
1

Programming with MATLAB
By Gilberto E. Urroz, August 2002

What is programming?

Programming the computer is the art of producing code in a standard computer
language, such as Fortran, BASIC, Java, etc., to control the computer for calculations,
data processing, or controlling a process. For details on programming structures, use
of flowcharts and pseudo code, and some simple coding in MATLAB, Scilab, and Visual
Basic, see the document entitled Programming the Computer (updated August 2004).

What do I need to program the computer?

To type code you need an editor, which is simply a program where you can edit text
files. Modern programming environments such as Matlab, Scilab, or Visual Basic include
an editor for typing code.

Once the code is typed and the corresponding file saved, you need to have either a
compiler (as in the case of Fortran) or an interpreter as in the case of Visual Basic
(although, compilation is also allowed). A compiler translates the contents of a
program’s code into machine language, thus making the operation of the program
faster than interpreting it. An interpreter collects as much code as necessary to
activate an operation and performs that portion of the code before seeking additional
code in the source file.

MATLAB programs are called also functions. MATLAB functions are available within the
MATLAB environment as soon as you invoke the name of a function, but cannot be run
separated from the MATLAB environment as are Visual Basic compiled programs.

To produce code that works, you need, of course, to know the basic language syntax.
If using MATLAB, you need to be familiar with its basic programming commands, and
have some knowledge of its elementary functions. You also need to have some
knowledge of basic program structures (if … else … end, for … end, while …
end, switch … select, etc.), of string manipulation, and input and output.
Knowledge of matrix operations within Matlab is imperative since the numerical
operation of the software is based on matrix manipulation.

Scripts and functions

For details on the differences between scripts and functions in MATLAB see 2 – Matlab
Programming, IO, and Strings. Both scripts and functions are stored as so-called m
files in Matlab. A script is a series of interactive MATLAB commands listed together in
an m file. Scripts are not programs properly. MATLAB functions, on the other hand,
are self-contained programs that require arguments (input variables) and, many a time,
an assignment to output variables. Some MATLAB functions can be called from other
MATLAB functions (thus acting like subroutine or function subprograms in Fortran, or
Sub or Function procedures in Visual Basic). To call a function, we use the name of the
function followed by either an empty set of parentheses or parentheses containing the
function arguments in the proper order. The function call can be done with or without
assignment. Some examples of user-defined functions (as opposite to those pre-
programmed functions such as sin, exp) are presented in this document.

2

Examples of simple MATLAB functions

Herein we present an example of a simple function that calculates the area of a
trapezoidal cross-section in an open channel, given the bottom width, b, the side slope
z, and the flow depth y (see the figure below).

+

b

Y1

z

T rapezoidal cross-section

function [A] = Area(b,y,z)
%|---|
%| Calculation of the area of a trapezoidal |
%| open-channel cross-section. |
%| |
%| Variables used: |
%| =============== |
%| b = bottom width (L) |
%| y = flow depth (L) |
%| z = side slope (zH:1V, dimensionless) |
%| A = area (L*L, optional in lhs) |
%|---|
A = (b+z*y)*y;

The file function turns out to have 13 lines, however, it contains only one operational
statement, A = (b+z*y)*y. The remaining 12 lines are a fancy set of comments
describing the function. A function like this could be easily defined as a MATLAB inline
function through the command inline, e.g.,

Area = inline('(b+z*y)*y','b','y','z')

Use inline functions only for relatively simple expressions, such as the case of function
Area, shown above. An example of application of the function Area is shown next:

» b = 2; z = 1.5; y = 0.75; A = Area(b,y,z)

A =

 2.3438

If the inputs to the function will be vectors and you expect the function to return a
vector of values, make sure that operations such as multiplication and division are
term-by-term operations (.*, ./), e.g.,

Area = inline('(b+z.*y).*y','b','y','z')

3

An application of this function with vector arguments is shown next:

» b = [1, 2, 3]; z = [0.5, 1.0, 1.5]; y = [0.25, 0.50, 0.75];
» A = Area(b,y,z)

A =

 0.2813 1.2500 3.0938

The following function, called CC, calculates the Cartesian coordinates (x,y,z)
corresponding to the Cylindrical coordinates (ρ,θ,φ):

function [x,y,z] = CC(rho,theta,phi)
%|---------------------------------------|
%|This function converts the cylindrical |
%|coordinates (rho, theta, phi) into the |
%|Cartesian coordinates (x,y,z). |
%|---------------------------------------|
%Check consistency of vector entries
nr = length(rho);
nt = length(theta);
np = length(phi);
if nr ~= nt | nr ~= np | nt ~= np
 error('Function CC - vectors rho, theta, phi have incompatible
dimensions')
 abort
end

%Calculate coordinates if vector lengths are consistent
x=rho.*sin(phi).*cos(theta);
y=rho.*sin(phi).*sin(theta);
z=rho.*cos(phi);

Type this function into an m file called CC.m. Here is an example of function CC
applied to the cylindrical coordinates ρ = 2.5, θ = π/6, and φ = π /8.

» [x,y,z] = CC(2.5,pi/6,pi/8)

x =

 0.8285

y =

 0.4784

z =

 2.3097

If no assignment is made to a vector of three elements, the result given by CC is only
one value, that belonging to x, e.g.,

» CC(2.5,pi/6,pi/8)

4

ans =

 0.8285

Notice that in the definition of the function term-by-term multiplications were
provided. Thus, we could call the function using vector arguments to generate a
vector result, e.g.,

EDU» [x,y,z] = CC(rho,theta,phi)

x =

 0.2985 0.2710 0.1568

y =

 0.0800 0.1564 0.2716

z =

 0.9511 1.9754 2.9836

Consider now a vector function f(x) = [f1(x1,x2,x3) f2(x1,x2,x3) f3(x1,x2,x3)]T, where x =
[x1,x2,x3]T (The symbol []T indicates the transpose of a matrix). Specifically,

f1(x1,x2,x3) = x1 cos(x2) + x2 cos(x1) + x3

f2(x1,x2,x3) = x1x2 + x2x3 + x3x1

f3(x1,x2,x3) = x1

2 + 2x1x2x3 + x3
2

A function to evaluate the vector function f(x) is shown below.

function [y] = f(x)
%|-----------------------------------|
%| This function calculates a vector |
%| function f = [f1;f2;f3] in which |
%| f1,f2,f3 = functions of (x1,x2,x3)|
%|-----------------------------------|
y = zeros(3,1); %create output vector
y(1) = x(1)*cos(x(2))+x(2)*cos(x(1))+x(3);
y(2) = x(1)*x(2) + x(2)*x(3) + x(3)*x(1);
y(3) = x(1)^2 + 2*x(1)*x(2)*x(3) + x(3)^2;

Here is an application of the function:

» x = [1;2;3]

x =

 1
 2
 3

» f(x)

ans =

5

 3.6645
 11.0000
 22.0000

A function can return a matrix, for example, the following function produces a 2x2
matrix, defined by










+
++

=
2121

2
2121)(

)(
xxxx
xxxx

xJ ,

with









=

2

1

x
x

x

function [J] = JJ(x)
%|------------------------------------|
%| This function returns a 2x2 matrix |
%| J = [f1, f2; f3, f4], with f1, f2, |
%| f3, f4 = functions of (x1,x2) |
%|------------------------------------|
J = zeros(2,2);
J(1,1) = x(1)+x(2);
J(1,2) = (x(1)+x(2))^2;
J(2,1) = x(1)*x(2);
J(2,2) = sqrt(x(1)+x(2));

An application of function JMatrix is shown below:

» x = [2;-1]

x =

 2
 -1

» JJ(x)

ans =

 1 1
 -2 1

Examples of functions that include decisions

Functions including decision may use the structures if … end, if … else … end, or if
… elseif … else … end, as well as the switch … select structure. Some examples
are shown below.

Consider, for example, a function that classifies a flow according to the values of its
Reynolds (Re) and Mach (Ma) numbers, such that if Re < 2000, the flow is laminar; if
2000 < Re < 5000, the flow is transitional; if Re > 5000, the flow is turbulent; if Ma < 1,
the flow is sub-sonic, if Ma = 1, the flow is sonic; and, if Ma >1, the flow is super-sonic.

6

function [] = FlowClassification(Re,Ma)
%|-------------------------------------|
%| This function classifies a flow |
%| according to the values of the |
%| Reynolds (Re) and Mach (Ma). |
%| Re <= 2000, laminar flow |
%| 2000 < Re <= 5000, transitional flow|
%| Re > 5000, turbulent flow |
%| Ma < 1, sub-sonic flow |
%| Ma = 1, sonic flow |
%| Ma > 1, super-sonic flow |
%|-------------------------------------|
%Classify according to Re
if Re <= 2000
 class = 'The flow is laminar ';
elseif Re > 2000 & Re <= 5000
 class = 'The flow is transitional ';
else
 class = 'The flow is turbulent ';
end
%Classify according to Ma
if Ma < 1
 class = strcat(class , ' and sub-sonic.');
elseif Ma == 1
 class = strcat(class , ' and sonic.');
else
 class = strcat(class , ' and super-sonic.');
end
%Print result of classification
disp(class)

Notice that the function statement has no variable assigned in the left-hand side. That
is because this function simply produces a string specifying the flow classification and
it does not returns a value. Examples of the application of this function are shown
next:

» FlowClassification(1000,0.5)
The flow is laminar and sub-sonic.
» FlowClassification(10000,1.0)
The flow is turbulent and sonic.
» FlowClassification(4000,2.1)
The flow is transitional and super-sonic.

An alternative version of the function has no arguments. The input values are
requested by the function itself through the use of the input statement. (Comment
lines describing the function were removed to save printing space).

7

function [] = FlowClassification()
%Request the input values of Re and Ma
Re = input('Enter value of the Reynolds number: \n');
Ma = input('Enter value of the Mach number:\n');
%Classify according to Re
if Re <= 2000
 class = 'The flow is laminar ';
elseif Re > 2000 & Re <= 5000
 class = 'The flow is transitional ';
else
 class = 'The flow is turbulent ';
end
%Classify according to Ma
if Ma < 1
 class = strcat(class , ' and sub-sonic.');
elseif Ma == 1
 class = strcat(class , ' and sonic.');
else
 class = strcat(class , ' and super-sonic.');
end
%Print result of classification
disp(class)

An example of application of this function is shown next:

» FlowClassification
Enter value of the Reynolds number:
14000
Enter value of the Mach number:
0.25
The flow is turbulent and sub-sonic.

The structures if … end, if … else … end, or if … elseif … else … end are
useful, for example, in the evaluation of multiply defined functions (see 2 – Matlab
Programming, IO, and Strings).

The following example presents a function that orders a vector in increasing order:

function [v] = MySort(u)
%|--------------------------------|
%|This function sorts vector u in |
%|increasing order, returning the |
%|sorted vector as v. |
%|--------------------------------|
%Determine length of vector
n = length(u);
%Copy vector u to v
v = u;
%Start sorting process
for i = 1:n-1
 for j = i+1:n
 if v(i)>v(j)
 temp = v(i);
 v(i) = v(j);
 v(j) = temp;
 end
 end
end

8

An application of this function is shown next:

» u = round(10*rand(1,10))

u =

 0 7 4 9 5 4 8 5 2 7

» MySort(u)

ans =

 0 2 4 4 5 5 7 7 8 9

Of course, you don’t need to write your own function for sorting vectors of data since
MATLAB already provides function sort for this purpose, e.g.,

» sort(u)

ans =

 0 2 4 4 5 5 7 7 8 9

However, a function like MySort, shown above, can be used for programming an
increasing-order sort in other computer languages that do not operate based on
matrices, e.g., Visual Basic or Fortran.

To sort a row vector in decreasing order, use sort and fliplr (flip left-to-right), e.g.,

» sort(u)

ans =

 0 2 4 4 5 5 7 7 8 9

» fliplr(ans)

ans =

 9 8 7 7 5 5 4 4 2 0

Function MySort can be modified to perform a decreasing order sort if the line if
v(i)>v(j) is modified to read if v(i)<v(j). Alternatively, you can modify the
function MySort to allow for increasing or decreasing sort by adding a second, string,
variable which can take the value of ‘d’ for decreasing order or ‘i’ for increasing order.
The function file is shown below:

function [v] = MySort(u,itype)
%|---------------------------------|
%|This function sorts vector u in |
%|increasing order, returning the |
%|sorted vector as v. |
%|If itype = 'd', decreasing order |
%|If itype = 'i', increasing order |
%|---------------------------------|
%Determine length of vector
n = length(u);
%Copy vector u to v

9

v = u;
%Start sorting process
if itype == 'i'
 for i = 1:n-1
 for j = i+1:n
 if v(i)>v(j)
 temp = v(i);
 v(i) = v(j);
 v(j) = temp;
 end
 end
 end
else
 for i = 1:n-1
 for j = i+1:n
 if v(i)<v(j)
 temp = v(i);
 v(i) = v(j);
 v(j) = temp;
 end
 end
 end
end

The following is an application of this function

» u = round(10*rand(1,10))

u =

 8 0 7 4 8 5 7 4 3 2

EDU» MySort(u,'i')

ans =

 0 2 3 4 4 5 7 7 8 8

EDU» MySort(u,'d')

ans =

 8 8 7 7 5 4 4 3 2 0

In the following example, the function is used to swap the order of the elements of a
vector. Thus, in a vector v of n elements, v1 is swapped with vn, v2 is swapped with vn-

1, and so on. The general formula for swapping depends on whether the vector has an
even or an odd number of elements. To check whether the vector length, n, is odd or
even we use the function mod (modulo). If mod(n,2) is equal to zero, n is even,
otherwise, it is odd. If n is even, then the swapping occurs by exchanging vj with vn-j+1
for j = 1, 2, …, n/2. If n is odd, the swapping occurs by exchanging vj with vn-j+1 for j =
1, 2, …, (n-1)/2. Here is the listing of the function:

function [v] = swapVector(u)
%|----------------------------------|
%| This function swaps the elements |
%| of vector u, v(1) with v(n), v(2)|

10

%| with v(n-1), and so on, where n |
%| is the length of the vector. |
%|----------------------------------|
n = length(u); %length of vector
v = u; %copy vector u to v
%Determine upper limit of swapping
if modulo(n,2) == 0 then
 m = n/2;
else
 m = (n-1)/2;
end
%Perform swapping
for j = 1:m
 temp = v(j);
 v(j) = v(n-j+1);
 v(n-j+1) = temp;
end

Applications of the function, using first a vector of 10 elements and then a vector of 9
elements, is shown next:

» u = [-10:1:-1]

u =

 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

» swapVector(u)

ans =

 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10

» u = [1:9]

u =

 1 2 3 4 5 6 7 8 9

» swapVector(u)

ans =

 9 8 7 6 5 4 3 2 1

Of course, these operations can be performed by simply using function fliplr in Matlab,
e.g.,

EDU» fliplr(u)

ans =

 9 8 7 6 5 4 3 2 1

The switch ... select structure can be used to select one out of many possible
outcomes in a process. In the following example, the function Area calculates the
area of different open-channel cross-sections based on a selection performed by the
user:

11

function [] = Area()
%|------------------------------------|
disp('=============================')
disp('Open channel area calculation')
disp('=============================')
disp('Select an option:')
disp(' 1 - Trapezoidal')
disp(' 2 - Rectangular')
disp(' 3 - Triangular')
disp(' 4 - Circular')
disp('=============================')
itype = input('');
switch itype,
 case 1
 id = 'trapezoidal';
 b = input('Enter bottom width:');
 z = input('Enter side slope:');
 y = input('Flow depth:');
 A = (b+z*y)*y;
 case 2
 id = 'rectangular';
 b = input('Enter bottom width:');
 z = 0;
 y = input('Flow depth:');
 A = (b+z*y)*y;
 case 3
 id = 'triangular';
 b = 0;
 z = input('Enter side slope:');
 y = input('Flow depth:');
 A = (b+z*y)*y;
 otherwise
 id = 'circular';
 D = input('Enter pipe diameter:');
 y = input('Enter flow depth (y<D):');
 beta = acos(1-2*y/D);
 A = D^2/4*(beta+sin(beta)*cos(beta)) ;
 end
%Print calculated area
fprintf('\nThe area for a %s cross-section is %10.6f.\n\n',id,A)

An example of application of this function is shown next:

» Area
=============================
Open channel area calculation
=============================
Select an option:
 1 - Trapezoidal
 2 - Rectangular
 3 - Triangular
 4 - Circular
=============================
4
Enter pipe diameter:1.2
Enter flow depth (y<D):0.5

The area for a circular cross-section is 0.564366.

12

Simple output in MATLAB functions

Notice that we use function disp in function Area, above, to print the table after the
function is invoked. On the other hand, to print the value of the resulting area we use
function fprintf. This function is borrowed from C, while disp is a purely MATLAB
function. Function disp will print a string used as the argument, as in the examples
listed in the function Area. The following are a two examples of using function disp
interactively in MATLAB:

• Displaying a string:

» disp('Hello, world')
Hello, world

• Displaying a string identifying a value and the corresponding value:

» A = 2.3; disp(strcat('A = ',num2str(A)))
A =2.3

Function Area also utilizes the function fprintf to produce output. This function
includes as arguments a string and, optionally, a list of variables whose values will be
incorporated in the output string. To incorporate those values in the output string we
use conversion strings such as %10.6f. The conversion string %10.6f represents an
output field of for a floating-point result, thus the f, with 10 characters including 6
decimal figures. An integer value can be listed in a conversion string of the form %5d,
which will reserve 5 characters for the output. The following interactive example
illustrates the use of fprintf to print a floating point and an integer value:

» A = 24.5; k = 2;
» fprintf('\nThe area is %10.f for iteration number %5d.\n',A,k)

The area is 25 for iteration number 2.

The characters \n in the output string of function fprintf produce a new line. For
example:

» fprintf('\nThe area is %10.f \nfor iteration number %5d.\n',A,k)

The area is 25
for iteration number 2.

Function fprintf can be used to produce an output table, as illustrated in the following
function:

function [] = myTable()
fprintf('======================================\n');
fprintf(' a b c d \n')
fprintf('======================================\n');
for j = 1:10
 a = sin(10*j);
 b = a*cos(10*j);
 c = a + b;
 d = a - b;
 fprintf('("%+6.5f %+6.5f %+6.5f %+6.5f \n',a,b,c,d);
end
fprintf('======================================\n');

13

The application of this function is shown next:

» myTable
======================================
 a b c d
======================================
-0.54402 +0.45647 -0.08755 -1.00049
+0.91295 +0.37256 +1.28550 +0.54039
-0.98803 -0.15241 -1.14044 -0.83563
+0.74511 -0.49694 +0.24817 +1.24206
-0.26237 -0.25318 -0.51556 -0.00919
-0.30481 +0.29031 -0.01451 -0.59512
+0.77389 +0.49012 +1.26401 +0.28377
-0.99389 +0.10971 -0.88418 -1.10360
+0.89400 -0.40058 +0.49342 +1.29457
-0.50637 -0.43665 -0.94301 -0.06972
======================================

Notice that the conversion string was changed to %+6.5f, which allows for the inclusion
of a sign in the values printed.

The function myTable is modified next to produce output using scientific notation. The
conversion string used here is %+6.5e.

function [] = myTable()
fprintf('==\n');
fprintf(' a b c d \n')
fprintf('==\n');
for j = 1:10
 a = sin(10*j);
 b = a*cos(10*j);
 c = a + b;
 d = a - b;
 fprintf('%+6.5e %+6.5e %+6.5e %+6.5e\n',a,b,c,d);
end
fprintf('==\n');

The application of the function with the new conversion strings produces the following
table:

» myTable
==
 a b c d
==
-5.44021e-001 +4.56473e-001 -8.75485e-002 -1.00049e+000
+9.12945e-001 +3.72557e-001 +1.28550e+000 +5.40389e-001
-9.88032e-001 -1.52405e-001 -1.14044e+000 -8.35626e-001
+7.45113e-001 -4.96944e-001 +2.48169e-001 +1.24206e+000
-2.62375e-001 -2.53183e-001 -5.15558e-001 -9.19203e-003
-3.04811e-001 +2.90306e-001 -1.45050e-002 -5.95116e-001
+7.73891e-001 +4.90120e-001 +1.26401e+000 +2.83771e-001
-9.93889e-001 +1.09713e-001 -8.84176e-001 -1.10360e+000
+8.93997e-001 -4.00576e-001 +4.93420e-001 +1.29457e+000
-5.06366e-001 -4.36649e-001 -9.43014e-001 -6.97170e-002
==

The table examples presented above illustrate also the use of the for … end structure
to produce programming loops. Additional examples of programming loops are
presented in the following examples.

14

Examples of functions that include loops
MATLAB provides with the while … end and the for … end structures for creating
programming loops. Programming loops can be used to calculate summations or
products. For example, to calculate the summation

∑
= +

=
n

k k
nS

0
2 1
1)(,

we can put together the following function:

function [S] = sum1(n)
% |--|
% | This function calculates the summation |
% | |
% | n |
% | \--------- |
% | \ 1 |
% | S(n) = \ ______ |
% | / 2 |
% | / k + 1 |
% | /--------- |
% | k = 0 |
% | |
% |--|
S = 0; % Initialize sum to zero
k = 0; % Initialize index to zero
% loop for calculating summation
while k <= n
 S = S + 1/(k^2+1); % add to summation
 k = k + 1; % increase the index
end

Within the MATLAB environment we can produce a vector of values for the sum with
values of n going from 0 to 10, and produce a plot of values of the sum versus n:

» nn = [0:10]; % vector of values of n (nn)
» m = length(nn); % length of vector nn
» SS = []; % initialize vector SS as an empty matrix
» for j = 1:m % This loop fills out the vector SS
 SS = [SS sum1(nn(j))]; % with values calculated
 end % from function sum1(n)
» plot(nn,SS) % show results in graphical format

The resulting graph is shown below:

0 2 4 6 8 10
1

1.2

1.4

1.6

1.8

2

15

If we need to calculate a vector, or matrix, of values of the summation we can modify
the original function sum1 to handle matrix input and output as follows (the function is
now called sum2):

function [S] = sum2(n)
%|--|
%| This function calculates the summation |
%| |
%| n |
%| \--------- |
%| \ 1 |
%| S(n) = \ ______ |
%| / 2 |
%| / k + 1 |
%| /--------- |
%| k = 0 |
%| |
%| Matrix input and output is allowed. |
%|--|
[nr,nc] = size(n); %Size of input matrix
S = zeros(nr,nc); %Initialize sums to zero
%loop for calculating summation matrix
for i = 1:nr %sweep by rows
 for j = 1:nc %sweep by columns
 k = 0; %initialize index to zero
 while k <= n(i,j)
 S(i,j) = S(i,j) + 1/(k^2+1);
 k = k + 1;
 end
 end
end

Notice that both n and S are now treated as matrix components within the function.
The following MATLAB commands will produce the same results as before:

»nn = [0:10]; SS = sum2(nn); plot(nn,SS)

0 1 2 3 4 5 6 7 8 9 10
1

1.2

1.4

1.6

1.8

2

Notice that function sum2 illustrates the use of the two types of loop control structures
available in MATLAB:

(1) while … end (used for calculating the summations in this example) and,

16

(2) for … end (used for filling the output matrix S by rows and columns in this
example).

Nested for ... end loops can be used to calculate double summations, for example,

∑∑
= = ++

=
n

i

m

j ji
mnS

0 0
2 1)(

1),(.

Here is a listing of a function that calculates S(n,m) for single values of n and m:

function [S] = sum2x2(n,m)
%|---------------------------------------|
%| This function calculates the double |
%| summation: |
%| n m |
%| \------ \------ |
%| \ \ 1 |
%| S(n,m) = \ \ ---------- |
%| / / 2 |
%| / / (i+j) + 1 |
%| /------ /------ |
%| i=0 j=0 |
%|---------------------------------------|
%|Note: the function only takes scalar |
%|values of n and m and returns a single |
%|value. An error is reported if n or m |
%|are vectors or matrices. |
%|---------------------------------------|
%Check if m or n are matrices
if length(n)>1 | length(m)>1 then
 error('sum2 - n,m must be scalar values')
 abort
end
%Calculate summation if n and m are scalars
S = 0; %initialize sum
for i = 1:n %sweep by index i
 for j = 1:m %sweep by index j
 S = S + 1/((i+j)^2+1);
 end
end

A single evaluation of function sum2x2 is shown next:

» sum2x2(3,2)

ans = 0.5561

The following MATLAB commands produce a matrix S so that element Sij corresponds to
the sum2x2 evaluated at i and j:

» for i = 1:3
 for j = 1:4
 S(i,j) = sum2x2(i,j);
 end
 end

17

» S

S =

 0.2000 0.3000 0.3588 0.3973
 0.3000 0.4588 0.5561 0.6216
 0.3588 0.5561 0.6804 0.7659

As illustrated in the example immediately above, nested for … end loops can be used to
manipulate individual elements in a matrix. Consider, for example, the case in which
you want to produce a matrix zij = f(xi,yj) out of a vector x of n elements and a vector y
of m elements. The function f(x,y) can be any function of two variables defined in
MATLAB. Here is the function to produce the aforementioned matrix:

function [z] = f2eval(x,y,f)
%|-------------------------------------|
%| This function takes two row vectors |
%| x (of length n) and y (of length m) |
%| and produces a matrix z (nxm) such |
%| that z(i,j) = f(x(i),y(j)). |
%|-------------------------------------|
%Determine the lengths of vectors
n = length(x);
m = length(y);
%Create a matrix nxm full of zeros
z = zeros(n,m);
%Fill the matrix with values of z
for i = 1:n
 for j = 1:m
 z(i,j) = f(x(i),y(j));
 end
end

Here is an application of function f2solve:

» f00 = inline('x.*sin(y)','x','y')

f00 =

 Inline function:
 f00(x,y) = x.*sin(y)

» x = [1:1:3]

x =

 1 2 3

» y = [2:1:5]

y =

 2 3 4 5

» z = f2eval(x,y,f00)

z =

18

 0.9093 0.1411 -0.7568 -0.9589
 1.8186 0.2822 -1.5136 -1.9178
 2.7279 0.4234 -2.2704 -2.8768

Notice that MATLAB provide functions to produce this evaluation as will be illustrated
next. First, the values of the x and y vectors produced above must be used to produce
grid matrices X and Y for the evaluation of the function f00. This is accomplished by
using function meshgrid as follows:

» [X,Y] = meshgrid(x,y)

X =

 1 2 3
 1 2 3
 1 2 3
 1 2 3

Y =

 2 2 2
 3 3 3
 4 4 4
 5 5 5

Then, use the following call to function f00:

» f00(X,Y)

ans =

 0.9093 1.8186 2.7279
 0.1411 0.2822 0.4234
 -0.7568 -1.5136 -2.2704
 -0.9589 -1.9178 -2.8768

Alternatively, you could use function feval as follows:

» feval(f00,X,Y)

ans =

 0.9093 1.8186 2.7279
 0.1411 0.2822 0.4234
 -0.7568 -1.5136 -2.2704
 -0.9589 -1.9178 -2.8768

MATLAB functions meshgrid and feval (or the user-defined function f2eval) can be used
for evaluating matrix of functions of two variables to produce surface plots. Consider
the following case:

» f01 = inline('x.*sin(y)+y.*sin(x)','x','y')

f01 =
 Inline function:
 f01(x,y) = x.*sin(y)+y.*sin(x)

» x = [0:0.5:10]; y = [-2.5:0.5:2.5];
» z = f2eval(x,y,f01);
» surf(x,y,z')

19

The resulting graph is shown next:

0 2 4 6 8 10

-4
-2

0
2

4
-10

0

10

The function can also be plotted using mesh:

--> mesh(x,y,z’)

0 2 4 6 8 10

-4
-2

0
2

4
-10

0

10

or,

--> waterfall(x,y,z’)

0 2 4 6 8 10

-4
-2

0
2

4
-10

0

10

Nested loops can be used for other operations with matrices. For example, a function
that multiplies two matrices is shown next:

20

function [C] = matrixmult(A,B)
%|--------------------------------------|
%| This function calculates the matrix |
%| C(nxm) = A(nxp)*B(pxm) |
%|--------------------------------------|
%First, check matrices compatibility
[nrA,ncA] = size(A);
[nrB,ncB] = size(B);
if ncA ~= nrB
 error('matrixmult - incompatible matrices A and B');
 abort;
end
%Calculate matrix product
C = zeros(nrA,ncB);
for i = 1:nrA
 for j = 1:ncB
 for k = 1:ncA
 C(i,j) = C(i,j) + A(i,k)*B(k,j);
 end
 end
end

An application of function matrixmult is shown next. Here we multiply A3x4 with B4x6
resulting in C3x6. However, the product B4x6 times A3x4 does not work.

» A = round(10*rand(3,4))

A =

 2 5 4 6
 7 2 9 5
 3 7 9 9

EDU» B = round(10*rand(4,6))

B =

 8 3 7 4 7 5
 6 3 3 7 6 9
 8 3 8 5 8 2
 7 5 6 4 10 10

EDU» C = matrixmult(A,B)

C =

 120 63 97 87 136 123
 175 79 157 107 183 121
 201 102 168 142 225 186

» D = matrixmult(B,A)
??? Error using ==> matrixmult
matrixmult - incompatible matrices A and B

Of course, matrix multiplication in MATLAB is readily available by using the
multiplication sign (*), e.g.,

» C = A*B

21

C =

 120 63 97 87 136 123
 175 79 157 107 183 121
 201 102 168 142 225 186

» D = B*A
??? Error using ==> *
Inner matrix dimensions must agree.

Reading a table from a file

The first example presented in this section uses the command file to open a file for
reading, and the function read for reading a matrix out of a file. This application is
useful when reading a table into MATLAB. Suppose that the table consists of the
following entries, and is stored in the file c:\table1.txt:

 2.35 5.42 6.28 3.17 5.23
 3.19 3.87 3.21 5.18 6.32
 1.34 5.17 8.23 7.28 1.34
 3.21 3.22 3.23 3.24 3.25
 8.17 4.52 8.78 2.31 1.23
 9.18 5.69 3.45 2.25 0.76

The following function reads the table out of file c:\table1.dat using function fgetl:

function [Table] = readtable()
%|---------------------------------------|
%| This is an interactive function that |
%| requests from the user the name of a |
%| file containing a table and reads the |
%| table out of the file. |
%|---------------------------------------|
fprintf('Reading a table from a file\n');
fprintf('===========================\n');
fprintf(' \n');
filname = input('Enter filename between quotes:\n');
u = fopen(filname,'r'); %open input file
%The following 'while' loop reads data from the file
Table = []; %initialize empty matrix
while 1
 line = fgetl(u); %read line
 if ~ischar(line), break, end %stop when no more lines
available
 Table = [Table; str2num(line)]; %convert to number and add to
matrix
 end
%Determine size of input table (rows and columns)
[n m] = size(Table);
fprintf('\n');
fprintf('There are %d rows and %d columns in the table.\n',n,m);
fclose(u); %close input file

The fopen command in function readtable uses two arguments, the first being the
filename and the second (‘r’) indicates that the file is to be opened for input, i.e.,

22

reading. Also, the left-hand side of this statement is the variable u, which will be
given an integer value by MATLAB. The variable u represents the logical input-output
unit assigned to the file being opened.

Function readtable uses the command fgetl within the while loop to read line by line.
This function reads the lines as strings, thus, function str2num is used to convert the
line to numbers before adding that line to matrix Table.

As shown in function readtable, it is always a good idea to insert a fclose statement to
ensure that the file is closed and available for access from other programs.

Here is an example of application of function readtable. User response is shown in
bold face.

» T = readtable
Reading a table from a file
===========================
Enter filename between quotes:
'c:\table1.txt'

There are 6 rows and 5 columns in the table.

T =
 2.3500 5.4200 6.2800 3.1700 5.2300
 3.1900 3.8700 3.2100 5.1800 6.3200
 1.3400 5.1700 8.2300 7.2800 1.3400
 3.2100 3.2200 3.2300 3.2400 3.2500
 8.1700 4.5200 8.7800 2.3100 1.2300
 9.1800 5.6900 3.4500 2.2500 0.7600

Writing to a file

The simplest way to write to a file is to use the function fprintf in a similar fashion as
function fprintf. As an example, we re-write function myTable (shown earlier) to
include fprintf statements that will write the results to a file as well as to the screen:

function [] = myTableFile()
fprintf('Printing to a file\n');
fprintf('==================\n');
filname = input('Enter file to write to (between quotes):\n');
u = fopen(filname,'w'); %open output file
fprintf('======================================\n');
fprintf(u,'\n======================================\r');
fprintf(' a b c d \n');
fprintf(u,'\n a b c d \r');
fprintf('======================================\n');
fprintf(u,'\n======================================\r');
for j = 1:10
 a = sin(10*j);
 b = a*cos(10*j);
 c = a + b;
 d = a - b;
 fprintf('%+6.5f %+6.5f %+6.5f %+6.5f\n',a,b,c,d);
 fprintf(u,'\n%+6.5f %+6.5f %+6.5f %+6.5f\r',a,b,c,d);
end;
fprintf('======================================\n');
fprintf(u,'\n======================================\r');
fclose(u); %close output file

23

Notice that the strings that get printed to the file, i.e., those lines starting with
fprintf(u,…), end with the characters \r rather than with \n. The characters \n
(newline) work fine in the screen output to produce a new line, but, for text files, you
need to use the characters \r (carriage return) to produce the same effect.

Here is an application of function myTableFile. The function prints a table in MATLAB,
while simultaneously printing to the output file. The user response is shown in bold
face:

» myTableFile
Printing to a file
==================
Enter file to write to (between quotes):
'c:\Table2.txt'
======================================
 a b c d
======================================
-0.54402 +0.45647 -0.08755 -1.00049
+0.91295 +0.37256 +1.28550 +0.54039
-0.98803 -0.15241 -1.14044 -0.83563
+0.74511 -0.49694 +0.24817 +1.24206
-0.26237 -0.25318 -0.51556 -0.00919
-0.30481 +0.29031 -0.01451 -0.59512
+0.77389 +0.49012 +1.26401 +0.28377
-0.99389 +0.10971 -0.88418 -1.10360
+0.89400 -0.40058 +0.49342 +1.29457
-0.50637 -0.43665 -0.94301 -0.06972
======================================

With a text editor (e.g., notepad) we can open the file c:\Table2.txt and check out
that the same table was printed to that text file.

Summary

This document shows a number of programming examples using decision and loop
structures, input-output, and other elements of programming. Advanced MATLAB
programming includes the use of menus and dialogs, as well as advanced mathematical,
string, and file functions.

