
1

Notes on functions in Matlab
By Gilberto E. Urroz, August 2004

Pre-defined functions

Matlab has a variety of pre-defined functions readily available for use by simply using their
names and providing the right number and type of arguments. For example, the natural
logarithm function (log) is readily available:

» log(-5.2)

ans =

 1.6487 + 3.1416i

Help is also readily available for these functions, for example:

EDU» help log

 LOG Natural logarithm.
 LOG(X) is the natural logarithm of the elements of X.
 Complex results are produced if X is not positive.

 See also LOG2, LOG10, EXP, LOGM.

 Overloaded methods
 help sym/log.m

If a function name is not available in Matlab, you will get a reply similar to this:

EDU» help myFunction

myFunction.m not found.

Notice that help searches the Matlab installation for a file named myFunction.m to try to
obtain the information requested, and then reports that such file was not found. Most
functions in Matlab will have an m file associated with their names, where information about
their operation is available.

Functions defined by m files

User-defined functions (i.e., those no pre-programmed in Matlab) can be defined by using an m
file. These files are simply text files whose name end with the suffix .m. Those m files that a
user may create are typically stored in the work directory. This directory is the default
working directory of a Matlab installation.

Functions defined by m files start with the line

function [assignment_variable(s)] = function_name(arguments)

Here, function is a required Matlab particle to identify the file as a function, assignment_
variable(s) is an optional dummy variable, function_name is the name given to the
function, and arguments are optional values passed on to the function from the main Matlab
interface or from within another function.

2

If one or more assignment_variables are present, then their names must be assigned a value
within the function. Consider for example the function:

function [x] = f018(r)
% This is an example function.
% I have no idea what r or x are.
% Just take my word for it.
x = r.*sin(r);

The line function [x] = f018(r) helps us identify the assignment variable as x, the
function name as f018, and one argument as r. The next three lines are simply comment lines
describing the function. The fourth line is the line where a value is assigned to the assignment
variable x. Notice that, since we don’t know whether r, the argument, will be a scalar, a
vector, or a matrix, it is safer to use term-by-term multiplication (.*) in the assignment line
x = r.*sin(r);. It is recommended that you use semi-colons (;) to end every executable
line in the function, whose value you don’t want showing in the Matlab interface when the
function is invoked.

To type this function you should use Matlab’s own editor (available by using File>New>M file in
the File menu). Once you finish typing the function in the editor, use the option File>Save to
save it to a file. By default, the editor will try to save the file to the work directory and use
the function_name as the file name, e.g.,

Press the Save button to save the function to a file. The function is now available for use from
within Matlab.

For example, the command help f018 will copy the comment lines immediately following the
first line to the Matlab interface:

» help f018

 This is an example function.
 I have no idea what r or x are.
 Just take my word for it.

3

A few evaluations of this function are shown next:

» f018(2)

ans =

 1.8186

» f018([1 2])

ans =

 0.8415 1.8186

» m = f018([-3 2 5])

m =

 0.4234 1.8186 -4.7946

» R = f018([1.2,2.4;3.2,1.5])

R =

 1.1184 1.6211
 -0.1868 1.4962

The first two examples show no assignment made to the value returned by the function. In
these cases, Matlab assigns the returned values to the generic variable ans. The first example
shows a scalar argument, and the function returns a scalar result. The second and third
examples show vector arguments with vector results. The fourth example shows a matrix
argument and a matrix result. Assignments are made to specific variables in examples 3 and 4.

A function may take no arguments, for example:

function [s] = labels()
% This function simply returns a string
s = 'Copyright (C) Gilberto Urroz - 2004';

Calls to this function produces the following:

» labels

ans =

Copyright (C) Gilberto Urroz - 2004

EDU» notice = labels

notice =

Copyright (C) Gilberto Urroz – 2004

4

A function definition may not have an assignment variable, for example:

% Function without assignment variable
r = s^2;
disp(['For s = ',num2str(s),' s-squared is = ',num2str(r)]);

A call to this function is shown next:

» f019(3)
For s = 3 s-squared is = 9

If you attempt to assign function f019 to a variable, you get the following error message:

» s1 = f019(4)
??? Error using ==> f019
Too many output arguments.

Finally, here is a function without assignment variable and without arguments:

function [] = f020()
% Function without assignment variable and without arguments
fprintf('\n');
fprintf('\n Just a message \n');

This is the way this function must be called (it simply returns a couple of printed lines to the
Matlab interface) :

» f020

 Just a message

Functions with more than one argument or output

First, here is an example of a function with two arguments that returns a single output:

function [r] = f021(s,t)
% Function with two arguments and one output
r = sin(s).*cos(t);

Evaluations of this function are shown below:

» f021(3,2)

ans =

 -0.0587

» m = f021([3,5,-2],[1,2,4])

m =

 0.0762 0.3991 0.5944

5

Next, a function of one argument returning two outputs:

function [x,y] = f022(theta)
% Function with one argument and two outputs
x = 23*sin(theta); y = 23*cos(theta);

Evaluations of this function are shown below:

[x1, y1] = f022(pi/3)

x1 =

 19.9186

y1 =

 11.5000

» f022(pi/3)

ans =

 19.9186

» x2 = f022(pi/6)

x2 =

 11.5000

Notice that, when no assignment is made to a vector, or when the assignment is made to a
scalar variable, only the first value is returned.

Next, a function of two arguments returning two outputs:

function [x,y] = f023(r,theta);
% Conversion from polar to Cartesian coordinates
x = r.*cos(theta);
y = r.*sin(theta);

Evaluations of this function are shown below:

» [x3, y3] = f023(10.,3*pi/5)

x3 =

 -3.0902

y3 =

 9.5106

6

» r = [5.0, 3.0, 2.0]; theta = pi*[1/2, 1/3, 1/6];
» [x,y] = f023(r,theta)

x =

 0.0000 1.5000 1.7321

y =

 5.0000 2.5981 1.0000

The following is an example of a function that takes as argument a vector of 2 components and
returns a vector of two components:

function [r] = f024(s)
% r and s are vectors with 2 components
r(1) = sqrt(s(1)^2+s(2)^2);
r(2) = atan(s(2)/s(1));

These are evaluation of this function:

» r1 = f024([-3.5, 1.2])

r1 =

 3.7000 -0.3303

EDU» r2 = f024([8.0; -2.0])

r2 =

 8.2462 -0.2450

Notice that the argument can be a row vector or a column vector, but the output is, by
default, a row vector. If you want to force a column vector, then the function must be
modified to read:

function [r] = f024(s)
% r and s are column vectors with 2 components
r1 = sqrt(s(1)^2+s(2)^2);
r2 = atan(s(2)/s(1));
r = [r1;r2];

The following function takes as argument a column vector of 2 components and returns a
matrix:

function [J] = f025(s)
% Vector argument that returns a matrix output
J(1,1) = s(1)^2+ s(2)^2;
J(1,2) = s(1)/s(2);
J(2,1) = abs(s(1))+ abs(s(2));
J(2,2) = sqrt(s(1))+ s(2)^(1/3);

These are evaluations of this function:

7

» f025([1,2])

ans =

 5.0000 0.5000
 3.0000 2.2599

» f025([1;2])

ans =

 5.0000 0.5000
 3.0000 2.2599

Functions that require constants for their evaluation

Suppose that you want to create a function that will require to calculate the expression

f(x,y) = (a*x+b*y)2,

Where a and b are constants to be defined in the main Matlab interface. The following
function was created to calculate f(x,y):

function [z] = f026(x,y)
% Function that requires constants
global a; global b;
z = a*x + b*y;

Notice that there is a line in the function that makes reference to the constants a and b, i.e.,

global a; global b;

This line indicates that the values of a and b, which should be assigned in the main Matlab
interface, are available to be used within function f026. Thus, a and b would be referred to as
global variables, as opposite to variables x and y, which are referred to as local variables to
the function.

An attempt to evaluate the function, as shown next, produces no output:

» a = 2; b = 3; f026(2.3,1.2)

ans =

 []

The reason for this lack of evaluation of f026 is that variables a and b have not been declared
as global within the main Matlab interface. The following statement may produce a warning
message in your Matlab installation:

» global a; global b;
Warning: The value of local variables may have been changed to match the
 globals. Future versions of MATLAB will require that you declare
 a variable to be global before you use that variable.

8

After having declared a and b as global variables, the evaluation of the function proceeds
without a glitch:

» a = 2; b = 3; f026(2.3,1.2)

ans =

 8.2000

Function evaluation with feval

Function feval can be used as an alternative way to evaluate a function. For example, instead
of using m = f021([3,5,-2],[1,2,4]) to evaluate function f021, one could use:

» feval('f021',[3,5-2],[1,2,4])
??? Error using ==> .*
Matrix dimensions must agree.

Error in ==> C:\MATLAB_SE_5.3\bin\f021.m
On line 3 ==> r = sin(s).*cos(t);

This application of feval, however, was unsuccessful. A way to successfully apply feval in this
case is to use variables to store the vectors before invoking function feval:

» r = [3,5,-2]; s = [1,2,4]; feval('f021',r,s)

ans =

 0.0762 0.3991 0.5944

The following application of feval is allowed because the arguments are scalar values:

» feval('f021',2.3,1.2)

ans =

 0.2702

Other examples of applications of feval follow:

» r1 = f024([-3.5,1.2])

r1 =

 3.7000 -0.3303

EDU» r1 = feval('f024',[-3.5,1.2])

r1 =

 3.7000 -0.3303

9

» [x1, y1] = feval('f022',pi/3)

x1 =

 19.9186

y1 =

 11.5000

Function f026 still needs a and b to be declared as global variables:

» global a; global b; a = 2; b = 3; feval('f026',2.3,1.2)

ans =

 8.2000

Functions whose arguments are functions

Function feval is an example of a pre-defined function with one of its argument being another
function. More specifically, the first argument of feval is the name of a function enclosed
between apostrophes. The following is my first attempt to develop a user-defined function
that takes a function name as an argument:

function [z] = f027(f,x,y)
% variable f in here is the name of a function
z = f(x) + f(y);

When I try to evaluate this function in the following example, however, an error is reported:

» f027('sin',pi/3,pi/6)
Warning: Subscript indices must be integer values.
> In C:\MATLAB_SE_5.3\bin\f027.m at line 3
Warning: Subscript indices must be integer values.
> In C:\MATLAB_SE_5.3\bin\f027.m at line 3

ans =

 230

Interestingly enough, a value is returned (ans = 230), but this value makes no sense
whatsoever, and we must ignore it. The error shown above results from the fact that function
f027 has no way to know that f is a string, instead it takes f to be an array whose indices are x
and y. To avoid this problem, f027 is modified to read:

function [z] = f027(f,x,y)
% variable f in here is the name of a function
z = feval(f,x) + feval(f,y);

10

With this new version of the function, its evaluation proceeds smoothly:

» f027('sin',pi/3,pi/6)

ans =

 1.3660

Inline functions

So far, all the user-defined functions presented have been contained in an m file. There is a
way to define what is referred to as an inline function by using function inline. Not all
functions can be defined as inline functions, only those which have a single output and whose
expressions contains not constants. Here is an example of an inline function:

» fplus = inline('x^2-1')

fplus =

 Inline function:
 fplus(x) = x^2-1

Notice that Matlab shows the resulting function expression as fplus(x) = x^2-1 having identified
x as the independent variable in the expression ‘x^2-1’ used as argument of function inline.
Evaluations of fplus are shown next:

» fplus(2)

ans =

 3

EDU» fplus([1 2 3])
??? Error using ==> inline/subsref
Error in inline expression ==> x^2-1
??? Error using ==> ^
Matrix must be square.

Notice that if a vector argument is used for fplus, the calculation fails. This is so because the
power operator (^) applies, without using a dot, only to square matrices to calculate powers of
matrices, e.g., A2 = A⋅A, A3 = A⋅A 2, etc. An expression such as [1 2 3]^2 needs to be calculated
as a term-by-term operation, i.e., as [1 2 3].^2, or it produces an error. Thus, a way to resolve
this problem is to redefine fplus as:

» fplus = inline('x.^2-1')

fplus =

 Inline function:
 fplus(x) = x.^2-1

With this re-definition we can now calculate fplus([1 2 3]) without a problem:

11

» fplus([1 2 3])

ans =

 0 3 8

The following is an inline definition for a function of two variables:

» ftwo = inline('y^2+x^2')

ftwo =

 Inline function:
 ftwo(x,y) = y^2+x^2

Notice that Matlab chooses the arguments as (x,y), and not as (y,x), even though y shows up
first in the expression. Thus, Matlab preserves alphabetical order of the variables when
choosing the independent variables by itself. One can force the order of the variables by
declaring so specifically in the call to function inline, for example:

» fthree = inline('y^2 + x^2','y','x')

fthree =

 Inline function:
 fthree(y,x) = y^2 + x^2

The names of inline functions can be used as arguments of functions such as feval or the user-
defined function f027 shown earlier. Some examples are shown next:

 » feval(fthree,2,-1)

ans =

 5

EDU» feval(fplus,3.2)

ans =

 9.2400

Notice that, when using function feval, the name of the inline functions is typed without
apostrophes. As a matter of fact, using their names with apostrophes produce errors:

EDU» feval('fplus',3.2)
??? Cannot find function 'fplus'.

EDU» feval('fthree',2,-1)
??? Cannot find function 'fthree'.

These errors result from the fact that, when entered between apostrophes, feval seeks a file
name for the function. Since m files named fplus.m and fthree.m do not exist, feval reports
an error. Because functions fplus and fthree were declared as inline functions, their names

12

are actually variable names available in the workspace, and therefore, must be written without
apostrophes as arguments of feval.

Once again, inline functions cannot be defined with constants in their expressions. Consider,
for example, the following case:

» global a; global b; a = 2.3; b = 4.5;
» ffour = inline('a*x+b*y','x','y')

ffour =

 Inline function:
 ffour(x,y) = a*x+b*y

» ffour(2,3)
??? Error using ==> inline/subsref
Error in inline expression ==> a*x+b*y
??? Undefined function or variable 'a'.

Even after defining a and b as global variables, evaluating ffour reports an error because Maple
offers no way of inserting those global values in the evaluation of ffour. An attempt to use
feval also fails.

» global a; global b; a = 2.3; b = 4.5;
EDU» feval(ffour,2,3)
??? Error using ==> inline/feval
Error in inline expression ==> a*x+b*y
??? Undefined function or variable 'a'.

Thus, if using constants in the expressions evaluated in a function, use an m file and make sure
to define the constants as global variables, both in the Matlab interface as in the function file.

Using strings to create an inline function

Since inline functions do not allow the use of constants, one way to create the proper inline
function is to replace the values of the constants in the function expression before calling
function inline. For example, if we want to define the function f100(x,y) = a*x+b*y, with a = 2
and b = 3, we could simply write:

» f100 = inline('2*x+3*y','x','y')

f100 =

 Inline function:
 f100(x,y) = 2*x+3*y

Suppose, however, that we want to make the substitution of the values of a and b within a
function. We could use the following to create the proper expression:

» s = 'a*x+b*y' % Expression for the function

s =

a*x+b*y

13

EDU» a = 2; b = 3; % loading values of a and b

» s = strrep(s,'a',num2str(a)) % replace value of a in string
expression

s =

2*x+b*y

EDU» s = strrep(s,'b',num2str(b)) % replace value of b in string
expression

s =

2*x+3*y

» f100 = inline(s)

f100 =

 Inline function:
 f100(x,y) = 2*x+3*y

This procedure seems complicated, but it could work, within a function, to substitute constants
in an expression. Then, the resulting expression can be used to create an inline function that
uses those constants. For example, suppose that we want to solve the equation f101(x) =
a*x^2+b*x+c = 0, for several values of a, b, and c, using function fzero. The following function
may do the work for us:

function [x] = fSQ(a, b, c, x0)
%This function solves the equation a*x^2+b*x+c = 0,
%for several values of a, b, and c, using function fzero.
s = 'a*x^2+b*x+c';
s = strrep(s,'a',num2str(a)); % replace value of a in s
s = strrep(s,'b',num2str(b)); % replace value of b in s
s = strrep(s,'c',num2str(c)); % replace value of c in s
ff = inline(s,'x'); % define local inline function
x = fzero(ff,x0); % invoke 'fzero' to solve *ff(x)=0'

Some evaluations of this function are shown next:

» fSQ(2,3,-1,5)
Zero found in the interval: [-1.4, 9.5255].

ans =

 0.2808

» fSQ(5,-5,0,2.5)
Zero found in the interval: [0.9, 3.6314].

ans =

 1

14

» fSQ(-2,2,3,1.2)
Zero found in the interval: [0.432, 1.968].

ans =

 1.8229

By the way, function fzero takes a function f(x) and initial value x0, and tries to find a solution
to the equation f(x) = 0 by a numerical approach starting at x = x0.

Summary

This document shows a number of examples regarding the use of user-defined functions in
Matlab. Both, m-file and inline functions were presented. Some practical issues regarding the
use of global variables, and strings to define inline functions were also discussed. The
examples shown in this document can be used to developed your own Matlab functions related
to numerical methods.

