
1 

Elementary mathematical functions in MATLAB 
 

By Gilberto E. Urroz, August 2004 
 
This document includes an introduction to the use of elementary mathematical functions in 
MATLAB.  The use of these functions will be illustrated through simple calculations, as well as 
with plots of the functions.   
 
Plotting functions of the form y = f(x) 
 
Functions of the form y = f(x) can be presented graphically by using the MATLAB graphics 
commands plot, as illustrated next. 
 
Function plot can be used to produce graphs of elementary functions.  The simplest call to 
function plot is 

plot(x,y) 
 
where x and y are vectors of the same length and yi = f(xi).  As an example, consider the plot of 
the function absolute value, abs(), in the range -1 < x < 1: 
 
» x = [-1:0.1:1]; 
» plot(x,abs(x)); 
 
A plot title and axes labels can be added by using the following commands: 
 
» title('absolute value function'); %adds title 
» xlabel('x');ylabel('y');          %adds axes labels 
 
The resulting graph is shown next: 
 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
absolute value function

x

y

 
 
Function fplot can be used to plot user-defined functions.  The simplest call to function fplot is 
 

fplot(f,xlim) 
 



2 

where f is a function name and xlim is a vector of two values representing the lower and upper 
limits of the independent variable.  The function f must be a user-defined function.   A user-
defined function is a combination of elementary functions defined by using the command deff 
(line-defined function) or a file function.   
 
Consider the following example in which the function y = sin(|x|) is plotted in the range -2π < x 
< 2π : 
 
» f = inline('sin(abs(x))');       % define function y = sin(abs(x)) 
» xlim = [-2*pi,2*pi];             % define x vector 
» fplot(f,xlim)                    % produce plot 
» title('sin(abs(x))');            % add title 
» xlabel('x'); ylabel('y');        % add labels 
 
The plot is shown next: 
 

-6 -4 -2 0 2 4 6
-1

-0.5

0

0.5

1
sin(abs(x))

x

y

 
 
Elementary number functions 
 
Under this heading we include a number of functions that cannot be listed under trigonometric, 
exponential and logarithmic, or hyperbolic functions.  These include: 
 
abs - absolute value of a real number or magnitude of a complex number 
ceil - ceiling function: rounds up a floating-point number 
floor - rounds down a floating-point number  
fix - rounds a floating-point number towards zero 
mod - arithmetic remainder function 
rem – remainder after division 
rat - rational approximation of a floating-point number 
round - rounds to nearest integer 
sign - sign function 
sqrt - square root 
 
To illustrate the use of the function round, consider the multiplication of a 3x3 matrix by its 
inverse.  First, we define the matrix A: 
 



3 

» A = [1,3,2;-1,2,1;4,2,1] 
 
A = 
 
     1     3     2 
    -1     2     1 
     4     2     1 
 
Next, we calculate B = A⋅A-1, which should produce a 3x3 identity matrix: 
 
» B = A*inv(A) 
 
B = 
 
    1.0000   -0.0000   -0.0000 
         0    1.0000         0 
         0   -0.0000    1.0000 
 
Due to the introduction of small numerical errors in the calculation of the inverse matrix, some 
elements off the diagonal that should be zero are shown as small, but nonzero, numbers.  
Function round  will round those numbers to zero, thus “cleaning” the result to produce the 
required identity matrix: 
 
» B = A*inv(A) 
 
B = 
 
    1.0000   -0.0000   -0.0000 
         0    1.0000         0 
         0   -0.0000    1.0000 
 
Examples of functions ceil, floor, fix, and round are presented next: 
 
»ceil(-1.2)     //rounds up 
 ans  = - 1 
 
»ceil(1.2)      //rounds up 
 ans  = 2 
 
»floor(-1.2)    //rounds down 
 ans  = - 2 
 
»floor(1.2)     //rounds down 
 ans  = 1 
 
»round([1.25 1.50 1.75]) //rounds up or down 
 ans  = 
 
   1    2    2     
 
-->fix([1.25 1.50 1.75]) //rounds down 
 ans  = 
 
   1    1    1   
 
Notice that functions floor and fix both round down to the nearest integer number.  Thus, 
either function can be used to find the integer part of a floating-point number.   The fractional 
or decimal part of a floating-number can be calculated by simply subtracting the number from 
its integer part, for example: 
 



4 

» x = 12.4345 
 
x = 12.4345 
 
» fix(x) 
 
ans = 12 
 
» x-fix(x) 
 
ans = 0.4345 
 
A plot of the function floor is shown next.  Here are the commands required to produce the 
plot: 
 
-->x = [-10:0.1:10];plot(x,floor(x)); 
-->xtitle('floor function');xlabel('x');ylabel('y');    
 

-10 -5 0 5 10
-10

-5

0

5

10
floor function

x

y

 
 
The plot of function ceil is very similar to that of function floor: 
 
-->x = [-10:0.1:10];plot(x,ceil(x)); 
-->xtitle('ceil function');xlabel('x');ylabel('y');   
 

-10 -5 0 5 10
-10

-5

0

5

10
floor function

x

y

 



5 

 
Functions ceil, floor, round and fix can be applied to complex numbers.  In this case, the 
effect of each function is applied separately to the real and imaginary parts of the complex 
number.   Some examples are shown next: 
 
» z = 2.3 - 5.2*i   % define a complex number 
 
z =   2.3000 - 5.2000i 
 
» ceil(z) 
 
ans = 3.0000 - 5.0000i 
 
» floor(z) 
 
ans = 2.0000 - 6.0000i 
 
» round(z) 
 
ans = 2.0000 - 5.0000i 
 
» fix(z) 
 
ans = 2.0000 - 5.0000i 
 
 
Note:  A complex number z can be written as z = x + iy, where x and y are real numbers and i = 
(-1)1/2

 is the unit imaginary number.   We say that x is the real part of z, or x = Re(z), and that 
y is the imaginary part of z, or y = Im(z).  MATLAB provides functions real and imag to obtain 
the real and imaginary parts, respectively, of a complex number.  Here is an example of their 
operation: 
 
» z = 2.4 + 3.5*i      % define a complex number 
z = 2.4000 + 3.5000i 
 
» x = real(z)          % real part of z 
x = 2.4000 
 
» y = imag(z)          % imaginary part of z    
y =  3.5000 
 
 
Function abs, when applied to a real number, returns the absolute value of the number, i.e.,  
 





<−
≥

=
0,
0,

||
xifx
xifx

x . 

 
If applied to a complex number z = x + iy, the function abs returns the magnitude of the 
complex number, i.e., |z| = (x2+y2)1/2.  Some examples are shown next: 
 
» abs([-3.4 0.0 3.4])          //absolute value of real numbers 
 ans =    3.4000         0    3.4000 
 
» abs(-3+4*i) % magnitude of a complex number 
ans =  5 
 
A plot of the function abs(x) in the range -1 < x < 1 was presented earlier. 
 



6 

Function sign returns either 1.0, -1.0 or 0.0 for a real number depending on whether the 
number is positive, negative, or zero.  Here is an example: 
 
» sign([-2.4 0.0 5.4]) 
 
ans =  -1     0     1 
 
On the other hand, when applied to a complex number z, function sign returns the value z/|z|.  
For example: 
 
» sign(3-48i) 
 
ans = 0.0624 - 0.9981i 
 
The resulting complex number has magnitude 1: 
 
» abs(ans) 
 
ans = 1.0000 
 
The mod function is used to calculate the reminder of the division of two numbers.  A call to 
the function of the form mod(n,m) produces the number  
 

n - m .* fix (n ./ m) 
 
where n and m can be vectors of real numbers.  For example: 
 
» mod(7.2,3.1) 
 
ans = 1.0000 
 
Which is the same as: 
 
» 7.2-3.1*fix(7.2/3.1) 
 
ans = 1 
 
The mod function has applications in programming when used with integer numbers.  In such 
case, the mod function represents the integer reminder of the division of two numbers.  When 
dividing two integer numbers, n and m, we can write  
 

m
rq

m
n

+=  

 
where q is the quotient and r is the reminder of the division of n by m.  Thus, r = mod(n,m). 
 
Consider the following example: 
 
» mod([0 1 2 3 4 5 6],3) 
 
ans =      0     1     2     0     1     2     0 
 
Notice that the result of mod(n,3) for n = 0, 1, 2, …, 6, is 0, 1, or 2, and that mod(n,3) = 0 
whenever n is a multiple of 3.  Thus, an integer number n is a multiple of another integer 
number m if mod(n,m) = 0. 
 
 



7 

Function rat is used to determine the numerator and denominator of the rational 
approximation of a floating-point number.  The general call to the function is  
 

[n,d] = rat(x) 
 

where x is a floating-point number, and n and d are integer numbers such that x ≈ n/d.  For 
example: 
 
» [n,d] = rat(0.353535) 
 
n =  10086 
d =  28529 
 
To verify this result use: 
 
» n/d 
 
ans = 0.3535 
 
Another example is used to demonstrate that 0.333… = 1/3: 
 
» [n,d]=rat(0.3333333333333) 
 
n =  1 
d =  3 
 
Notice that you need to provide a relatively large number of decimals to force the result.  If 
you use only four decimals for the floating-point number, the approximation is not correct: 
 
» [n,d] = rat(0.3333) 
 
n = 3333 
d = 10000 
 
Function rat can be called using a second argument representing the error, or tolerance, 
allowed in the approximation.  The call to the function in this case is: 
 

[n,d] = rat(x,ε) 
 

where ε is the tolerance, and n, d, x where defined earlier.  The values of n and d returned by 
this function call are such that  
 

|| xx
d
n ε≤−  

 
For example: 
 
» [n,d] = rat(0.3333,1e-6) 
n =   3333 
d =  10000 
 
In this case, a tolerance ε  = 0.0001 = 10-6 produces the approximation 0.3333 ≈ 3333/1000.   If 
we change the tolerance to ε = 0.001 = 10-3, the result changes to 0.3333 ≈ 1/3: 
 
» [n,d] = rat(0.3333,1e-3) 
n = 1 
d = 3 



8 

The default value for the tolerance is ε = 10-5.  Thus, when the call rat(x) is used, it is 
equivalent to rat(x,1e-5). 
 
 
Function sqrt returns the square root of a real or complex number.  The square root of a 
positive real number is a real number, for example: 
 
» sqrt(2345.676) 
 ans  = 48.4322 
 
The square root of a negative real number (x < 0) is calculated as 
 

xix −=  
 
where i is the unit imaginary number, for example: 
 
» sqrt(-2345.676) 
 ans  = 0 +48.4322i 
 
To understand the calculation of the square root for a complex number we will use the polar 
representation of a complex number, namely,  
 

z = r⋅ eiθ, 
where  

r = (x2+y2)1/2 
 
is the magnitude of the complex number, and  
 

θ = tan-1(y/x) 
 
is the argument of the complex number.  
 
Euler’s formula provides an expression for the term eiθ, namely, 
 

eiθ = cos θ + i sin θ. 
 

With this result, we can write  
 

z = r⋅ eiθ = r⋅ cos θ + i r⋅sin θ = x + iy, 
 
which implies that x = r⋅ cos θ, and y = r⋅sin θ.  Thus, when using z = x+iy we are using a 
Cartesian representation for the complex number, while z = r⋅ eiθ is the polar representation of 
the same number. 
 
Using the polar representation for complex number z, we can write: 
 

( ) )2/sin()2/cos()2/(2/1
θθθθ ⋅+⋅=⋅=⋅= rirererz ii . 

 
For example, 
 
» sqrt(3-5*i) 
ans = 2.1013 - 1.1897i 
 
A plot of the square root function can only be produced for x > 0: 



9 

 
» x = [0:0.14];plot(x,sqrt(x)); 
» title('square root');xlabel('x');ylabel('y'); 
 
The resulting graph is: 
 

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2
square root

x

y

 
 
Exponential and logarithmic functions 
 
The exponential function, exp, returns the value of ex for a real number x where e is the 
irrational number that constitutes the basis of the natural logarithm, e = 2.7182818…. This 
value is calculated as exp(1): 
 
» exp(1) 
ans = 2.7183 
 
Examples of evaluating the exponential function with real arguments are presented next: 
 
» exp(-2.3) 
ans = 0.1003 
 
» exp([-1 0 1 2 3]) 
ans = 0.3679    1.0000    2.7183    7.3891   20.0855 
 
A plot of the function is produced next: 
 
-->x = [-2:0.1:5];plot(x,exp(x)); 
-->xtitle('exponential function');xlabel('x');ylabel('y'); 
  

-2 -1 0 1 2 3 4 5
0

50

100

150
exponential function

x

y

 
 



10 

The exponential function applied to a complex number can be easily interpreted as follows 
 

yieyeyiyeeeez xxxiyxiyx sincos)sin(cos)exp( +=+=== + . 
 
For example: 
 
» exp(3+4*i) 
ans = -13.1288 -15.2008i 
                                                           
The inverse function to the exponential function is the natural logarithm, ln(x), such that if y = 
ln(x), then x = exp(y) = ey.  Thus, ln(exp(x)) = x, and exp(ln(x)) = x. 
 
 In MATLAB, the natural logarithm function is referred to as log().  Examples of calculation of 
log() for real arguments are shown next: 
 
» log(2.35) 
 
ans =  0.8544 
 
» log([1 2 3]) 
 
ans =  0    0.6931    1.0986 
 
A plot of the natural logarithm function is shown below for the range 0 < x < 10 (the natural log 
function is not defined in the real of real numbers for x ≤ 0): 
 
» x = [0.1:0.1:10];plot(x,log(x)); 
» title('natural logarithm');xlabel('x');ylabel('y'); 
 

0 1 2 3 4 5 6 7 8 9 10
-3

-2

-1

0

1

2

3
natural logarithm

x

y

 
 
If z = r eiθ is a complex number, then ln(z) is interpreted as follows 
 

θθθ irererz ii +=+=⋅= )ln()ln()ln()ln()ln( . 
 
Calculations of log() for complex arguments in MATLAB are shown below: 
 
» log(2+3*i) 
ans = 1.2825 + 0.9828i 
 
» log([1+i, 2+3*i, 1-i]) 
ans =  0.3466 + 0.7854i   1.2825 + 0.9828i   0.3466 - 0.7854i 
                                  



11 

 
Besides the natural logarithm function (or logarithms of base e), MATLAB also provide functions 
log10() and log2() that calculate logarithms of base 10 and of base 2, respectively.  These two 
functions are defined in a similar manner to the natural logarithmic, i.e., 

 
• Logarithms of base 10:  if x = 10y, then y = log10(x) 
• Logarithms of base 2 :  if x = 2y, then y = log2(x) 

 
Examples of applications of functions log10() and log2() with real arguments are shown next: 
 
» log10([100 200 1000 1500]) 
ans =  2.0000    2.3010    3.0000    3.1761 
 
» log2([8 23 256 1000]) 
ans = 3.0000    4.5236    8.0000    9.9658 
 
Plots of the functions log10(x), and log2(x) are shown next: 
 
» x=[0.1:0.1:10]; plot(x,log10(x)); 
» title('log-10 function');xlabel('x');ylabel('y'); 
 

0 1 2 3 4 5 6 7 8 9 10
-1

-0.5

0

0.5

1
log-10 function

x

y

 
» x=[0.1:0.1:10]; plot(x,log2(x)); 
» xtitle('log-2 function');xlabel('x');ylabel('y'); 
 

0 1 2 3 4 5 6 7 8 9 10
-4

-3

-2

-1

0

1

2

3

4
log-2 function

x

y

 
Logarithms of any base can be expressed in terms of the natural logarithm as follows: let x = 
ay, then y = loga(x).  Also, ln(x) = ln(ay) = y ln(a), and y = ln(x)/ln(a), i.e., 
 

loga(x) = ln(x)/ln(a). 



12 

 
Thus, the logarithm of any real base a of a complex number z = x + iy can be calculated as 
 

.
)ln(

)(log
)ln()ln(

)ln(
)ln(

)ln()ln(
)ln(
)ln(

)ln(
)ln()(log

a
ir

a
i

a
r

a
er

a
er

a
zz a

ii

a
θθθθ

+=+=
+

=
⋅

==  

 
 
Examples of applications of functions log10() and log2() with complex arguments are shown 
next: 
 
» log10(5-3*i) 
ans = 0.7657 - 0.2347i 
 
» log2(4+6*i) 
ans = 2.8502 + 1.4179i 
 
The inverse function of the logarithm base-a function, loga(x), is the exponential base-a 
function, ax, so that loga(ax) = x and alog

a
x
 = x.  Thus, a plot of the exponential base-10 function 

is produced as follows: 
 
» x = [-1:0.1:2]; plot(x,10^x); 
» title('exponential base-10');xlabel('x');ylabel('y'); 
 

-1 -0.5 0 0.5 1 1.5 2
0

20

40

60

80

100
exponential base-10

x

y

 
 
while a plot of the exponential base-2 function is produced as follows: 
 
» x = [-1:0.1:2]; plot(x,2^x); 
» title('exponential base-2');xlabel('x');ylabel('y'); 
 

-1 -0.5 0 0.5 1 1.5 2
0.5

1

1.5

2

2.5

3

3.5

4
exponential base-2

x

y

 
 



13 

In producing this graphics we used the exponentiation operation (^) with real base and 
exponent.  You can use a real base and complex exponent to calculate an exponentiation that 
will produce a complex number according to the expression 
 

=+===== + )))ln(sin())ln((cos()( )ln()ln( ayiayaeaeaaaaa xaiyxiyaxiyxiyxz  
 

))ln(sin())ln(cos( ayiaaya xx + . 
 

Examples of exponentiation of a real base and a complex exponent are shown next: 
 
» 2^(3-5*i) 
ans = -7.5834 + 2.5480i 
 
» 10^(2+4*i) 
ans = -97.7096 +21.2798i 
 
The exponentiation of a complex base with a real exponent follows the following rule: 
 

).sin()cos())sin()(cos()()( θθθθθθ airaraiarereriyxz aaaiaaaiaa +=+==⋅=+=  
 

Examples of exponentiation of a complex base with a real exponent follow: 
 
» (3.25+6.2*i)^4 
ans = -8.4693e+002 -2.2469e+003i 
 
» (2.17-6*i)^3.2 
ans = -2.6896e+002 +2.6314e+002i 

 
 
Note: A special case of this rule was used earlier when defining the square root of a complex 
number by taking a = ½. 
 
 
 
The most general case of exponentiation involves a complex base and a complex exponent. 
 

)())sin()cos(()()()( 222221212212
111111111

θθθθ θθ yiyxiyixiiyxiz erirrerererz −+ +=⋅== . 
 

To simplify this result we look at the term 1
1
iyr , which can be expanded as 

 

))ln(sin())ln(cos()( 2121
)ln()ln(

1
11211 yyiyyeer riyiyriy +=== . 

 
Thus, the exponentiation operation results in 
 

)))ln(sin())ln((cos())sin()cos(( 2121111111
222 yyiyyirrrz xiyz +⋅+⋅= θθ . 

 

The first term in the resulting product is simply a real exponentiation, 2
1
yr , the second term is 

a complex number raised to a real exponent, 2))sin()cos(( 1111
xirr θθ + , and the third term is 

simply a complex number, ))ln(sin())ln(cos( 2121 yyiyy + .  Thus, the original exponentiation 

problem, 2
1
zz , gets reduced to a product of complex numbers times a real number.   



14 

 
The rules of multiplication of complex numbers are such that 
 

)()())(( 12212121221121 yxyxiyyxxiyxiyxzz −+−=++=⋅  
 

or, alternatively, 
 

=+++===⋅ + ))sin()(cos())(( 212121
)(

212121
2121 θθθθθθθθ irrerrererzz iii  

 
)sin()cos( 21212121 θθθθ +++ rirrr  

 
The rules of multiplying a real and a complex number are the following 
 

iayaxiyxaaz +=+= )(  
or, 

)sin()cos( θθθ iararareaz i +== . 
 

Using these rules of multiplication the exponentiation of a complex base with a complex 
exponent can be easily calculated. 
 
Examples of the exponentiation of a complex base with a complex exponent are presented 
next: 
 
» (-2.3+8.2*i)^(2*i) 
ans = -0.0104 - 0.0227i 
 
» (5.2-4*i)^(2+3*i) 
ans = -1.1431e+002 -2.8571e+002i 
 
Tables of logarithms were developed in the 1600’s to facilitate calculations of multiplications, 
divisions and exponentiation.   The rules used to calculate multiplications, divisions, and 
exponentiations are the following: 
 

loga(xy) = logax + logay,  loga(x/y) = logax - logay, and  loga(xy) = y logax. 
 
These rules follow from the properties of powers: 
 

ax+y
 = axay, ax-y

 = axa-y = ax/ay, and (ax)y = axy 

 
 
Trigonometric functions  
 
The six trigonometric functions are sine (sin), cosine (cos), tangent (tan), cotangent (cot), 
secant (sec), and cosecant (csc).  The trigonometric functions can be defined in terms of the 
angles and sides of a right triangle.  Consider the trigonometric functions of the angle α in the 
triangle shown below.   

 



15 

 
Side c is known as the hypotenuse of the right triangle.  With respect to the angle α, side a is 
the opposite side, and side b is the adjacent side.  The definitions of the trigonometric 
functions for angle α are as follows: 
 

c
b

hypotenuse
sideadjacent

c
a

hypotenuse
sideopposite

==== )cos(,)sin( αα  

 

a
b

sideopposite
sideadjacent

b
a

sideadjacent
sideopposite

==== )cot(,)tan( αα  

 

a
c

sideopposite
hypotenuse

b
c

sideadjacent
hypotenuse

==== )csc(,)sec( αα  

 
From these definitions it follows that  
 

sin(α) = 1/csc(α), cos(α) = 1/sec(α), 
 

tan(α) = 1/cot(α), cot(α) = 1/tan(α), 
 

sec(α) = 1/cos (α), csc(α) = 1/sin(α), 
 

tan(α) = sin(α)/cos(α), cot(α) = cos(α)/sin(α) 
 
The Pythagorean theorem indicates that for the right triangle shown earlier 
 

a2 + b2 = c2. 
 
Dividing by c2 results in (a/c)2 + (b/c)2 = 1, which can be re-written as 
 

sin2(α) + cos2(α) = 1. 
 
Dividing the Pythagorean theorem result by b2 results in (a/b)2

 + 1 = (c/b)2, or 
 

tan2(α) + 1 = sec2(α). 
 
Finally, dividing the Pythagorean theorem result by a2 results in 1 + (b/a)2 = (c/a)2, or 
 

1 + cot2(α) = csc2(α). 
 

__________________________________________________________________________________ 
 
Angular measure 
 
Angles can be measured in degrees (o) so that a right angle constitutes ninety degrees (90o) and 
the angle described by a radius rotating about a point so as to describe a complete 
circumference constitutes 360o.  A more natural way to measure angles is by the use of 
radians.  Consider the arc of length s on a circle of radius r that corresponds to an angle θ r in 
radians, by definition  

θ r = s/r. 
 
 



16 

 
 
If the arc corresponds to a circumference, then s = 2πr, and the corresponding angle is s/r = 
2π.  Since this angle corresponds to 360o, we can write  
 

.180
2
360

ππθ
θ

==r

o

 

 
The value of π is available in MATLAB through the constant pi, i.e.,  
 
» pi 
ans = 3.1416 
 
__________________________________________________________________________________ 
 
In the triangle presented earlier, if the angles α and β are given in radians, it follows that   
 

α  + β  = π/2. 
 
If the angles are in degrees, the relationship is given by 
 

α  + β  = 90o. 
 
From the definitions of the trigonometric functions given earlier, it follows that 
 

sin(π/2-α) = cos(α), cos(π/2- α) = sin(α), 
 

 tan(π/2-α) = cot(α),cot(π/2- α) = tan(α),  
 

sec(π/2-α) = csc (α), csc(π/2- α) = sec(α) 
 
Besides the calculations presented earlier for right triangles, trigonometric functions and their 
inverses can be used to solve for any triangle such as those shown in the following figure: 
 

 
 
These triangles have sides a, b, and c, opposite to angles α, β, and γ, respectively.  For the 
triangle to exist, c + b > a, or c + a > b, or a + b > c.   The angles satisfy the relationship 
 

α + β  + γ = 180o, or α + β  + γ = π r. 
 
The angles and sides are related by: 
 

• the law of sines, 



17 

cba
)sin()sin()sin( γβα

==  

• the law of cosines 

)cos(2222 γabbac −+=  

)cos(2222 βaccab −+=  

)cos(2222 αbccba −+=  
 

Also, the area of the triangle is given by Heron’s formula 
 

))()(( csbsassA −−−= , 
where  

2
cbas ++

=  

 
is known as the semi-perimeter of the triangle. 
 
The trigonometric functions can also be given in terms of the coordinates of a point on a circle 
of unit radius, as illustrated in the following figure: 
 

 
  
Since the circle has radius r = 1, the arc of the circle extending from point Q(1,0) to point 
P(x,y) has a length θ  equal to the angle ∠POQ, swept by the radius of the circle, measured in 
radians, i.e., ∠POQ = θ r.  The angle corresponding to line OQ is θ = 0.  An angle measured in 
the counterclockwise direction is, by convention, taken as a positive angle, i.e., θ > 0, while 
one measured in the clockwise direction is taken as negative, i.e., θ < 0.   The figure shows the 
angles from θ = 0 to θ = 2π, in the positive sense, and also the angles from θ = 0 to θ = −2π,, in 
the negative sense.  From the definition of polar coordinates, with r =1, it follows that the 
coordinates of point P(x,y) on the unit circle provide the values of the functions sine and cosine 
of θ, since x = r cos(θ) = cos(θ), and y = r sin(θ) = sin(θ).  Thus, for a point P(x,y) in the unit 
circle 

sin(θ) = y, cos(θ) = x, 
 

tan(θ)  = y/x, cot(θ) = x/y, 
 

sec(θ) = 1/x, csc(θ) = 1/y. 



18 

Increasing or decreasing a given angle θ by a multiple of 2π will bring us back to the same point 
on the unit circle, therefore, we can write, for any integer value k, i.e., k = 0, 1, 2, …: 
 

sin(θ ± 2πk) = sin(θ), cos(θ ± 2πk) = cos(θ), 
 

tan(θ ± 2πk) = tan(θ), cot(θ ± 2πk) = cot(θ), 
 

sec(θ ± 2πk) = sec(θ), csc(θ ± 2πk) = csc(θ). 
 
Also, from the symmetries of the unit circle it follows that  
 

sin(-θ) = -sin(θ), cos(-θ) = cos(θ), 
 

tan(-θ) = -tan(θ), cot(-θ) = -cot(θ), 
 

sec(-θ) = sec(θ), csc(-θ) = -csc(θ). 
 
The relationships developed above are referred to as trigonometric identities and can be used 
to simplify trigonometric relationships.   
 
The inverse trigonometric functions are defined as follows: 
 

• If sin(y) = x, then y = sin-1(x) = asin(x);    If cos(y) = x, then y = cos-1(x) = acos(x) 
• If tan(y) = x, then y = tan-1(x) = atan(x);  If cot(y) = x, then y = cot-1(x) = acot(x) 
• If sec(y) = x, then y = sec-1(x) = asec(x);   If csc(y) = x, then y = csc-1(x) = acsc(x) 

 
Four trigonometric functions (sin, cos, tan, cot) and three inverse trigonometric functions 
(asin, acos, atan) are pre-defined in MATLAB.  Using trigonometric identities it is possible to 
figure the remaining trigonometric functions (sec, csc) and inverse trigonometric functions 
(acot, asec, acsc).  These functions can take real as well as complex arguments.  Plots of the 
pre-defined trigonometric and inverse trigonometric functions in appropriate real domains are 
shown below. 
 
» % Sine function 
» x = [-2*pi:pi/100:2*pi]; 
» plot(x,sin(x));title('sine');xlabel('x');ylabel('y'); 
 

-8 -6 -4 -2 0 2 4 6 8
-1

-0.5

0

0.5

1
sine

x

y

 
 
 



19 

» % Cosine function 
» x = [-2*pi:pi/100:2*pi]; 
» plot(x,cos(x));title('cosine');xlabel('x');ylabel('y'); 
 

-8 -6 -4 -2 0 2 4 6 8
-1

-0.5

0

0.5

1
cosine

x

y

 
 
-->//Tangent function 
-->x=[-%pi/2+0.01:0.01:%pi/2-0.01]; 
-->plot(x,tan(x));xtitle('tangent');xlabel('x');ylabel('y');    
  

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-100

-50

0

50
tangent

x

y

 
 
A plot of the cotangent function, using the domain (-π/4, π/4) for x produces a division by 
zero: 
 
» x = [-pi/2:pi/100:pi/2];plot(x,cot(x)) 
Warning: Divide by zero. 
> In C:\MATLAB_SE_5.3\toolbox\matlab\elfun\cot.m at line 8 
 
The reason for this result is that, as x  0, cot(x)  ± ∞, since tan(0) = 0, and cot(x) = 
1/tan(x).  The following MATLAB commands will produce a plot that avoids evaluating the 
function at x = 0: 
 
» % Cotangent function 
» x1=[-0.8:0.01:-0.01];x2=[0.01:0.01:0.8]; % two symmetric domains about x = 0 
» x = [x1, x2]; %join the two domains into a single one 
» plot(x,cot(x));title('cotangent');xlabel('x');ylabel('y'); 
 



20 

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
-100

-80

-60

-40

-20

0

20

40

60

80

100
cotangent

x

y

 
 

 
In evaluating inverse trigonometric function for plotting, it is necessary to keep in mind the 
range of values of the original trigonometric functions.  For example, the range of values of 
sine and cosine is the interval [-1,1].  Thus, both the asin(x) and acos(x) functions will return 
real numbers if the argument is in the interval -1 < x < 1.  On the other hand, the range of 
values for the tangent and cotangent are (-∞, ∞).   Thus, the function atan(x) will return a real 
number for any value of x.  Plots of the three inverse trigonometric functions are shown next. 
 
 
-->x = [-1:0.01:1];plot(x,asin(x)); //Arcsine function 
-->xtitle('arcsine');xlabel('x');ylabel('y'); 
 

-1 -0.5 0 0.5 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
arcsine

x

y

 
 

-->x = [-1:0.01:1];plot(x,acos(x)); //Arcosine function 
-->xtitle('arccosine');xlabel('x');ylabel('y'); 
 



21 

-1 -0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5
arccosine

x

y

 
 
» x = [-10:0.01:10];plot(x,atan(x)); % Arctangent function 
» title('arctangent');xlabel('x');ylabel('y');   
 

-10 -5 0 5 10
-1.5

-1

-0.5

0

0.5

1

1.5
arctangent

x

y

 
 
The four trigonometric functions and three inverse trigonometric functions defined in MATLAB 
can take as arguments complex numbers returning complex numbers themselves.  The way 
these functions are calculated with complex arguments requires the definition of the 
hyperbolic functions which will are introduced in the following section.  Without defining these 
calculations, we present next some examples of trigonometric and inverse trigonometric 
functions with complex arguments: 
 
» sin(3-5*i) 
ans = 10.4725 +73.4606i 
 
» cos(-2-8*i) 
ans = -6.2026e+002 -1.3553e+003i 
 
» tan(0.5-0.3*i) 
ans = 0.4876 - 0.3689i 
 
» cot(-0.3+0.86*i) 
ans = -0.2746 - 1.3143i 
 
 



22 

» asin(1-i) 
ans = 0.6662 - 1.0613i 
 
» acos(5-3*i) 
ans = 0.5470 + 2.4529i 
 
» atan(2-3*i) 
ans = 1.4099 - 0.2291i 
 
When the argument of functions asin(x) and acos(x) is outside of the range -1 < x < 1, these 
functions will return complex numbers, e.g., 
 
» asin(10) 
ans = 1.5708 + 2.9932i 
 
» acos(20) 
ans = 0 - 3.6883i 
 
The latter result, in which the real part of the complex number returned is zero, is referred as 
a purely imaginary number.  Thus, numbers of the form yi, where i is the unit imaginary 
number, are purely imaginary numbers, e.g., 5i, -10i, πi. 
 
 
Hyperbolic functions 
 
Hyperbolic functions result from combining exponential functions.  The following are the 
definitions of the hyperbolic sine (sinh), hyperbolic cosine (cosh), and hyperbolic tangent 
(tanh) functions: 
 

xx

xxxxxx

ee
ee

x
xxeexeex −

−−−

+
−

==
+

=
−

=
)cosh(
)sinh()tanh(,

2
)cosh(,

2
)sinh( . 

 
The remaining hyperbolic functions, hyperbolic cotangent (coth), hyperbolic secant (sech), and 
hyperbolic cosecant (csch) are defined by 
 

coth(x) = 1/tanh(x), sech(x) = 1/cosh(x), and csch(x) = 1/sinh(x). 
 
The inverse hyperbolic functions are defined as 
 

• If sinh(y) = x, then y = sinh-1(x) = asinh(x);    If cosh(y) = x, then y = cosh-1(x) = acosh(x) 
• If tanh(y) = x, then y = tanh-1(x) = atanh(x);  If coth(y) = x, then y = coth-1(x) = acoth(x) 
• If sech(y) = x, then y = sech-1(x) = asech(x);   If csch(y) = x, then y = csch-1(x) = acsch(x) 

 
MATLAB includes the following hyperbolic and inverse hyperbolic functions:  acosh, asinh, 
atanh, cosh, coth, sinh, tanh.  Plots of these functions for real arguments are shown next: 
 
 
» % hyperbolic sine 
» x = [-2:0.1:2]; plot(x,sinh(x)); 
» title('hyperbolic sine');xlabel('x');ylabel('y'); 
 



23 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-4

-3

-2

-1

0

1

2

3

4
hyperbolic sine

x

y

 
 
» % hyperbolic cosine 
» x = [-2:0.1:2]; plot(x,cosh(x)); 
» title('hyperbolic cosine');xlabel('x');ylabel('y'); 
 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
1

1.5

2

2.5

3

3.5

4
hyperbolic cosine

x

y

 
» % hyperbolic tangent 
» x=[-2:0.1:2];plot(x,tanh(x)); 
» title('hyperbolic tangent');xlabel('x');ylabel('y'); 
 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1

-0.5

0

0.5

1
hyperbolic tangent

x

y

 
 



24 

 
» %hyperbolic cotangent 
» x1=[-0.2:0.01:-0.01];x2=[0.01:0.01:0.2];x=[x1,x2]; 
» plot(x,coth(x));title('hyperbolic cotangent');label('x');ylabel('y'); 
 
 
 

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
-150

-100

-50

0

50

100

150
hyperbolic cotangent

x

y

 
 
 
» % inverse hyperbolic sine 
» x=[-2:0.01:2];plot(x,asinh(x));xtitle('inverse hyperbolic sine'); 
 
 
 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5
inverse hyperbolic sine

 
 
-->//inverse hyperbolic cosine 
-->x=[1:0.01:2];plot(x,acosh(x));xtitle('inverse hyperbolic cosine'); 
 



25 

1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4
inverse hyperbolic cosine

 
 
-->//inverse hyperbolic tangent 
-->x=[-0.99:0.01:0.99];plot(x,atanh(x));xtitle('inverse hyperbolic tangent');   
 

-1 -0.5 0 0.5 1
-3

-2

-1

0

1

2

3
inverse hyperbolic tangent

 
 
Trigonometric and hyperbolic functions, and their inverses, in MATLAB, can use complex 
numbers as arguments.  The rules for evaluation of these functions can be easily obtained by 
using their definitions in terms of exponential functions.  Definitions of the hyperbolic 
functions in terms of exponential functions were presented above.  To define trigonometric 
functions in terms of exponential functions we use Euler formula as follows: 
 

eix
 = cos(x) + i sin(x) 

 
e-ix = cos(x) - i sin(x) 

 
By subtracting and adding these two equations we arrive to the following definitions: 
 

.
2

)cos(,
2

)sin(
ixixixix eexeeix

−− +
=

−
−=  

Also, 

.
)cos(
)sin()tan( ixix

ixix

ee
eei

x
xx −

−

−
−

−==  



26 

 
If you now replace the real variable x with the complex variable z = x+iy in the definitions for 
sin(x), cos(x), tan(x), sinh(x), cosh(x), and tanh(x), expressions for sin(z), cos(z), tan(z), 
sinh(z), cosh(z), and tanh(z) can be obtained.    
 
Examples of evaluation of trigonometric and inverse trigonometric functions for complex 
arguments were presented in the previous section.  Following, we present the evaluation of 
hyperbolic and inverse hyperbolic functions with complex arguments: 
 
» sinh(2-5*i) 
ans = 1.0288 + 3.6077i 
 
» cosh(-2+5*i) 
ans = 1.0672 + 3.4779i 
 
» tanh(1-6*i) 
ans = 0.7874 + 0.1165i 
 
» coth(3-2*i) 
ans = 0.9968 - 0.0037i 
 
» asinh(2.5-0.5*i) 
ans =    1.6631 - 0.1840i 
 
» acosh(2-6*i) 
ans = 2.5426 - 1.2527i 
 
» atanh(3-i) 
ans = 0.3059 - 1.4615i 
 
 
Combining elementary functions 
 
Elementary mathematical functions as those described in this document can be combined in a 
variety of ways.  Some examples are shown next: 
 

• Composite functions 
 
In this example, we define the function y = exp(sin(x)) and plot it in the range: 
 -2π<x<2π: 
 
» f00 = inline('exp(sin(x))'); 
» xlim=[-2*pi,2*pi];fplot(f00,xlim);title('exp(sin(x))'); 
 

-6 -4 -2 0 2 4 6
0

0.5

1

1.5

2

2.5

3
exp(sin(x))

 



27 

 
• Addition and subtraction 

 
In this example we define the function y = sin(x) + cos(x), and plot it in the range: 
 -2π<x<2π: 
 

            » f00 = inline('sin(x)+cos(x)'); 
       » xlim=[-2*pi,2*pi];fplot(f00,xlim);title('sin(x)+cos(x)'); 
 

-6 -4 -2 0 2 4 6
-1.5

-1

-0.5

0

0.5

1

1.5
sin(x)+cos(x)

 
  

• Multiplication and division 
 

In this example we define the function y = sin(x)* cos(x), and plot it in the range: 
 -2π<x<2π.  Just be careful to  use a term-by-term multiplication symbol, i.e., .*, to 
ensure that evaluation of the function as a vector is accomplished properly. 
 
» f00=inline('sin(x).*cos(x)'); 
» xlim=[-2*pi,2*pi];fplot(f00,xlim);title('sin(x)*cos(x)'); 

 

-6 -4 -2 0 2 4 6
-0.5

0

0.5
sin(x)*cos(x)

 
 


