and from & large error in pericd. The computed amplitude of an undamped
system as computed by this method will decay rapidly after a few cycles of vibra-
tion even when a small time interval is used.

The accuracy of the numerical solutions of differential equatious
developed by Euler, Runge and Kutta (8)(9) is discussed in many books and papers.
The application of these methods to linear vibration problems is somewhat time-
consuming in comparison with the methods above mentioned particularly in multi-
degree-of -freedom systems. Runge-Kutta's method has an advantage for general

applicability in that it is always stable and it has the proper criterion for



ritical damping in viscous damping conditions.

Comparisons of true amplitude and period with ‘pseudo’ or computed empli-
ude and period in each method of numerical solutior are made to investigate the
sffects of length of time interval, natural frequency of the structure and other

s>arameters. Additional discussion of these factors is presented in later chapters.



ITI. GENERAL METHODS OF ANALYSIS

1 Calculus of Finite Difference Eguations

.o

Analysis may be made for each method by expressing the given differential
juation of motion, combined with the procedure of operation, into a difference
juation. Then the properties of this difference equation represent the character-
stics of the corresponding numerical method. In the second group of available
echniques described in the last chapter, finite difference equations are readily
‘ormed from the differential equation of motion by replacing the higher orders of
lerivatives by central difference patterms. In the first and third greups of
wvailable %echni@ues more algebraic work is required to convert the equatiens of
sotien inte a 4ifference equation. Hewever, the equations of operation prescrib-
ing the given motion can always be expressed in terms of displacements and velocl-
ties In a linear relstion, and can egslly be put in a difference equation form.

In acceleration methods the equatlons of operation may at first contaln some
acceleration terms but one can soon elimlnate them since the fingl accéeleration
itself can be expressed In terms of dlsplacement, veloclty and inltlal accelera-
tion. Thus if the equation of motion is given in the form

J+arpy + Py = F(t) (2.1.1)
where p is the natural frequency of vibration and r the coefficient of viscous
damping in terms of p, it is possible to represent the numerical procedure by a
finite difference equation in the form

@ Ynsr + GaYn + Qs Yooy = b F ()¢ b F(Ln)t b F () (2.1.2)
or, in the case of the parsbolic acceleration method or Houbolt's method,

a/}/m-/ *+ az)/n t ajyn-/ + a4yﬂ-2
= 5 F( b))+ by F(lo)t b F(C)+ by F(Erz) (2.1.3)



The solutions of these difference equations are

Vo= X7+ GX" (2.1.4)

In = X+ Coxg F Ca Xy (2.1.5)
sectively, where xj, Xp, and xz are the roots of the equation

a, X2+ azXx + a; = o (2.1.6)

a x>+ G:x*+ qyx + ag =0 (2.1.7)

responding to Egs. (2.1.2) and (2.1.3), and cj, cp, and c3 are constants

sermired from the initial conditiomns.

If the rcots x; and xp are conjugate complex roots, the responss of the
merical procedure is periodic although there may exist errors in bhoth amplitude

4 frequency. One the other hand when all the x roots are real, the soluticn

wcomes aperiodic and unstable. By 'stable' we mean that the response of the

merical solution remains periodic and without fluctuation or rapid divergence in
nmplitude. As far as time period is concerned, the observation of these roots
erves therefore as a criterion of stability. Divergence of amplitude may also be
egarded as kind of instability and it will be shown in later chapters that it is
lue to the presence of a factor with an exponential power of time which occurs in
she general equation of response. If the factor equals one, the amplitude will
ieither diverge nor converge and is therefore stable. When the factor 1s larger

than one, the amplitude diverges with a rate which depends on the magnitude of the

"actor. Slow divergence 1s generally acceptable in some problems, it is determined
v the allowable error in amplitude and not by the criterion of stability.
Particular solutions of these difference equations may be obtained by the
~alculus of finite differences though sometimes this may involve difficulties in
nore complicated forcing functions. However, an approximation can generally be
nade by expressing the forcing function in a power series or a Fourler expansion

shich is always solvable 1In this kind of finite difference equations.

The finite difference equations (2.1.2) and (2.1.3) consist entirely of



displacement terms and therefore the general solution shows only the response in
displacement of the structure at the end of the time interval due tc the displace-
ment and velocity at the beginning of the time interval and also due to the exterior
forces if there are any. In order to bring out the response in velocity of the
structure, another set of difference equation containing all velocity terms must

be formed from the fundamental equations of the numerical solution, such as

U Yous + QoY+ Q3¥pey = b F(bw)+ BaF(6)+ by F (Ury) (2.1.8)

or ﬂ/);”'*/ + az.);” * 03)/,7_, * 74)/”’2 = @F(Z‘}m)f-b F(tn)+bgF(fﬂ—/)+ F(f/?-z) (2.1.9)

imilarly, the finite difference equations may also contain onlv accelera-

+ion terms in the form of

B Sous + 23 # Qs Yt = b F(tyu )t e F () # b3 F (Fre) (2.1.10)
o Q,)‘//.w 7 57;»)./'/7 *+ Qi,);ﬁ—/ + Qq_}‘/‘n-z = b//:(fﬂ,‘/)'fbzp(fr,)f'b_?/c(rn—/)-ﬁ b4F(f_2) (2.1.11)

if the response in acceleration is required.

All the results of numerical solutions are henceforth to be compared with
the exact solution., In thes present analysis the motion of a structure which is
assumed to be cf elastic behavior is prescribed by the well-known differential

equation (2.1.1) whose general solution is known to bte
- ot - . - ’
y=e" (A cosn/i-r2 pl + 85//74//-r2/07‘)+ Ve (2.1.12)

where §p is the particular solution, and A and B are constants determined from the
initial conditions.
For free vibration, F(t) = O, §b = 0, and the equation of motion becomes

S+t 2rpy +pY = o0 . (2.1.13)

The solution is

X%
v = e"/’f(y,, cosy/1- 12 pT + 4—%—*—;”—5/@//42 ot) (2.1.14)
and g = ()’0 osn/1-répl - ,\,/yiﬁ/’ e /,02‘) (2.1.15)




¢ free vibration without damping, the equation of motion can further be

to
+ Py =e
lution is

7= Yo cospl + —;—?—sf}ypz‘

J = Jocespt — pysinpl

]

abra of Matrices

(2.1.16)

(2.1.17) ~

(2.1.18)

This is applicable to the first and third groups of methods provided that

slacement, velocity and acceleration at the end of any time interval can be

ed in a linear form in terms of the displacement, velocity, acceleration

te other parameters at the beginning of the time interwval.

Yo = Ayt t Gz Yo t 3 Y,
Vi = AuYe + @2y, + Rz Y,
Y= Ay Y t Az Yo t Az Vo

For example,

(2.2.1)

rix form representing these linear simultaneous equations can be written as

'y,— B a,, Qi Qp G
W | Q21 Gzz 2z A4
5% - Ay A3z A3 A3

|/ e 0 o /

)= [AlDA].

Jo

Yo
Jo
/

s O,

(2.2.2)

in more abbreviated

(2.2.3)

the numerical solution 1s carried through n successive steps of equal time

ion, with the final displacement function of a previous time interval be-

g the initial condition of a new time interval, the matrix [A] operates on

f n times, so that

] = [A]" %]

(2.2.4)



10.

: [A]n can be expanded by means of the Cayley-Hamilton theorem and
's theorem as soon as the characteristic roots are obtained.
The characteristic roots of the matrix [A] not only gives the expansion
but also determines the criterion of stability exactly as in the finite
ce method described in the preceding article. The presence of a pair of
;e complex characteristic roots signifies stability and periodic response
numerical solution while all real roots indicate that the response is a-
c.
The method may become very tedious in the case of forced vibrations since
esence of more fﬁan two characteristic roots in the matrix will add too much
raic work to the simplification process. The method of analysis by finite

rence equations 1s preferrable in this case.



11.

III. ANALYSIS OF AVAILABLE TECHNIQUES

3.1 Acceleration Methods

3.1.1 Constant Acceleration Method

The basic assumption of this method is that the acceleration of the mass
in motion remains unchanged throughcut a small time interval and Is equal in
direction and magnitude to the acceleration at the starting point of the concern-
ing time interval. The assumption is a rough one, and provides a rzpid but in-
accurate procedure. The error in this method is so large that it is seldom used.
A slight modification and a little more work improve the results considerabiyu
The advantage of speed of operation cannot compensate for the loss in accuracy.

Let us consider finst a single mass in free vibration without damping.
Then from elementary mechgnics we obtain the following expressions:

.

)%+/ = Yn t &é 4 (3.1.1.1)

Ynti I * (j% + )%+/)€;

= n t Ynh + Jngf (3.1.1.2)

where h denotes the time interval.

"

Now the differential equation of motion for a body in free vibration
without damping is

V+py =0 (2.1.16)
from which the relation

In = =P | (3.1.1.3)
is obtained. Substituting in Egs. (3.1.1.1) and‘t5.l.l.2), we gét

Yowr = = PPy + Y (3.1.1.4)
and Yner = (1- 'D-;éz)}’ﬂ * /7)/0 . (3.1.1.5)

From these relations of displacement and velocity, one gets a finite difference



ation in terms of displacements corresponding to the computed results from the

stant acceleration method:

%w-‘zﬂ- .W +(/*£Z%U%/=

{(2.1.1.6)
The solution of this finite difference equation, together with Eq.

.1.1.5), yields the general equation for the displacement predicted by the

eloal e

proximate solution: . 4

2/2 .7 ° _ Yo .
Y = (/+Lé- F(%“"W*iﬁi 5/)7/7/&) (3.1.1.7;
VG 2/72
here /- / (3,1.1.8}
M= am&n/% L2rs arc cos 14 )
(4 /*'ﬂz“ %;/+ Zr Z :

Jomparing this with Eq. (2.1.17) of the exact solution, it is obvious that when

the time interval h 1s very small, this approximate method approaches the exact
solution as a limit. Since the time interval is not zero, there is an error in
the procedure. We split the resulting error into two parts, one is the error in
Trequency or period, the other is in amplitude. The phase angle np should be
equal to pt if the solution 1s exact. 1In other words, the exact value of u
should be pt/n or ph. Hence we obtain a relationship between the pseudo period

of the numerical solution and the true period of the exact solution, i.e.

.__.7.;... -— -M' (5 1 1 9‘\
T M \ L LR . lf
The frequency has an error of 3 percent for ph = 0.5 and of 10 percent for ph =
1.0.
The error in amplitude is obJjectionably large since the computed dis-
/02/72
placement is subjected to a magnifying factor (/+ Z ')z which diverges

rapidly with the number of steps of operations n. This source of error is dominant

although there also exist some other errors in the coefficients of Yo and 30

The coefficient of ¥, becomes (/7‘- —‘") //“ 7"”;:'7,'2 Z‘Qn /7/4) instead of 1
- 272\
e B4 )2
and varies as a function of n and ph. The coefflclent of yo becomes ;gi;FE;iZZ?
[ -
/6
instead of l/p, which also shows a rapid divergence of amplitude. Fig. 1
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Jdustrates the rapid divergence of the envelope of amplitude for a single moving
iss subject to y,=0 and j,=p.

Thé criterion of stability shows that ph should be less than L. Any

alue of ph greater than L4 yields aperiodic response of displacement and velocity.

No criterion of convergence exists for this method since one operation is
sufficient for each step since no repetition or trial necessary.

For free vibration with viscous damping, the analysis is more complicated
since it involves one more parameter r, the damping factor of the motion. The
difference equation now becomes

Yoss = 2(71- —"-‘?- ’%?j))’” + (1-rph)(r+ ’Dziéz)yﬂ-/ =0 ' (3.1.1.10}

and its solution is
21 %(F-T)t %’ -rph)
y=(-1ph )5'7(/7» P—zﬁ)?/j/ g Cos it # / 2,2 4-3)/‘,@/; E.ﬁz 5//7/%.]

- ph- B /- -%é - 2
= aye cos =
(- fF/?)(’v‘ 2E) V- tph)(1+ BL)

The ratic of pseudo period to true period becomes

..;% - P—_A'\/M/"z (3.1.1.12)

Comparison of amplitudes may be made from Egs. (3.1.1.11) and 2.1.1Lk). Figs. 2

where M= gresiy Pﬁ

and 3 shows the comparisons of period and amplitude for different damping factor
r.

Two kinds of comparison in amplitude are made for all techuigues des-
cribed in this thesis. The first one deals with the magnitude of the envelope
of vibration at pt = 1, regardless of the magnifying effect of the sine term in
the general expression. In other words, this is a comparison of the exponential
factor which multiplies the solution. The purpose of this comparison is to
demonstrate the rate of divergence or convergence and then to Jjudge its applica-
bility. This ratio varies exponentially with pt, and therefore the amplitude

ratio at any instant of time may be found by its exponential relation with the



1k,

lo at pt = 1.
Ancther comparison deals with the peak amplitudes in the first cvole of
ration due to an iInitial velocity ﬁo = p. The first peak amplitude occurs at
= n/E theoretically, but it may deviate from the true value in numerical solu-~
ons due to the error in period which therefore plays an important role in the
eudo peak amplitudes. This kind of comparison may give a better picture hoth of
e actual oscilllatory motion and of the pseudo motion derived from the approxi-
ite technlques.
The criterion for stability of the constant acceleration method 1is
xpressed by the following equation
2
PR+ 12 rph - 16 (1= z)=0 . (3.1.1.13)
"his shows that when /bﬁ > (44/2/‘” - éf) , the computed displacement of
rotion is aperiodic which is not true for r 1less than 1. PFPor the critical damp-
ing condition, i.e. 7z = 1, ph should be made equal to or greater than 0.9282 in
order to procure an aperiodic response.
The constant acceleration method is too crude in accuracy and therefore
not much used in practice. It is only accurace to the second crder of h and errors

may arise from the third power of the time interval since

Y= (1= /0..;/_’2)% + (1=rph)hy, (3.1.1.14)

3.1.2 Timoshenko's Modified Acceleration Method

This 1s an improved method obtained from the last one by modifying the
acceleration of the moving body. The acceleration here is assumed constant
throughout the time interval and equal to the average of its initial and final
values. The elementary equations of motion are therefore

Y = I T 'Zz(%*y’;*f)/’

—~

O
s
N
H

-~



15.

= Yot E (Yo # Ypui)Fr = )/,,+)/,,/9+4);,ﬁ # F i h2 (3.1.2.2)

be noted that the above equations may not be consistent. When comtined

jifferential equation of free vibration without damping, these equations

zAz R 242y .
+ ) s = -ph sy + (1= P ) s (5.1,
22 2hH2 .
I+ %’A‘)yﬂ*" = (- P_})X”Lh}/” (3.1.
Jerence equation in terms of displacement now becomes

Skl = (2—-7‘5—2;:7;;:))/” * Yy = O (3.1.2.5)
Z

5 solution is

= yo CDJ’/?/u

A /=
M= AAC Si7 /2;___*2? = @Zrc Cos P

e g (3.1.2.7)

1=
o

o

p—

b

o

&
S

+ %-0-5/)7/7/& (3.1.2.6)

Similarly it can also be shown that
)Z, = )% cos np — PYo Jbvqyu (3.1.2.8)
This approximate solution has no error in amplitude; neither the initial
lacement nor the initial velocity produces errors which would affect the
itude of displacement or velocity thereafter computed. (See Fig. L) The
- error arising in this method is duebto the difference of phase-angles or

discrepancy in period or frequency which can be expressed by the equation

s _ bk

“7T = s /f_P;h (3.1.2.9)

is plotted in Fig. 5. kd

Another advantage of this method is that no criterion for stability need
mposed. The length of the time interval can be chosen corresponding to the
racy desired. Unfortunately, the error in period is so large that even a
> interval of about 1/6 of the natural period will result an 8 percent error
requency.

If viscous damping is considered, one can obtain the following equations






17.

tity is determined from a definite integral of acceleration over the range of
, and the displacement is, ir turn, an integral of the velocity. The elemen-
- equations of motion are therefore consistent.

The linear acceleration methed is first considered. The equations of

ion are ﬁ
Snri = _)/’7 2.)/” }//7-#/ {(3.1.3.1)
52..
L St = Yo +hYe + 5 £y + & S (3.1.3.2)
In case of free vibration without damping, Y = —,02)/ . The

uations can be simplified to the form

(/*,e_;éf)%” = (/'ﬁ;ﬁe)}fr * @;ﬂ (3.1.3.3}
2 . 2 2,2 ZAZ .
(14 28 o= =P (= 5500+ (- 5 ) 5250

rom which the difference equation

géz
Frer = (C?~')fi Z%Ez Y Tt Moy = O

is derived. The solution of this difference equation is

S ,
= Yo CoS iy +/5““““%_——€_ij z S (3.1.3.6)

o~
W
=)
W
h
o

) _ P*hE / - ﬁf%z
where /{ = Aresm /bﬁ . //?ZAZE— = arcceos ,______75277_2_ . {(3.1.32.7)
+
7
Similarly, )/” = —)’o,D,\//—' /‘026 ._5'//7,‘34 + )/o Cos np {3.1.3.8)

Making comparisons with the exact solution as before, the error in the
approximate solution consists of two parts: "the error in period and the error in

amplitude. The error in pericd is expressed by the ratio

7s ph

—

T tresin LOLI= T (3.1.3.9)
/ + 12;f~

The amplitude error in this case is constant for a given time interval, it does

not vary with the lapse of time and is solely a function of the initial velocity
of the mass. If the mass starts from rest no amplitude error will occur. Hence

the amplitude error depends on the proportion of initial displacement and velocity.
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large for a motion due to a small initial displacement and large
and will be small for a motion due to a small initial velocity.
response of a single mass due to yo = 0, and &O =
terion of stability 1s found to be Iﬂ1<iNfE§~ Any value of ph
2 will result in aperiodic response by the approximate solution.

case of free vibration with damping, the difference equatior of

Jecomes
b ¢ rph _ .
EZ‘“Z)%# - (2*/‘%7;'5*5‘ Yo T (/—- ;_-_ZBTLZEL)%W = 0 (3.1.3.10)
is e
%P A
1-rphs B2 (- 2 s+ (/'ﬁ‘g"‘/,%/‘

m) (X’Cﬂ”ﬂ* - i BA 5/;7%) (3.1.3.11)
pbo 1> /_;_'Z__ZZ e Sk 4
A/ (r+ 2 )2 Al [/+ %} reh? - (3.1.3.12)

ion for stability is now

4
= FF - /%zz/’* = 0 for r<l (3.1.3.13)

zqresin

“haracteristics of the pseudo period and pseudo amplitude are shown on
d 9;

'he parabolic acceleration method differs from the above method in assum-
-he acceleration has a parabolic variation; thus )QH )@ + kﬁh + k ﬁz
lure of operation is similar to the linear acceleration method except
ore initial condition is required to start with. That is, one needs
ously known steps to carry out a new step. The procedure may be started
the following ways:

.. Use linear acceleration for the starting interval.

>.  Use linear acceleration for a starting interval which is only half

5 the regular interval, then get a special parabolic acceleration in-

£ as long as the regular interval and proceed.



The equations of motion from elementary mechanics are

)}ﬂ = )}/7—/ * ]g(")‘;ﬂ-z 7 ‘9)‘/;7-/ a 5)"n) (5.1.3.1%)
. 2 o os e
Yn = Yot + Yaah * E%("%z-z 1O Yy + 3 )0) (3.1.3.15)

and the differential equation of an oscillatory motion without damping isv;+;fy=a,

The difference equation corresponding to the above equations is
P 24 £ ), - Py e
&*7)}4’1‘2‘(‘2‘24?6%#'#[”‘24'9%% Z ) (%.1.%.16)

The solution of this equation can be expressed in the form of Eq. (2.1.5) which
can also be written as

o= Ap"+ R"(Bcosnp + C sinnp) (%.1.3.17)
where A, B and C are constants determined from initial conditions, p, R ard u are
functions of ph. The value of p 1s small and terms containing it are of less im-
portance than other terms of the expression. R 1s dominant since it is greater
than 1 and of exponential power n as steps of time proceed. Therefore, the pro-
cedure is of a divergent nature and is not desirable over a long lapse of time.
Furtbermore, the criterion of stability ph <:55557758 limits the applicability of
long time intervals. Although the parabolic acceleration method 1s mere accurate
than the linear one as far as the first cycle of oscillation is concerned, the
errors in amplitude enlarge rapidly from the second cycle onward. (See Fig. 10.}
Figs. 11 and 12 show how TS/T and AS/A vary with ph, neglecting the first term of
Eq. (3.1.3.17).

An attempt has been made to improve the accuracy of the linear accelera-
tion method and to lessen the work of computation of the parabolic acceleration
method by applying linear and parabolic accelerations alternately in successive
steps, i.e., using linear acceleration in the first step, parabolic in the second,
Iipear in the third, parabolic in the fourth, and so on. The result, as one may
expect,; turns out to be intermediate between the two methods. The difference

equation for the displacements at an even number of steps in the case of free
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vibration with no damping is written as

4/ w2lz 5 7 e 7 tne, [ 88
Yoo 2(1- L Pt 5 P . 1+ 50 e P +2§9—Pﬁ + 765/04)/ -0 ‘
2(141) (1 2;_/7_2)(/+ lg;ﬁ_z) zn (/+ pC;/,Z)Z(H_ péﬁz)z 2(h-1) (3.1.3.18)

and its solution is 363 ( )‘%
” Phoy, + 12(8-30°H% % )

= A +
Vo = R [y T azle- 729677 1696 P 97 ph " ”#J

(3.1.3.19)

where M = Arcsin ph 9216 = 7296p% + 1696 P°h* - 97 p%°

2304+ (344 p*h? + 388 PPt + 56 phe+ 3p%°
_ z(24 - 41 pPh? + 5 p*H%)
= arccoes .1.%3.20
A 2304 + /344 pPhE + 388 P "+5gp‘/7‘+3p%3 (3.1.5.20)
nS2304 + [344 phP+ 388 PP+ 56 %5+ 30548

and /Q = (8+,bzﬁz/(é +/§2ﬁ2) (3-1‘5"21)

The values of TS/T and AS/A are plotted against ph in Figs. 11 and 12.
It is evident that the propagation of error is divergent. The criterion of stahi-
lity of this alternate linear-parabolic acceleration method for free vibration
without damping is found to be ph = 1.6171 which is quite unfavorable for long

time intervals.

%.1.4 Newmark's B-Method

This 1s a generalization of first degree acceleration methods obtained by

introducing a parameter B into the elementary equations of kinematics. Thus

Voer = Yo+ -g-y,, + zﬁ)'/;m (3.1.4.1)
Ynet = Yn +)Z,ﬁ + ('2"-—/3))'/;;527‘ ﬁ}.;mﬁ/}/z (3.1.4.2;

It is obvious here that this is equivalent to Timoshenko's modified
method when B = 1/4 and to Newmark's linear acceleration method when B = 1/6.
In the case of free vibraticn without damping, the difference equation

of displacements appears as

22
Yowr = (Z-W In *+ Ynet = O (3.1.%.3)



{ifference equation becomes

(%.1.L.5)

/ .
V- (#-B)pH 177 rp
TR ik ) e
2%;42;0 f = ajccos / /{E ﬁfézzf’ (3.1.4.5)

pseudo period with the true period, it can be seen that

ressed in a series form of

3- Y ph? ks (720p°- 120+ 17) P 4~ (3.1.4.6)

1/12, the ratio T_/T will be closest to unity for any
y. This means that B = 1/12 will give the best result in

ed amplitude. is neilther divergent nor convergent as time pro-
some error is involved in the response to an initial velocity.

¢s that the term containing ¥y, does not contain any error In

> one with y, 1s amplified by the factor ,\//_, (_‘i_{,/g)/ozﬁz
endent on P and ph and is free from influence of the proceeding
lustrates the variation of the velocity amplification factor
ryr with ph for different values of .

erion for stability is

ﬁ‘éﬁ? <4 (3.1.4.7)

s condition is always fulfilled for any value of ph and therefore
erion need be imposed. With 6;>l/h, no ph éan possibly satisfy
jith p 1/4, the larger B, the longer the time interval which can
. 0, the critical ph is equal to 2.

verion for convergence is

h & ;f‘/;— (3.1.%.8)

a larger p permits a smaller applicable time interval. For B = 0O
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ocedure immediately converges regardless of the time interval used.
For problems of free vibration with viscous damping, the difference equa-

>f the procedure may be written as
[H /-r,ﬁp‘/r‘))/’”’ (Z /*/P‘ﬁ)%' * (/_ /—;“%T)””/ =9, (3.1.%.9)

solution is
phs P (), o LB [ (B R )
(/h)b/w/.%p/; it 7 (3a4.0)
“ e arcsin ph, [T BT
A dn:.wﬁﬁ (1 P r/:"ﬁ‘
= ArcCoS —m (= (Z-p)PH
VI g - rp7h? (3.1.4.12)

Now the error in period is not only dependent on B and ph, but also on r.

ain, if the ratio T /’I.‘ is expressed in a series form as

B - PhSiTTE

4 /u'(/z/,' t)=4(6B8+1)12 + 81° 12/2
= /+ Ty /b‘% ..... (3.1.4.12)
> will be found that (/.,;. 412 - 3,—4)//2 (/- 2,2) (3.1.4.13)

5 the best value as far as period is concerned.

The error in amplitude is dominated by the exponential factor multiplying
1e whole expression in Eq. (3.1.4.10) particularly after a long sequence of time.
glecting the coefficients which combine with y, and 3"0 in the expression, one

1y compare amplitudes by taking the ratio

A - /- 1ph + /-‘?P’/fz) 2%
(—A—‘-)dt‘pf:/ = ¢ (/-,c-rP/; flgp% (3.1.4.14)

r best agreement in amplitude, /3’ = __—3_—
The criterion for stability is
242 4 (/-r2) 7
phA: L 7= %6 ~ (3.1.4.15)

or r{ 1. Except when B = 1/4, the numerical procedure does not present an agree-

2nt on the criterion of critical damping, greater discrepancy usually occurs for
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arger time intervals. Critical damping may occur in- the numerical procedure even
or low values of r 1if too long-a time interval is taken.

The criterion for convergence is
rph + BPAE S (3.1.4.16)
There is one more restriction of this method in the viscous damping pro-

rph

slem. A degenerate case of the difference equation will occur if /+/6/Dz/72

is equal to +1 or -1. Under this condition the method is not workable. However,

roh
1+ B P°h*

when

/

- 242 — 2/2
.. (PHEEPHE = 14 2pp0
we see that the convergence criterion is violated. On the other hand, when
__rph_
/+ﬁp2ﬁ2

the spring constant is negative.

= -/

The B-method is also applicable to forced vibrations as represented by
Eq. (2.1.1) with good accuracy. The error due to the presence of a forcing
function F(t) may be seen by comparison with the exact particular solution. Now,
‘let §b be the particular solution of the given differential equation of motion,
Eq. (2.1.1), and let ¥p be the corresponding solution obtained by the numerical
procedure. Analysis is made for an undamped system of single mass subject to an
applied force F(t) as follows:

Given the equation of motion

v+ Py = F(t) (3.1.4.17)
the exact solution is . )
)7= (}’o —)/pa)Co:/Df * i/%!—&o-”’?,bf # ); (3,1.4.18)

where ib is the particular solution.
The corresponding difference equation when using the B-method is found

. to be o Az
Jhtr = (2‘ 7%’{7%’)}’” * -1 = /_*éﬁ—P_z—/ﬂ[F{ﬁw)‘(z__ﬁL)F(n)+ F(&-/j (3.1.4.19)
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and its solution is

Yo = A cosnpt Bsmnu + Jp (3.1.4.20)

where Ip is the particular solution of the difference equation and
_ hao 1= (F-B)PH* _ /- Z-R)P
= arcsi BTGP o arcess =00
A= Yo=Y
/ 4
wa B = i+ Blr () Popd )~ (6] A ]
T e )

Comparing Egs. (3.1.4.18) and (3.1.4.20), we see that when h-»0, if y_-» yp, the

p

numerical solution will approach the exact solution. The following comparisons

are made for different kind of forcing functicns:

(a)

The forcing function is a polynomial in time, i.e.

[P ]

,E({-)-_— ao+ al + ﬂz‘l‘zv" astis ----- (3.1.k.21)
3.2 2 5e4.3.2./) a
then i, = P‘{[d‘ 2/a=+ 43/204/ Ae _ 654;‘2 .4+____]
324 S4.32ar 7654324, .
Yy . 7» . a
. [az_ 4P,za4+ 6 5;‘3 a _ 87 61.3‘ 4:3 &f-..-] ¢2
+ _ Sgas, 76-54a 987 é 54 4y 3
oo (3.1.4.22)
_ L[, _2lka, 432 Kas £-54:3-2:/ Ky , .
)/p - PZ{[CZ@ /Oz * /94 pg J
4 [a,_ 3-;2/4% 54 3/0.3&@_ 765 4P§ -2 /@@u-_.jt
4:34ds, 6543 kets 87 6543 Kids 2
+ 3
[QZ pz * /D /D + Jt
+[£3_ 5/402/<,a;+ 76 fbjkza‘ 937@54 KsGs, .. th (3.1.k.23)
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k=1
ke= 1+ (126-1)p%°

= 1+ £ (128 - 1) ph*+ 5pg (36085~ 60p+ | )ph*
ko= 1+ F (128-1)phe g5 (Bop2a0p+1)ph* szl (2obop’ Sorop'szs-1ph’
ke =1+ % (128~ 1)ph* =5 (44405% 140B+ P 3—9725 (209608* 302408 764 p-17)p%*

/ 8/4/? 751814400 % 604800 5B.9203%- (0205 + 1) P

+

From the above we see that the numerical solution is exact for a third

:e polynomial at any value of B, and for a fifth degree polynomial when f =

(p) The forcing function is trigonometric, i.e.

F(t)= Asmal + B cosbl (3.1.4.24)

2 Y= /,/_q i ar + 7?2_5“ cos bt (3.1.4.25)
_ A s al n B cos bt

Je = Z sinfah 2 sinibh (3.1.4.26)

P- (14 cos ah - 2pBsin*ah )h* F- (1# casbh - 28s/m*bh ) h*

(c) Exponential forcing functions, as

F(t)= at : (3.1.k.27)
_ at \
. W = Pz'/' (/qga)z (3.1.4.28)
at
L Jp = P a?-2aF + ] (3.1.4.29)

BA¥[a®+ (f-2)at+1]

In all cases above, when h =0, Xp" &P, and therefore the numerical solu-
n approaches the exact solution as a limit.

The B-method may alsc be applied to other form of motion than the one re-
sented by Eq. (2.1.1). Consider the motion prescribed by the linear differen-

21 equation

y-y=1t (3.1.4.30)
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n of which is known to be

t
to(t+ ) (3.1.%.51)
stant determined from the initial conditionsl\ Applying the B~ -

oproblem, one finds the difference equation of displacement to be

by~ Ao+ 22808+ (=400, = v 224 (- 4808 (3.1.4.32)
11 solution is

2 7
:(/+/7+—§—_%/?;7-) '(Z‘+/) (3.1.4.33)

1 of B for this case is 1/6.

8 of Finite Differences

y's Method
method proposed by Levy replaces the second derivative y, in the equa-

tion by finite differences, jé?(}@+/” 2}% + )%ﬁ) For a free

with no damping prescribed by the given differential equation
Vi 2, =
Jt Py =

(x

/
Yn = F(y"*’ - 2yn * y""’) , one obtains

(2.1.16)

uting

_}/fh‘-/ - (2“ f’ﬁz))/n + Y-t =0

viously identical with Newmark's generalized acceleration method for B=0,

(3.2.1.1)

1t the treatment of initial velocity is different. The general solution

2.1) is
Yy = Acosmu 4 35/&/}« (3.2.1.2)

arcsin phy/)- ﬁ_‘;.é?_’ = arccos (/- P;ﬁz)

B are constants determined from initial conditions, with ph £ 2 as

il

A
(3.2.1.3)

criterion. There is no difficulty in finding A which is always equal

> trouble arises in the determination of B which depends on the
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srpretation of the initial velocity, or in other words, on the way in which 1
obtained from the known values of Yo and 3;'0. When 5*0 = 0, one may assume that
=y_1s then solve simultaneously with Eq. (3.2.1.1) to get ¥y- Otherwise, if
x O, some other assumption must be used.

If one begins with Newmark'’s B-method of B = O for the first step in order

okbtain MR then

: 2 .
yo= (1= B v + b (3.2.1.)
i)d the result will pe the same as Newmark's P-method for g = 0, i.e.,
jo
8 = 7 (3.2.1.5)
P/ - B
If, taking the formula of elementary mechanics
Y= Yot by (3.2.1.6)
e obtain !g + %’17)4:
B = PR (3.2.1.7)
qﬁ-— z

The result is, of course, less accurate.
On taking Y = Yo 7 -2(—7-)6 for the first half time interval

and getting y; from the difference equation of the half time interval
(- )y y=
) (2 4))2_-#)/ =0,ve Obtal{lhz )/a P/7
(1-5E) % + Z X

8= /\//__

This result is generally better than that of Eq. (3.2.1.7).

(3.2.1.8)

On assuming y , = 0 and solving for y.,
-1 1

_ lﬁl)

/ Yo

B = (3.2.1.9)
P z (1= P2y,

This is only true when )/o = /,4//_ szz , and is only used when yo

is uncertain.
. . . . A -
In viscous damping problems, by replacing y, by 27 ( Y Yn-1 and
/
¥y by ;‘2 ( et = & Y Tt Yaet ) in the differential equation of motion,
y + 2tpy + PPy =0, (2.1.13)

one may obtain the difference equation

(/"fpé)%w - [2_/02/72))/” + (/_ ;/p};))/”_/ = 0 (3.2.1.10)
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ch is idential to Eq. (3.1.4.9) for p = 0. The result will be the same as that
Newmark ‘s generalized acceleration method for B = O with exception of: the treat-

t of initial velocity. The discussion is therefore not repeated here.

For comparison of pseudo and true periods and amplitudes of this method,

: Figs. 14 and 15.

2.2 Salvadori‘s Method
This 1s an application of a, procedure due to Fox vibration problems. The

:cond derivative ¥ is replaced by the first two terms of the central difference

(pansion, -
y = Z/'Z'(Az_ 792’)9’ (3.2.2.1)
here &% and A% are the second and fourth central differences of y
452)% = Yup ~ Zyn * Yn-t
Adyn = Ymz = Gyt + @Yn = EYps *F Ypez
Jperating then with (/+ j%f on each term of the equation
y+ py=o
Dropping the sixth-difference terms, the equation may be simplified to
(3.2.2.2)

N (Z’T_’,%Z;_T)Yn * Y = 0

which is obviously the same as Newmark‘s generalized acceleration method for

8= 1/12. .(See Eq. (3.1.k.3).) The solution is in the form
(3.2.2.3)

o = Acosnp + BSinnp

2/ 2
where 7 LA /- a2k
!/ + 72 /+ 7z (3.2.2.4)

i

The constants A and B are determined from the initial conditions. For free vibra-

tions, A 1s always equal to y,, while B depends on the way in which y, s obtained

from the initial velocity F,-
If the procedure is started with Newmark's B-method for B = 1/12 until yq



is obtained, that 1is if

ey (G T il (5-2.

the result will be the same as that given by Newmark's B-method for B = 1/12.

_ Yo
B = P\ﬂ" /2%/,_1 (3.2

If we take the formula of elementary mechanics

Y, = Yot hYe s (5.2.

242 s 4
(1+ BL) 2+ L

then B = /\//— ‘%ﬁ_’z (3.2

which involves more error than the previous result. However, the accuracy of

velocity response can be improved if the initial velocity is properly treated.

In the case of forced vibrations with a forcing function F(t), the

difference equation of Salvadori‘s method becomes
z/ra /72
el -(2-— I+ 772-552)% * oo =/2(/¢ P/LZZ’) {Fﬂ;m)"' 10F(t,)+ F(th-/)} (5.2

which is again the same as Newmark's method for B = 1/12. (See Eq. 3.1.k.19)

29.

2.5)

.2.6)

2.7)

.2.8)

the

.2.9)

-)

This method is accurate to the order of h5 provided that the motion starts from

rest. If the motion begins with a finite velocity, the treatment of the initial

velocity for the difference equation determines the accuracy. The discussion

of

this method is included in Newmark's method in previous and later chapters, and

is not restated here.

Salvadori treats the damped motion problem in the same way as Levy does

by transforming the damped motion equation into an algebraic equation by the

substitution of central averaged differences for the derivatives. The difference

equation thus formed is

(/+rp/7)y,,,‘, - (2-p%y, + (1- rph) Yny = 0 _ (3.2.2.10)

which is the same as Eq. (3.2.1.9). There is a difference in procedure when

applied to a multi-degree-of-freedom structure but it does not affect the nature

of the errors.
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%3 Houbolt's Method

Houbolt’s method is based on the assumption of a cubic curve for the dis-
rement of the moving body, considering that four successive ordinates can be
sed through by a cubuc curve. With this assumption the following difference
ations for the final derivative may be obtained.

Y = 7,/'2' (230 = S¥oes #+ 4 Ynz = Yo-3) (3.2.3.1)
ZZ/;(//)/,, - 18 Yyt + 9 Y-z - 2)’0-3) (3.2.3.2)

The derivatives at the third of the four ordinates are sometimes of use

S
1]

4 are as follows:

Jn = ?,/'z[}’m - Zynt Vn-/) (3.2.3.3)
Yo = Za (2sme + 3y = byn * yn-z) (3.2.5.4)

For free vibration without damping, substitute Eq. (3.2.3.1) into the

(ifferential equation of motion

Yyt ,Dz}’ =0 (2.1.16)
The following difference equation is obtained.
(2¢4p%%) vy = Sy + 4 Y-z = Yoz = 0 (3.2.3.5)

its solution is

Y = X+ c2 " + C3 X{7 (3.2.3.6)
where X5 Xp, and Xz are the roots of the equation

(2+phY) x* -~ Sx2 + 4x =/ =0 (3.2.3.7)
Tt car be shown by the theory of equations that this equation contains one real
root and two conjugate complex roots for any value of ph. Therefore the solution
ﬁas always an oscillating nature and no criterion of stability governs the choice
of the time interval, although the amplitude may be damped out very rapidly as
time proceeds (see Fig. 18). Eq. (3.2.3.6) may also be written in the form

Yy = Ae Pty e~ (8 coscpt + C sinept) (3.2.3.8)
where a, b, and ¢ are all functions of ph. Here A, B and C are constants deter-

mined from the initial conditions. The first term of the equation is negligibly
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PPt ;s Gominant. Table (3.2.3.1) lists

small while the second term multiplied by e~
the numerical values of a, b and ¢ for varicus ph, Fig. 19 shows the ratio of
pseudo period to true period TS/T, and Fig. 20 shows the ratio of amplitudes AS/A°

The disadvantages of this method are two-fold. First, it needs one more
initial condition to start with. Although this can be found by taking account of
the initial acceleration it also involves effort to trace the back differences
including the simultaneous solution of equations Egs. (3.2.3.1) to (3.2.3.4). If
the initial conditions are awkwardly treated, e.g. by making the sssumption that
the fictitious displacements at t = -h and t = -2h are zero, the error introduced
by these erroneous assumptions would be greater than that of the method itself.
The step-by-step evaluation of succeeding displacements cannot proceed in a .
straightforward manner until three initial displacements have been established.
Secondly, the amplitude of & slightly damped system decreases so rapidly even for
a time interval of about one-sixth of the natural period, that the amplitude is
reduced 50 percent after one and one-half cycles of vibration. (See Fig. 18.)
Finer time intervals and thus more computational effort must be used to reduce
the damping effect of the procedure.

For free vibration with viscous damping, the difference equation of this
method becomes

(24 4eph+ PRy = (546108 )y # (44 310 o= (1= £1PH hs =0 (5.2.5.9)

The solution is in the form of Eq. (3.2.3.8) with a, b, and ¢ functions

of r and ph. The criterion for stability becomes
4(1-13)-24 1(1-r2ph + T-48 % F o)t ar(-5r8p%+ [2rip®h* > o (3.2.3.10)

Values of a, b and ¢ are listed in Table 3.2.3.1 for various ph. The ratios of
TE/T and AS/A are also plotted against ph in Figs. 19 and 20. It can be seen
that the error in period increases with time interval h and the damping factor r.

The amplitude ratio is less than 1 for systems with slight damping and greater

than 1 for system with higher damping factor r.
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2.3.1 =-- Values of a, b and ¢ of Eq.(3.2.3.8).
;_pg_x_ a b c

0.5 1.5587 0.0318 0.9208

1.0 0.9024 0.0981 0.8016

1.5 0.6724 0.1461 0.6940

2.0 0,540k 0.1733 0.6047

2.5 0.4706 0.1868 0.5%25

3.0 0.41h9 0.1922 0.4740

2.25 0.5 1.4176 0.207k 0.8808

1.0 0.8185 0.1963 0-.7357

1.5 0.6108 0.1959 0.6213

2.0 0.4987 0.1941 0.5350

2.5 0.4262 0.1882 0.4687

3.0 0.3746 0.1820 0.4165

0.50 0.5 1.2436 0.3766 0.8312

1.0 0.7304 0.2787 0.683%6

1.5 0.5528 0.2371 0.5694

2.0 0.4547 0.2122 0.4871

2.5 0.3%900 0.1942 0.4258

3.0 0.3435 0.1799 0.3785

= 0.75 0.5 1.0018 0.5638 0.7848

‘ 1.0 0.6349 0.354k 0.6439

1.5 0.4960 0.2739 0.5307

2.0 0.4k1k42 0.2302 0.4519

2.5 0.3584 0.2019 0.3945

3.0 0.3173 0.1815 0.3507

Numerical Solution of Differentlial Equations

.1 Euler's and Modified FEuler Method

Euler's approximation is based on the assumption that if y is expressed
. function of x by the equation % = 7[("')’) , the increment ix; y corre~
1 ding to an increment, A x, in x is given approximate;l.y by the equation
= F(x, y)ax , the value of f(x,y) being that at the beginning of
interval Ax. Applied to the problem of free vibration, with damping,
rned by the differential equation y + 2 f',D); + ,Dz)/ = 0, the formulas for new
slacement and velocity at end of a time interval are found to be

Y=t b Yo (3.3.1.1)
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and y = (I- 2rph) Yo - phye (3.3.1.2)
When this procedure is carried on in a step-by-step manner, using the displacement
and velocity found from the previous time interval as the initial condition of the
new time interval, the difference equation becomes

Yowr = 2(1=10) 0 # (1= 2rph + PHY) Yy = © (3.3.1.3)

The solution of this equation is

Yo
rVo + = . ‘
Y = Q”(yo CoSrp + 7}_:,%‘5//7%) (3.3.1.4)
here
wher R = \//—ZF/D/7 +/D%z (3.3.1.5)

M = aresin phIm 1 W = dfécaf—/:g— (3.3.1.6)

and

The error is of the second order and the amplitude damps out gradually
with time. There is no limiting criterion for stability in case of free vibration
with no damping. Any time interval will obtain oscillatory response. For free
vibrations with damping, the criterion for critical damping is the same in the
numerical solution as in exact solution, i.e. aperiodic motion at critical damping
occurs when r = 1.

Figs. 21 and 22 show the errors in period and amplitude at pt = 1 for
various ph.

The modified method of Euler takes the true average value of dy/dx over
an interval instead of dy/dx at the beginning of the interval for the equation
% = f‘( X,y ) . This method gives a more accurate value of the increment of
y due to increment of x than Euler's original method and the error is of third

order of (Ax)5° This method may be represented by the formula
A / 7
Ay = 3 (a7+ &%) | (3.3.1.7)

f()(a, )’a)A'X
F(Xo+ax, yotsy)dx

where A7

A//

When applied to the problem of free vibration with damping, the displacement and
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velocity at the end of an interval now become

s = (1- '07%2))’0 + (1= ’Pﬁ)/’};ﬂ (3.3.1.8)
Yonr = [1-2rph - ($-202)p%2] iy + (1 +005)5%h (3.5.1.9)

This procedure may be represented by the difference equation
Yo - z_‘/}—rpé- @‘-r‘/p’/;f] Yot [/—Z/pb +2ffp‘/7’-f,0%3*2/'/9‘/77)¢;-/ =0 (3.%.1.10)

the solution of which is found to be ,

Yo
Yo = R ys cosrp +

rYe * "B

s R
AVi-r2 /M) (3.3.1.11)

vhere R = n//-2rph+ 2r0%h* - t phi+ £ p*h* (3.3.1.12)
M = arcsin PA(/'pr)’V =17 rccos /“fﬁ/i—(éz—fz)/"%z

(3.3.1.13)

Again, there is no limiting criterion for stability in the case of free
vibration without damping, but the amplitude of vibration seems to damp out
gradually if the range is caz:ried too far. In damped vibration problems, the
numerical method has the same criterion for critical damping as the exact solutioxi,

Figs. 23 and 24 show the errors in period and amplitude for various ph

of this method.

3.3.2 Runge, Heun and Kutta's Third Order Rule

Various formulas have been devised for numerical integration of the
)
differentiael equation 74{(- = f(zz)’) by Runge, Heun and Kutta. These methods,
accurste to the third order of Ax, are summarized as follows:

1. Runge's Original Formula:
74 i’
Ay = 2”4 3"‘{—2"(A’+ 4") - A’”} (3.3.2.1)

where A = ]K[x/ y)ax
o = f(x+ax, yra') ax
/_\///=

Flx+ax, yta”)ax
K= £ (x+58%, Y+ 35 ) -ax
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2. Heun:
Ay = é(d/f'_-?df//)
where A= ][(x,y)-AX
&= f(x+FAX, y+Fa’) sx
A"z f(x+ Zax, y+547) 8%

(3.3.2.2)

3. Kutta's Third Order Rule:
/ ” ”w
by = Z(A/—4A + 4 (3.3.2.3)

where Al = f(X,)/) Al 1
A= f(x+FA%, yt54/) Ax
A = ]f(’x'+-zsx, )V'+ 24%- A<)‘¢4X
All these formulas when applied to free vibrations with or without damp-
ing yield the same results. When applied to forced vibrations, their results have
slight discrepancies but all contain errors of the fourth order. It is hard to
say which of the above formulas is best because the agreement with the exact solu-
tion depends on the type of forcing function, damping coefficient and time interval
in a very complicated manner.
Considering the free vibration problem with damping, the following
discussion is common to all three of the metheds above mentioned.

The displacement and velocity at end of a time interval are found to be

= (1- PR PRy # [1-rph- £ (1-ar)p*h*] by, (3.3.2.4)
Yi=[l-tph=2-4r PR Ayt [1-2rph-f-ar phe Srl-20 7 (5 525

These equations, if applied successively by using the final value of previous

step as the initial value of the new step, lead to the difference equation
Yo = [2-200h-(1-202)ph2 1 £ (3-2r9p7*] 1,
343 L/ Y i 6 -
#[1-zrph + 210 = rioth- L (-8 gt £ P s Py, = 0

(3.3.2.6)
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The solution of this equation is

n ,)/g + _)_{;' ,
o= R sy costpi# i o) (5.5.2.7)
T R =a/1-20ph + 210l & PRS- 81 ) £ H P
ph [1-rph - £(1-4r90%4/1=12] (3.3.2.8)
R
[~ 1ph - (-2 )pth? + £ (B-4r)p %
R

M= &bﬂ::&&?

= arcces

(3.3.2.9)
As before, these methods have no limiting criteria of time interval for
stability in problems of free vibration without damping, nor there is any dis-

crepancy in the damping coefficient r at the point of critical damping.

3.3.3 Kutta’s Fourth Order Rules

The formulas with error of order (gﬁx)5 derived by Kutta are:

1. Kutta's Simpsonis Rule

Vi

dy =g (a*25"+24"+ 4 (3.3.3.1)
where A = jf(xa,/o)'ax

&’z f (X%t F8X, Yot &) AX

Z«”= j[ (7Q1‘éudX, }Q+—E?£y7 A

A" f (Xt X, Yot A7) AX

2. Kutta's Three-eighthRule

Ay = g(a'+ 38"+ 32"+ a”) (3.5.5.2)
where A" = f(%,)é)'dx

A7z F(xo+$ox, yo+ $87) ax

&= £ (xotFax, Yot s"-F&) 2%

A////___ f(X¢+AX/ )/,,+A//’-'A//+ A/)'AX

No difference in results between these two rules occurs when applied to

free vibration problems. For forced vibrations the results will differ slightly

but both are of the same order of error. The agreement with the exact solution
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varies with r, ph and t.

The displacement and velocity at end of a time interval in the problem
of free vibration with damping are found by either of the two rules to be
Yo = [1-2pH F1P0° S (1-4r2 )% ]y,
+[1-rph=4(-4rp%*+ £ (1-2r2 )P’ ] by (3.3-3.3)
Vi = [-1+1ph + F0-2r2)ph7- £ (1-2r2) PR | pHhy,
*[1-20ph- (- arPphs Y (-2rt)ph’s 5o (1- 120 6rIpY] ) (3.5.5.1)
This may be put in difference egquation form for the step-by-step method, as follows
oz-2iph- (- 2eps o ar PP -3 80K
+ [/—erm 2rsz/)2-§/fb%  Zriph” ’ 5 (1-4r)p%*

S
77 (1-6ridpthi= 5P + g7 p%° | ohy = © (3.3.3.5)
The solution is found to be .
. %

"y, .
Yy = A?"(i}éCoJ{yu + :;;77ff7§2=‘iﬁﬂlﬂﬁ‘) (3.3.3.6)

where k = [/__ Z/-Pﬁ + Z,ZPZAZ_ ?,—;’P3/§3+3€/«4P414¢
t (- 4r)p% - (- éf’)P‘/v‘—rﬁr,o’A’,«_;%p%*‘]? S
M = dresin phii-rph i(/-4fz)/éz52+z(,-2,2)/b-%sj4//f;z‘
- arccos =10~ 'Z‘Aﬂ‘Z’Z)P%Z"£%4f‘9ﬁ%j+zéﬂ-5rz+ﬂ/‘9ﬁ'/§"
(3.3.3.8]

Like all other methods of this kind, the fourth order rules have no
limiting criteria for stability. Any time interval can be used according to the
éccuracy desired. When the system reaches its critical damping, i.e., r = 1, the
numerical solution becomes aperiodic. A difficulty associated with the method is
that the amplitude will gradually damp itself out even in the case of an undamped

system, and the method is therefore not desirable for a lon eriod of time.
¥ 3 g D
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IV. DISCUSSION

4.1 Accuracy

It is usually convenient to compare the accuracy of various methods by
the order of time interval h involved in the error produced. The flnal displace-
ment over a time range computed by numerical methods can be expanded into a
volyncmial of ph and then compared term by term with a standard power series
derived from the exact solution. The error occurring in each step of the step-by-
ster method may thus be observed, especially as to the order of ph involved.
Considering first the case of free vibration, with damping, which 1s governed by
the Gifferential equation

J+ 2pytply =0 (2.1.3)

its solution

S
)/ = 6")01‘()/0 COS/\//:FP{-+ rya/ﬁ‘ﬂ'ﬂq //—f"lbt-) (2°—1—°)+)

may be expressed in a power series for a time interval h
S = S [1- 4P 5 PH+ 55 (1= 410D = 55 (1-209)pR% -]
* );n/z[/—r,ob— £ -4r3)phs 0-28)0% thg (11214 160 )t (4 1 1)

The following is a collection of equations which show the accuracy of
different numerical methods:

Constant acceleration method:
S = [1-46% ] + [ 1= rph] by, (3.1.1.13)
Newmark ‘s B-method:
Doy = [1-£0H0e 28107 £ (417 8 )t
# 3(48r-pr- 48 )pH - 4 (@artpr 4g7r 4 -y,
+ [1-rph+ (48r% 8 )P~ 4 (18- 218) ph° (h.1.2)
+ (4r"-/5- 2t% - 4f}s’z+,€’);%‘+ ----]Av'

:vj/]



eration methods have, respectively, an accuracy of the order of h2, h

For B = 1/4 (Timoshenko's modified method.)
Yoer = [1= 2P0+ 5 PR Ty # [1-0ph= (=ar2)pthPe )by,

For B8 = 1/6 (Linear acceleration method.)

)/n,«.] = [/" ép242+§£'P3/73+ 7‘%(/_4_,‘2)/04 4+ _...J'yﬂ

+ (1= rph = 4 (1-ari)phi+ & (z-r¥)phis - 1 4y, (4.1.

For B = 1/12 (Salvadori's method.)
S = [1- £pH2 s § P 5 (1- 211 % (- 3’2/’%;7"“]%
+ [1-rph-Fl1- 4r3)p#his - T3 (%
For B = 0 (Levy's method.)
S = [1=2p3] y, + (1= 04 by (s
Parabolic acceleration method:
St = [1- 24 FPH ¢ S (1-ar)phts 77-2’—5(553—/92@,0‘#; )
+ [1-rph- F-ar)ph' s £(- 2/’)/93/73-7% (716121 961* )/;4 “eeJhy &
Houbolt's method:
oo = - tee £ a5 ]
+ [1-roh - £(1-arph* + 5 (- 22)p%h3+ -  hys (4
Euler's method:
Iret Z Yo+ By (3.3
Modified Euler Method:
o = (1= B )+ (- wh)hy, (3.3
Runge, Heun and Kutta's third order rule:
Joat = (1= 2P £y v [1- 1ph= g (= 40P [y (3.3.
Kutta's method:
oo = (1~ 500 5 (-2
t [1-rph - F0-arip¥h+ L (- 2r)pH | by, (3.3

29.

1.3)

.1.5)

.1.6)

A1.7)

.1.8)

.1.1)

.1.6)

2.4)

3.3)

From the above listings of equations for varous methods, one may observe

1. The constant acceleration, linear acceleration and parabolic accel-

3 and hu

both displacement and velocity. The accuracy of Newmark's B-method depends on

in
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the choice of B.

2. Levy's and Houbolt'’s methods have, respectively, an accuracy of the
crder of h2 and h5 in both displacement and velocity responses.

3. BSalvadori's method is of order h5 only in displacement response and
only for undamped systems. If r and &o are not zero, this method is only of h2
sccuracy unless a good interpretation of &O is made.

4. EBuler’s method is of the first order; modified Euler method, second
order; Runge and Heun, third order; and Kutta's Simpson's rule or three-eighth
riylz, fourth order generally.

In some special cases the accuracy of the above methods may be pro-

Al

moted one more order. These will be listed in Chapter 5.

In the case of forced vibrations, the error which enters the particular
solution also governs the accuracy of the method since it determines the constants
for the initial conditions. As before, Newmark's linear acceleration method is of
third order accuracy for any system with or without damping. For an undamped
system starting at rest, Salvadori's method has an accuracy of fifth order. Euler'
modified Fuler, Runge-Heun and Kutta's methods are still of first, second, third
apd fourth crder respectively.

The comparison of errors by polynomials i1s only good for ph less than 1,
Lecause the error would otherwise be dominated by the higher powers of ph which
weuld vitiate the analysis. Nevertheless, usual practice indicates that a large
time interval, say from 1/4 to 1/2 of the natural periocd of vibration (ph=1.5708

to 3.1416) is highly desirable in rapid and rough estimations. The effect of

large time intervals is shown in the graphs of Appendix 3.

4.2 Propagation of Errors

The preceding article concerns the accuracy of displacement response of

various methods in one single step of operation, the error indicated in the
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expanded poilynomial being compared with a common initial condition. 3But if step-
hy-step evaluaticns are set up, with a common initial condition for the first step,
the initial condition of the second step will cantain error which is different in
various methods. After a chain of steps i1s completed, the error propagates in
different ways, divergent or convergent, accumulating or self-eliminating, as a
Function cf +ime, length of time interval, natural frequency and damping factor.

Showm in previcus chapters are the equations for y, and in Arpendix 3
are graphs of TS/T and AS/A for various methods. These may serve for an estimate
of the vrcpagation of errors.

Errors are of two fundamental types, error in pericd and error in ampli-
tude. The srror in pericd or in frequency is solely due to the discrepancy in
phase angle which is directly proportional to the lapse of time. The error in
amplitude, on the other hand, chiefly depending on the factor R" in the equations

LT

of y, . is an expcneatial function of time. From the equations for y, derived and

listed in Chaypter 3, it is evident that the condition for no error in period is

s

h = u and that for no divergent error in amplitude is ReTPH - 1. a1l pseudo

9]

eriods and pseudo amplitudes have been compared with true periods ard true ampli-

e

tudes in the preceding chapter. The ratio of periods is given by the relation
o pha/1=7%

7 =

ard the ampliitudes by AS/AC There are two ways of comparing the amplitudes. The

4.2.1)

firet one concerns the ordinate of the envelope which prescribes the periodic

response, while the second way takes account of the peak amplitude in the first
£ S

cycle of vibration, subject tc a certain initial velocity.

In the first way of comparison, one finds that

As _ _R7
_Ai = 2t (k.2.2)

neglecting the magnifying effect of initial velocity in some cases.

L.

Since the ratio of amplitudes 1is not constant with time, it is reasonable



tc compare the methods at a certain designated time, say, at t = l/p, i.e. pt = 1.

Then

” (%—)pﬁ/ = R7. ¢! (h.2.3)

Note that the ratio AS/A at pt=1 here does not mean the comparison made
with the pseudo amplitude actually computed which is not only affected by the
factor R, but also usually by the change in velocity response. The velccity re-
svonse depends on ph as stated in Art. 3.1.4k, and sometimes on the initial
displacement as in Eq. {3.1.3.18). However, when the time interval is not closs
tc the criterion of stability, this error in amplitude due to initial velocity
response is of a constant nature, doing much less harm than the exponential
factor R after a considerable lapse of time, and is not taken into consideration.
Therefore the ratic AS/A for the envelopes of the periodic curves is still useful
Tor Judging the convergence and divergence of errors.

Newmark's B-method for all values of B from O to l/h, together with
Timoshenko's modified, Newmark's linear acceleration, Levy's and Salvadori's
metheds, have AS/A = 1 in free vibration of an undamped system. Coustant and

aranolic acceleration methods are the ones which have divergeng amplitudes while

3

i3

the others, including Houboltis, Euler's, modified Euler, Runge's, Heun‘s and
¥utta's methods, have convergent amplitude although the rapidity of divergence or
convergence 1s different.

The presence cf damping may add complication to the analysis. Plottings
of AS/A at pt = 1 shown in Appendix 3% are self-explanatory. The relation bLetwesn
AS/A at any time and Ag/A at pt = 1 is shown in Fig. 29.

In the second method of comparison, peak amplitudes in the first cycle
of vibration due to an initial velocity yo = p are compared and shown in Aprendix
3. This comparisorn may be of more interest in practical problems of vibratioa
since it gives actual amplitudes of periodic motion. The magnifying effect on

the sine term of the general equation is generally taken into consideration except
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in the parabolic acceleration method and Houbolt's method where the magnification
factor depends also on the treatment of initial conditions. Note that the magni-
tude of the peak amplitude does not depend only on the value of R, but alsc on the
error in period as well.

Error in period is, as a rule, constant for a given ph. Generally
speaking, the ratiorTS/T increases or decreases with the broadening of time inter-
val, Ts/T,> 1l indicates a larger pseudo period or a retardation of phase angle

and vice versa.

4.3 Stability and Convergence

The applicability of different available techniques places some limita-
tions on the time interval used, not only as regards accuracy, but also as regards
stability and convergence. All acceleration methods have a limiting criterion of
convergence because of their iterative procedure. All acceleration methods,
except Timoshenko's modified method, also have a limiting criterion of stability
beyond which aperiodic response will occur. This has been discussed in Art. 3.1.L.
(See Eq. (3.1.4.7) and (3.1.4.8).) Larger values of B provide a wider range of
time Interval for stability, but a shorter range for convergence. On the other
hand, when B = 0O, freedom from the convergence criterion is obtained at the loss
of range for stability. The presence of damping will also affect both criteria;
the greater the damping factor r, the shorter the range of time interval availahble.

The difference equation methods have generally no limiting criterion
for convergence because of the nature of the procedure. However, a criterion for
stabllity still governs those techniques which have been discussed in previous
chapters. Levy's and Salvadori's methods have the same criterion for stability
as that of Newmark's B-method when B = O and B = 1/12 respectively. The
Houbolt method criterion for stability has been given in Eq. (3.2.3.10).

The methods of numerical integration described in Art. 3.3 have the
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avoiding limiting criteria both of stability and convergence. The
e Interval may therefore be made according to the accuracy desired.
visable to use any time interval greater than l/p, that is, ph :> 1,
ry misleading results may be obtained because of the fact that higher
n will dominate the solution.
he criterion of critical damping in the éxact solution is r = 1, while
of the numerical solutions have the same criterion. Those which have
terion of critical damping are: Timoshenko's modified method or Newmarks
for B = 1/4, Buler's method, modified Euler method, Runge's, Heun's and
ethods. In most of other methods critical damping otcurs even when r<:l.
ar acceleration method, Salvadori's method, Levy's method and Newmark's
L (with the exception of B = 1/4) are all of this group. The criterion of
stant acceleration method may be higher or lower than the actual criterion,
g on the product of the natural frequency of the structure and the time
21l used. Houbolt's method generally exhibits periodic response for all
of r and ph except in some cases when r is greater than 0.94 and ph very
Fig. 30 illustrates the criteria of critical damping for various techni-
The region above a curve is that of aperiodic response, while the region

5, curve 1is that of periodic response.

rocedures of Operation

Acceleration methods require an iterative procedure starting from an
1 value of acceleration and arriving at a derived acceleration by use of
nations of motion until a close agreement 1s obtained between the assumed
rived values. With a proper choice of time interval, three of four trials
ch interval of time will usually be sufficient to reach convergence in a
legree~of -freedom system. The time consumed in completing a step by an

lc desk computer is about nine minutes for a two-degree-of-freedom system
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senty minutes for a five-degree-of-freedom one after the equations are
a routine form is made. The result of each step is self-checking except
cilal case of B = O in Newmark's B-method. Both displacement and velocity

as a supplementary help for glving a clearer picture of motion and for

Difference equation methods are faster because displacements are directly
from the difference equations and no extra work to obtain velocities is
However, they suffer from the absence of self-checking procedures unless

tional device is provided. For problems of multi-degree-of-freedom systems,
suggested a recurrence-matrix solutlon in which the equations of motion
ressed in a recurrence matrix equation and solved by inverting the matrix.
orl expressed the equations of motion for every three adjacent masses so
sach equation contains only three unknowns and may be solved by relaxation,
. and error, or successive approximations. The evaluation of displacements
six significant figures for a five-degree-of-freedom took approximately ten
.es after the computations had been standardized.(6)
Runge ‘s and Kutta's methods are the most time-consuming as far as the
f an electric desk computing machine is concerned. It takes more than thirty
es to complete a step by Kutta's fourth order formula for a two-degree-of -
lom system. Furthermore, since there is no self-checking of calculations,

kes may easily be introduced into the computations due to the intricate work

~oss-substitution in the procedure.
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V. CONCLUSIONS

The general results of this study are tabulated on the next page (Table
in which the advantages and disadvantages of each of the avallable techniques

.isted. Graphs showing the errors in period and amplitude for a range of time

rval from O to about half of the natural period in various methods are given

he end of this dissertation. It is therefore possible to choose & suitable

nigue for a specific problem according to the accuracy and amount of work re-

red. In general, the larger the time interval, the cruder the results. Values

ph less than 1 always give reliable results for all techniques, but variations

1 be great when ph;>l, and these graphs may be found useful for Jjudgement when

ing large intervals.

In orddnary problems of vibratory motion, Newmark's p-method is most

Juable because of its flexibility in application. The choice of time interval

y be made for the desired rate of convergence and accuracy by adjustment of the

- parameter. The linear acceleration method, a special case of the B-method for

1/6, is most consistent in degree of error when the motion is that of forced

bration with damping, with initial displacement and velocity. Timoshenko's .

thod is best applied to an undamped system when the response in amplitude is

portant. The constant acceleration method and Euler's method are not advisable

ing to their inacouracy. If the masses in motion are not damped and have no

itial velocity, Salvadori's method is most rapid and accurate. For rapid and
ss accurate work, Levy'’s method may prove useful, but care should be taken in

e treatment of initial velocity. ZRunge and Kutta's methods are noted for their

curacy.and generality in application, having no restrictions with respect to
ability and convergence, but they are handicapped by the tedious procedure which

. not generally desirable for use as an ordinary engineering design technigue.
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Table 5.1 -- Summarized Result of Analysis
Order of Accuracy »
Ttem Techniques Displace- Velocity Forced  Amplitude
No. ment Vibra-  when r=0
Response  Response tion
1. Constant Acceleration 2nd 2nd divergent
2. Timo. Mod. Accel. 2nd 2nd 2nd constant
Newmark B = 1/4 (3rd when (3rd when (3rd when
I‘:O) I‘:l/2)I‘=O)
3. Linear Acceleration 3rd 3rd 3rd constant
Newmark B = 1/6 (4th when (4th when
r=1/2) r=0)
L, Parabolic Acceleration Lth Lth Lth divergent
5. Newmark's B-method Depends on B constant
6. Levy 2nd 2nd 2nd constant
Newmark B = O (3rd when (3rd when (3rd when
r=0) r=1/2) r=0)
7. Salvadori 2nd 2nd 2nd constant
Newmark 8 = 1/12 (5th when (3rd when (5th when
r = 0) r=1/2) 1 =0)
8. Houbolt 3rd 3rd 3rd conv.
(4th when (L4th when
r=1/2) r=0)
9. Euler 1st 1st 1st conv.
(2nd when
r = 0)
10. Modified Euler 2nd 2nd 2nd conv.
(3rd when
I‘=O)
11. Runge, Heun 3rd 3rd 3rd conv.
(4th when
r = 0)
12. Kutta 4th Order Lth bth Lth conv.
(5th when




Table 5.1 -- Summarized Result of Analysis. (Concluded)

Item .Ctiterion of Criterion of Self- Time
No. Stability Convergence Check~ Consump-
ing tion
1. Eq. (3.1.1.13) no no less
2. no rp/wip%’ </ yes fair
L n2l2
3. Eq. (3.1.3.13) wphrzphi</ yes fair
b, ph<3.357758 ph<2.828427  yes more
for r =0 forr =0
5. Eq. (3.1.4.15) Eq. (3.1.4.16) yes fair
6. PA<4(/-/'2) no no less
7. p/? <6(1- /2) no no less’
8. Eq. (3.2.3.10) no no Tair
9. no no o less
10. no no no fair
11. no no no more

12. no no no more
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APPENDIX 1. - - NOMENCLATURE

The letter symbols and notations used in this thesis are defined as

follows except otherwise noted.

A = amplitude of the moving mass.

Ag = pseudo amplitude obtained by numerical method.

A, B, C, = constants determined from initial conditions.

a, b, ¢, = coefficients used in equations.

e = 2.718.... base of 'natural’ logarithms

F = forcing function.

h = time intervals.

k = constants.

n = number of time Intervals taken in the step-by-step evaluation, or
subscript to designate displacement function at a particular time,
as Yo, ¥ OF yo, N

P = circular frequency of natural vibration.

r = factor of viscous damping in terms of p.

T = natural period of a general system, in genmeral T = 2x/p.

T = pseudo pe:siod of vibration obtained by numerical method.

t = time.

tn = time corresponding to end of nth time interval.

X = variable in general equations.

y = displacement of mass

¥ = first derivative of displacement with respect to time, i.e. velocity
of mass.

g = second derivative of displacement with respect to time, i.e. accelera-
ticn of mass.

y = exact solution of differential equation.

v, = vparticular solution of difference equation for numerical methods.
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- - NOMENCLATURE (Concluded)

exact particular solution of differential eguation.

coefficient measuring proportion of acceleration at end of interval #n
determination of displacement.

phase angle at end of the first time interval obtained by numerical
solution.
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