[Total No. of Questions: 09] [Total No. of Pages: 1] Uni. Roll No.

		Program/Course: B. Tecn.	
		Subject: Design of Concrete Structures - II	
		Subject Code: CE–310	
		Paper ID: A0622	
Time A	Allowed: 03 Hours Max		Iarks: 60
	Section – A is compulsory.		
2.			
	Use of Indian Standards is allowed.		
	Any missing data may be assumed appropriately		
		Section – A	
Q 1.	a)	Sketch correct way of reinforcement (horizontal) detailing at the junction of vertical walls of rectangular water tank.	f 2
	b)	How will you decide minimum reinforcement in case of water tank?	2
	c)	Under what conditions, you will recommend Raft Foundation?	2
	d)	Why Shell Structures are structurally more efficient and require less material.	2
	e)	Write, in brief, the procedure to design staging of OHSR.	2
	f)	Sketch detail of Flexible Joint between vertical wall and base slab of a circular water tank.	a 2
	g)	Discuss the loadings, which a designer has to consider for the design of vertical wall of rectangular underground tank.	f 2
	h)	Sketch "Strap Footing", write conditions under which this type footing is the best solution.	e 2
	i)	What is the role of Shear Key in the "Retaining wall"? On what basis it is designed?	s 2
	j)	How design of water retaining structures differ from other reinforced structures?	d 2
		Section – B	
Q 2.		How one way and two way shear is calculated in case of isolated square footing of uniform thickness.	e 5
Q 3.		Write situations where designer has to go for beam curved in plan. How design of such beam differ from the design of straight beam?	<i>i</i> 5
Q 4.		Derive expressions for meridional and hoop stresses for a Spherical Domesubjected to u.d.l.	e 5
Q 5.		Show deflected shape of all components of Intze Tank Proper due to membrane action.	5
Q 6.		Under what circumstances Counterfort Retaining Wall is preferred over	r 5

Cantilever Retaining Wall. Sketch Counterfort Retaining Wall, and label its

various components.

Section – C

- Q 7. Design a combined rectangular footing for two columns carrying axial loads of 1000 kN and 1200 kN. Columns are of size 400 mm x 400 mm and are spaced 4 m c/c. The projection of footing from the centre of lightly loaded column is 500 mm. The safe bearing capacity of soil is 120 kN / m^2 . Use M20 grade of concrete and Fe–415 grade of steel.
- Q 8. Design of cantilever retaining wall to maintain a level difference of 3 m. The angle of repose of earth Φ =30°, density is 18 kN / m³, coefficient of friction (between concrete and soil) μ =0.55. Take safe bearing capacity of soil as 100 kN / m².
- Q 9. Design a water tank using approximate method, circular in plan, with internal diameter 6 m, water height of 2.5 m. Take M20 concrete, Fe–415 steel, free board of 200 mm. The tank is resting on ground, the joint between wall and slab is monolithic.

############